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Abstract— Quantum Data Networks (QDNs) have emerged as
a promising framework in the field of information process-
ing and transmission, harnessing the principles of quantum
mechanics. QDNs utilize a quantum teleportation technique
through long-distance entanglement connections, encoding data
information in quantum bits (qubits). Despite being a corner-
stone in various quantum applications, quantum entanglement
encounters challenges in establishing connections over extended
distances due to probabilistic processes influenced by factors like
optical fiber losses. The creation of long-distance entanglement
connections between quantum computers involves multiple entan-
glement links and entanglement swapping techniques through
successive quantum nodes, including quantum computers and
quantum repeaters, necessitating optimal path selection and
qubit allocation. Current research predominantly assumes known
success rates of entanglement links between neighboring quantum
nodes and overlooks potential network attackers. This paper
addresses the online challenge of optimal path selection and
qubit allocation, aiming to learn the best strategy for achieving
the highest success rate of entanglement connections between
two chosen quantum computers without prior knowledge of
the success rate and in the presence of a QDN attacker. The
proposed approach is based on multi-armed bandits, specifically
adversarial group neural bandits, which treat each path as a
group and view qubit allocation as arm selection. Our contribu-
tions encompass formulating an online adversarial optimization
problem, introducing the EXPNeuralUCB bandits algorithm with
theoretical performance guarantees, and conducting comprehen-
sive simulations to showcase its superiority over established
advanced algorithms.

Index Terms— Quantum entanglement, path selection, qubit
allocation, multi-armed bandits.

I. INTRODUCTION

IN RECENT times, Quantum Data Networks (QDNs) have
emerged as a transformative approach, with the potential

to reshape information processing and transmission through
the evolution of distributed quantum computing [1]. Classical
networks have inherent limitations when it comes to ensuring
data security during transmission and handling data-intensive
processing tasks. QDNs, built upon the principles of quantum
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Fig. 1. Quantum data network. There exist four possible paths between Alice
and Bob and one attacker aims to disrupt one of them. Note that different
possible paths can have different success rates of establishing entanglement
connections.

mechanics, have the potential to overcome these limitations by
leveraging the unique properties of quantum systems, paving
the way for unparalleled levels of security, communication
efficiency, and computational power [2]. Previous quantum
key distribution technique, that aims to generate quantum
bits (qubits) and use them to deliver cryptographic keys, can
regenerate and retransmit qubits if available [3], while QDNs
encode the data information in the data qubits and utilize
quantum teleportation technique to avoid the retransmission
issue due to no-cloning theorem [4].

Quantum entanglement stands as a cornerstone in various
quantum techniques and applications. Consider two physically
adjacent quantum computers, Alice and Bob, where entangled
qubit pairs are generated on one end, say Alice. One of these
entangled qubits is retained while the other is sent to Bob, via
a physical fiber-optic channel, establishing an entanglement
link. However, this procedure encounters challenges due to
the inherent loss in the optical fiber, resulting in a success
rate well below one [5]. Creating an entanglement link is
probabilistic and uncertain, relying on the presence of quantum
channels between the parties and qubits at both ends [6].
Increasing the number of qubits on both ends and utilizing
additional available channels can improve the success rate
of the simultaneous attempts made. Nevertheless, quantum
channels are limited, and each quantum node has constrained
quantum memory for storing qubits, further complicating the
process.

As depicted in Figure 1, within QDNs, direct channel con-
nections among quantum computers are often absent. Instead,
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they are linked through various quantum nodes, known as
quantum repeaters. Notably, entanglement links can only be
forged between neighboring quantum nodes. To establish a
long-range entanglement connection between Alice and Bob,
a path must be discovered between them, establishing entan-
glement links for each successive quantum node along this
path and entanglement swapping operations are employed
repeatedly at each quantum node along the path [7]. The
success rate of establishing such a long-distance entanglement
connection is related both to the selected path, such as the
length and number of hops of the path and the success rate
of each entanglement link on the path and to the allocation
of qubits on each quantum node because of the limited
quantum memory for storing qubits. This means that more
qubits allocated by a quantum node to establish entanglement
connections with a predecessor node results in fewer qubits
for the entanglement links with the successor.

Entanglement routing is a complex problem that involves
not only establishing quantum links but also ensuring the
reliable transmission of entanglement across a network. Qubit
allocation and path selection has been considered as a pivotal
part of entanglement routing in many previous studies such
as [8], [9], and [10] since establishing an entanglement link
is probabilistic and unstable, relying on the availability of
quantum channels between the parties and qubits on both
ends, which directly influences the success of entanglement
routing. However, these studies operate under the assumption
of pre-known probabilities for creating entanglement links [8],
[9], [10], [11], [12], [13], [14], [15], [16]. Meanwhile, they
tend to overlook the critical aspect of addressing potential
network attackers – a well-explored area in conventional
network security [17], [18], [19]. Such an attack can be per-
formed on either the data qubit itself or the classical channel
that delivers the Bell State Measurement result for quantum
teleportation [20]. Note that both categories of attackers can
occur in any given time slot and be distinguished from regular
entanglement connection failures, by no-cloning theorem or
transmission errors in classical channels.

In this paper, we focus on addressing the challenge of
online optimal path selection and qubit allocation between two
quantum nodes in the presence of a potential QDN attacker.
We introduce a novel multi-armed bandits approach grounded,
called adversarial group neural bandits. By developing an
online adversarial optimization approach using multi-armed
bandits, we provide a robust solution that optimizes both
path selection and qubit allocation in real-time, without prior
knowledge of success rates and under the presence of potential
attackers. This enhances the overall efficiency and reliability
of quantum entanglement routing, especially in dynamic and
adversarial environments. Therefore, our approach contributes
to advancing the broader field of entanglement routing by
addressing a key challenge that has been largely overlooked in
prior studies. Our key contributions encompass the following:
• We present an online optimization problem that con-

currently addresses path selection and qubit allocation
between two quantum nodes. This scenario accounts
for an attacker disrupting data qubit transmission and
involves no prior knowledge of the success rate for

creating each entanglement link. The goal is to maximize
the long-term success rate for establishing long-distance
entanglement connections between the chosen quantum
nodes.

• To tackle the intricate nonlinear optimization objective,
we frame the problem as an adversarial group neural
bandits problem and propose a bandits algorithm, called
EXPNeuralUCB, which treats possible paths as groups
and performs qubit allocation as arm selection in each
group. Moreover, by choosing suitable algorithm parame-
ters, we theoretically prove that the algorithm has a regret
upper bound of O(T 3/4

√
log T ), offering performance

guarantees for our algorithm.
• We conduct comprehensive simulations to showcase the

superiority of our proposed EXPNeuralUCB over other
established advanced bandit algorithms.

II. RELATED WORK

Entanglement Routing. Early research delved into specific
network topologies like sphere, ring, diamond star, and chain
configurations [21], [22], [23], [24]. Recent studies have
shifted focus towards a general QDN topology [8], aiming
to maximize expected network throughput while incorporating
theoretical analyses for performance guarantees. An extension
of this research [11] addresses the challenge of efficiently
utilizing network resources to support multiple SD (source-
destination) pairs concurrently. Strategies have been explored
to augment failure tolerance; some approaches leverage redun-
dant entanglement links in routing to bolster the robustness
of QDN [12], [13], [14]. Another avenue of exploration
involves a qubit allocation algorithm in QDNs, which com-
bines simulated-annealing and local search techniques [15].
Additionally, an online entanglement routing scenario has
been proposed [9], which involves processing requests upon
arrival. As an extension, the entanglement routing paradigm
in QDNs has evolved from the time slot mode to an asyn-
chronous scheme [10], allowing more proactive utilization of
idle quantum resources. Furthermore, opportunistic techniques
have been introduced to QDNs [16], enabling the opportunis-
tic establishment of quantum links and augmenting routing
flexibility. One work [25] considers the qubit allocation and
entanglement routing problem from a user-centric view with
a long-term limited qubit budget. However, none of these
approaches address the lack of prior knowledge regarding the
success rate of each entanglement link or consider adversarial
scenarios.

Multi-armed Bandits. Bandit problems are typically cat-
egorized as either stochastic bandits or adversarial bandits
based on how rewards are generated [26]. The classical UCB
algorithm [27] and EXP3 algorithm [28] have been developed
for optimal regret bounds in stochastic and adversarial ban-
dits, respectively. However, existing approaches are limited
to either the stochastic or adversarial regime, posing chal-
lenges for problems with coupled stochastic and adversarial
rewards. Recent efforts address the intersection of stochastic
and adversarial bandits. In one line of work [29], [30], attempts
are made to design a single algorithm applicable to both
regimes without prior knowledge. Nevertheless, these works
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Fig. 2. Quantum teleportation and entanglement swapping.

consider rewards from a single distribution. In another line
of research [31], [32], the focus is on stochastic bandits
with adversarial corruption of reward observations, though
the actual received reward is unaffected. A recent study [33]
considers joint rewards influenced by both stochastic dis-
tribution and adversarial behavior. However, the stochastic
part assumes linearity with the feature vector. The traditional
approach to contextual bandits with general nonlinearity is by
nonparametric models via Reproducing Kernel Hilbert Space
(RKHS) [34], [35], [36], i.e, Kernel bandits [37]. Thanks to
the development of NTK theory [38], [39] first utilizes the
NTK-based approximation on neural networks and presents a
provably efficient MLP-based contextual bandit algorithm, i.e.,
NeuralUCB. Many follow-up works [40], [41] were inspired
by NeuralUCB to model the non-linear reward function under
the framework of NeuralUCB. However, these works do not
consider the existence of an attacker.

III. BACKGROUND

1) Quantum Teleportation: Qubits, short for quantum bits,
stand as the foundational unit of quantum information. Unlike
classical bits restricted to 0 or 1 states, a qubit can simul-
taneously exist in a coherent superposition of these states.
In a two-qubit system, a pair of entangled qubits is known
as Bell pairs. One of the significant applications of this
entanglement is quantum teleportation, depicted in Figure 2.
When Alice and Bob share this pair of entangled qubits
(referred to as entangled qubits), Alice can teleport the state
of another qubit carrying data information (referred to as
data qubits) to Bob. This complex procedure involves Alice
conducting a Bell State Measurement between her data qubit
and the shared entangled qubit, transmitting the measurement
result to Bob through a classical channel. Upon receiving this
information, Bob applies unitary operations to his entangled
qubit. Consequently, Bob’s entangled qubit replicates the state
of the original data qubit, while Alice’s data qubit collapses,
disrupting the entanglement between the two entangled qubits.

2) Entanglement Swapping: In order to perform quantum
teleportation between remote quantum nodes, establishing
long-distance entanglement is the initial requirement. A cru-
cial technique for achieving this is entanglement swapping,
depicted in Figure 2. Here is an illustrative scenario: Alice
shares an entangled qubit pair with a third party, Carol,
while Bob also holds a qubit pair with Carol. Through a

swapping operation on her qubits, Carol can teleport the state
of her qubits, initially entangled with Alice, to Bob. As a
result, Alice and Bob effectively possess an entangled qubit
pair, despite lacking a direct connection. This facilitates the
establishment of long-distance entanglement between distant
parties. We assume a successful swapping operation due to
recent advancements significantly enhancing its success rate
to approximately 1, as also presumed in recent state-of-the-
art studies [10]. Even when considering the probability of
swapping, incorporating a product term akin to the probability
of entanglement links will not impact the efficacy of our
algorithm.

3) Quantum Data Network: QDN is composed of quantum
nodes and quantum channels, forming the nodes and edges
of the network. Nodes connected via quantum channels are
assumed to also be connected through classical channels.
All quantum nodes can perform entanglement swapping and
establish links with other nodes, but they are limited by their
quantum memory capacity. Moreover, quantum channels are
prone to losses, with the success rate of a single entanglement
attempt dropping as low as 2.18 × 10−4 [5]. The decoher-
ence time for entanglement is approximately 1.46 seconds,
as noted in [42], while each entanglement attempt takes about
165µs [5]. Consequently, only a limited number of thousands
of entanglement attempts can be made on a single quantum
link within a given time slot.

IV. SYSTEM MODEL

A. Network Architecture

We examine a QDN modeled as an undirected graph
G = ⟨V, E⟩, where V denotes the set of quantum nodes and E
represents the set of edges. Each edge e = (u, v) ∈ E indicates
the presence of quantum channels between the nodes v and u.
Every quantum node v ∈ V is equipped with a limited
quantity of Qv qubits, and We denotes the number of available
quantum channels on edge e. Meanwhile, available qubits and
channels may vary over time due to changes in the network
circumstance, and we denote them as Qt

v and W t
e respectively

if needed.
The establishment of a quantum link on an edge e = (v, u)

requires one qubit each from nodes v and u along with
a quantum channel on e. However, successful entanglement
establishment is not assured for every quantum channel. Let
p̃e represent the unknown success probability of establishing
a single entanglement link between nodes v and u during
a single attempt. This probability is contingent on both the
physical properties of the channel material and the distance
between the two nodes. Typically, p̃e is low and can vary
across different edges. In this study, we assume that the
entanglement probability for each edge is unknown.

To increase the probability of successful entanglement,
nodes v and u can employ multiple quantum channels and
make numerous attempts on each channel within a given time
slot. Assuming the outcomes of these attempts are indepen-
dent, the success probability on a single channel after K
attempts is given by pe = 1 − (1 − p̃e)K . Then the overall
success probability using qe qubits at two ends of edge e, u
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and v respectively, is given by: Pe(qe) = 1 − (1 − pe)qe .
It is important to note that we have the constraint
qe ≤ min(Qv, Qu, We).

B. Problem Formulation

Our primary focus revolves around tackling the challenge of
entanglement path selection and qubit allocation. This involves
establishing entanglement connections and maximizing the
cumulative success probability over a specified duration of
time slots T between two chosen quantum nodes. Importantly,
this is achieved without prior knowledge of the success rate
of entanglement links between any two neighboring nodes.

Consider a set of potential paths between the source node
and destination node, denoted as R, and |R| = R. These
potential paths do not change over time since they are
pre-determined based on the maximum qubit capacity and are
independent of the traffic pattern. A path r ∈ R is defined
as a subset of graph edges E that form a connected path
between them. Given a specific path selection r ∈ R and
qubit allocation N (r) = {qe(r),∀e ∈ r} for a path r, the
entanglement success rate can be calculated as the product of
the success probabilities of the individual edges on that path
as follows:

hr(N (r)) =
∏
e∈r

Pe(qe(r)) (1)

Here, Pe(qe(r)) denotes the success probability of edge e
when qe(r) qubits are allocated at each node on both ends
of edge e. The success rate of entanglement for each path is
treated as an unknown function that requires learning. While
our formulation represents this function as (1), there might
be additional factors we have not taken into account. This
complexity and formulation challenge motivate us to employ
a neural network for learning this function.

Moreover, we consider the potential presence of an adver-
sary in the system, which aims to disrupt the quantum
teleportation process and will select paths to attack during each
time slot. This adversary may execute attacks either directly
on the data qubits or on the classical channels transmitting
the measurement result for quantum teleportation. The former
attack is detectable due to the no-cloning theorem, while
the latter can be identified through transmission errors in
the classical channel. Both types of attacks fail the quantum
teleportation operation and can be distinguished from failing
to establish an entanglement connection in the normal case.
Specifically, in each time slot t, we choose a path rt and
perform qubit allocation N (rt) to establish entanglement
connections; the adversary simultaneously chooses a binary
attack vector at = (at(r),∀r ∈ R), where at(r) = 0 if the
adversary performs an attack on the path r and at(r) = 1
otherwise. At the end of time slot t, we can only observe the
success or failure of establishing at least one entanglement
connection, which can be denoted as a random variable Y t.
Note that this entanglement connection is typically verified by
performing a Bell state measurement [20] on the entangled
qubits, which indirectly confirms the entangled state without
directly measuring the qubits themselves. Y t conforms to the
Bernoulli distribution, which takes the value 1 with probability

st and 0 with probability 1 − st, where st is the unknown
success rate depending on the selected path and the allocated
qubits strategy and can be formulated as:

st(rt,N (rt)) = at(rt)
∏
e∈rt

Pe(qe(rt)). (2)

Note that when an attacked path is chosen, we can still
differentiate the attack from a normal connection failure,
as previously discussed, even though the latent success rate
is 0, just like in the failure scenario. Clearly, we have
E[Y t] = st(rt,N (rt)).

Objective: The quantum user’s objective is to maxi-
mize the success rate of entanglement connections between
the source node and destination node over T time slots
(t = 0, 1, . . . , T − 1) by selecting an optimal path and
allocating qubits along the path in each time slot:

max
T∑

t=1

st(rt,N (rt)). (3)

V. ALGORITHM DESIGN

In this section, we first frame the problem of quantum entan-
glement path selection and qubit allocation in the presence of
attackers as an adversarial group neural bandits problem. Sub-
sequently, we introduce an algorithm named EXPNeuralUCB
designed to address this specific problem. In Section V-D,
we provide proof demonstrating that EXPNeuralUCB can
attain a sublinear regret bound.

A. Adversarial Group Neural Bandits

We frame the selection of entanglement paths and qubit
allocation as a sequential decision-making problem over T
rounds. We define R groups of arms, denoted as R =
{1, 2, . . . , R}, each corresponding to a set of potential paths.
Within each group r ∈ R, the arms represent various qubit
allocation strategies, which differ across groups. Each group
r has arms of dimension Dr, corresponding to the number of
links along path r. We denote these dimensions collectively
by D = {D1, D2, . . . , DR}.

In each round t, for each group r, there are |X t
r | available

arms, where X t
r ⊆ RDr consists of Dr-dimensional vectors.

Each vector x ∈ X t
r represents a feasible qubit allocation

strategy along path r, adhering to node qubit capacity con-
straints Qt

v for all nodes v, and link qubit channel capacity
constraints W t

e for all links e. Each group r is associated with
a function hr, defined on the domain Xr ⊆ RDr , representing
the entanglement success rate on path r in a stochastic envi-
ronment, as described by equation (1). We obtain the available
arm set by exhaustively exploring all possible combinations of
qubit allocations along the nodes of the path, which guarantees
that all feasible qubit allocation strategies within the capacity
constraints are thoroughly evaluated. This function does not
account for potential adversarial actions and remains unknown
to the learner. The reason why we do not use hr(x) to
represent equation (2) directly is that NeuralUCB is under the
stochastic assumption [39]. The reward for choosing an arm
x in group r is given by hr(x), where hr is constrained such
that 0 ≤ hr(x) ≤ 1 for any x in any group r.
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Optimal Benchmark. Given that the adversary can adopt
any attack strategy against the groups, we focus on the
optimal benchmark among the group-static strategies in hind-
sight. A group-static strategy involves selecting a fixed group
throughout the entire duration of T rounds, while allowing
the chosen arm to vary. For a given group r, the optimal
arm from the set X rt that maximizes the expected reward
can be computed as ξt

r ≜ arg maxx ∈ X t
rhr(x), independent

of the adversary’s attacks. In the special case where the set
of available arms X t

r remains constant across all rounds, the
optimal arm ξt

r for group r is also fixed, allowing the time
index to be omitted.

With the optimal arms in each group in each round
understood, the optimal group given an attacking sequence
a1, . . . , aT is thus the one that maximizes the total reward,
which corresponds to maximizing times of successful entan-
glement connection, or equivalently, maximizing the accumu-
lative success rate of entanglement connections defined in (3),

γ(a1, . . . , aT ) = arg max
r∈R

T∑
t=1

st(r, ξt
r, a

t). (4)

For notation simplicity, we write γ(a1, . . . , aT ) = γ by drop-
ping the attack sequences but the readers should be cautious
that the optimal group γ depends on the attacks (and T ).

Regret. To optimize the objective function specified in (3),
we defined the regret of the learner as the difference between
the total reward achieved by the optimal benchmark and the
total reward attained by the learner’s algorithm.

REGRET(T ) =
T∑

t=1

st(γ, ξt
γ)− E[

T∑
t=1

st(rt, xt)], (5)

where this expectation is over the possible internal randomiza-
tion of the algorithm. The aim is to design a bandits algorithm
that exhibits sublinear regret, indicating that the round-average
regret diminishes to 0 as T approaches infinity.

The bandit problem under consideration exhibits a
semi-stochastic and semi-adversarial nature. On one hand, the
task of learning the optimal arm within a group represents
a stochastic non-linear bandit problem. On the other hand,
learning the optimal group is framed as an adversarial bandit
problem. Consequently, the problem at hand involves uncer-
tainties arising from both the stochastic characteristics of the
environment and the adversarial behavior of the opponent
simultaneously. The learner’s received reward is, therefore,
a combined outcome influenced by both factors.

B. Function Approximation via Neural Network

We employ the NeuralUCB framework [39] to model the
non-linear reward function. NeuralUCB utilizes neural net-
works for estimation in the following manner:

Neural Network Architecture: Let fr be overparameter-
ized multi-layer perceptions (MLPs)1 with depth L ≥ 2 and

1For the simplicity of notation, we assume the width of each layer is m
and that MLPs for each group share the same set of hyperparameters, e.g.,
m, L, λ, ζ, J in Algorithm 9. In practice, their hyperparameters may vary
from each other.

width m for each hidden layer to represent the unknown
function hr:

fr(x; θr) =
√

mZL
r σ(ZL−1

r σ(. . . σ(Z1
r x))), (6)

where θr are stacked by Zl
r,∀l ∈ [L],∀r ∈ R; Given x ∈ RDr ,

Z1
r ∈ Rm×Dr ,Zl

r ∈ Rm×m, 2 ≤ l ≤ L − 1,ZL
r ∈ Rm×1,

σ(x) = max{x, 0} is the rectified linear unit (ReLU) activa-
tion function. We denote the gradient of the neural network
function by gr(x; θr) = ∇θrf(x; θr).

For every r ∈ R, the parameters θr follow similar initial-
ization and update procedures as follows.

Neural Network Initialization: We initialize θr with θ0
r =

[vec(Z1
r )⊤, . . . , vec(ZL

r )⊤] ∈ Rk with k = m + mDr +
m2(L− 1), where for each 1 ≤ l ≤ L− 1, Zl

r = (Z, 0; 0, Z),
each entry of Z is generated independently from I(0, 4/m);
ZL

r = (z⊤,−z⊤), each entry of z is generated independently
from Gaussian I(0, 2/m).

Neural Network Update: In round t, θr is updated to θt
r,

i.e., the optimal solution to the loss function for neural network
training. The loss function is defined as

L(θ) =
t∑

b=1

(fr({xb
r}; θ)− hr(xb

r))
2/2 + mλ∥θ − θ0

r∥22/2,

(7)

where λ is the regularization parameter. Set θ(0) = θ0
r and we

adopt gradient-based methods to optimize the loss function for
J steps with step size ζ:

θ(j+1) = θ(j) − ζ∇L(θ(j)), (8)

where j ∈ {0, . . . , J − 1}, then the estimation for θr at round
t is set θt

r = θ(J).

C. EXPNeuralUCB

EXPNeuralUCB combines strengths from both EXP3 and
NeuralUCB. On one hand, it preserves an unbiased cumu-
lative historical reward estimate, denoted as St

r, for each
group, enhancing the process of group selection. On the other
hand, EXPNeuralUCB maintains a parameter estimate θt

r for
each group. These estimates are incrementally updated across
rounds using equations (7) and (8), facilitating arm selection
within a group. The algorithm’s pseudo-code is outlined in
Algorithm 1, and we explain the algorithm’s procedure below.

Group Selection: In each round t, EXPNeuralUCB calcu-
lates an unbiased estimate of the cumulative historical reward
St−1

r up to round t − 1 for each group r. This estimation is
based on past group and arm selections, as well as reward
realizations, following (9). Here, 1{·} denotes the indicator
function, and P b represents the group sampling distribution
calculated and utilized in round b. it is worth noting that
we slightly abuse notation by using Pe(qe(r)) to express the
success probability of edge e when qe(r) qubits are allocated
to e in the past. When computing St−1

r , the actual reward
(i.e., whether the entanglement was successfully established)
received in round b, denoted as Y b, is added to the cumulative
reward of group r only if the selected group in round b is r.
This addition is followed by division by the selection probabil-
ity. Using the updated St−1

r , a new group sampling distribution
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Algorithm 1 EXPNeuralUCB
1: Input: Time horizon T , regularization parameter λ, θ0

r ∼ init(·),
NeuralUCB exploration parameter ν, confidence parameter δ,
step size ζ, number of gradient descent steps J , network width
m, network depth L, learning rate η > 0, EXP3 exploration rate
β ∈ (0, 1)

2: Initialization: V 0
r = λIDr , ∀r ∈ R.

3: for t = 1, . . . , T do
4: Compute estimated cumulative reward for each r

St−1
r =

t−1∑
b=1

1{rb = r}
P b(r)

Y b (9)

5: Compute the sampling distribution for each r

P t(r) = (1− β)
exp(ηSt−1

r )∑R
r′=1 exp(ηSt−1

r′ )
+

β

R
(10)

6: Sample group rt ∼ P t

7: ∀x ∈ X t
rt , compute U t

rt(x) within rt:

U t
rt(x) = f(x; θt−1

rt )

+ αt∥grt(x; θt−1
rt )/

√
m∥

(V t−1
rt )

−1 (11)

8: Select the best estimated arm within rt: xt =
arg maxx∈X t

rt
U t

rt(x)

9: Play group/arm (rt, xt)
10: Observe reward rt

11: if at(rt) = 0 then
12: Update V t

rt = V t−1
rt + gr(x

t; θt−1
rt )gr(x

t; θt−1
rt )⊤/m

13: Update θt
rt by training MLPs frt using collected feed-

backs as in (7) and (8).
14: else
15: V t

rt = V t−1
rt , θ̂t

rt = θt−1
rt

16: end if
17: For all r ̸= rt, V t

r = V t−1
r , θt

r = θt−1
r

18: end for

can be computed through (10). This distribution is a weighted
sum of two distributions with weights 1 − β and β. The
first distribution selects group r proportionally to exp (ηSt−1

r ),
favoring groups with higher cumulative reward estimates and
emphasizing exploitation. The second distribution is simply a
uniform distribution, promoting the exploration of all groups
with equal probability. The weights 1 − β and β adjust the
trade-off between exploitation and exploration at the group
level. With the group sampling distribution P t, a group rt is
then sampled and subsequently chosen in the current round.

Arm Selection: Subsequently, EXPNeuralUCB determines
the best-estimated arm within the selected group rt based
on (11). This computation utilizes the estimated group param-
eter θt−1

rt and the auxiliary variable V t−1
rt . In (11), the first

term represents the reward estimate of an arm x in the group
rt, while the second term signifies the confidence associated
with this estimate. The parameter αt plays a crucial role in
adjusting the balance between the exploitation and exploration
of arms within each group as further illustrated in (14).

Variable Update: Then EXPNeuralUCB updates the var-
ious variables depending on the present attacker strategy.
Specifically, if the received reward at(rt) = 0, which means
the adversary attacks the selected group in round t, then
all parameters are unchanged. Otherwise, for the selected

group rt, the auxiliary variable V t
rt is first updated. Then

update the group parameter θt
rt according to (7) and (8) to

(approximately) minimize L(θ) using gradient descent. For the
unselected groups, their auxiliary variables and the parameter
estimates also remain unchanged.

D. Regret Analysis

In EXPNeuralUCB, combating the stochastic non-linearity
uncertainty within a group is intertwined with combating
the adversarial uncertainty across groups. Thus, the regret
analysis of EXPNeuralUCB must consider the regrets due to
these two aspects simultaneously. In this subsection, we show
that through a careful selection of the algorithm parameters,
EXPNeuralUCB achieves a sublinear regret bound.

We start with several lemmas on estimating the parameters
of the groups.

Lemma 1 (Lemma 5.1 in [39]): For a sufficiently large net-
work width m, ∀r ∈ R,∀x ∈ X t

r , there exists a θ∗r at round t
such that with probability at least 1− δ, we have

hr(x) = ⟨gr(x, θ0
r), θ∗r − θ0

r⟩
√

m∥θ∗r − θ0
r∥2 ≤

√
2h⊤r H−1

r hr,

where Hr is the neural tangent kernel (NTK) matrix for hr

defined in [39].
Lemma 2: For a sufficiently large network width m, if

m ≥ poly(T, L, sup(D), λ−1, log(1/δ));

λ ≥ max{1, (2h⊤H−1h)
−1}; ζ = O

(
(mTL + mλ)−1

)
,

(12)

the estimated θt
r satisfies the following error bound for all

group r and round t with probability at least 1− δ,

|θt
r − θ0

r∥2 ≤ 2
√

t/(mλ), ∥θt
r − θ∗r∥V t

r
≤ αt

√
m,

αt = O(
√

d̃ log(1 + t)),

where d̃ is the effective dimension of the NTK matrix.
Lemma 3: For a sufficiently large network width m, with

probability of 1 − δ, the single step regret bound for the
group r at t round is bounded by hr(ξr) − hr(xt) ≤
2αt∥gr(x; θt−1

r )/
√

m∥
(V t−1

r )
−1 + 3O(m−1/6).

Lemma 4: For a sufficiently large network width m, then
we have for all r,

T∑
t=1

1{rt = r}at(r)αt∥gr(xt
r; θ

t−1
r /

√
m)∥

(V t−1
r )

−1

≤ O(
√

d̃ log(1 + T ))O(
√

T d̃ log(1 + T )), (13)

with probability at least 1− δ.
Theorem 1: For any δ ∈ (0, 1), by choosing β =

T−1/4
√

log(T ) and η = T−1/2, such that for any δ ∈ (0, 1),
if m, λ, ζ satisfy the same condition as Lemma 2, then with
probability at least 1−δ, EXPNeuralUCB yields the following
expected regret bound REGRET(T ) = O(T 3/4

√
log(T )).

Remark: In the scenario where the optimal arm/allocation
strategy in each group/path is known to the learner (pure-
adversarial setting), the EXP3 algorithm yields a regret bound
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Fig. 3. The topology of the QDN used in the simulation.

of O(
√

T ). Conversely, in the pure-stochastic setting, where
paths/groups are not attacked by the adversary in all rounds,
NeuralUCB, specifically for the group-disjoint parameter case,
achieves a regret bound of

√
T log T . The regret incurred by

EXPNeuralUCB is higher than both, attributable to simul-
taneously addressing adversarial uncertainty and stochastic
uncertainty. However, it is noteworthy that neither EXP3 nor
NeuralUCB can achieve a sublinear regret in our considered
problem. Although EXPUCB [33] effectively addresses the
challenge posed by the intersection of stochastic distribution
and adversarial behavior, it faces limitations in learning the
stochastic component with nonlinear features.

VI. SIMULATION RESULTS

In this section, we evaluate our proposed algorithm
EXPNeuralUCB and compare its performance against several
baselines.

A. Simulation Setup

1) Network Setting: We model a QDN with four potential
paths (R = 4) connecting a source node to a destination
node, as illustrated in Fig. 3. The success probabilities for
entanglement establishment p̃e vary across these paths and are
detailed in Table I. To increase the probability of successful
entanglement, each link undergoes 4000 entanglement connec-
tion attempts (K = 4000) in our simulations.

2) Qubit Capacity: We simulate a dynamic network envi-
ronment within the QDN where the qubit availability at
quantum repeaters fluctuates over time. This variation is
influenced by the usage patterns of other network users.
Specifically, we model two network states, “busy” and “idle”.
In the “idle” state, the qubit capacity at the quantum repeaters
is greater than in the “busy” state. Additionally, the capacity
of these repeaters varies across different paths, as detailed in
Table I. It is assumed that both the source and destination
quantum nodes possess a sufficient number of qubits, where
“sufficient” means that their available qubits are equal to
the maximum qubit capacity of any quantum repeater in the
network. This ensures that the source and destination nodes
can handle both “busy” and “idle” network states without
being a bottleneck.

B. Adversary’s Strategy

We simulate two types of attacking strategies: an oblivious
strategy and an adaptive strategy. In the oblivious strategy, the

TABLE I
PARAMETERS OF THE SIMULATED QDN

adversary employs a randomized Markov attacking strategy.
The transition matrix for this strategy is:

0.35 0.15 0.35 0.15
0.3 0.2 0.3 0.2
0.35 0.15 0.35 0.15
0.3 0.2 0.3 0.2

 ,

where the entry in row i and column j denotes the probability
of attacking path j at time slot t given that path i was the
target at time slot t−1. In the adaptive strategy, the adversary
observes which path the learner chose in the previous time slot
(t − 1) and then targets the same path in the current slot (t).
In both strategies, the adversary attacks exactly one path in
each time slot.

1) Baseline Schemes: We consider the following baselines
in addition to the Oracle strategy in hindsight defined in
equation (4). GNeuralUCB: This variant adopts the classi-
cal NeuralUCB algorithm for the group setting, disregarding
attacks. In each time slot, it selects the group and arm with
the highest NeuralUCB of the estimated reward, according
to equation (11). The auxiliary variables remain unaltered if
the received reward is 0. EXPUCB: This algorithm is similar
to our proposed approach. It employs the EXP3 algorithm to
choose the group based on the historical accumulated reward
for each group. However, it leverages the LinUCB algorithm,
as proposed by [33], for arm selection.

For EXPNeuralUCB, we use the Adam [43] optimizer
for neural network training and set the default algorithm
parameters as λ = 1, δ = 0.1, m = 128, L = 2, J = 8,
ζ = 1× 10−4, β = T−1/4

√
log T , ν = 1 and η = T−1/2.

C. Performance Comparison

We start by comparing the performance of EXPNeuralUCB
with baseline algorithms in terms of total regret (as depicted
in Fig. 4) and total reward (illustrated in Fig. 5), specif-
ically under scenarios involving an oblivious attacker. The
simulations cover three distinct network state distributions:
ALL-BUSY, where every time slot is “busy”; ALL-IDLE,
where every slot is “idle”; and HALF-HALF, where slots are
“busy” or “idle” with equal probability of 0.5. It is noteworthy
that the Oracle strategy may differ based on the number of
slots, hence only selected data points are shown in Fig. 4. The
Oracle results presented in Fig. 5 apply specifically to simu-
lations with T = 4000 slots. In all scenarios, EXPNeuralUCB
outperforms non-Oracle baselines and exhibits sublinear regret
throughout the simulation. The relative underperformance of
non-Oracle baselines compared to EXPNeuralUCB can be
attributed to specific limitations. EXPUCB adjusts to the
attacking strategy and selects paths less vulnerable to attacks,
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Fig. 4. Regret achieved by EXPNeuralUCB and baselines.

Fig. 5. Total reward achieved by EXPNeuralUCB and baselines.

Fig. 6. Evolution of the sampling distribution for each path.

yet it does not effectively learn the success probabilities of
entanglement establishment across different quantum chan-
nels, thus failing to optimize qubit allocation. GNeuralUCB,
on the other hand, overlooks the uncertainties introduced
by path-level attacks, potentially choosing paths that suffer
frequent attacks, resulting in lower overall rewards compared
to EXPNeuralUCB.

D. Behaviors of EXPNeuralUCB

Let us explore in greater detail the performance of
EXPNeuralUCB through an analysis of its path sampling
distribution, depicted in Fig. 6. Our simulation is config-
ured to favor paths 1 and 2 in the ALL-BUSY scenario,
with a preference for path 1, and paths 3 and 4 in the
ALL-IDLE scenario, where path 3 is the optimal choice
under no attack conditions. Fig. 6(a) demonstrates that
EXPNeuralUCB effectively identifies path 2 as the preferred
choice in the ALL-BUSY scenario. Notably, it frequently
avoids selecting path 1, even though it is the best option when
there are no attacks, because it recognizes path 1’s higher

susceptibility to attacks. In contrast, Fig. 6(b) shows that in the
ALL-IDLE scenario, EXPNeuralUCB primarily selects path 4,
acknowledging that path 3—although optimal in an attack-free
environment—is more prone to attacks. Furthermore, in the
HALF-HALF scenario, where paths 3 and 4 offer higher over-
all rewards compared to paths 1 and 2 in the absence of attacks,
EXPNeuralUCB, as illustrated in Figure Fig. 6(c), accurately
identifies path 4 as the best choice when under attack, consis-
tent with the selections made by the Oracle strategy.

We also report the execution time and memory usage of
EXPNeuralUCB and the compared algorithms, as shown in
Table II. The execution time and memory usage are averaged
over 4000 rounds. As depicted in Table II, EXPUCB has
the smallest execution time and memory usage among the
three algorithms, albeit with the worst performance. While
EXPNeuralUCB and GNeuralUCB exhibit similar execu-
tion time and memory usage, EXPNeuralUCB outperforms
GNeuralUCB in terms of overall performance. Hence,
EXPUCB is suitable when minimizing execution time and
memory is critical, whereas EXPNeuralUCB is a better choice
for higher performance needs.
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TABLE II
EXECUTION TIME AND MEMORY USAGE

Fig. 7. Performance of EXPNeuralUCB under changing period scenes.

E. Impact of Time-Varying State Distributions

In this set of experiments, we assess the performance of
EXPNeuralUCB under conditions where the state distributions
change over time. Initially, for the first 3000 slots, the proba-
bility of a slot being “busy” is 0.8 and “idle” is 0.2. From
slot 3000 onwards, the probabilities invert, with “busy” at
0.2 and “idle” at 0.8, marking a significant shift in the state
distribution at time slot 3000. Fig. 7 illustrates the performance
of EXPNeuralUCB in this dynamic environment. As depicted
in Fig. 7(a), EXPNeuralUCB consistently achieves the highest
total reward when compared to non-Oracle baseline strategies.
This performance is attributed to its capacity to adapt and
make strategic decisions in response to environmental changes.
The adaptability of EXPNeuralUCB is further highlighted in
Fig. 7(b), where there is a noticeable shift in the path sampling
distribution following the change in state distribution. Initially,
EXPNeuralUCB predominantly favors path 2; however, fol-
lowing the transition at slot 3000, it shifts to path 4.

F. Impact of Attacker Strategies

Adaptive Attacking Strategy. In this subsection, we exam-
ine the performance of EXPNeuralUCB when facing an
adaptive attacking strategy, contrasting with the previously
discussed oblivious attacking strategy. Notably, GNeuralUCB
tends to perform poorly in this adaptive scenario due to its
inability to adjust to ongoing attacks, often becoming stuck on
paths that are consistently targeted by the adaptive strategy.
To mitigate this, we have enhanced GNeuralUCB to create
a new variant, NeuralUCB-Random. This modified version
employs a strategy where the learner randomly selects a path
each slot and then utilizes NeuralUCB to decide the allocation
strategy.

Fig. 8(a) illustrates the total rewards achieved by
EXPNeuralUCB and the baseline strategies in the ALL-IDLE
scenario, where the discrepancy in performance is more pro-
nounced than in scenarios with an oblivious attacker. This
underscores EXPNeuralUCB’s superior capability to adapt its
path selection and allocation strategies in response to more
complex and challenging conditions. Furthermore, Fig. 8(b)
sheds light on the path sampling probabilities over time. In the

Fig. 8. Performance of EXPNeuralUCB under the adaptive attacking strategy.
(Only free period scenes).

Fig. 9. Performance of EXPNeuralUCB under the dynamic Markov attacking
strategy (Only free period scenes).

ALL-IDLE scenario, paths 3 and 4 are typically favored,
and this preference is reflected in our simulation outcomes,
where these paths are chosen more frequently. Remarkably,
EXPNeuralUCB employs a strategic randomization between
these paths, deviating from selecting the optimal path in
an attack-free environment (path 3). This approach helps to
circumvent persistent attacks linked with the adaptive attack-
ing strategy. Although NeuralUCB-Random also incorporates
path randomization, it does not match EXPNeuralUCB in
identifying and selecting the most advantageous paths during
attack-free periods, resulting in lower overall rewards.

Time-varying Attacking Strategy. We conducted simula-
tions to investigate how EXPNeuralUCB responds to dynamic
strategies used by an oblivious attacker who alters the attack-
ing transition matrix at time slot 3000. The matrix changes as
follows:

0.2 0.3 0.2 0.3
0.15 0.35 0.15 0.35
0.2 0.3 0.2 0.3
0.15 0.35 0.15 0.35

⇒


0.35 0.15 0.45 0.05
0.3 0.2 0.4 0.1
0.35 0.15 0.45 0.05
0.3 0.2 0.4 0.1

 .

Fig. 9(a) shows the total rewards achieved by different algo-
rithms across a span of 8000 time slots, with the Oracle
providing a reference for optimal performance. In the initial
3000 slots, GNeuralUCB outperforms EXPNeuralUCB due to
its selection of what is initially the optimal path (path 3),
which faces the least attacks. During this period, GNeuralUCB
frequently selects this path more often than EXPNeuralUCB.
However, after the attacking strategy shifts post-slot 3000 and
path 3 ceases to be the most favorable, GNeuralUCB struggles
to adapt. In contrast, EXPNeuralUCB demonstrates superior
performance in adjusting to the new attack pattern, eventually
surpassing GNeuralUCB in total reward. Fig. 9(b) further
illustrates the shift in path selection probabilities post-slot
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3000, showcasing EXPNeuralUCB’s ability to effectively
adapt to changes in the attacker’s strategy.

VII. CONCLUSION

In this paper, we studied the problem of online path
selection and qubit allocation in QDNs, specifically under
the presence of potential path attacks. Our goal is to opti-
mize the long-term success rate of entanglement connections
between two quantum nodes. We approach this challenge
by formulating it as an adversarial group neural bandits
problem, introducing the EXPNeuralUCB algorithm, which
treats potential paths as groups and qubit allocation as arm
selections. Additionally, we demonstrate that EXPNeuralUCB
achieves a theoretical regret upper bound of O(T 3/4

√
log T ).

To assess the effectiveness of our algorithm, we conducted
a series of experiments in various simulation environments,
confirming that EXPNeuralUCB outperforms other baseline
algorithms.

APPENDIX

A. Proof of Lemma 2

Proof: This lemma follows Lemma 5.2 in [39] by
considering the sub-sequence of rounds in which the learner
selects group r and is not attacked by the adversary. Then we
have: ∥θt

r − θ∗r∥V t
r
≤ αt

r

√
m and αt

r is defined as

αt
r

=
√

1 + C1m−1/6
√

log mL4t7/6λ−7/6

×
(

ν

√
log

det V t
r

det λI
+C2m−1/6

√
log mL4t5/3λ−1/6−2 log δ

+
√

λ

)
+ (λ + C3tL)

[
(1− ζmλ)J/2

√
t/λ

+ m−1/6
√

log mL7/2t5/3λ−5/3(1 +
√

t/λ)
]
. (14)

for some constant C1, C2, C3. λ is the regularization param-
eter, ν denotes the exploration parameter for UCB-like
estimation; J is the number of gradient steps for each round of
neural network training; when the network width m, regular-
ization parameter λ, and step size ζ satisfy the same condition

as Theorem 1, αt
r = O(

√
d̃ log(1 + T )) and the group index

can be dropped.
□

Note Lemma 2 leads to an upper confidence bound (UCB)
on the prediction error of the estimated parameter θt

r for each
group, and thus the UCB-based arm selection rule in (11).

B. Proof of Lemma 3

Proof: This Lemma follows the Lemma 5.3 in [39] by
combining the Lemma 2. □

C. Proof of Lemma 4

Proof: Consider the sub-sequence of rounds where group
r is selected by the learner and not attacked by the adversary,

we have

B∑
i=b

√
gr(xi; θi−1

r )⊤(V i−1
r )

−1
gr(xi; θi−1

r )/m

≤

√√√√B

B∑
b=1

gr(xb; θb−1
r )⊤(V b−1

r )
−1

gr(xb; θb−1
r )/m

≤
√

Bd̃ log(1 + B) ≤
√

T d̃ log(1 + T )

where the first inequality is due to Jensen’s inequality, the
second inequality is due to Lemma 5.4 in [39], and the last
inequality is because the length of the sub-sequence B is

smaller than T . Further noticing that αt = O(
√

d̃ log(1 + T ))
yields the desired bound. □

Now, we are ready to present the regret bound. Proof:
Denote wt(r) = exp(ηSt−1

r ), W t =
∑R

r′=1 wt(r′) and
It(r) = 1{rt=r}

P t(r) . Then there exists a positive constant C̄ such
that for any δ ∈ (0, 1), if η and m satisfy the same conditions
as in Lemma 2, WT+1 in the expectation can be lowered
bounded with probability at least 1− δ as follows

E
[
log
(

WT+1

W 1

)]
≥ E

[
log

(
exp(η

∑T
t=1 It(γ)Y t

W 1

)]

= E

[
η

T∑
t=1

It(γ)Y t

]
− log R = η

T∑
t=1

at(γ)hγ(xt)− log R

≥ η

T∑
t=1

at(γ)hγ(ξγ)− log R− η

T∑
t=1

at(γ)

×
(
2αt∥gγ(xt; θt−1

γ /
√

m)∥
(V t−1

γ )
−1 + 3O(m−1/6)

)
,

(15)

where the first inequality uses WT+1 ≥ wT+1(γ), the second
equality uses W 1 = R, the third equality uses the definition of
Y t and E[It(γ)] = 1, and the last inequality is derived based
on the Lemma 3.

On the other hand, we have the following
upper-bound

E
[
log
(

W t+1

W t

)]

= E

[
log

(
R∑

r=1

exp(η
∑t

b=1 Ib(r)Y b)
W t

)]

= E

[
log

(
R∑

r=1

exp(η
∑t−1

b=1 Ib(r)Y b)
W t

exp(ηIt(r)st)

)]

= log

(
R∑

r=1

P t(r)− β
R

1− β
exp(ηIt(r)st)

)

≤ log

(
R∑

r=1

P t(r)− β
R

1− β
(1 + ηIt(r)st + (ηIt(r)st)2)

)
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≤
R∑

r=1

P t(r)− β
R

1− β
(1 + ηIt(r)st + (ηIt(r)st)2)− 1

≤
R∑

r=1

P t(r)
1− β

(ηIt(r)st+(ηIt(r)st)2)− ηβ

R(1− β)

R∑
r=1

It(r)st,

where the first equality uses the definition of W t+1, the second
equality breaks the sum into two parts and uses E[Y b] = sb,
the third equality uses the definition of the sampling distribu-
tion P t, the fourth inequality uses ez ≤ 1 + z + z2,∀z ≤ 1,
the fifth inequality uses log z ≤ z − 1,∀z ≥ 0, and the last
inequality holds by canceling out terms and realizing that
−
∑R

r=1(ηIt(r)st)2 ≤ 0. Noticing that
∑T

t=1 log W t+1

W t =
log W T+1

W 1 , we can sum both sides for t = 1, . . . , T and
compare with the lower bound in (15) and obtain

η

T∑
t=1

at(γ)(hγ(ξγ))− log R− η

T∑
t=1

at(γ)

×
(
2αt∥gγ(xt; θt−1

γ /
√

m)∥
(V t−1

γ )
−1 + 3O(m−1/6)

)
≤

T∑
t=1

(
R∑

r=1

P t(r)
1− β

(ηIt(r)st + (ηIt(r)st)2)

− ηβ

R(1− β)

R∑
r=1

It(r)st). (16)

Reordering and multiplying both sides by 1−β
η gives

T∑
t=1

(
at(γ)hγ(ξγ)−

R∑
r=1

1{rt = r}st

)

≤ 1− β

η
log R +

T∑
t=1

R∑
r=1

ηIt(r)(st)2

+ β

T∑
t=1

(
at(γ)hγ(ξγ)− 1

R

R∑
r=1

It(r)st

)
+ (1− β)

×
T∑

t=1

at(γ)
(
2αt∥rγ(xt; θt−1

γ /
√

m)∥
(V t−1

γ )
−1 +3O(m−1/6)

)
(17)

Now, consider the definition of the regret in (5),

REGRET(T )

=
T∑

t=1

(
st(γ, ξt

γ)−
R∑

r=1

1{rt = r}st

)

≤ 1− β

η
log R + ηRT + βT +

1− β

β

T∑
t=1

at(γ)

×
(
2αt∥rγ(xt; θt−1

γ /
√

m)∥
(V t−1

γ )
−1 + 3O(m−1/6)

)
≤ 1

η
log R + ηRT + βT +

1− β

β

×
[
O(
√

d̃ log(1+T ))O(
√

T d̃ log(1 + T ))+3O(m−1/6)
]

,

(18)

where the last inequality holds for Lemma 4 and sufficiently
large m.

Finally, by setting β = T−1/4
√

log(T ) and η = T−1/2,
we have REGRET(T ) = O(T 3/4

√
log(T )). □
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