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Reduced Nitrogen in the Atmosphere:

A Critical Review of Research
and Management Needs

by Charles T. Driscoll, Jana B. Milford, Daven K. Henze, and Michael D. Bell

The 2024 Ciritical Review examines the topic of atmospheric reduced nitrogen:
sources, transformations, effects, and management. The full-length review
appears in the June 2024 issue of the Journal of the Air & Waste Management
Association (JARWMA). A brief summary follows.
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Emissions of reduced nitrogen are dominated by ammo-
nia, which is the most abundant alkaline gas in the atmos-
phere. Current understanding of sources, effects, transport,
and fate of ammonia are provided in the 2024 Critical Re-
view," as well as the status of efforts to manage ammonia
emissions. In the Critical Review, research needs are identi-
fied, and policy recommendations included on how the U.S.
Environmental Protection Agency (EPA) and other federal
agencies could move forward in addressing ammonia
emissions.

Why We Care About Ammonia

Over the past century, humans have greatly altered the
global nitrogen cycle through production and application of
synthetic fertilizer, widespread cultivation of leguminous
crops, dramatically increased livestock production, and emis-
sions of nitrogen oxides associated with fossil fuel combus-
tion.>* Concerns over perturbation of the nitrogen cycle and
the environmental effects of emissions of ammonia have
been recognized for decades.* While emissions of nitrogen
oxides are trending downward in the United States and
globally, emissions of ammonia have been and are pro-
jected to continue increasing in the United States and on the
global scale®*® (see Figure 1). Livestock waste and synthetic
fertilizer application dominate ammonia emissions sources,
with motor vehicles contributing a significant share in many
urban areas.” Ammonia emissions are largely unregulated in
the United States; voluntary programs and U.S. Department
of Agriculture incentives have had limited impact in mitigat-
ing emissions.

Ammonia emissions have serious effects on human health,
visibility, climate, and ecosystems. Emissions of ammonia are
estimated to contribute to hundreds of thousands of deaths
per year globally,® and more than 10,000 premature deaths
per year in the United States? due to ammonium com-
pounds associated with fine particulate matter. Ammonium
sulfate and nitrate comprise more than half of visibility-re-
ducing haze on the most impaired days at most national

parks and wilderness areas across the United States.'®

Ammonia emissions also affect the climate system in
complex ways. Nitrogen deposition generally enhances plant
biomass and soil carbon storage,’ but also increases suscep-
tibility to wildfire.'? Excess nitrogen deposition increases soil
emissions of nitrous oxide, a potent greenhouse gas.'* At-
mospheric reactions with ammonia have decreased radiative
forcing through production of reflecting inorganic aerosols
and clouds,"* but may also increase formation of absorbing
organic aerosols."®

Nitrogen deposition has benefits for croplands and overall
plant productivity, but causes widespread harm to exten-
sively managed ecosystems. It reduces biodiversity and con-
tributes to eutrophication of soil and fresh and coastal water
bodies that can lead to harmful algal blooms and toxin
production, and hypoxia.* Nitrogen deposition in the United
States has shifted over the past two decades from mainly
oxidized forms of nitrogen to largely reduced forms.
Locations of highest deposition are now found in agricultural
regions of the Midwest rather than the more industrialized
eastern United States (see Figures 2 and 3).

Thresholds of nitrogen deposition leading to ecosystem
harm, or critical loads, have been set for a variety of ecosys-
tem components, with exceedances indicating high risk of
degradation. The increasing role of reduced nitrogen in total
nitrogen deposition has resulted in large areas of the United
States having exceedances of critical loads for declines in
lichen diversity, declines in tree growth and survival, and in-
creases in eutrophication of lakes.""¢ Understanding the spa-
tial distribution of where reduced nitrogen deposition pushes
an ecosystem over the critical load allows managers and pol-
icymakers to focus efforts where decreases in emissions can
have the greatest impact on ecosystem health (see Figure 4).
Additionally, excessive nitrogen inputs contribute to the im-
pairment of coastal ecosystems across the United States,
causing eutrophication, toxic algal blooms, hypoxia, and loss

W Electric Genarating Units
I Transpariation

. Agricutture

—

1]
e S

NH, (Thousands of metric tons)

b M Elictric Generating Units
I Transpariation
1 Other

20000

B000

MNO, (Thousands of metric tons)

o
e R 4

Figure 1. Time series of annual total U.S. anthropogenic emissions of (a) reduced nitrogen (NHs) and

(b) and oxidized nitrogen (NO,).6
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Figure 2. Time series of (a) area weighted mean annual total nitrogen and oxidized (NO,) and reduced
nitrogen (NH,) deposition and (b) the fractional contributions of components of wet and dry N

deposition to total N deposition for the conterminous United States.
Source: Data are from the National Atmospheric Deposition Program Total Deposition (TDep) Committee.

Percent Reduced N
2000-2002

Percent
B 0% to 20%
B :0% to 30%
P 30% to 40%
40% to 50%
50% to 60%
0 60% to 70%
B 0% to 0%
B o0 to 90%
B 0% to 1000

Precent Reduced N
2019-2021

Percent
B 0% to 30%
B 30% to 40%
40% to 50%
50% to 60%
P 0% to 704
B 70 to 80%
B s0% to 90%
B oo 100%

Figure 3. Maps comparing the percent of total N deposition occurring as total reduced nitrogen (NH,)
for the conterminous United States for (a) 2000-2002 with (b) 2019-2021.

Source: Data are from the National Atmospheric Deposition Program Total Deposition (TDep) Committee.
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Figure 4. Map of nitrogen critical load exceedances for the conterminous United States for (a) a
5% decrease in tree growth and (b) tree survival.

Notes: Shown are in blue — no exceedance; yellow — exceedance that could be eliminated by oxidized nitrogen; brown — ex-
ceedance that could be eliminated by reduced nitrogen; and red — a combination of oxidized and reduced nitrogen is necessary to

eliminate the exceedance
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of important habitat in severe cases.’” To mitigate these
effects, it is essential to consider and control atmospheric
deposition to the watershed as well as direct deposition to
the waterbody, as atmospheric deposition is a significant
source of nitrogen to major U.S. bays and estuaries.

Recent research has improved understanding of the biogeo-
chemical processing of nitrogen, including biomass and soil
uptake and loss through leaching and atmospheric emis-
sions.”® Investigations of ecosystem recovery as nitrogen
deposition is declining in some areas show significant hys-
teresis (lags) in recovery, possibly associated with nitrogen
accumulation in woody biomass and soil organic matter."®?
Further research is needed to improve quantitative under-
standing of interactions between nitrogen deposition
impacts and climate change, and of ecosystem response to
decreases in nitrogen deposition and to increases in deposi-
tion of reduced nitrogen while oxidized nitrogen deposition
is decreasing. Studies conducted over the past decade have
elucidated factors that control spatial variation of ecosystem
sensitivity to nitrogen deposition, highlighting the roles of
soil pH and available base saturation as important controlling
variables. Future assessments of nitrogen critical loads

can be refined by accounting for mediating factors, such

as changing climate, air pollution, and soil conditions to
develop locality-based critical loads.

Ammonia Emissions, Transport, and Fate
Ammonia plays a well-known role in forming secondary
inorganic aerosols. However, the long-standing question

of whether ammonia, nitrogen oxides or sulfur dioxide
emissions limit secondary inorganic aerosols formation for
specific locations remains of interest. Recent research has
demonstrated the importance of aerosol pH and liquid water
content in governing partitioning of sulfate, nitrate, and
reduced nitrogen between gas and particle phases.?°
Chemistry and transport models are beginning to explicitly
simulate and evaluate performance for these aerosol proper-
ties. More research is needed on the site-specific role of am-
monia in regulating the magnitude and trends of secondary
inorganic aerosol concentrations and nitrogen deposition in
the context of changing sulfur dioxide, nitrogen oxides, and
ammonia emissions. Key factors include the role of particle
pH, liquid water content, size, surface coatings, and associ-
ated kinetic limitations to constituent uptake.

Gas-phase ammonia has a short atmospheric lifetime due

to the parallel sinks of conversion to condensed ammonium
or direct deposition of ammonia.?' In contrast, condensed-
phase ammonium has a longer lifetime and potential for
long-range transport. Modeling studies indicate that deposi-
tion of reduced nitrogen in the United States is dominated
by U.S. emissions, but interstate transport within the United
States is significant.?? As sulfur dioxide and nitrogen oxides
emissions are decreasing, the fraction of reduced nitrogen in
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the gas phase is increasing, causing a shift toward more local
deposition and less long-range transport (Figures 2, 3).
Continued investigation of the spatial footprint of sources
contributing to deposition at sensitive locations is needed

as the chemical and climatic environment shifts. Dry deposi-
tion of ammonia gas is rarely measured but is estimated
from air quality models for purposes of national assessments,
so values are relatively uncertain. Further efforts are needed
to evaluate ammonia dry deposition estimates from air qual-
ity models used for research and regulatory applications.

Inverse modeling studies continue to show limitations in
traditional bottom-up ammonia inventories, with a general
bias toward underestimation.?*2%425 Further research is
needed to reconcile bottom-up and top-down estimates and
to improve mechanistic understanding of ammonia emis-
sions (e.g., from bidirectional exchange), as well as estimates
of the magnitude of emissions from specific sectors such as
livestock production and motor vehicles. The increasing
availability of satellite observations holds promise for greatly
expanding atmospheric ammonia measurements, helping
track trends, improve emissions estimates, and characterizing
deposition.?® However, satellites do not directly observe sur-
face concentrations, emissions, or deposition, so chemistry
and transport models, data assimilation and inverse model-
ing are critical tools for deriving relevant products. In addi-
tion, harmonization of multiple remote sensing records is
needed to better understand long-term trends in ambient
ammonia concentrations and to identify sources and sinks.
Continued research is needed to advance top-down emis-
sions estimation approaches using inverse modeling as more
satellite data become available, including instruments on
new and potentially upcoming polar and geostationary satel-
lite platforms.

While expanding satellite observations and products are
promising, it is vitally important to maintain surface monitor-
ing networks that support research and policy assessments.?”
Surface monitoring networks provide critical data for
ground-truthing and constraining remote sensing analyses,
evaluating chemistry and transport models, assessing human
and ecosystem exposure, and tracking long-term trends.
Maintaining support for established U.S. monitoring net-
works has been a perennial challenge, and multiple sites
have been suspended or terminated in recent years.

Managing Ammonia Emissions

To date, EPA has declined to list ammonia as a criteria pollu-
tant or to set emissions limits for industrial, agricultural, or
mobile sources.’?® EPA has delayed regulating ammonia
emissions from animal feeding operations for almost 20
years after signing consent agreements with operators in
the mid-2000s.?° Emissions uncertainties, heterogeneous
impacts, administrative complications, and a preference for
voluntary approaches for the agricultural sector have been
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cited as reasons not to regulate ammonia emissions. EPA
should revisit these decisions, considering improved scientific
understanding and the ongoing and multi-pronged harms
caused by reduced nitrogen.

EPA has traditionally set secondary standards for protection
of human and ecosystem welfare based on ambient concen-
trations. As recommended by EPAs Clean Air Scientific Advi-
sory Committee, the agency should reconsider this approach
and add deposition-based standards for ecosystem effects.?”
Critical loads for lichens, sensitive tree species, and fresh-
water eutrophication risks provide a sound basis for estab-
lishing such standards. Total maximum daily loads for
contribution of atmospheric deposition to estuarine water-
sheds and coastal waters should also be considered.

Confined animal feeding operations contribute disproportion-
ately to U.S. ammonia emissions, with broad regional

impacts, as well as heightened health and welfare harms

for nearby communities. In 2017, when it denied a petition to
set performance standards for confined animal feeding opera-
tions, EPA asserted the need to evaluate emissions from con-
fined animal feeding operations and determine further
regulatory actions to decrease emissions and cited limited re-
sources and competing priorities.>® As many health and envi-
ronmental protection organizations have urged,*' EPA should
reconsider this decision and move forward to set standards.
Recommended best management practices, state and local
regulations that address ammonia and other emissions from
animal feeding operations, and updated European rules for
this source sector provide models for feasible work practices
that can be used to decrease feedlot emissions.
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In Next Month’s Issue...
Emissions Inventories

The July issue will focus on topics related to emissions inventory
development, inventory improvements, and U.S. Environmental
Protection Agency (EPA) efforts on revising the Air Emissions
Reporting Rule (AERR).
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A Summary of the 54th Annual ARWMA Ciitical Review

Attend the 54th Annual AWMA Ciritical Review Presentation at ACE

Reduced Nitrogen in the Atmosphere: A Critical Review of Research and
Management Needs

Presented Dr. Charles T. Driscoll

Thursday, June 27
8:00-10:00 a.m.
Calgary TELUS Convention Centre

Following the review presentation, a panel of invited experts will critique the presentation and
offer their own views on the topic. This year’s invited discussants are: Dr. Jeffrey L. Collett,
Dr. Carla Davidson, and Dr. Greg Wentworth.

Join the Discussion

Comments also will be solicited from the floor and from written submissions to the Critical Review
Committee Chair. The Chair will then synthesize these points into a Discussion Paper that will be
published in the October 2024 issue of JARWMA. Comments should be submitted in writing to
Susan S. Wierman, Critical Review Committee Chair, at susan.wierman@gmail.com by no
later than July 25, 2024.

Get Involved

Get involved with the Critical Review Committee and help further our scientific understanding
by attending the Annual Meeting of the Critical Review Committee on Thursday, June 27, at
10:30 a.m., immediately after the presentation. Please refer to the Conference Program for
room allocation.

2024 Critical Review Committee

Susan Wierman, Chair Harish Rao, Technical Council Liaison
Eric Stevenson, Immediate Past Chair (2020-2023)  Viney Aneja

Samuel L. Altshuler, Past Chair (2017-2020) Gary Casuccio

Michael T. Kleinman, Past Chair (2013-2016) Chih C. Chao

George Hidy, Past Chair (2009-2012) John Kinsman

Judith Chow, Past Chair (2001-2008) Randal Martin

John Watson, Past Chair (1994-2000) Roya Mortazavi

Prakash Doraiswamy, Publications Committee Chair ~ Bret Schichtel

About the Critical Review

For more than 50 years, ARWMA has solicited and published in the Journal of the Air & Waste
Management Association (JA&WMA) an Annual Critical Review on a topic of critical importance
to the air and waste management fields. Each year, the review author presents the Annual
Critical Review during AQWMASs Annual Conference & Exhibition. The Critical Review
Committee, which is a subcommittee of the Publications Committee, selects the review topics,
solicits the authors/presenters, offers editorial guidance and critiques to the review authors,
reviews the final manuscript before publication, and selects the participants for the panel
discussion that follows the review presentation.

em * The Magazine for Environmental Managers + ARWMA - June 2024



