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Adaptive immunity is driven by specific binding of hypervariable receptors to 
diverse molecular targets. The sequence diversity of receptors and targets are 
both individually known but because multiple receptors can recognize the same 
target, a measure of the effective “functional” diversity of the human immune 
system has remained elusive. Here, we show that sequence near-coincidences 
within T cell receptors that bind specific epitopes provide a new window into this 
problem and allow the quantification of how binding probability covaries with 
sequence. We find that near-coincidence statistics within epitope-specific 
repertoires imply a measure of binding degeneracy to amino acid changes in 
receptor sequence that is consistent across disparate experiments. Paired data 
on both chains of the heterodimeric receptor are particularly revealing since 
simultaneous near-coincidences are rare and we show how they can be 
exploited to estimate the number of epitope responses that created the memory 
compartment. In addition, we find that paired-chain coincidences are strongly 
suppressed across donors with different human leukocyte antigens, evidence for 
a central role of antigen- driven selection in making paired chain receptors 
public. These results demonstrate the power of coincidence analysis to reveal 
the sequence determinants of epitope binding in receptor repertoires. 

T cells | receptor-ligand binding | repertoire sequencing | specificity 

Which epitopes are recognized by an individual’s T cells? The specificity of T cells is 
encoded genetically in the loci coding for the hypervariable loops of the T cell receptor 
(TCR) chains (1), and thus in principle reading out the immune repertoire by sequencing 
provides the information to answer this question (2–4). Yet, deciphering the complex 
sequence ‘code’ for the many-to-many mapping between TCRs and peptide-major 
histocompatibility complexes (pMHCs) remains an open problem (5). 
Aspects of this code are coming into view thanks to data from multiple experimental 

approaches. Structural studies have revealed the spatial arrangements in which TCRs 
bind pMHCs (6–11). Mutagenesis experiments (12, 13) have provided early evidence 
that some amino acid substitutions in TCRs maintain or even increase binding affinity 
to a given epitope. Such local degeneracy of the binding code has been confirmed 
more recently by sequencing of epitope-specific groups of TCRs (14–21), and sequence 
patterns in these datasets are now used in machine learning approaches to predict further 
binders to the same epitope (22–26). 
Direct experiment can, however, examine only a minute fraction of all the possible 

binding combinations, due to the enormous diversity of potential receptors and epitopes: 
more than 1012 different peptides (27) are presented on 1000s of human MHC alleles 
(28) to up to 1061 possible TCRs (29) generated by the recombination machinery. As a
result, rules that generalize across epitopes would be of utmost utility, but TCR diversity
has made it difficult to find such rules.
To address this problem, we here introduce a statistical framework that quantifies the 

sequence degeneracy of receptors that bind to a common target by counting sequence 
coincidences in epitope-specific TCR repertoires and comparing them with the rate at 
which they occur in suitably chosen “background” repertoires. The specific repertoires 
we study can be created in a controlled way in an experiment, or can arise organically, as 
when a memory compartment is formed in response to an infection. Generalizing the 
analysis to inexact coincidences (pairs of sequences with high sequence similarity), we 
find that they, too, are enhanced in epitope-specific repertoires. We demonstrate 
mathematically that the ratio of near-coincidence probabilities between data and 
background, as a function of sequence distance, is a direct measure for how specificity 
is correlated across sequence space. 
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Significance 

Adaptive immunity relies on the 
binding of molecular targets by a 
few specific T cells in a highly 
diverse repertoire. Different T cell 
receptors can bind the same 
target, but a quantification of this 
recognition degeneracy is lacking. 
We develop a statistical approach 
that links distributions of 
sequence similarity among 
T cells of common specificity to 
how binding probability covaries 
with sequence. Applying our 
method to experimental data, we 
determine the fraction of 
sequence neighbors of a specific 
T cell that also bind its target and 
estimate how many response 
groups make up a memory 
compartment. Our study provides 
a quantitative framework for 
identifying the sequence 
determinants of specific binding 
and will facilitate the 
development of repertoire 
sequencing-based 
immunodiagnostics. 
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Applying this framework to epitope-specific T cell repertoires 
that have been acquired in different ways (14–17) reveals a 
common coincidence enhancement signature of specific binding 
across disparate experiments. We relate this signature to the 
existence of a typical average local binding degeneracy, defined 
as the fraction of the available sequence neighbors of a specific 
T cell receptor (available in the sense of being present in a natural 
repertoire) that will also bind to the same pMHC. In addition, we 
see a weaker version of this signature in paired chain 
repertoires that have not been subjected to explicit ex vivo 
enrichment for epitope-specific T cells (30). We exploit this 
observation in two ways: we provide clear evidence that this 
signature is associated with MHC presentation of antigen by 
demonstrating that coincidences between different donors are 
strongly affected by the overlap between their human leukocyte 
antigen (HLA) types; in addition, after some mathematical 
analysis, we use it to quantify the effective functional diversity 
of the memory repertoire, in the sense of an estimated number 
of epitope recognition events it records. Taken together, these 
results illustrate how coincidence analysis can help to 
quantitatively address immunological questions whose answers 
have so far remained elusive. 

1. Overview of Analysis Strategy 

We illustrate the broad strategy of our approach on a repertoire of 
CD8+ T cells specific to an Epstein-Barr Virus peptide presented 
on HLA-A*02:01. The data are from Dash et al. (14) and were 
obtained using single-cell receptor sequencing of tetramer-
sorted T cells binding the specific pMHC. 
Fig. 1A shows a clustering by pairwise amino acid sequence 

distance of all distinct nucleotide sequence clones. In this 
visualization, each position in the heatmap records the sequence 
distance � between the amino acid sequences of a pair of 
distinct T cell clones. TCRs are heterodimeric, and the heatmaps 
above (below) the diagonal record distances between the β 
(α) hypervariable complementary-determining region 3 (CDR3) 
loops of the sequence pair. Clustering is based on the sum of 
distances between α and β chains. Here, and throughout this 
work, we define sequence distances as the minimal number of 
edits (insertions, deletion, or substitutions) that change one 
sequence into another, known as the Levenshtein distance. 
We only consider sequence distances between CDR3 loops 
for simplicity, but the mathematical framework we develop is 
general and could also be used with distance measures that 
include other hypervariable receptor regions. By clones we mean 
lineages of cells that go back to the same ancestral 
recombination event, which we define in practice based on 
nucleotide sequence identity. A zero distance pair arises when 
due to convergent recombination two distinct nucleotide 
sequences have the same amino acid translation. We chose to 
ignore the number of times a given nucleotide sequence is 
sampled, as clone sizes also reflect TCR-independent lineage 
differences (31, 32). Instead, we analyze convergent selection 
imposed on distinct clones with the same or similar TCR as a 
stringent measure of epitope-driven functional selection. In the 
experiments that we consider in this manuscript, TCRs are 
selected for binding to a specific pMHC ligand, and our 
analysis quantifies the imprint of this filtering funnel on TCR 
sequence statistics. We use the word “selection” to refer to this 
filtering process, which is distinct from, and not to be confused 
with, thymic selection. 
Fig. 1A allows some direct conclusions about important 

features of the TCR-pMHC binding code: First, it highlights the 
remarkable sequence similarity among specific TCRs and it shows 
that this similarity also holds for TCRs from different donors. 

Second, it shows that there are several clusters of sequences 
differing by a few substitutions from each other, plus a substantial 
number of isolated sequences that differ from all other 
sequences by many substitutions. Fig. 1B shows sequence logos 
for two prominent clusters. Interestingly, they are quite 
different from each other, even when accounting for chemical 
similarity of amino acids. This suggests that clusters might 
represent broad structurally distinct binding solutions, each 
with local residue degeneracy. This view is supported by the V 
and J gene usage, which is highly restricted within each cluster 
but nonoverlapping between them. Third, it demonstrates that 
chain-pairing is biased even among specific binders as similarity 
on one chain is often associated with similarity on the other 
chain. 
To compare statistics of sequence similarity across epitope 

targets, we next compress the off-diagonal elements of the 
clustermap into a normalized pairwise distance histogram that we 
denote by pC (�). We normalize coincidences by N (N 1)/2, 
the number of possible pairs (i.e., upper diagonal elements in the 
matrix), so that pC (�)	 is a probability distribution on �. Fig. 1 
C and D show the histograms for α and β chains, respectively. 
Fig 1E shows the histogram for the complete αβ-TCR, with 
paired chain sequence distance defined as the sum of distances 
of both chains. These normalized pairwise distance distributions 
are the basic element of our analysis framework. We also plot 
the pC (�)	 distributions derived from bulk sequencing of a 
“background” sample as a proxy for the expected distribution 
prior to selection. We use sequencing data from Minervina et 
al. (16) of total peripheral blood mononuclear cells (PBMCs) 
from a healthy individual for these background curves for α and 
β chains. For the paired chain background curve, we currently 
lack sufficiently deeply sequenced datasets. Fortunately, 
previous studies have concluded that α and β chain gene usages 
are largely uncorrelated (30, 33, 34), so we use the convolution 
of the α chain and β chain distributions from Minervina et al. 
(16) as a plausible paired chain background prior to selection. 
In section 7, we will present further evidence supporting the 
use of this assumption. 
The central observation is that pC (�)	is orders of magnitude 

larger in epitope-specific repertoires than the corresponding 
background for small �. Exact coincidence frequencies are in 
excess by surprisingly large factors ( 109 and 104 for paired 
and unpaired chains, respectively). This excess extends to near- 
coincidences, but for large enough �, the selected and the 
background values of pC (�)	 approach each other. The manner 
in which their ratio falls to unity will turn out to be roughly 
the same across different types of experiments, an intriguing 
fact that points to shared underlying biophysical rules of specific 
binding. 

2. Theory of Coincidence Analysis 
A. Definitions and Statistical Estimation. The T cell clones that 
enter the immune repertoire are drawn from a background 
distribution P(σ )	 over all possible nucleotide sequences σ 
that code for the TCR hypervariable chains. This distribution 
summarizes the statistics of the recombination process by 
which the receptor coding genes are rearranged, and it is 
known that probabilities of individual sequences range over 
many orders of magnitude (35). Experimentally, clones are 
identified by distinct nucleotide sequences, and coincidences 
(exact or near) are defined by the corresponding amino acid 
sequence (since that is what determines functional identity or 
similarity). Generation probabilities are such that it is unlikely 
that two separate T cell generation events will give the same 
nucleotide sequence, but it is less uncommon for them to 
give the same CDR3 amino 
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Fig. 1. Patterns of sequence similarity within an epitope-specific repertoire. (A) Sequence-similarity clustermap of TCRs binding to an Epstein-Barr Virus epitope 
as obtained by single-cell TCR sequencing following tetramer sorting (Data: Dash et al. (14), antigen BMLF). Lower (Upper) triangle shows pairwise distances of 
CDR3a (CDR3p) sequences. Sequences are ordered by average linkage hierarchical clustering based on summed ap distance. Columns on the left show the 
subject of origin and cluster assignment; sequences not belonging to a cluster based on a cutoff distance of 6 are shown in black. (B) Sequence logos for two 
clusters of specific sequences. Amino acids are colored by their chemical properties, and V and J gene usage within the cluster is displayed alongside the logo. 
(C–E) Normalized histograms of pairwise distances between (C) CDR3p, (D) CDR3a, and (E) CDR3ap sequences specific to the epitope show vastly increased 
sequence similarity relative to background expectations. 

acid sequence. Therefore, the practical limitation of identifying 
clones by distinct nucleotide sequences instead of recombination 
events introduces only minimal bias. The normalized histogram 
of pairwise distances defined operationally in the previous section 
is then an empirical estimate of coincidence probabilities, more 
formally defined as 

pC [P](�)	=	 P(σ )P(σ I)Id(σ ,σ I)=�, [1] 
σ ,σ I 

where I is the indicator function, the sum is over independent 
pairs of nucleotide sequences, and d (σ , σ I)	 is the sequence 
distance between the amino acid translations of the sequences. 
Given the diversity of TCRs, it is surprising that we are able to 

find any coincidences in small epitope-specific repertoires. The 
occurrence of coincidences at sample sizes much smaller than 
the space of all sequences is connected to the “birthday 
problem” in probability theory (36, 37): In a sample of N 
distinct sequences, there are N (N − 1)/2 distinct pairs, and the 
expected number of 

pairs at distance � is thus pC (�)N (N  1)/2. This means that 
we can estimate normalized pair probabilities pC (�)	 10−3 
using repertoires of only N 102 sequences. This is fortunate 
since it is precisely this combination of orders of magnitude that 
we encounter when we estimate pC (�)	 from epitope-specific 
repertoires at small values of � (Fig. 1 C –E ). 

 
B. Intuition for Why Coincidences Increase in Epitope-Specific 
Repertoires. To gain intuition, we define a probability distribu- 
tion on amino acid sequences by marginalizing over nucleotide 
sequences, P(τ )	 =	 	 σ Tτ P(σ ), where Tτ is the set of sequences 
that translate to amino acid sequence τ . In this notation, we can 
give an alternative definition of the exact coincidence probability 
(the value of Eq. 1 at � =	0) as 
 

pC [P]	=	 P(τ )2. [2] 
τ 
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This expression is Simpson’s diversity index from ecology (36). 
Its inverse 1/pC is known as a true diversity, an estimate of an 
effective number of species present in a population. Here, amino 
acid receptor sequences take the role of species, which means 
that pC is an index of the diversity of amino acid sequences 
coded for by the different clones in the repertoire. Only some 
receptors bind an epitope, thus we expect epitope-specific 
repertoires to have lower diversity. This provides an intuitive 
explanation why pC , the inverse of true diversity, increases 
with selection. From this 

where P(S)	 =	 	 σ S P(σ )	 is the fraction of all clones 
(i.e., distinct nucleotide sequences) that are specific to the 
epitope in question. Given the statistical process that created 
the background repertoire, any given background sequence has 
an expected number of ‘neighbors’ at sequence distance �; if 
the sequence in question is selected, we can ask what fraction 
fσ (�)	 of its neighbors at distance � are also selected. Plugging 
Eq. 4 into Eq. 3 we find that the coincidence enhancement ratio 
is proportional to the average of that fraction over the 
selected 

perspective, Eq. 1 represents a generalization of Simpson’s index 
to a similarity-weighted measure of diversity (38). As epitope- 

sequences (fσ (�))σ ∈S =	(IS (σ I))
σ �σ I,σ ∈S : 

specific repertoires consist of TCRs with similar sequences, we 
expect similarity-weighted diversity to also be restricted. This in 
turn helps rationalize why pC (�)	is increased in epitope-specific 

pC [QP](�)	=	
pC [P](�)	

( fσ (�))σ ∈S . [5]
 

P(S)	
repertoires for some range of small �. A central point of this 
paper is that a great deal of information is contained in the Note that ( fσ (� =	0))σ ∈S =	1 because specific binding only 
generalization of Simpson’s index to inexact coincidences. 
To develop this intuition further, let us represent T cells with 

distinct nucleotide sequences as nodes in a graph and connect 
pairs of clones with the same TCR amino acid sequence with a 
link. Fig. 2A displays such a graph representation for 100 notional 
background T cells, together with the result of selecting half 
of them according to two different protocols. The probability 
that a randomly chosen pair of nodes are linked is equal to 
pC =	 2 E /(	 V (	 V  1)), where E is the number of edges 
and 
V is the number of vertices. The preselection repertoire is 
shown in the left panel, where links were arbitrarily chosen 
such that pC =	 0.02. The middle and right panels show the 
results of two selection protocols mimicking random 
subsampling and epitope- specific sorting, respectively: selecting 
nodes with probability 1/2, ignoring linkage (Center), or 
selecting clusters of nodes with probability 1/2 (Right). When 
selecting cells at random, the coincidence probability pC =	 0.02 
is unchanged: the mean number of linked pairs decreases by a 
factor 4, but so does the total number of possible node pairs. 
Selecting clusters in contrast, implies that the number of edges 
decreases by only a factor 2. Normalizing by the total number 
of node pairs, the coincidence probability increases two-fold to 
pC =	 0.04. The selection of connected clusters mimics sorting 
by epitope-specificity, in the sense that cells belonging to the 
same clonotype, defined by identical amino acid sequence, all 
share the same specificity. 
 
C. Formal Analysis. We now mathematically derive how coin- 
cidence probabilities change when specific TCRs are identified 
within a larger pool. We analyze this as follows: let Q(σ ), normal- 
ized by Q(σ )	 P(σ ) =	 1, be a selection factor that characterizes 
whether sequence σ meets the chosen selection condition. The 
distribution of selected sequences is then Q(σ )P(σ ). As we 
derive in SI Appendix, Appendix 1, the coincidence distributions 
of the two ensembles are related via the cross-moments of the 
selection factors, 

depends on amino acid sequence, so that all exact coincidences 
with a selected sequence must also be selected. Thus, the increase 

 
A  
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C 
 
 
 
 
D 

pC [QP](�)	
=	(Q(σ )Q(σ I)) , [3] 

pC [P](�)	 σ ∼σ I 
Fig. 2. How selection increases coincidences. (A) How different selection 

where (.)
σ �σ I 

indicates that the average is calculated over random 
pairs of sequences at distance �, i.e., over the distribution 
P(σ, σ I d (σ , σ I)	=	�). 
To gain intuition, we consider a simple class of selection 

functions of relevance to antigen-specific selection, where Q 
weights equally a specific subset S of sequences and gives zero 
weight to all others: 

Q(σ )	=	IS (σ )/P(S), [4] 

procedures change the graph of sequence neighbors. Cells (nodes) in a 
background graph (Left) are connected by edges if they share an identical 
TCR. Random sampling of nodes (Middle) does not change the coincidence 
probability. Random sampling of clusters (Right) increases the coincidence 
probability. Selected nodes and links in orange; unselected background 
nodes in light blue. (B–D) Coincidence probabilities for synthetic data 
generated by selecting 1% of cells (B), 1% of amino acid clonotypes (C), and 
1% of meta-clonotypes (generated by including 10% of neighbors of each 
selected sequence). (D) at random. These random selection protocols act 
on a background CDR3p repertoire (data from ref. 16). The gray lines show 
estimates for 20 repetitions of the sampling procedure, and the orange line 
shows their average. 
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in exact coincidence probability is inversely proportional to 
the selection fraction P(S). If the selection fraction is small, 
the coincidence ratio is large, in line with the interpretation of 
this ratio as a measure of the strength of selection. What follows is 
a direct way to estimate the average number of specific neighbors: 

3. Common Features of Selection Across 
Datasets 
We now use the lens of coincidence analysis to examine a broad 
set of experimental datasets that use different assays to select T 
cell repertoires specific to epitopes from different sources 
(details in Material and Methods) (14–17, 30). Our analysis of these 
diverse 

pC [QP](�)	 =	 pC [QP](0)	 ( f (�)) . [6] datasets (Fig. 3) reveals striking similarities in the functional 

pC [P](�)	 pC [P](0)	 σ σ ∈S 
dependence of excess coincidences on sequence distance, 
together with wide variation in the magnitude of the 
enhancement of coincidence frequencies over background. 

How coincidence ratios decrease with distance � is thus a 
measure of the average sequence degeneracy of specific 
binding. Applying this equation to experimental data will allow 
us to estimate this fundamental quantity. In comparing with 
data, the empirical coincidence distribution within an epitope-
specific repertoire is our measure of pC [QP], and pC [P]	 is 
determined from a background set of sequences. To simplify 
notations, we will thus refer to their ratio as pC /pC,back. 
 
 
D. Simulation of Selection on Real Data. To make the preceding 
formal analysis concrete, we next turned to numerical simulation 
of selection of sequences from a realistic background T cell 
repertoire. To get intuition of the effect of selection by a generic 
pMHC complex at a gross statistical level, we filter sequences 
from a background dataset of approximately 105 CDR3 β 
sequences taken from whole blood (data from ref. 16) according 
to different random sampling protocols. 
We first compare selecting random cells (Fig. 2B) with 

selecting random clonotypes (Fig. 2C ), in each instance selecting 
1% of sequences. For the former, apart from statistical noise, 
pC (�)	 is the same for the selected set as for the background. 
For the latter, the exact coincidence frequency increases 
hundredfold. This increase corresponds to the inverse of the 
selection fraction P(S)	 10−2, exactly as predicted by Eq. 3. 
Such random selection of clonotypes was used successfully in 
Elhanati et al. (39) to predict TCR sharing numbers among a large 
number of human individuals. However, for � =	 0, coincidence 
frequencies do not differ from the background (in contrast to 
empirical data, such as Fig. 2C ). 
We thus next sought to incorporate sequence correlation in 

selection between similar amino acid sequences to model the 
local degeneracy in antigen recognition apparent in Fig. 1A. 
To this end, for each selected sequence σ , we also select a 
fraction pcorr of sequences that are within sequence distance �corr 
from σ . The construction of such a sequence-correlated random 
selection model is somewhat subtle as a naive scheme 
oversamples sequences with many neighbors. We derived a 
corrected sampling scheme explained in SI Appendix, Appendix 
4 that overcomes this bias. The results of such a selection of 
metaclonotypes for 
�corr =	 1 and pcorr =	 0.1 are shown in Fig. 2D. As expected, 
sequence correlations lead to an enhancement of pC (�)	 over 
background that extends to near coincidences. Also, the 
selection enhancement ratio changes by a factor of 0.1 (the 
value of pcorr) between � =	 0 and � =	 1, in accord with our 
expectation from Eq. 6. 
We note from these illustrations that the enhancement ratio 

pC (�)/pC,back(�)	 (plotted in the right-hand columns of Fig. 2 
B–D) gives a particularly direct diagnostic of the nature and 
strength of the selection that acts on the background. We will 
use it in the next sections to put a wide range of experimental 
data into a common framework. 

We first apply coincidence analysis to paired chain data from 
Dash et al. (14) (Fig. 3A), Minervina et al. (17) (Fig. 3B), and 
Tanno et al. (30) (Fig. 3C ), taking the distance between two 
paired sequences to be the sum of distances between the two 
chains. Minervina et al. sequenced paired-chain αβ TCRs that 
were determined by DNA-barcoded MHC dextramers to have 
specificity to chosen SARS-CoV-2 epitopes, while Tanno et al. 
provides a large dataset of paired-chain total T cell repertoires 
that have not been directly subjected to ex vivo selection. We 
compute the coincidence probability ratio pC (�)/pC,back(�)	
against a synthetic background computationally constructed 
from single chain data under an independent pairing assumption, 
as described previously. 
We next apply coincidence analysis to the single chain data 

from Nolan et al. (15) (Fig. 3H ) and Minervina et al. (16) 
 

 
B 

 
 
 
 
 
 

E 
 

 
 

 

Fig. 3. Excess coincidences follow a common functional form across exper- 
iments. Sequence similarity of specific T cells for paired ap-chain repertoires 
(Top), a-chain repertoires (Middle) and p-chain repertoires (Lower) compared 
with background expectations. In each panel, the assay type used to enrich 
for epitope-specific T cells and the antigen source are noted in the upper 
right. Panel C is special as analyzed TCRs are from unsorted blood and 
have not been explicitly selected for binding to a specific epitope. A common 
reference curve is plotted for visual guidance. Its parameter K is set equal to 
the empirical value at � = 0. Z is determined by normalization. Datasets: A, 
D, and F –(14); E and G–(16); H–(15); B–(17); C–(30). 
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(Fig. 3 E and G). Nolan et al. sequenced β-chain sequences 
of T cells selected by passage through the MIRA pipeline (40) 
for recognizing individual peptides in a broad panel of peptides 
from the SARS-Cov-2 genome, while Minervina et al. identified 
α and β chain sequences of T cells that responded dynamically 
during the SARS-Cov-2 infection of two human subjects using 
longitudinal sequencing. As a comparison, we also analyze single 
chain sequences from the Dash et al. (14) paired chain dataset 
across the three studied viral epitopes, ignoring the chain pairing 
(Fig. 3 D and F ). For each repertoire, we compute the coincidence 
probability ratio pC (�)/pC,back(�)	 against background bulk 
sequences of the same chain. To smooth out variability, we then 
average over epitopes or subjects, respectively. 
Together, these analyses highlight major differences across 

chains and experiments (Fig. 3, rows and columns, respectively) 
in how much coincidence probabilities are increased relative to 
background, pC (�)/pC,back(�)	 at small �. The fold increase 
for sequence identity (� =	 0) is highest in paired chain 
tetramer-sorted repertoires against immunodominant epitopes 
of common viruses (Fig. 3A) and decreases from this value 
when chains are considered separately (Fig. 3, 2nd and 3rd row) 
or in sequence repertoires identified by other assays (Fig. 3, 2nd 
and 3rd column). We will provide a potential mechanistic 
explanation for some of these differences in Section 6. 
There are also some striking common features to note. First, 

the analyses show that, for small � and across experiments, 
the excess coincidence ratio declines from its value at � =	 0 at 
a similar exponential rate; second, across all datasets, 
coincidence rates reduce to those of the background for 
distances substantially less than the mean distance between 
sequences in the background. In other words, the statistical 
differences between selected repertoires and the background 
are limited to small sequence distances �. The red curves plot 
a simple parametric function (specified in the legend) that 
captures the two key features: it interpolates between an initial 
exponential decrease by roughly one power of ten per unit 
increase in � and asymptotes to a constant. The parameter K 
is set to the value of excess coincidences at � =	 0, and the 
parameter Z is determined self- consistently by normalization. 
Without any additional fitting parameters, the reference curve 
is in good agreement with the empirical data across all 
experiments, highlighting their similarity. 
The exponential falloff for small � is a quantitative measure 

of binding degeneracy with respect to small sequence changes. 
According to Eq. 6 the observed common falloff rate means 
that, on average, about one tenth of the � =	 1 sequence 
neighbors of a T cell that recognizes an epitope will also 
recognize the same epitope (and roughly one percent of the � 
=	 2 neighbors, etc). This degree of sequence degeneracy is 
observed both for α-chains (Fig. 3 D and E ) and β-chains (Fig. 
3 F –H ). Note that this analysis relates to the fraction of 
available sequence neighbors, i.e., those present in the pool 
before sorting for specificity in accord with the TCR 
generation probabilities and sample size and takes into account 
only the CDR3 region and not other hypervariable regions. The 
observation that this parameter agrees across experiments and 
chains is striking and suggests that it is a fundamental 
biophysical feature of TCR-pMHC binding interactions. 

4. Diversity of Both Chains and Their Pairing Is 
Restricted in Specific TCRs 

Epitope-specific repertoires sequenced at the paired-chain level 
can be used to quantify the relative contribution to binding 

specificity of the two chains. Fig. 3 D and F show that there 
is, on average, a strong diversity restriction (as measured by 
excess coincidences) for both chains individually due to epitope 
selection. If the selected chains could be freely paired without 
affecting specificity, then the overall excess coincidence factor 
for paired chains would be the product of the factors for the 
individual chains (as discussed in SI Appendix, Appendix 3). 
In fact, Fig. 3A shows that paired chain coincidences are more 
frequent than this expectation by perhaps as much as a factor 
10 (out of an overall increase by a factor of 109). For further 
insight, we repeated the analysis separately for each individual 
epitope (Fig. 4): the paired chain selection factor is in each 
instance the product of two large factors due to selection of the 
β and α chains individually times a smaller factor that arises 
from restricting pairing among the selected sets of chains, and 
there is only limited variation in the contributions of the three 
terms across epitopes. These results show why paired chain 
information is essential for accurately predicting the specificity 
of a TCR. An important correlate of the strong restriction of 
diversity within epitope-specific repertoires is that when fixing 
one chain the other shows only very limited variation: As shown 
in Fig. 1 paired chain coincidences are nearly as frequent as 
coincidences on either chain alone. A related phenomenon was 
recently described comparing naive and memory antibodies 
(41), and termed chain coherence. Our analyses suggest that 
such coherence also occurs for TCRs. 
 
5. The Selection Signature Constrains the 
Binding Landscape 

What are minimal features of a T cell-epitope binding landscape 
that can explain the coincidence enhancement signature? To 
explore this question, we go beyond the random selection models 
considered in Fig. 2 and treat selection more realistically as due 
to sequence-dependent binding. This exercise could be carried 
out at many levels of sophistication (42, 43), but we will focus 
on a simple, schematic, and analytically tractable model for 
TCR-pMHC interactions. In what follows, we sketch the model 
and the conclusions we draw from it. Details are presented 
SI Appendix, Appendix 6. 
We model TCRs as random amino acid strings of fixed length 

k = 6 (corresponding to the mean number of hypervariable 
residues within a typical CDR3 loop). Background TCR se- 
quences are generated by drawing six amino acids independently 
at random from the q =	 20 amino acids. The set of TCRs 
binding to a specific pMHC is specified by a sequence logo, or 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Epitope binding restricts diversity of both chains individually and 
also restricts their pairing. Bar chart shows the decomposition of paired 
chain exact coincidence probability ratios (Fig. 3A) for individual epitopes in 
the dataset from Dash et al. (14) into contributions from selection of a chains 
(Fig. 3D) and p (Fig. 3F ) individually (blue, orange), plus a smaller contribution 
from restricting the pairing of the two chains (green). 
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Fig. 5. Coincidences in a mixture of motifs model. (A) Coincidence probabil- 
ities and (B) coincidence probability ratios to background for simulated data 
generated from a mixture of motifs model with different numbers of motifs 
M and c = 3. (B) also shows analytical expectations from Eq. 8 (lines), which 
agree well with the numerical results (crosses). The model reproduces key 
features of the empirical data: pC/pC,back decays exponentially for small � 
and asymptotes to a constant for large � at sufficiently large M. 
 
 
motif, condition: at each of the k variable positions, we require 
that the residue lie in a randomly chosen subset of size c  q of 
the amino acids (a different subset at each position). 
Calculating the coincidence enhancement factor for a particu- 

lar epitope and binding motif reduces to a combinatorial exercise 
in this model, with the result: 

 pC (�)	 	
 
 c − 1 � q k 

6. Functional Diversity Links Coincidences 
Across Scales 

We now revisit the intriguing observation of a selection-like 
signature in paired chain sequencing data from whole blood 
(specifically, the coincidence enhancement displayed in Fig. 3C ). 
In Fig. 6, we compare coincidence frequencies obtained from 
direct paired chain sequencing of blood samples with coinci- 
dence frequencies among multimer-sorted T cells that recognize 
individual epitopes. We note that coincidences within multimer- 
sorted repertoires exceed those in blood samples by four 
orders of magnitude. Also, the comparison with sorted 
memory and naive repertoires shows that coincidences in the 
total repertoire are primarily driven by memory cells. Bearing in 
mind that the whole blood coincidence analysis compares 
sequences within and between all the memory sub-
compartments created by past infections, we hypothesize that 
the coincidences in whole blood reflect high-levels of sequence 
similarity among groups of memory cells selected in response to 
specific epitopes encountered in the past. Intuitively, we then 
expect coincidences in whole blood to depend on the diversity 
of the memory repertoire, i.e., on how many different epitope 
exposures the immune system is remembering. To make this 
intuition quantitative, we develop a mathematical formalism to 
predict coincidences in mixture distributions. 
We propose to model TCRs in an individual’s memory 

compartment as a mixture distribution over the set IT of peptide- 

pC,back (�)	
=
	 q − 1 c 

. [7] MHC complexes (pMHCs) that have driven past immune 
responses in that individual. For each π ∈ IT, there is a 

This expression reproduces the exponential falloff of excess 
near- coincidences with � that is seen in real data. The falloff 
rate depends on the number of allowed amino acids c at each 
position, with c 3 amino acids per position reproducing the 
empirical rate. 
However, this expression does not capture the second 

observa- tion in the empirical data, namely, that beyond a certain 
sequence distance �, the enhancement ratio asymptotes to a 
roughly constant value. To address this, we recall that Fig. 1 
strongly suggests that there are multiple “solutions” to the 
problem of recognizing a given epitope. Sequence similarity 
between TCRs binding in different manners is expected to be 
low, thus the existence of multiple solutions might explain the 
flattening of the coincidence probabilities for large �. We thus 
extend our binding model to incorporate this idea: For each 
epitope, let there be M different randomly chosen motifs and 
declare that a T cell recognizes the epitope if any of the motifs 
are satisfied. T cells selected by this model are a mixture of those 
selected by the individual motifs. Applying results for 
coincidences in mixture distributions (derived in SI Appendix, 
Appendix 2), we obtain an analytical prediction for excess 
coincidences: 

distribution of T cell sequences P(σ π )	 that target π . The 
distribution of TCRs in the memory compartment will then 
be the mixture distribution 

P(σ )	=	 P(σ |π )P(π ), [9] 
π ∈IT 

where P(π )	 is the proportion of all TCRs selected for binding 
to pMHC π . The coincidence probability for mixtures can be 
calculated using the following mixture decomposition theorem, 
which we derive in SI Appendix, Appendix 2: 

 pC (�)	 	 	1
  
 c − 1 �  q k  1 

pC,back (�)	
≈ 
M q − 1 c 

+	1 − 
M 

. [8] 

Fig. 5 displays this analytical result for different values of M . 
In addition, it shows the almost identical results of numerical 
simulations of the model with a more realistic nonuniform amino 
acid usage (drawn according to the amino acid usage in CDR3α 
hypervariable chains reported in ref. 16). The key observation 
is that, for multiple motifs, the ratio pC /pC,back both shows 
exponential decay for small � and asymptotes to a constant 
(close to unity) as � approaches the maximum possible value in 
this setup, � =	6. 

 
 
 
Fig. 6. Comparison of near-coincidence probabilities across paired-chain 
datasets. The highest values come from TCR repertoires specific to individual 
epitopes (solid orange curve: average over epitopes studied in Dash et al. (14) 
and Minervina et al. (17)). Paired-chain sequencing of whole blood (green), 
sorted CD4+ memory (dashed red) and CD4+ naive (purple) repertoires, 
data averaged over subjects from Tanno et al. (30) give much smaller values. 
Background coincidence probabilities (calculated assuming independent 
chain pairing) are shown in blue. See text for a discussion of the large 
difference in coincidence probabilities between repertoires. 
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pC [P(σ )]	=	pC [P(π )]	(pC [P(σ |π )]) 
+	(1 − pC [P(π )])	(pC [P(σ |π1), P(σ |π2)]), 

 
where the averages are over P(π π1 =	 π2 =	 π )	 and 
P(π1, π2 π1 =	 π2), respectively. It is noteworthy that such 
an exact decomposition of coincidence probabilities in mixtures 
exists. For example, no equivalent formula exists for Shannon 
entropy, an alternative measure of diversity, which has led to 
long-running debates within ecology about the decomposition 
of diversity in pooled communities (44–46). 
Eq. 10 is a sum of two nonnegative terms, each of which 

can be given an intuitive interpretation. We recall that the 
probability of exact coincidence is the probability with which 
two randomly chosen sequences σ1 and σ2 are coding for 
the same TCR, pC [P(σ )]	 =	 	 σ1,σ2 P(σ1)P(σ2)Id(σ1,σ2)=0. The 
decomposition formula then represents a conditioning on 
the mixture identity for σ1 and σ2: The overall probability of 
coincidence is a weighted mean of average within-group 
coincidence probabilities (first term) and of average between- 
group coincidence probabilities (second term). The relative 
weight given to within group comparisons is given by the 
probability with which two randomly chosen elements come 
from the same group, i.e., the coincidence probability of the 
group assignments pC [P(π )]	(defined in the sense of Eq. 2). 
Multimer sorting followed by sequencing gives draws from 

P(σ π )	 for specific pMHCs π (14, 17), and these data can be 
used to estimate the average within-epitope-group coincidence 
probability pC [P(σ π )]	 . In the absence of better information, 
we shall assume that the average value pC [P(σ π )]	 	 10−4 
found in these experiments is the typical order of magnitude 
for all epitopes. We further assume that the between-epitope- 
group term in Eq. 10 is negligible. Then, the only remaining 
quantity is pC [P(π )], the Simpson diversity of the set of epitope- 
specific groups within the repertoire. Putting the numbers 
together, we obtain an effective diversity 1/pC [P(π )]	 	 104, 
a not implausible value for the pMHC diversity of a memory 
compartment. 
In other words, the large ratio between coincidence frequencies 

in a repertoire selected ex vivo by an individual pMHC complex 
and the coincidence frequencies in the memory compartment as 
a whole is informative about the number of epitope recognition 
events that created the memory compartment in the first 
place. While the precise numbers are likely to change as more 
comprehensive data becomes available, the calculation above 
gives a clear recipe to settle the question of how functionally 
diverse our immune repertoire is. More broadly, mixture aver- 
aging also likely explains why coincidence probabilities among 
longitudinally identified TCRs (presumably specific to multiple 
immunodominant epitopes) are lower than among TCRs specific 
to individual epitopes (Fig. 3 E vs. D and G vs. F and H ). 

7. HLA Overlap Determines Cross-Donor 
Coincidences 

How many TCRs are shared between donors? In previous studies 
of T cell repertoires, there has been much interest in such shared 
sequences, on the grounds that such “public” sequences may 
point toward common pathogen exposures (39, 47). Since in 
order to mount a common response to a pathogen epitope, two 
subjects must not only share (up to near-coincidence) T cells 
with the same TCR, but must also share an MHC molecule 
on which the epitope can be presented, we expect more T cell 
sharing between donors that share HLA alleles. In line with this 

expectation, Tanno et al. (30) observed an association between 
exact sharing of paired αβ TCRs and the number of shared HLA 
alleles. By our logic, it makes sense to broaden the definition 
of public T cells to those that are nearly coincident across 
donors and present at rates well above an appropriately 
estimated background. We will thus revisit the analysis by 
Tanno et al. by applying our coincidence analysis framework to 
their dataset. Specifically, we calculate the histogram of 
sequence distances between TCRs drawn from pairs of 
repertoires and ask how the strength of any selection signal 
depends on the similarity of HLA type between the two 
repertoires. 
We grouped subject pairs by HLA overlap defined as J =	

A  B / max(	 A , B ), where A and B are the sets of HLA 
alleles in the two subjects. The overlap ranges between J =	 1 
for identical twins to J =	 0 if there is no common HLA 
allele. We also applied additional filtering steps to control for 
confounding factors (SI Appendix, Appendix 5). To mimic the 
filtering applied to intrasample analyses of the data from Tanno 
et al. (30), we did not count coincidences where either chain had 
exact nucleotide identity. This filtering also allowed us to exclude 
exact nucleotide coincidences when comparing repertoires of 
twins. Exact nucleotide-level sharing of full αβ TCRs between 
twins can represent long-lived clones shared via the blood 
supply during fetal development (48, 49) and is thus not 
necessarily evidence of convergent selection on the TCRs. 
Additionally, we removed sequences whose α-chain V and J 
genes match those of two noncanonical T cell subsets, mucosal 
associated invariant T cells (MAITs), and invariant natural killer 
T cells (iNKTs), that recognize nonpeptide ligands not 
presented on classical MHC (50). 
The results of the analysis are shown in Fig. 7: Near- 

coincidence probabilities between whole blood repertoires de- 
crease systematically with decreasing HLA overlap (Fig. 7A), and 
the same trend holds in sorted CD4+ memory (Fig. 7B) and 
CD4+ naive cells (Fig. 7C ). These HLA-dependent effects are 
large: exact coincidence probabilities range over two orders of 
magnitude as HLA overlap varies. This contrasts with prior 
studies that have found only a small influence of HLA type in 
single-chain repertoires (51). The interpretation suggested by our 
earlier analysis (Fig. 4) is that HLA binding requires specific pairs 

of α and β chains. To confirm that our observed large effect 
sizes are compatible with weak signals in single chain 
repertoires, we constructed synthetic distributions for 

randomized αβ pairings by convolving the single-chain distance 
distributions within HLA overlap groups. The results are shown 
as dashed lines in Fig. 7 (using the same color coding for the 
HLA overlap groups as for the real data). They reveal that 
single-chain coincidences are almost independent of HLA 
overlap, even though this procedure retains the correlations 

between individual chains and HLA type. The comparison of 
coincidence probabilities between these different ways of 
filtering and segregating the data is informative about how 
different mechanisms might contribute to chain pairing 

biases. First, Fig. 7C shows no significant deviations from 
pairing independence (dashed lines in the figure) across naive 
cells from nontwin donors. This limits the strength of chain 

pairing correlations that might arise through pMHC- 
independent processes, such as VDJ recombination, or from 
steric and biophysical constraints between chains for protein 
folding (33, 34). We note that this finding validates the use 
of the independent chain pairing assumption for generating 
background distributions representative of repertoire statistics 

before selection has acted. Second, Fig. 7C also shows a 
clear signal of correlated chain pairing in naive cells both 

intrasample (black line) and across twin pairs (blue line). 
This strongly 
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A  B  C 

Fig. 7. Intersubject coincidences depend on HLA overlap. Pairwise interdataset coincidence frequency analysis for the 15 paired-seq datasets from Tanno et 
al. (30) grouped by pairwise HLA overlap. A: pairs of unsorted PBMC repertoires; B: pairs of CD4+ memory repertoires; C: pairs of CD4+ naive repertoires. 
Each plot shows means over pairs whose HLA overlap lies within the indicated ranges together with estimated standard errors assuming Poisson sampling. 
For comparison, the mean intradataset coincidence distribution is shown in black. Background distributions constructed by scrambling the a and p chain 
associations within individuals are shown as dashed curves (colored according to the same HLA overlap code). These curves show no near-coincidence 
enhancement signal and very weak dependence on HLA overlap class. 
 
 
suggests that thymic positive and negative selection substantially 
contribute to the pairing biases. Third, Fig. 7B shows that within 
the memory repertoire coincidences between twins occur at 
remarkably similar rates to the intrasample coincidence rates, 
which suggests that memory selection is driven by prevalent 
pMHCs encountered by both donors (herpesviruses are one 
potential source of such pMHCs (52)). Alternatively, sequences 
binding a certain HLA might generally show substantially 
restricted pairing independently of which peptide is presented 
(53, 54)—something we will soon be able to test as more epitope- 
specific repertoires for different peptides presented on the 
same MHC are characterized. In summary, HLA-dependent 
selection leads to major biases in the pairing of TCR α and β 
chains at the repertoire level, the outcome of a combination of 
thymic and peripheral selection pressures. As dataset sizes 
continue to increase, the strategy we have described here 
provides a strategy for untangling these pressures in detail. 
 
8. Discussion 
In this work, we have introduced a versatile statistical framework 
for measuring selection in T cell receptor repertoires. Simply 
put, we have evidence of selection if the number of exactly 
(and nearly exactly) coincident receptor sequence pairs in a 
repertoire is substantially larger than the number that one would 
find in a reference repertoire. Importantly, we showed that this 
intuitive notion can be developed into a mathematical theory 
relating the number of excess coincidences to quantities of direct 
immunological interest, such as the extent of sequence degeneracy 
of T cell binding to particular epitopes, or the functional diversity 
of an individual’s memory repertoire. 
We take a probabilistic approach to selection, where each target 

epitope defines a probability distribution on the unselected, or 
naive, T cells that make up the immune repertoire. Experiments 
that query blood samples for binding to a specific pMHC 
represent a draw from this probability distribution, and experi- 
ments that capture T cell responses to multiple targets sample a 
mixture of distributions over targets. Certain global quantities of 
immunological interest are averages over these distributions and, 

in our approach, the experimental data serve to give empirical 
estimates of these averages. We highlight two salient examples: 
First, we quantify the fraction of sequence neighbors of a typi- 

cal specific sequence that share the same specificity. Our analysis 
predicts that when varying single amino acids in the hypervariable 
regions in accord with the TCR generative statistics, roughly one 
out of ten such changes lead to a receptor that still binds the same 
target. Across disparate datasets, this measure of local 
recognition degeneracy shows remarkable consistency. We 
envisage that it can be used to guide bioinformatic clustering 
methods for finding groups of T cells with common specificity 
(14, 19, 55), for instance to put data-driven constraints on 
threshold choices. Importantly, the predicted level of local 
degeneracy is in rough accord with measured distributions of 
binding affinity changes between point-mutated TCRs (56, 57) 
and results from systematic mutational scans of specific binding 
upon changes in TCR hypervariable regions (58). To 
quantitatively compare our results with such scans, it will be 
necessary to develop a framework for appropriately weighing 
the exhaustive mutational scanning data by the probability with 
which mutated TCRs occur in natural repertoires. With the 
rapid increase in the number of assayed epitopes, another area 
for future work will be to characterize in detail variation around 
the average selection strength and binding degeneracy, including 
for example between TCRs binding MHC-I or MHC-II (most 
data analyzed in the current study relates to MHC-I binding). 
Second, we provided a recipe to quantify the functional 

diversity of a T cell compartment, as measured by the number of 
different epitopes that have selected the T cells comprising the 
compartment. From paired-chain sequencing data on human 
blood samples (30) we derived a rough estimate of the functional 
diversity of a typical memory compartment. This coarse-grained 
functional diversity is orders of magnitude smaller than TCR 
sequence diversity, which is consistent with the relatively small 
number of immunodominant epitopes typically targeted in 
response to individual pathogen infections (59) and theoretical 
predictions that adaptive immunity learns sparse features of the 
epitope distribution (60). Additionally, cumulative coincidence 
probabilities at different sequence distances should provide 
a 
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× 

δ= 

useful measure of repertoire diversity weighted by sequence 
similarity, a subject of recent interest in the field (38, 57, 61). 
Beyond the quantification of functional diversity, our analysis 

of deeply sequenced paired chain repertoires across individuals 
suggests additional research directions. We identify a substantial 
number of TCR specificity groups that the data suggest are in 
large part driven by common epitopes across individuals. Guided 
by such TCR groups it would be interesting to generalize the 
recently proposed reverse epitope discovery approach (62, 63) 
to the repertoire scale: cross-referencing coincident TCRs with 
other data, such as TCR-epitope databases (20, 64) and computa- 
tionally predicted HLA binding of putative peptides, might guide 
the identification of the targets of these groups of T cells. More 
broadly, as dataset sizes increase an analysis of the dependence 
of cross-donor coincidence probabilities on which HLAs the 
two donors share could allow an unbiased apportionment of 
the immune repertoire selected by different HLA types. 
In summary, our results reveal both complexity and pre- 

dictability in the immune receptor code. The emerging picture 
is captured schematically in the mixture of motifs model that we 
have introduced: Epitope-specific repertoires are characterized 
by globally diverse binding solutions that sometimes share 
surprisingly little sequence similarity but also display remarkably 
consistent signatures of local degeneracy. This picture, if further 
confirmed in structural studies (8, 9), can help focus future 
machine learning efforts in this area. The consistent signal of 
local degeneracy suggests that a promising direction will be to 
use machine learning to refine metrics, such as TCRdist (14, 55), 
that can group TCRs specific to a common target within large 
mixtures. Our framework should be of use in such efforts, as it 
can readily turn any definition of TCR similarity, not just the 
simple edit distance we have considered here, into probabilities of 
shared specificity. The existence of multiple binding solutions, on 
the other hand, might explain why purely sequence-based models 
for computationally predicting binding partners of epitopes (i.e., 
in the absence of any experimentally determined binders) have 
had limited success (23) and why structural modeling might 
be needed to resolve the complex sequence determinants of the 
different binding solutions (65). 

 
Materials and Methods 

In this paper, we analyze datasets that represent significantly different 
approaches, both conceptual and experimental, to creating functionally selected 
T cell repertoires. They are succinctly described as follows: 

The Dash dataset (14) is based on tetramer sorting of CD8+ T cells from 
blood,  usingthreewell-studiedstandardviralepitopes(HLA-A*02:01-BMLF1280 

list of TCRβ clonotypes that recognize the epitope. This protocol is repeated for 
blood samples from about a hundred subjects, about a third of whom have had 
no known exposure to SARS-CoV-2 (“healthy” subjects). Summing over subject 
samples for each epitope, we get a list of a few tens to a few thousand clonotypes 
that recognize a given epitope. All told, the dataset is a list of some 105 TCRβ 
recombination events that respond to individual SARS-CoV-2 epitopes. We note 
that the α chains associated with each β chain are not known and also that 
a given epitope may be presented on different MHC molecules in different 
individuals. To have adequate statistical power, we consider only epitopes from 
Nolan et al. (15) which are recognized by at least 150 distinct clones and we 
restrict our analysis to MHC-I epitopes. 

The Minervina 2021 dataset (16) is based on a longitudinal study of TCRβ 
sequencesinthebloodoftwounrelatedsubjectswhocontractedmild COVID-19. 
Analysis of time-separated samples allowed the identification of T cell clones, 
whose clone sizes changed significantly in response to infection. We focus on 
the several hundred CD8+ clones, whose size decreased between the peak 
immune response at 15 d and a postinfection time point at 85 d. The specific 
epitopes to which these T cells respond are unknown, but they are presumably 
a subset of the SARS-CoV-2 viral epitopes that provoke the strongest immune 
response and therefore constitute an interesting “selected” subset of the T cell 
repertoire. 

The Tanno dataset (30) consists of paired-chain TCRs from a total of fifteen 
donors, including six pairs of twins. The mean number of reads is about 31,000 
(minimum of 7,400 and maximum of 69,000). For three pairs of twins and three 
unrelated donors, total PBMC samples were sequenced. Sorted CD4+ naive 
(CD45RA+, CCR7+) and memory (CD45RA−) cells were sequenced for three 
additional twin pairs. All fifteen subjects were HLA typed on the allele level. We 
used processed data as described in the original study but applied additional 
filtering steps, the rationale for which is described in SI Appendix, Appendix 5. 
For the naive repertoire, we also removed any overlap with clonotypes that were 
also found within the memory repertoire from the same individual. To compare 
coincidence frequencies across repertoires from different individuals (Fig. 7), we 
sum the number of coincidences across all comparisons within an HLA overlap 
bin. We add a pseudocount of 0.1 to the summed counts for visualization 

purposes, and we display Poisson errorbars as 
√

c/ctot , where c is the count at a 
specific distance and ctot the sum of all counts across distances. These errorbars 
represent lower bounds, as in addition to counting error there is heterogeneity 
between individuals. 

For all datasets, we filtered out clones whose CDR3 amino acid sequence did 
not start with the conserved cysteine (C) or end on phenylalanine (F), tryptophan 
(W), or cysteine (C). 

To calculate background coincidence probability distributions, we used 
unpaired PBMC α and β chain data from ref. 16 (sample F1 from a pre-COVID 
baseline sample in 2018 from donor “W”). To calculate paired chain background 
coincidence probability distributions, we randomly associate chains from bulk 
single chain datasets. For efficient numerical calculation, we exploit the fact 
that such independent pairing leads to coincidence probability distributions 
for paired chain TCRs that are a convolution of the single chain distributions, (BMLF), HLA-B*07:02-pp65495 (pp65), and HLA-A*02:01-M158 (M1)), followed pC, (�) = L� 

0 pC, 
(δ)pC, (� − δ). 

captured cells. This protocol was repeated for 32 donors, resulting in a list of 415 
paired αβ TCRs associated with the three epitopes. 

The Minervina 2022 dataset (17) uses DNA-barcoded MHC dextramers to 
identify T cells specific to 19 SARS-CoV-2 epitopes by sequencing. T cells were 
identified across a cohort of donors with a varied history of SARS-CoV-2 exposure 
and vaccination. We focused our analysis on the eight epitopes for which there 
are at least 150 characterized αβ TCRs each. 

The Nolan dataset (15) is obtained by sorting about 3 107 T cells from a 
subject blood sample, then incubating the sorted cells with a cocktail of several 
hundred SARS-CoV-2 epitopes (chosen for their broad MHC presentability) to 
uniformly expand clones that recognize any of these epitopes. In the next 
step, aliquots of the expansion product are incubated with individual epitopes 
from the cocktail, followed by TCRβ sequencing to identify T cells that have 
expanded in this second step in response to individual epitopes. This yields a 

To generate the sequence logos displayed in Fig. 1, we built on the Python 
logomaker package (66), adding the ability to also display V and J gene usage. 
We colored amino acids by their chemical properties using the “chemistry” color 
scheme. 

 
Data, Materials, and Software Availability. To facilitate adoption of the 
methodologypresentedinthispaperbythefield,  wealongsidethispaperrelease 
a Python package for immune repertoire analysis called Pyrepseq, available at 
https://github.com/andim/pyrepseq. This package implements key algorithms 
for coincidence analysis in a modular, easy-to-reuse manner. Detailed source 
code reproducing the results reported in this manuscript is available online at 
https://github.com/andim/paper_coincidences. Allthedatausedinouranalyses 
are publicly available and scripts for downloading it from the experimental data 
repositories are included in our software repository. 
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by single-cell TCR sequencing to obtain paired TCRα and TCRβ reads of the αβ α β 

https://www.pnas.org/lookup/doi/10.1073/pnas.2213264120#supplementary-materials
https://github.com/andim/pyrepseq
https://github.com/andim/paper_coincidences
http://www.pnas.org/
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