

GRAPH NEURAL NETWORK SURROGATE FOR SEISMIC RELIABILITY ANALYSIS OF HIGHWAY BRIDGE SYSTEMS

Tong Liu¹ and Hadi Meidani²

¹Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign. Email: tongl5@illinois.edu

²Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign. Email: meidani@illinois.edu

ABSTRACT

Rapid reliability assessment of transportation networks can enhance preparedness, risk mitigation, and response management procedures related to these systems. Network reliability analysis commonly considers network-level performance and does not consider the more detailed node-level responses due to computational cost. In this paper, we propose a rapid seismic reliability assessment approach for bridge networks based on graph neural networks, where node-level connectivities, between points of interest and other nodes, are evaluated under probabilistic seismic scenarios. Via numerical experiments on transportation systems in California, we demonstrate the accuracy, computational efficiency, and robustness of the proposed approach compared to the Monte Carlo approach.

INTRODUCTION

Extreme hazards continue to influence the infrastructure system, with losses exceeding hundreds of billions of dollars. For instance, the overall cost to repair or replace the infrastructure system during Hurricane Katrina in 2005 was over \$1 billion (Padgett et al. 2008). Furthermore, the transportation system is one of the 16 critical infrastructure sectors according to Cyber Infrastructure Security Agency (Cybersecurity & Infrastructure Security Agency 2022). The highway system in

24 the US, for instance, encompasses over 164,000 miles in the National Highway System (NHS). The
25 society also relies on the highway system during emergencies to access critical facilities, including
26 hospitals, airports, fire stations, etc. Highway bridges are critical and yet vulnerable components
27 of the transportation infrastructure. The United States has a national inventory of almost 600,000
28 highway bridges, many of which are deteriorated and considered structurally deficient (Congress
29 et al. 2022). Maintaining a reliable highway bridge system can be properly achieved via a framework
30 that quantitatively assesses highway reliability in an accurate and computationally tractable way.

31 In the aftermath of natural hazards, the objectives of a reliability assessment framework are
32 to identify the risk potentials to residents and the infrastructure system; to adjust the emergency
33 plan beforehand to reduce the potential losses; to allocate the resources effectively for recovery.
34 A review of the reliability analysis of transportation systems can be found in (Wan et al. 2018).
35 As an example, Rangra et al. (2015) builds a framework considering the human factor in the
36 transportation reliability analysis and then identifies the need for both transportation systems and
37 driving assistance systems. Among quantitative approaches, various metrics are proposed to
38 the reliability evaluation of the transportation system, including connectivity (Lian et al. 2021;
39 Chen et al. 2021), centrality, resilience index (Dong and Frangopol 2017), and travel time (Chen
40 et al. 2022), transportation equity (Liu and Meidani 2023a). Even though the effectiveness of the
41 simulation-based approaches, the computational time for large infrastructure networks is expensive.
42 To address this issue, surrogate modeling has been proposed for network reliability analysis. For
43 instance, Nabian and Meidani (2018) provided a deep learning framework to accelerate seismic
44 reliability analysis of a transportation network where the k -terminal connectivity measure was
45 used. As another example, Yoon et al. (2020) proposed a neural network surrogate for system-level
46 seismic risk assessment of bridge transportation networks using total system travel time as the
47 evaluation metric.

48 Even though surrogate modeling has been proven to provide an effective way for reliability
49 analysis, it has several limitations. Most of the aforementioned studies only offer a graph-level
50 evaluation of road network resilience performance. Furthermore, these neural network surrogates

51 are unable to generalize to different network topologies. In this paper, we seek to compute a more
52 detailed generalized node-level evaluation measure in an efficient way using a neural network-
53 based analysis framework. Specifically, the model evaluates the connectivity probability for all
54 origin-destination pairs after earthquakes using a graph neural network (GNN) model. The major
55 contributions of this work are as follows: (1) to the best of authors' knowledge, this is the first
56 work that evaluates the connectivity for all origin-destination pairs in the road network using the
57 graph neural network; (2) the proposed end-to-end structure of the model achieves high efficiency
58 by avoiding extensive sampling otherwise used in Monte Carlo simulations (MCS) which reduces
59 the computational time; and (3) the proposed model has the ability of inductive learning, i.e.,
60 it can predict node connectivities in unseen graphs. We will numerically show that the proposed
61 framework can effectively accelerate the connectivity reliability analysis of highway bridge networks
62 with a case study in the Bay Area in California.

63 The remainder of this article is structured as follows. A general simulation-based framework for
64 connectivity analysis of transportation networks is described in Section 2. Then, Section 3 presents
65 the node-level bridge connectivity analysis for earthquake events using a graph neural network.
66 Furthermore, a case study of the highway bridge system in California is presented to demonstrate
67 the accuracy and efficiency of the proposed framework in Section 4. Finally, the discussion and
68 conclusion of the proposed framework are presented in Section 5.

69 **TRANSPORTATION SYSTEM RELIABILITY ANALYSIS**

70 A transportation network can be represented by a graph $G = (V, E)$ where V and E denote the
71 sets of nodes and edges between these nodes, respectively. In a highway bridge system, a node is
72 a highway intersection, and an edge is a highway segment between two intersections. Each link is
73 denoted by $(u, v) \in E$ with u and v being the indices of its two end nodes. In this work, we assume
74 the bridge is the only component that can fail in the network due to an earthquake, and an edge
75 (u, v) is removed from the graph only because of a bridge failure.

76 Given a source node s and a target node t , s and t are connected when there exists at least one
77 active path $l_{s,t} = \{(s, v_1), (v_1, v_2), (v_2, v_3), \dots, (v_n, t)\}$ between s and t . Let us denote the the set

78 of all possible paths as the set $L_{s,t} = \{l_{s,t}^i\}_{i=1}^{n_{s,t}}$ where $n_{s,t}$ is the total number of active path between
 79 s and t . We seek to compute the node-to-node connectivity (as a probability) using the survival
 80 probability of the bridges in the network.

81 To do so, we first model the survival state of the path i between s and t as a binary Bernoulli
 82 variable given by

$$x_{s,t,i} = \begin{cases} 1, & \text{with probability } p_{s,t,i}, \\ 0, & \text{with probability } 1 - p_{s,t,i}, \end{cases} \quad (1)$$

84 where $\{1, 0\}$ denotes the survived and failed states, respectively. A path with at least one failed
 85 bridge will be removed. If path i between s and t consist of $m_{s,t,i}$ bridges, the survival probability
 86 of the path can be represented with

$$p_{s,t,i} = \prod_{j=1}^{m_{s,t,i}} p_{s,t,i,j}, \quad (2)$$

88 where $p_{s,t,i,j}$ is the survival probability of the j th bridge on path i between s and t . The path failure
 89 probability is calculated by subtracting the survival probability from one. The detail of calculating
 90 bridge survival probability is shown in Section 3. Because of the numerous path candidates, it
 91 is computationally intractable to compute the node-to-node connectivity probability directly given
 92 bridge and path failure probabilities. As a result, a Monte Carlo (MC) approach is adopted in this
 93 work, where realizations of the network are obtained by randomly removing paths based on path
 94 survival probabilities $p_{s,t,i}$ calculated using Equation 2. Specifically, for the k th MC realization of
 95 the network with the removed paths, we check all the possible paths between a given pair s and t
 96 using the breadth-first search (BFS) algorithm with time complexity of $O(|\mathcal{V}| + |\mathcal{E}|)$. Then, the
 97 binary node-to-node connectivity $p_{s,t}^k$ is set equal to one, if there is at least one path between s and
 98 t , and it is set to zero, otherwise. With N MC samples, the none-to-node connectivity probability
 99 can be approximated as

$$P_{s,t} = \frac{1}{N} \sum_{k=1}^N p_{s,t}^k. \quad (3)$$

101 Enough MC samples are used until the quantity of interest converges, which is set to be when the

102 standard deviation of connectivity probability becomes less than 0.01.

103 **GRAPH NEURAL NETWORK FOR NODE-LEVEL TRANSPORTATION SYSTEM**

104 **RELIABILITY ANALYSIS**

105 **Graph Neural Network**

106 In most of the first applications of neural networks, the input data is structured and typically
107 of Euclidean structure. In graph applications, on the other hand, input is non-Euclidean and
108 unstructured, containing different types of topologies. As such, normal neural network frameworks
109 cannot handle graph data since the structure of the input data is not fixed. This paper leverages
110 the GNN to tackle the non-Euclidean graph-structured inputs. Using the previously introduced
111 notation for the graph, $G = (V, E)$, features used in the GNN consist of node features $X_n \subset \mathbb{R}^{|V| \times F_n}$
112 and edge features $X_e \subset \mathbb{R}^{|E| \times F_e}$, where $|V|$ and $|E|$ denote the number of nodes and edges, $|F_v|$ and
113 $|F_e|$ denote the dimension of features for each node and edge. The process of combining features
114 from a node and other nodes is called message passing. There are various approaches to exploiting
115 node features. For instance, graph convolutional network (Kipf and Welling 2016) accomplishes
116 message passing by using the adjacency matrix A , or in an improved way by using a normalized
117 adjacency matrix.

118 However, the adjacency matrix contains the intra-node information, and it can only be used
119 for transductive learning tasks. To overcome this obstacle, GraphSAGE (Hamilton et al. 2017) is
120 proposed to enable inductive learning tasks without exploiting the adjacency matrix. GraphSAGE
121 uses parametrized neural networks to aggregate node information based on the central vertex and
122 its neighbors. The learned node aggregation consists of two stages: feature aggregation and feature
123 update. The learned aggregation step is modeled as a single layer in the graph neural network.

124 In the feature aggregation stage, at step k (or in the k^{th} layer) for each node v , we aggregate the
125 features of its neighbors denoted by $x_u^k \in \mathbb{R}^{1 \times d_n^k}, \forall u \in \mathcal{N}(v)$ according to:

$$126 \quad x_{\mathcal{N}(v)}^{k+1} = f \left(\{x_u^k, \forall u \in \mathcal{N}(v)\} \right), \quad \forall v \in V, \quad (4)$$

127 where f is the aggregation function, here chosen to be the mean aggregator function, and d_n^k is
 128 the node embedding dimension at layer k . Then in the update stage at step k for each node v , the
 129 updated node features x_v^{k+1} will be computed using the previous node features $x_v^k \in \mathbb{R}^{1 \times d_n^k}$ and the
 130 aggregated features $x_{\mathcal{N}(v)}^{k+1} \in \mathbb{R}^{1 \times d_n^{k+1}}$ according to:

$$131 \quad x_v^{k+1} = \sigma \left(g \left(\phi \left(x_v^k, x_{\mathcal{N}(v)}^{k+1} \right); W \right) \right), \quad \forall v \in V, \quad (5)$$

132 where ϕ is the concatenating function, σ is a nonlinear activation function, $g(\cdot; W)$ represents a
 133 fully connected layer with parameter W . In this work, we extend the learning aggregation process in
 134 [Hamilton et al. \(2017\)](#) to include both node and edge features. At step k , edge features $x_e^k \in \mathbb{R}^{1 \times d_e^k}$
 135 of the edge connecting each node v , $\forall u \in \mathcal{E}(v)$, are aggregated through

$$136 \quad x_{\mathcal{E}(v)}^{k+1} = f \left(\{x_e^k, \forall e \in \mathcal{E}(v)\} \right), \quad \forall v \in V. \quad (6)$$

137 where d_e^k is the edge embedding dimension at layer k . The aggregation step for node embedding
 138 is the same as Equation 4. Then in the update step, both node features and edge features are passed
 139 through a neural network:

$$140 \quad x_v^{k+1} = \sigma \left(g \left(\phi \left(x_v^k, x_{\mathcal{N}(v)}^{k+1}, x_{\mathcal{E}(v)}^{k+1} \right); W \right) \right), \quad \forall v \in V. \quad (7)$$

141 By repeatedly using Equations 4, 6 and 7, the node and edge features of multiple-hop neighbors of
 142 the central node are aggregated into the features of that central node. Figure 1 illustrates the process
 143 of message-passing when both node and edge features are passed. The left figure represents the
 144 original graph at step 0 where the node features x_n^0 and edge feature x_e^0 are initialized. Then in the
 145 aggregation step, which is shown in the middle figure, the node feature and edge feature are passed
 146 following the arrow direction. Taking the red node as an example, in step 1, the node features
 147 and edge features with blue color are passed into the red node and then updated, which are 1-hop
 148 neighbors. Then in step 2, the node features and edge features with green color are passed into the

149 red node and then updated, which are 2-hop neighbors. After the k-step update, the node feature
150 x_n^k includes the information from all k-hop neighbors, which is shown in the right figure. Then the
151 node embedding can be further used for node regression and other downstream tasks.

152 **Graph Neural Network for Bridge Connectivity Analysis**

153 The pipeline of graph neural network surrogate for bridge connectivity analysis is shown in
154 Figure 2. The pipeline consists of two major components: a bridge seismic analysis module and a
155 graph neural network module.

156 *Bridge Seismic Analysis Module*

157 This module consists of bridge graph generation and bridge failure probability calculation. To
158 generate the graph, we first need to define a region of interest for reliability analysis. The edges in
159 the graph are highways, freeways, and expressways within the region of interest. The intersections
160 of these roadways are considered as nodes in the graph. To calculate the bridge failure probability,
161 the first step is to extract bridge information in the considered highway system, which could be
162 obtained from the National Bridge Inventory (NBI) (Federal Highway Administration 2018). The
163 useful information for bridge failure probability calculation includes built year, structural material,
164 structural type, number of spans, maximum span length, bridge length, and skew angle. It should
165 be noted that in general, an edge may consist of zero, one, or more than one bridge.

166 The second step for bridge failure probability calculation is to determine the ground motion at
167 each bridge site. In this paper, the ground motion prediction equation (GMPE) is adopted, which
168 predicts the characteristics of ground motion, including peak ground acceleration (PGA), spectral
169 acceleration (SA), and its associated uncertainty (Stewart et al. 2015; Bommer et al. 2010). In the
170 past decades, hundreds of GMPEs have been proposed for predicting PGA and SA. In this work,
171 Graizer-Kalkan GMPE (GK15) (Graizer and Kalkan 2016) is adopted. The updated ground-motion
172 prediction model for PGA has six independent predictor parameters: moment magnitude M , the
173 closest distance to fault rupture plane in kilometers R , average shear-wave velocity in the upper
174 30m V_{S30} , style of faulting F , regional quality factor Q_0 , and basin depth under the site B_{depth} . In
175 GK15, the peak ground acceleration is calculated as a multiplication of a series of functions. In

176 the natural logarithmic scale, it is given by:

$$177 \quad \ln(\text{PGA}) = \ln(G_1) + \ln(G_2) + \ln(G_3) + \ln(G_4) + \ln(G_5) + \sigma_{\ln(\text{PGA})}, \quad (8)$$

178 where G_1 is a scaling function for magnitude and style of faulting, G_2 models the ground-motion
179 distance attenuation, G_3 adjusts the distance attenuation rate considering regional anelastic atten-
180 uation, G_4 models the site amplification owing to shallow site conditions, G_5 is a basin scaling
181 function, and $\sigma_{\ln(\text{PGA})}$ represents variability in the ground motion.

182 Given the variability in seismic resistance among the bridges in the network, there is insufficient
183 data to conduct a thorough seismic analysis for each individual bridge in the transportation network.
184 Instead, to assess our proposed model which is focused on the network-level response, without loss
185 of generality, the failure probability of a bridge is computed using fragility functions following
186 the guideline of HAZUS-HM (Federal Emergency Management Agency 2022). HAZUS-HM
187 categorizes the bridges into 28 primary types based on materials, structure type, build year, number
188 of spans, etc. To estimate the probability of failure of bridges, the geographical location of the
189 bridge, SA at 0.3 s and 1.0 s at the bridge location, and soil condition are also required. The form
190 for 5% damped spectral acceleration at spectral period T is:

$$191 \quad S_{a,T} = \text{PGA} \times \mu(T, M, R, V_{S30}, B_{\text{depth}}), \quad (9)$$

192 where μ is the spectral shape function. In HAZUS-HM, the failure probabilities of bridges are
193 computed using the fragility curve. Five damage states are defined: none, slight, moderate,
194 extensive, and complete damage states. For bridges, extensive damage in HAZUS-HM is defined
195 by shear failure, major settlement approach, or the vertical offset of the abutment. In this work, we
196 assume the bridges will stop functioning and be removed from the network when bridge damage
197 is beyond the extensive damage state. The fragility curve for the bridge component is modeled as
198 log-normal distribution functions characterized by median and dispersion. Furthermore, the failure
199 probability of the j th edge on path i between s and t , $p_{s,t,i,j} \in [0, 1]$ is computed based on the

200 assumption that the edge fails when at least one bridge fails.

201 *Bridge Connectivity Analysis Module*

202 To build the training data and testing data for graph neural networks, we need first to create node
203 feature and edge feature using the failure probability computed in 3. The edge feature is the failure
204 probability of each edge, which has already been computed. It should be noted that in conventional
205 connectivity analysis, there is no feature directly assigned to the nodes, i.e., the intersection of the
206 roadways. In this work, however, we consider node features in the graph neural network models.
207 Four local and global graph characteristics are considered as features of node v : the degree of the
208 node $\deg(v)$; the largest failure probability of edges connected to the node $\max(\{p(e), \forall e \in \mathcal{E}(v)\})$;
209 the smallest failure probability of edges connected to the node $\min(\{p(e), \forall e \in \mathcal{E}(v)\})$ and number
210 of hops on the shortest path to the target node t $h(v, t)$. All the node features in the graph are denoted
211 by $X_n \in \mathbb{R}^{|N| \times F_n}$ with the number of node features $F_n = 4$.

212 The proposed node features characterize each node from several perspectives: the degree
213 represents the possible paths connecting the node to its neighbors; the range of failure probabilities
214 of edges connected to the node represents the distribution of the failure probability; the number
215 of hops represents a global feature characterizing the distance with respect to the target node. It
216 should be noted that in addition to the range of edge failure probabilities (the largest and smallest
217 failure probabilities of connected edges), one can also consider multiple quantiles to more precisely
218 capture the distribution of failure probabilities for a potentially more accurate analysis.

219 The architecture of the proposed graph neural network model for bridge connectivity analysis is
220 shown in Figure 3. A single block of message passing consists of a message-passing layer, a dropout
221 layer, and an activation layer. The skipping layer connection is used in our proposed architecture to
222 mitigate vanishing or exploding gradient problems. A regression block with multiple feed-forward
223 fully connected layers is concatenated after the last message passing block. The output of the
224 model is the node-level connectivity probability $P_c \in \mathbb{R}^{|V| \times 1}$. The L1 loss is used for quantifying
225 the difference between the MCS and prediction.

226 **EXPERIMENTS AND RESULTS**

227 **Experiment Setup**

228 The proposed GNN-based reliability analysis is applied to the highway bridge system of the
229 California Bay Area. The transportation system contains highways, freeways, and expressways
230 connecting major airports and hospitals. The considered study area includes the major cities of
231 Santa Clara, Mountain View, and San Jose, with a large population base. Therefore, it is important
232 to maintain the connectivity of the highway bridge system after extreme events. In this experiment,
233 three different regions of study are considered (levels 1 to 3). The map illustrations are shown in
234 Figure 4 obtained from Google Map ([Google 2022](#)). The 1989 Loma Prieta earthquake is chosen
235 as the seismic event. The earthquake of scenario i is scaled to different magnitudes:

236
$$M_i = M_u - \lambda_i, \quad (10)$$

237 Where M_u is the upper bound of the possible earthquake magnitude and set to be 8.0 in this study,
238 and λ_i is a random sample following truncated exponential distribution with the shape parameter
239 of 1.5. Furthermore, in this paper, without loss of generality in evaluating our proposed GNN
240 approach, we assume the seismic intensities at the location of components are perfectly correlated
241 (Adachi and Ellingwood 2009), where the residual of PGA will be the same for all the components
242 in the transportation system. Figure 2 shows the pipeline of data generation. The details of these
243 three regions, including the number of nodes, N_n , number of edges, N_b , and number of bridges, N_b ,
244 are shown in Table 1. In the Monte Carlo simulation (MCS) approach, the number of samples N_s
245 is set to 10,000. For each node in the graph, 200 earthquake realizations are generated, where the
246 first 100 realizations are allocated for training and the subsequent 100 realizations are designated
247 for testing. Also, we held out 20% of the nodes for testing. To ensure that the removed nodes are
248 more or less evenly scattered on the network, the serial graph partitioning algorithm ([Karypis and](#)
249 Kumar 2022) is applied for the partitioning of the graph.

250 The graph neural network used in this work consists of five graph message-passing layers and
251 three fully connected layers for regression purposes. The dimension of the hidden message passing

252 layer and fully connected layer is 512. The rectified linear unit (ReLU) is chosen as the activation
253 function. The dropout rate is set to 0.1, and the Adam optimizer is used to minimize the L1
254 loss, which is the mean absolute error, with a learning rate of 0.001. The model is trained using
255 mini-batch training with 200 epochs and a batch size of 64, which is commonly chosen in the neural
256 network training (Liu and Meidani 2023b).

257 Prediction Results

258 We test the performance of the proposed approach from multiple perspectives. First, we consider
259 a regression problem where we calculate the probability of connectivity between a target node and
260 the rest of the nodes in the region. The target node is located in downtown San Jose, which is
261 a critical location for the large population base. We do this for three regions of interest. The
262 prediction results for the Level 1 region are shown in Figure 5. The maximum and average mean
263 absolute error (MAE) between MCS and GNN prediction is 0.037 and 0.020, respectively. Figure
264 6 shows the prediction results and the corresponding error for the Level 3 graph. For this case, the
265 maximum MAE in the graph is 0.051 and the mean prediction MAE is 0.015. This demonstrates
266 the accuracy of the proposed GNN surrogate model.

267 Furthermore, from the perspective of decision-making, stakeholders may choose to consider a
268 set of node connectivity classes. In this case, we evaluate how accurate the predicted classes will
269 be compared to the MCS approach. It should be noted that a different classification model is not
270 trained in this case. We only predict the connectivity classes by assigning the predicted connec-
271 tivity probability of each node into a class. In this example, three classes for node connectivity
272 probabilities, namely normal connection, minor disconnection and major disconnection, for the
273 connectivity probabilities falling in the ranges [0.75, 1.0], [0.5, 0.75] and [0, 0.5], respectively.
274 Figure 7 shows the classification result using the same example in Figure 5. F1 score is chosen as
275 the classification evaluation metric, which is 1.0 in this example.

276 Moreover, we conducted an ablation study on hyperparameters to assess their influence in both
277 regression and classification tasks comprehensively. The study encompasses various hyperparam-
278 eters, including the number of GNN layers, the dimension of the hidden layer, the learning rate

279 during training, and the features employed in the training process. Three metrics including MAE
280 and F1 score of two-class and three-class classification are considered in the ablation study, which
281 is aligned with the aforementioned experiment. Each scenario was subjected to three runs utilizing
282 different random seeds, and the reported results represent the average values over these runs. Table 2
283 provides a summarized overview of performance metrics for different regions. Notably, a reduction
284 in the number of GNN layers is associated with a decrease in prediction performance. Furthermore,
285 an increase in the learning rate and a decrease in the dimension of the hidden layer results in less
286 stable training performance, thereby diminishing overall performance. When utilizing solely the
287 edge feature during both training and prediction, it becomes evident that message passing is less ef-
288 fective when compared with the performance of the complete model. This observation underscores
289 the importance of the pipeline's efficiency and the hyperparameter selection.

290 The proposed model is also compared with other neural network models including support
291 vector regression (SVR), fully connected neural network (FCNN), graph convolutional network
292 (GCN), and graph attention network (GAT) (Veličković et al. 2017), where the evaluation metrics
293 are the same as the ablation study. The performance comparison over different regions is shown
294 in Table 3. The fully connected network has a relatively low accuracy due to the reason that it
295 lacks generalization capability to different graphs, and it cannot learn the graph feature effectively.
296 Compared to GAT and GCN prediction, the proposed model still has a relatively high accuracy in
297 terms of MAE and F1 scores in all three regions.

298 In order to assess the robustness of the proposed approach, we run several experiments in which
299 the number of training nodes within the graph varies. Specifically, a subset of the nodes is considered
300 as the target nodes in training. For each case, a specific ratio of the graph nodes is selected as the
301 "training" target nodes. These ratios are chosen between 5% and 80%. The evaluation metrics
302 include mean square error, mean absolute error, and F1 score. The performances with different
303 levels are demonstrated in Figure 8, which shows that when the ratio of training target nodes is
304 from 20% to 40%, the F1 score can reach 0.85 and MAE is less than 0.08. Furthermore, when the
305 training target node ratio is 60%, the F1 score can reach above 0.9, and MAE is less than 0.01. To

306 further evaluate the robustness of the proposed approach, Figure 9 compares the MCS and GNN
307 predictions of node connectivity for all earthquake realizations. The percentage in each figure
308 indicates the ratio of false positive (FP) and false negative (FN) samples among all samples with
309 the cutoff threshold 0.75, which is less than 5%. It can also be seen that the Pearson Correlation
310 coefficients between MCS and GNN prediction for all region levels are higher than 0.93.

311 Model Performance Under Special Cases

312 Previous research ([Xu et al. 2020](#)) indicates that neural networks are vulnerable to small
313 perturbations to the original data, which will might change the neural network prediction drastically.
314 To illustrate the robustness of our approach for reliability analysis, the proposed GNN model is
315 evaluated on the slightly modified testing data. As the context, we consider the cases where bridge
316 failure probabilities are decreased or increased because of repairs or deterioration through the life
317 cycle. To test the robustness of the proposed model among all region levels, we generate perturbed
318 features by adding to each edge failure probability a zero-mean Gaussian noise with a standard
319 deviation set equal to 20% of the original edge failure probability. The resulting failure probability
320 is truncated at 0 and 1. Following this perturbation to the edge features, the node features are also
321 updated accordingly. Then the GNN prediction of node connectivities is performed for all three
322 regions as described in Section 4 and the comparison between the prediction and MCS in this
323 perturbed case is also shown in Figures 10 and 11. It can be seen in Figure 11, that even though
324 there is more discrepancy between the GNN and MCS compared to the original case in Figure 9,
325 the overall the performance is acceptable for an unseen case where all edges have different features.
326 The F1 score of prediction with perturbed data is 0.964, 0.959, and 0.972 for three region levels,
327 respectively.

328 Finally, we assess the capability of the proposed approach in generalization or *inductive* inference
329 and prediction. Specifically, we evaluate whether the model can be used for predicting out-of-
330 distribution (OOD) data, that is, producing accurate predictions for test cases that are distributed
331 differently from the way training data was distributed. As opposed to transfer learning, where the
332 model is retrained on the new data, in generalization or inductive learning, we do not modify the

333 previously trained model and only evaluate it on the new data. In practice, this can be used to
334 assess network connectivity when new bridges or roads are either added to a network expansion or
335 removed due to a disaster.

336 In these cases, to assess whether the trained model has generalization capacity without additional
337 fine-tuning, we consider the base training of the model to be done at the Level 2 region level. We
338 then test the performance of the trained model on the Level 3 region. In general, this is a challenging
339 task because many of the nodes in the larger Level 3 region are unseen and were not included in
340 the previous training. Furthermore, another challenge in this task is that the input and output
341 dimensions of the neural network change, where the conventional machine learning model cannot
342 handle this scenario. However, as can be seen in Figure 12, the proposed GNN model has an
343 acceptable performance. It can be seen that the F1 score in this case is 0.96 when 80% of the nodes
344 in the smaller region (Level 2) were used as training nodes, for a prediction at a large region (Level
345 3). This good performance in handling inductive learning tasks is achieved because the mechanism
346 of the message passing used in the GNN architecture enables a modular understanding of how the
347 graph features are aggregated and collectively influence the task at hand.

348 CONCLUSION AND DISCUSSION

349 Rapid evaluation of large-scale infrastructure system reliability is critical to enhance the prepa-
350 ration, risk mitigation and response management under probabilistic natural hazard events. In
351 this paper, we propose a rapid seismic reliability assessment approach for roadway transportation
352 systems with seismic damage on bridges using the graph neural network. Compared with the
353 common reliability assessment approaches, which consider the response at the system or graph
354 level, we focus on a more detailed notion of reliability where the seismic impact is quantified at
355 the node-level for transportation systems. The proposed GNN surrogate bypasses extensive sam-
356 pling that is required in Monte Carlo-based approaches and offers high efficiency while preserving
357 accuracy. Additionally, the message-passing component of the proposed GNN model creates a
358 modular model structure that can offer a good generalization capacity, i.e., can effectively predict
359 system reliability in unseen graphs. The numerical experiments demonstrate the effectiveness,

robustness, and efficiency of the proposed approach in enabling rapid assessment of large-scale network reliability with high accuracy. As extensions to this work, measures other than node-to-node connectivity can be considered. Examples include travel distance, travel time, or traffic flow. Currently, only the damage beyond the extensive damage is considered in the paper. Another direction for future research is to investigate the influence of multiple damage states in the resulting network level performances, which can provide more insights for the practical implications of the reliability analysis of transportation systems.

Data Availability Statement

Some or all data, models, or code used during the study were provided by a third party. Direct requests for these materials may be made to the provider as indicated in the Acknowledgements.

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under Grant No. CMMI-1752302.

REFERENCES

Adachi, T. and Ellingwood, B. R. (2009). “Serviceability assessment of a municipal water system under spatially correlated seismic intensities.” *Computer-Aided Civil and Infrastructure Engineering*, 24(4), 237–248.

Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., and Fah, D. (2010). “On the selection of ground-motion prediction equations for seismic hazard analysis.” *Seismological Research Letters*, 81(5), 783–793.

Chen, M., Mangalathu, S., and Jeon, J.-S. (2021). “Bridge fragilities to network fragilities in seismic scenarios: An integrated approach.” *Engineering Structures*, 237, 112212.

Chen, M., Mangalathu, S., and Jeon, J.-S. (2022). “Seismic reliability assessment of bridge networks considering travel time and connectivity reliabilities.” *Earthquake Engineering & Structural Dynamics*, 51(13), 3097–3110.

385 Congress, S. S. C., Escamilla, J., Chimauriya, H., and Puppala, A. J. (2022). “Challenges of
386 360° inspection of bridge infrastructure using unmanned aerial vehicles (uavs).” *International*
387 *Conference on Transportation and Development 2022*, 96–108.

388 Cybersecurity & Infrastructure Security Agency (2022). “Critical infrastructure sectors,
389 <<https://www.cisa.gov/critical-infrastructure-sectors>>.

390 Dong, Y. and Frangopol, D. M. (2017). “Probabilistic assessment of an interdependent healthcare–
391 bridge network system under seismic hazard.” *Structure and Infrastructure Engineering*, 13(1),
392 160–170.

393 Federal Emergency Management Agency (2022). “Hazus earthquake model technical manual,
394 <<https://www.fema.gov/flood-maps/tools-resources/flood-map-products/hazus/user-technical-manuals>>.

395 Federal Highway Administration (2018). “National bridge inventory.” U.S. Department of Trans-
396 portaiton, <<https://hifld-geoplatform.opendata.arcgis.com/datasets/national-bridge-inventory-nbi-bridges/explore>>.

397 Google (2022). “Google map, <<https://www.google.com/maps>>.

398 Graizer, V. and Kalkan, E. (2016). “Summary of the GK15 Ground-Motion Prediction Equation for
399 Horizontal PGA and 5% Damped PSA from Shallow Crustal Continental Earthquakes Summary
400 of the GK15 GMPE for Horizontal PGA and 5% Damped PSA.” *Bull. Seismol. Soc. Am.*, 106(2),
401 687–707.

402 Hamilton, W. L., Ying, R., and Leskovec, J. (2017). “Inductive representation learning on large
403 graphs.” *Proceedings of the 31st International Conference on Neural Information Processing
404 Systems*, 1025–1035.

405 Karypis, G. and Kumar, V. (2022). “MeTis: Unstructured Graph Partitioning and Sparse
406 Matrix Ordering System, Version 4.0.” University of Minnesota, Minneapolis, MN,
407 <<http://www.cs.umn.edu/metis>>.

408 Kipf, T. N. and Welling, M. (2016). “Semi-Supervised Classification with Graph Convolutional
409 Networks.” *arXiv*.

412 Lian, Q., Zhang, P., Li, H., Yuan, W., and Dang, X. (2021). “Adjustment method of bridge seismic
413 importance factor based on bridge network connectivity reliability.” *Structures*, Vol. 32, Elsevier,
414 1692–1700.

415 Liu, T. and Meidani, H. (2023a). “Optimizing seismic retrofit of bridges: Integrating efficient graph
416 neural network surrogates and transportation equity.” *Proceedings of Cyber-Physical Systems and*
417 *Internet of Things Week 2023*, 367–372.

418 Liu, T. and Meidani, H. (2023b). “Physics-informed neural networks for system identification of
419 structural systems with a multiphysics damping model.” *Journal of Engineering Mechanics*,
420 149(10), 04023079.

421 Nabian, M. A. and Meidani, H. (2018). “Deep learning for accelerated seismic reliability analysis
422 of transportation networks.” *Computer-Aided Civil and Infrastructure Engineering*, 33(6), 443–
423 458.

424 Padgett, J., DesRoches, R., Nielson, B., Yashinsky, M., Kwon, O.-S., Burdette, N., and Tavera, E.
425 (2008). “Bridge damage and repair costs from hurricane katrina.” *Journal of Bridge Engineering*,
426 13(1), 6–14.

427 Rangra, S., Sallak, M., Schön, W., and Vanderhaegen, F. (2015). “On the study of human reliability
428 in transportation systems of systems.” *2015 10th System of Systems Engineering Conference*
429 (*SoSE*), IEEE, 208–213.

430 Stewart, J. P., Douglas, J., Javanbarg, M., Bozorgnia, Y., Abrahamson, N. A., Boore, D. M.,
431 Campbell, K. W., Delavaud, E., Erdik, M., and Stafford, P. J. (2015). “Selection of ground
432 motion prediction equations for the global earthquake model.” *Earthquake Spectra*, 31(1), 19–
433 45.

434 Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). “Graph
435 attention networks.” *arXiv preprint arXiv:1710.10903*.

436 Wan, C., Yang, Z., Zhang, D., Yan, X., and Fan, S. (2018). “Resilience in transportation systems:
437 a systematic review and future directions.” *Transport Reviews*, 38(4), 479–498.

438 Xu, H., Ma, Y., Liu, H.-C., Deb, D., Liu, H., Tang, J.-L., and Jain, A. K. (2020). “Adversarial

439 attacks and defenses in images, graphs and text: A review.” *International Journal of Automation*
440 and Computing

441 Yoon, S., Kim, J., Kim, M., Tak, H.-Y., and Lee, Y.-J. (2020). “Accelerated system-level seismic risk
442 assessment of bridge transportation networks through artificial neural network-based surrogate
443 model.” *Applied Sciences*, 10(18), 6476.

444 **List of Tables**

445	1	Statistic of different region levels	20
446	2	Ablation study of hyperparameters on three different regions. Three metrics is 447 considered in the comparison: MAE, F1 score of two-class and three-class classifi- 448 cation. The cutoff thresholds for two-class and three-class classification are {0.75} 449 and {0.5, 0.75}, respectively.	21
450	3	Performance comparison among different models on three regions. FCNN, GAT 451 and GCN are considered to compare with the proposed model. Three metrics 452 are considered in the comparison: MAE, F1 score of two-class and three-class 453 classification. The cutoff thresholds for two-class and three-class classification are 454 {0.75} and {0.5, 0.75}, respectively.	22

TABLE 1. Statistic of different region levels

Graph Level	# Node N_n	# Edge N_e	# Bridge N_b
Level 1	39	64	245
Level 2	84	133	448
Level 3	103	159	628

TABLE 2. Ablation study of hyperparameters on three different regions. Three metrics is considered in the comparison: MAE, F1 score of two-class and three-class classification. The cutoff thresholds for two-class and three-class classification are $\{0.75\}$ and $\{0.5, 0.75\}$, respectively.

Model	Level 1			Level 2			Level 3		
	MAE	F1 (2 class)	F1 (3 class)	MAE	F1 (2 class)	F1 (3 class)	MAE	F1 (2 class)	F1 (3 class)
# GNN layer = 3	0.047	0.905	0.876	0.049	0.925	0.870	0.051	0.939	0.889
# GNN layer = 1	0.061	0.878	0.853	0.092	0.851	0.760	0.112	0.863	0.760
Hidden size = 32	0.044	0.903	0.878	0.052	0.923	0.868	0.064	0.926	0.862
Learning rate = 0.01	0.070	0.858	0.829	0.138	0.756	0.636	0.175	0.805	0.618
No node feature	0.065	0.869	0.838	0.094	0.844	0.760	0.138	0.831	0.715
Full model	0.032	0.937	0.921	0.029	0.953	0.919	0.038	0.956	0.919

TABLE 3. Performance comparison among different models on three regions. FCNN, GAT and GCN are considered to compare with the proposed model. Three metrics are considered in the comparison: MAE, F1 score of two-class and three-class classification. The cutoff thresholds for two-class and three-class classification are $\{0.75\}$ and $\{0.5, 0.75\}$, respectively.

Model	Level 1			Level 2			Level 3		
	MAE	F1 (2 class)	F1 (3 class)	MAE	F1 (2 class)	F1 (3 class)	MAE	F1 (2 class)	F1 (3 class)
SVR	0.061	0.874	0.834	0.092	0.821	0.738	0.172	0.793	0.672
FCNN	0.081	0.848	0.827	0.148	0.717	0.604	0.198	0.759	0.598
GAT	0.079	0.834	0.775	0.079	0.869	0.782	0.083	0.901	0.816
GCN	0.056	0.886	0.853	0.037	0.944	0.906	0.055	0.937	0.878
Our model	0.032	0.973	0.921	0.029	0.953	0.919	0.038	0.956	0.919

455 **List of Figures**

456	1	Message-passing with both node and edge features.	25
457	2	Pipeline of connectivity analysis of highway bridge system.	26
458	3	Architecture of graph neural network model for node-level connectivity analysis. .	27
459	4	Map illustration of the studied regions in different levels.	28
460	5	Prediction of connectivity probabilities between the target node (red circle) and the other nodes in the Level 1 region. The nodes are color-coded based on the predicted connectivity probability (top) and the absolute error between predicted connectivity probabilities from GNN and MCS (bottom).	29
461	6	Prediction of connectivity probabilities between the target node (red circle) and the other nodes in the Level 3 region. The nodes are color-coded based on the predicted connectivity probability (top) and the absolute error between predicted connectivity probabilities from GNN and MCS (bottom).	30
462	7	Identical predictions of connectivity classes obtained from GNN and MCS models for the Level 1 region. The red circle shows the target node. Three classes represent normal connection, minor disconnection, and major disconnection.	31
463	8	Relationship between different metrics and the percentage of training nodes shown for the three regions.	32
464	9	Relationship between predicted node connectivity and MCS predictions shown for the three regions. The percentage in the figure represents the proportion of false positive (FP) and false negative (FN) results.	33
465	10	Relationship between different performance metrics and different ratios of training target nodes, shown for the three regions with perturbed edge features.	34
466	11	Comparison of predicted node connectivity between MCS and GNN in the three regions with perturbed edge features.	35

480	12	Assessment of the performance of inductive learning from the Level 2 region to	
481		Level 3 region, in terms of the classification results (top) and regression results	
482		(bottom).	36

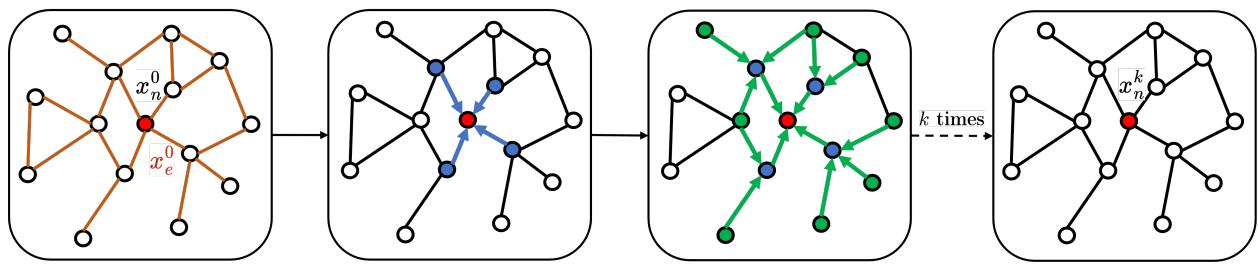


Fig. 1. Message-passing with both node and edge features.

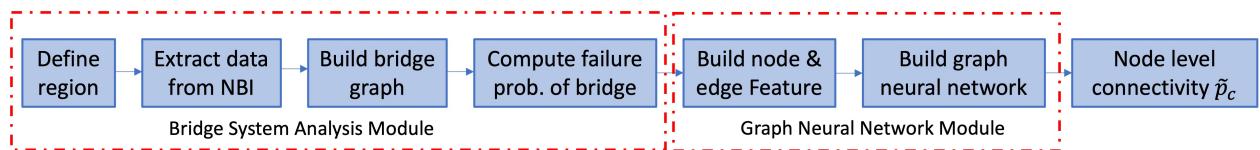


Fig. 2. Pipeline of connectivity analysis of highway bridge system.

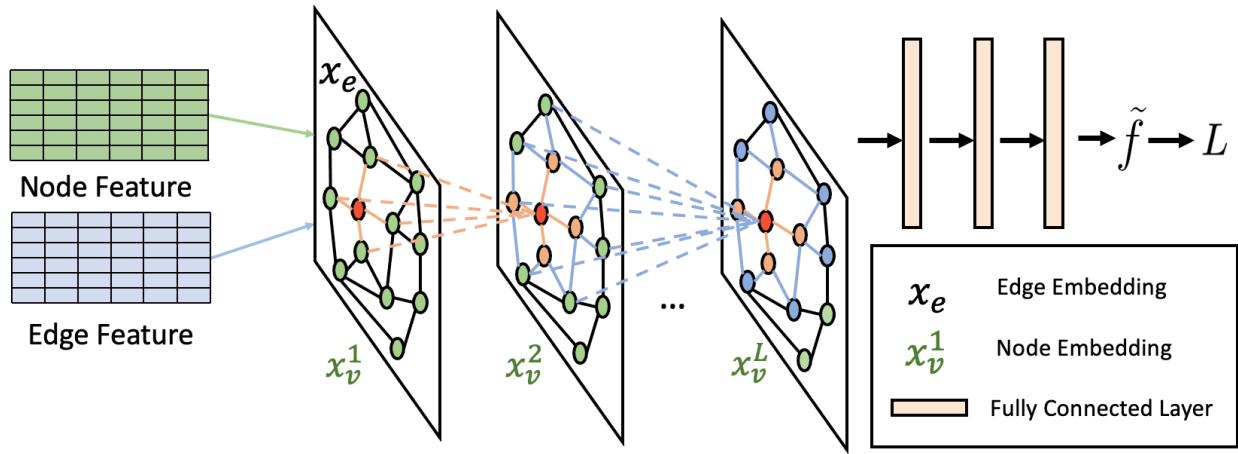
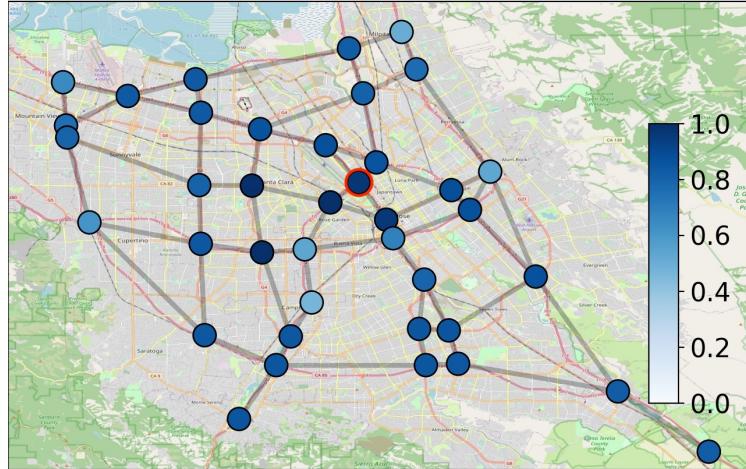
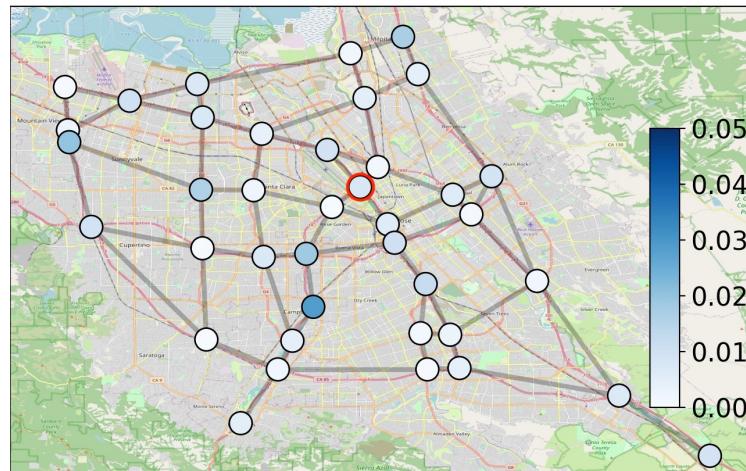


Fig. 3. Architecture of graph neural network model for node-level connectivity analysis.

Fig. 4. Map illustration of the studied regions in different levels.



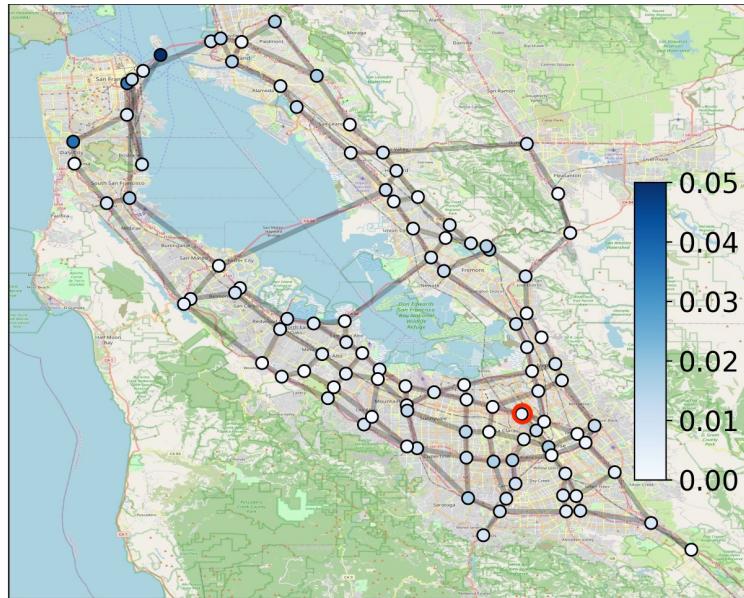
(a) Predicted connectivity probability from GNN



(b) Absolute error between GNN and MCS predictions

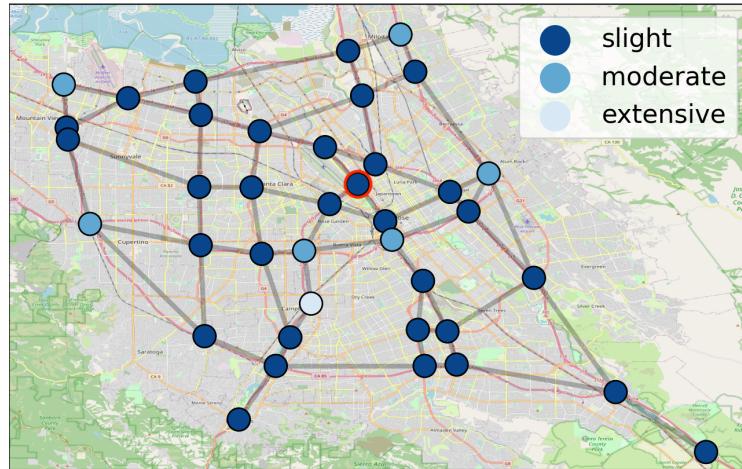
Fig. 5. Prediction of connectivity probabilities between the target node (red circle) and the other nodes in the Level 1 region. The nodes are color-coded based on the predicted connectivity probability (top) and the absolute error between predicted connectivity probabilities from GNN and MCS (bottom).

(a) Predicted connectivity probability from GNN

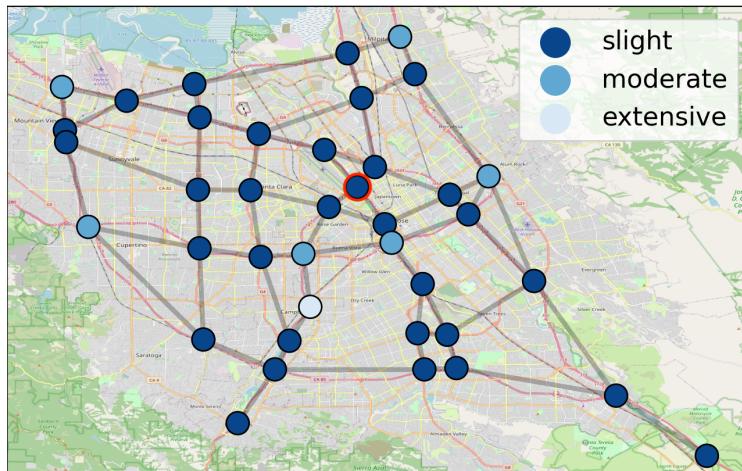


(b) Absolute error between MCS and GNN predictions

Fig. 6. Prediction of connectivity probabilities between the target node (red circle) and the other nodes in the Level 3 region. The nodes are color-coded based on the predicted connectivity probability (top) and the absolute error between predicted connectivity probabilities from GNN and MCS (bottom).

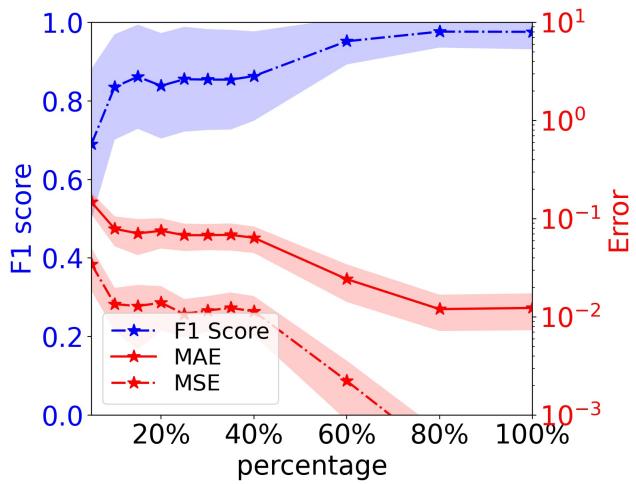


(a) Predicted connectivity classes from MCS

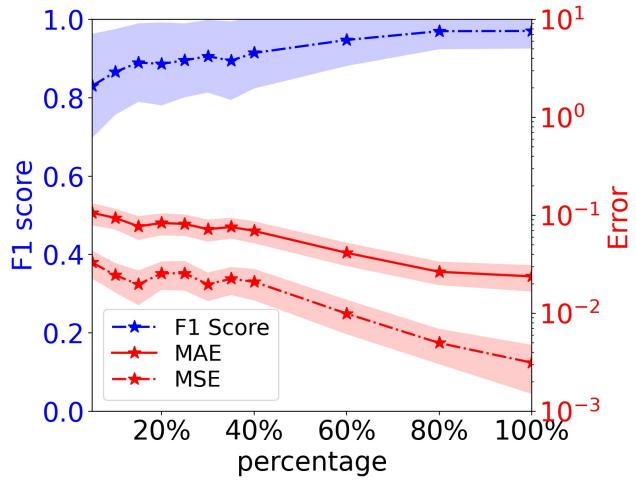


(b) Predicted connectivity class from GNN

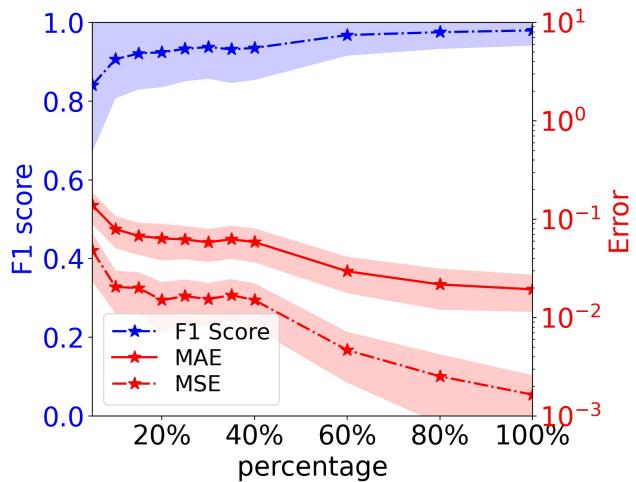
Fig. 7. Identical predictions of connectivity classes obtained from GNN and MCS models for the Level 1 region. The red circle shows the target node. Three classes represent normal connection, minor disconnection, and major disconnection.



(a) Level 1

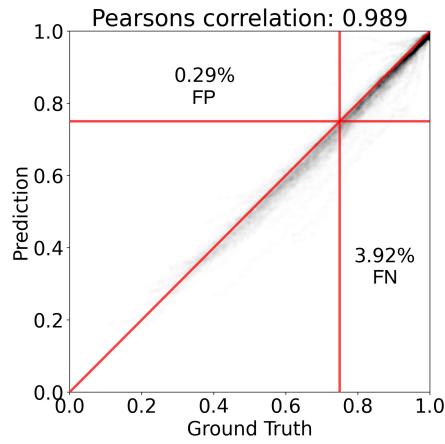


(b) Level 2

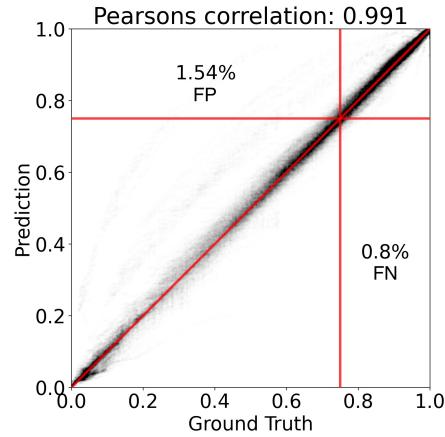


(c) Level 3

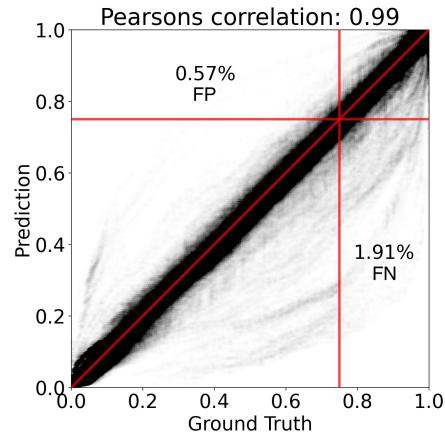
Fig. 8. Relationship between different metrics and the percentage of training nodes shown for the three regions.



(a) Level 1

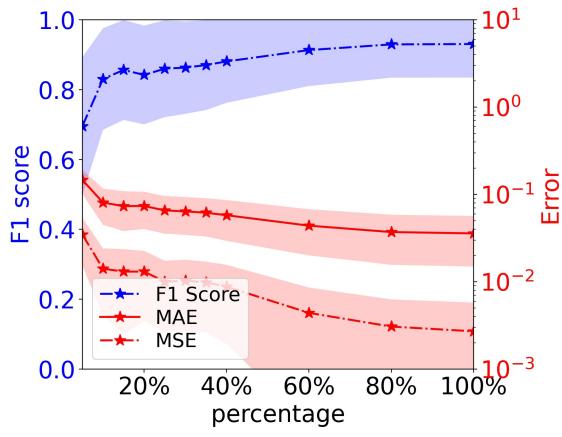


(b) Level 2

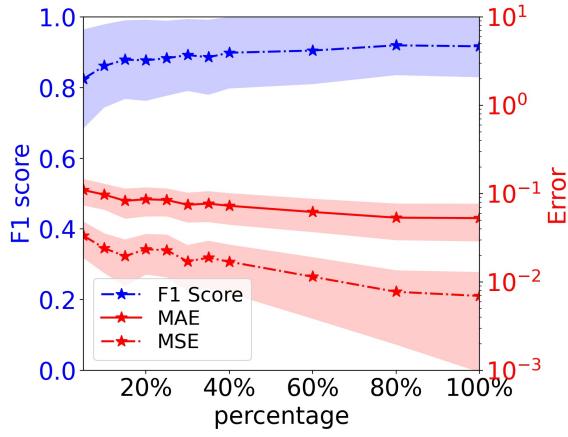


(c) Level 3

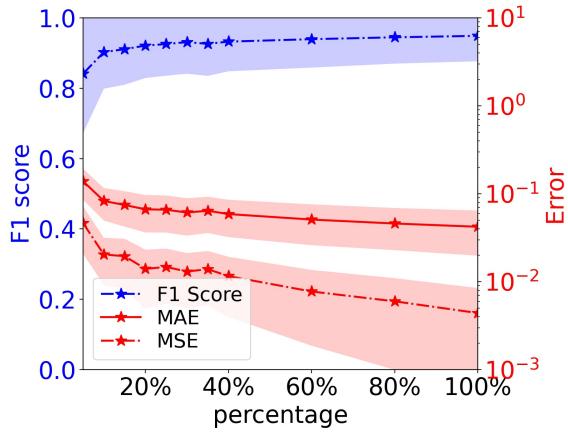
Fig. 9. Relationship between predicted node connectivity and MCS predictions shown for the three regions. The percentage in the figure represents the proportion of false positive (FP) and false negative (FN) results.



(a) Level 1

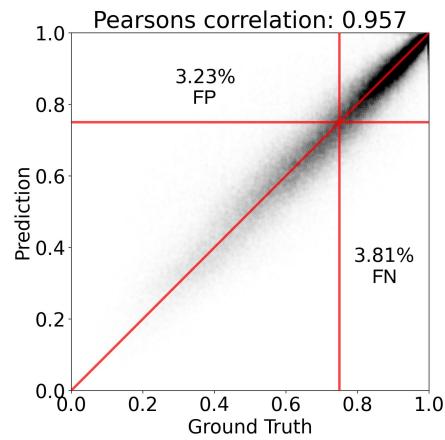


(b) Level 2

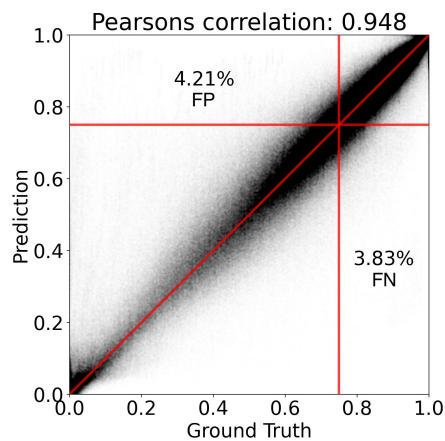


(c) Level 3

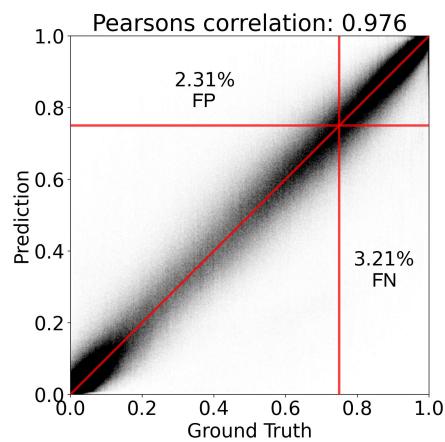
Fig. 10. Relationship between different performance metrics and different ratios of training target nodes, shown for the three regions with perturbed edge features.



(a) Level 1



(b) Level 2



(c) Level 3

Fig. 11. Comparison of predicted node connectivity between MCS and GNN in the three regions with perturbed edge features.

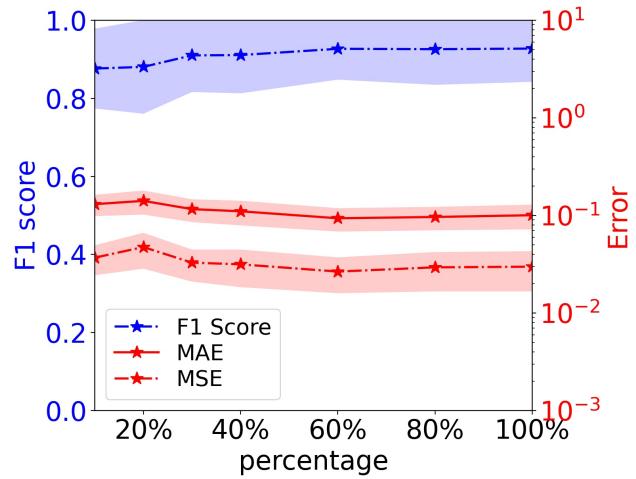
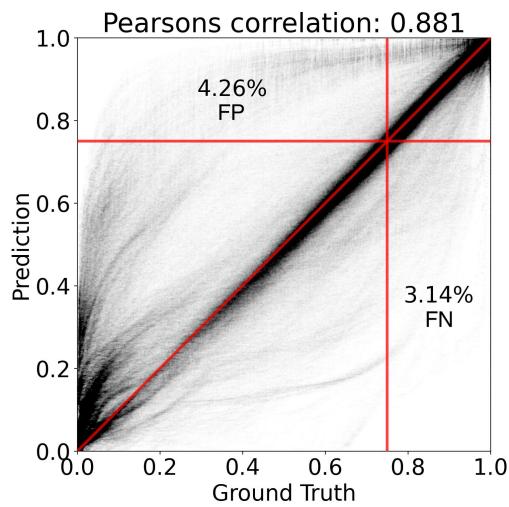


Fig. 12. Assessment of the performance of inductive learning from the Level 2 region to Level 3 region, in terms of the classification results (top) and regression results (bottom).