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ABSTRACT8

Rapid reliability assessment of transportation networks can enhance preparedness, risk mitiga-9

tion, and response management procedures related to these systems. Network reliability analysis10

commonly considers network-level performance and does not consider the more detailed node-level11

responses due to computational cost. In this paper, we propose a rapid seismic reliability assessment12

approach for bridge networks based on graph neural networks, where node-level connectivities,13

between points of interest and other nodes, are evaluated under probabilistic seismic scenarios.14

Via numerical experiments on transportation systems in California, we demonstrate the accuracy,15

computational efficiency, and robustness of the proposed approach compared to the Monte Carlo16

approach.17

INTRODUCTION18

Extreme hazards continue to influence the infrastructure system, with losses exceeding hundreds19

of billions of dollars. For instance, the overall cost to repair or replace the infrastructure system20

during Hurricane Katrina in 2005 was over $1 billion (Padgett et al. 2008). Furthermore, the21

transportation system is one of the 16 critical infrastructure sectors according to Cyber Infrastructure22

Security Agency (Cybersecurity & Infrastructure Security Agency 2022). The highway system in23
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the US, for instance, encompasses over 164,000 miles in the National Highway System (NHS). The24

society also relies on the highway system during emergencies to access critical facilities, including25

hospitals, airports, fire stations, etc. Highway bridges are critical and yet vulnerable components26

of the transportation infrastructure. The United States has a national inventory of almost 600,00027

highway bridges, many of which are deteriorated and considered structurally deficient (Congress28

et al. 2022). Maintaining a reliable highway bridge system can be properly achieved via a framework29

that quantitatively assesses highway reliability in an accurate and computationally tractable way.30

In the aftermath of natural hazards, the objectives of a reliability assessment framework are31

to identify the risk potentials to residents and the infrastructure system; to adjust the emergency32

plan beforehand to reduce the potential losses; to allocate the resources effectively for recovery.33

A review of the reliability analysis of transportation systems can be found in (Wan et al. 2018).34

As an example, Rangra et al. (2015) builds a framework considering the human factor in the35

transportation reliability analysis and then identifies the need for both transportation systems and36

driving assistance systems. Among quantitative approaches, various metrics are proposed to37

the reliability evaluation of the transportation system, including connectivity (Lian et al. 2021;38

Chen et al. 2021), centrality, resilience index (Dong and Frangopol 2017), and travel time (Chen39

et al. 2022), transportation equity (Liu and Meidani 2023a). Even though the effectiveness of the40

simulation-based approaches, the computational time for large infrastructure networks is expensive.41

To address this issue, surrogate modeling has been proposed for network reliability analysis. For42

instance, Nabian and Meidani (2018) provided a deep learning framework to accelerate seismic43

reliability analysis of a transportation network where the 𝑘-terminal connectivity measure was44

used. As another example, Yoon et al. (2020) proposed a neural network surrogate for system-level45

seismic risk assessment of bridge transportation networks using total system travel time as the46

evaluation metric.47

Even though surrogate modeling has been proven to provide an effective way for reliability48

analysis, it has several limitations. Most of the aforementioned studies only offer a graph-level49

evaluation of road network resilience performance. Furthermore, these neural network surrogates50

2 Liu, November 6, 2023



are unable to generalize to different network topologies. In this paper, we seek to compute a more51

detailed generalized node-level evaluation measure in an efficient way using a neural network-52

based analysis framework. Specifically, the model evaluates the connectivity probability for all53

origin-destination pairs after earthquakes using a graph neural network (GNN) model. The major54

contributions of this work are as follows: (1) to the best of authors’ knowledge, this is the first55

work that evaluates the connectivity for all origin-destination pairs in the road network using the56

graph neural network; (2) the proposed end-to-end structure of the model achieves high efficiency57

by avoiding extensive sampling otherwise used in Monte Carlo simulations (MCS) which reduces58

the computational time; and (3) the proposed model has the ability of inductive learning, i.e.,59

it can predict node connectivities in unseen graphs. We will numerically show that the proposed60

framework can effectively accelerate the connectivity reliability analysis of highway bridge networks61

with a case study in the Bay Area in California.62

The remainder of this article is structured as follows. A general simulation-based framework for63

connectivity analysis of transportation networks is described in Section 2. Then, Section 3 presents64

the node-level bridge connectivity analysis for earthquake events using a graph neural network.65

Furthermore, a case study of the highway bridge system in California is presented to demonstrate66

the accuracy and efficiency of the proposed framework in Section 4. Finally, the discussion and67

conclusion of the proposed framework are presented in Section 5.68

TRANSPORTATION SYSTEM RELIABILITY ANALYSIS69

A transportation network can be represented by a graph 𝐺 = (𝑉, 𝐸) where 𝑉 and 𝐸 denote the70

sets of nodes and edges between these nodes, respectively. In a highway bridge system, a node is71

a highway intersection, and an edge is a highway segment between two intersections. Each link is72

denoted by (𝑢, 𝑣) ∈ 𝐸 with 𝑢 and 𝑣 being the indices of its two end nodes. In this work, we assume73

the bridge is the only component that can fail in the network due to an earthquake, and an edge74

(𝑢, 𝑣) is removed from the graph only because of a bridge failure.75

Given a source node 𝑠 and a target node 𝑡, 𝑠 and 𝑡 are connected when there exists at least one76

active path 𝑙𝑠,𝑡 = {(𝑠, 𝑣1), (𝑣1, 𝑣2), (𝑣1, 𝑣2), . . . , (𝑣𝑛, 𝑡)} between 𝑠 and 𝑡. Let us denote the the set77
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of all possible paths as the set 𝐿𝑠,𝑡 = {𝑙𝑖𝑠,𝑡}
𝑛𝑠,𝑡
𝑖=1 where 𝑛𝑠,𝑡 is the total number of active path between78

𝑠 and 𝑡. We seek to compute the node-to-node connectivity (as a probability) using the survival79

probability of the bridges in the network.80

To do so, we first model the survival state of the path 𝑖 between 𝑠 and 𝑡 as a binary Bernoulli81

variable given by82

𝑥𝑠,𝑡,𝑖 =


1, with probability 𝑝𝑠,𝑡,𝑖,

0, with probability 1 − 𝑝𝑠,𝑡,𝑖,

(1)83

where {1, 0} denotes the survived and failed states, respectively. A path with at least one failed84

bridge will be removed. If path 𝑖 between 𝑠 and 𝑡 consist of 𝑚𝑠,𝑡,𝑖 bridges, the survival probability85

of the path can be represented with86

𝑝𝑠,𝑡,𝑖 =

𝑚𝑠,𝑡 ,𝑖∏
𝑗=1

𝑝𝑠,𝑡,𝑖, 𝑗 , (2)87

where 𝑝𝑠,𝑡,𝑖, 𝑗 is the survival probability of the 𝑗 th bridge on path 𝑖 between 𝑠 and 𝑡. The path failure88

probability is calculated by subtracting the survival probability from one. The detail of calculating89

bridge survival probability is shown in Section 3. Because of the numerous path candidates, it90

is computationally intractable to compute the node-to-node connectivity probability directly given91

bridge and path failure probabilities. As a result, a Monte Carlo (MC) approach is adopted in this92

work, where realizations of the network are obtained by randomly removing paths based on path93

survival probabilities 𝑝𝑠,𝑡,𝑖 calculated using Equation 2. Specifically, for the 𝑘th MC realization of94

the network with the removed paths, we check all the possible paths between a given pair 𝑠 and 𝑡95

using the breadth-first search (BFS) algorithm with time complexity of O(|V| + |E|). Then, the96

binary node-to-node connectivity 𝑝𝑘𝑠,𝑡 is set equal to one, if there is at least one path between 𝑠 and97

𝑡, and it is set to zero, otherwise. With 𝑁 MC samples, the none-to-node connectivity probability98

can be approximated as99

𝑃𝑠,𝑡 =
1
𝑁

𝑁∑︁
𝑘=1

𝑝𝑘𝑠,𝑡 . (3)100

Enough MC samples are used until the quantity of interest converges, which is set to be when the101
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standard deviation of connectivity probability becomes less than 0.01.102

GRAPH NEURAL NETWORK FOR NODE-LEVEL TRANSPORTATION SYSTEM103

RELIABILITY ANALYSIS104

Graph Neural Network105

In most of the first applications of neural networks, the input data is structured and typically106

of Euclidean structure. In graph applications, on the other hand, input is non-Euclidean and107

unstructured, containing different types of topologies. As such, normal neural network frameworks108

cannot handle graph data since the structure of the input data is not fixed. This paper leverages109

the GNN to tackle the non-Euclidean graph-structured inputs. Using the previously introduced110

notation for the graph, 𝐺 = (𝑉, 𝐸), features used in the GNN consist of node features 𝑋𝑛 ⊂ R|𝑉 |×𝐹𝑛111

and edge features 𝑋𝑒 ⊂ R|𝐸 |×𝐹𝑒 , where |𝑉 | and |𝐸 | denote the number of nodes and edges, |𝐹𝑣 | and112

|𝐹𝑒 | denote the dimension of features for each node and edge. The process of combining features113

from a node and other nodes is called message passing. There are various approaches to exploiting114

node features. For instance, graph convolutional network (Kipf and Welling 2016) accomplishes115

message passing by using the adjacency matrix 𝐴, or in an improved way by using a normalized116

adjacency matrix.117

However, the adjacency matrix contains the intra-node information, and it can only be used118

for transductive learning tasks. To overcome this obstacle, GraphSAGE (Hamilton et al. 2017) is119

proposed to enable inductive learning tasks without exploiting the adjacency matrix. GraphSAGE120

uses parametrized neural networks to aggregate node information based on the central vertex and121

its neighbors. The learned node aggregation consists of two stages: feature aggregation and feature122

update. The learned aggregation step is modeled as a single layer in the graph neural network.123

In the feature aggregation stage, at step 𝑘 (or in the 𝑘 th layer) for each node 𝑣, we aggregate the124

features of its neighbors denoted by 𝑥𝑘𝑢 ∈ R1×𝑑𝑘𝑛 ,∀𝑢 ∈ N (𝑣) according to:125

𝑥𝑘+1
N(𝑣) = 𝑓

(
{𝑥𝑘𝑢 ,∀𝑢 ∈ N (𝑣)}

)
, ∀𝑣 ∈ 𝑉, (4)126
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where 𝑓 is the aggregation function, here chosen to be the mean aggregator function, and 𝑑𝑘𝑛 is127

the node embedding dimension at layer 𝑘 . Then in the update stage at step 𝑘 for each node 𝑣, the128

updated node features 𝑥𝑘+1
𝑣 will be computed using the previous node features 𝑥𝑘𝑣 ∈ R1×𝑑𝑘𝑛 and the129

aggregated features 𝑥𝑘+1
N(𝑣) ∈ R

1×𝑑𝑘+1
𝑛 according to:130

𝑥𝑘+1
𝑣 = 𝜎

(
𝑔

(
𝜙

(
𝑥𝑘𝑣 , 𝑥

𝑘+1
N(𝑣)

)
;𝑊

))
, ∀𝑣 ∈ 𝑉, (5)131

where 𝜙 is the concatenating function, 𝜎 is a nonlinear activation function, 𝑔(·;𝑊) represents a132

fully connected layer with parameter𝑊 . In this work, we extend the learning aggregation process in133

Hamilton et al. (2017) to include both node and edge features. At step 𝑘 , edge features 𝑥𝑘𝑒 ∈ R1×𝑑𝑘𝑒134

of the edge connecting each node 𝑣,∀𝑢 ∈ E(𝑣), are aggregated through135

𝑥𝑘+1
E(𝑣) = 𝑓

(
{𝑥𝑘𝑒 ,∀𝑒 ∈ E(𝑣)}

)
, ∀𝑣 ∈ 𝑉. (6)136

where 𝑑𝑘𝑒 is the edge embedding dimension at layer 𝑘 . The aggregation step for node embedding137

is the same as Equation 4. Then in the update step, both node features and edge features are passed138

through a neural network:139

𝑥𝑘+1
𝑣 = 𝜎

(
𝑔

(
𝜙

(
𝑥𝑘𝑣 , 𝑥

𝑘+1
N(𝑣) , 𝑥

𝑘+1
E(𝑣)

)
;𝑊

))
, ∀𝑣 ∈ 𝑉. (7)140

By repeatedly using Equations 4, 6 and 7, the node and edge features of multiple-hop neighbors of141

the central node are aggregated into the features of that central node. Figure 1 illustrates the process142

of message-passing when both node and edge features are passed. The left figure represents the143

original graph at step 0 where the node features 𝑥0
𝑛 and edge feature 𝑥0

𝑒 are initialized. Then in the144

aggregation step, which is shown in the middle figure, the node feature and edge feature are passed145

following the arrow direction. Taking the red node as an example, in step 1, the node features146

and edge features with blue color are passed into the red node and then updated, which are 1-hop147

neighbors. Then in step 2, the node features and edge features with green color are passed into the148
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red node and then updated, which are 2-hop neighbors. After the k-step update, the node feature149

𝑥𝑘𝑛 includes the information from all k-hop neighbors, which is shown in the right figure. Then the150

node embedding can be further used for node regression and other downstream tasks.151

Graph Neural Network for Bridge Connectivity Analysis152

The pipeline of graph neural network surrogate for bridge connectivity analysis is shown in153

Figure 2. The pipeline consists of two major components: a bridge seismic analysis module and a154

graph neural network module.155

Bridge Seismic Analysis Module156

This module consists of bridge graph generation and bridge failure probability calculation. To157

generate the graph, we first need to define a region of interest for reliability analysis. The edges in158

the graph are highways, freeways, and expressways within the region of interest. The intersections159

of these roadways are considered as nodes in the graph. To calculate the bridge failure probability,160

the first step is to extract bridge information in the considered highway system, which could be161

obtained from the National Bridge Inventory (NBI) (Federal Highway Administration 2018). The162

useful information for bridge failure probability calculation includes built year, structural material,163

structural type, number of spans, maximum span length, bridge length, and skew angle. It should164

be noted that in general, an edge may consist of zero, one, or more than one bridge.165

The second step for bridge failure probability calculation is to determine the ground motion at166

each bridge site. In this paper, the ground motion prediction equation (GMPE) is adopted, which167

predicts the characteristics of ground motion, including peak ground acceleration (PGA), spectral168

acceleration (SA), and its associated uncertainty (Stewart et al. 2015; Bommer et al. 2010). In the169

past decades, hundreds of GMPEs have been proposed for predicting PGA and SA. In this work,170

Graizer-Kalkan GMPE (GK15) (Graizer and Kalkan 2016) is adopted. The updated ground-motion171

prediction model for PGA has six independent predictor parameters: moment magnitude 𝑀 , the172

closest distance to fault rupture plane in kilometers 𝑅, average shear-wave velocity in the upper173

30m 𝑉S30, style of faulting 𝐹, regional quality factor 𝑄0, and basin depth under the site 𝐵depth. In174

GK15, the peak ground acceleration is calculated as a multiplication of a series of functions. In175
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the natural logarithmic scale, it is given by:176

ln(PGA) = ln(𝐺1) + ln(𝐺2) + ln(𝐺3) + ln(𝐺4) + ln(𝐺5) + 𝜎ln(PGA) , (8)177

where 𝐺1 is a scaling function for magnitude and style of faulting, 𝐺2 models the ground-motion178

distance attenuation, 𝐺3 adjusts the distance attenuation rate considering regional anelastic atten-179

uation, 𝐺4 models the site amplification owing to shallow site conditions, 𝐺5 is a basin scaling180

function, and 𝜎ln(PGA) represents variability in the ground motion.181

Given the variability in seismic resistance among the bridges in the network, there is insufficient182

data to conduct a thorough seismic analysis for each individual bridge in the transportation network.183

Instead, to assess our proposed model which is focused on the network-level response, without loss184

of generality, the failure probability of a bridge is computed using fragility functions following185

the guideline of HAZUS-HM (Federal Emergency Management Agency 2022). HAZUS-HM186

categorizes the bridges into 28 primary types based on materials, structure type, build year, number187

of spans, etc. To estimate the probability of failure of bridges, the geographical location of the188

bridge, SA at 0.3 s and 1.0 s at the bridge location, and soil condition are also required. The form189

for 5% damped spectral acceleration at spectral period T is:190

𝑆𝑎,𝑇 = PGA × 𝜇
(
𝑇, 𝑀, 𝑅,𝑉S30, 𝐵depth

)
, (9)191

where 𝜇 is the spectral shape function. In HAZUS-HM, the failure probabilities of bridges are192

computed using the fragility curve. Five damage states are defined: none, slight, moderate,193

extensive, and complete damage states. For bridges, extensive damage in HAZUS-HM is defined194

by shear failure, major settlement approach, or the vertical offset of the abutment. In this work, we195

assume the bridges will stop functioning and be removed from the network when bridge damage196

is beyond the extensive damage state. The fragility curve for the bridge component is modeled as197

log-normal distribution functions characterized by median and dispersion. Furthermore, the failure198

probability of the 𝑗 th edge on path 𝑖 between 𝑠 and 𝑡, 𝑝𝑠,𝑡,𝑖, 𝑗 ∈ [0, 1] is computed based on the199
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assumption that the edge fails when at least one bridge fails.200

Bridge Connectivity Analysis Module201

To build the training data and testing data for graph neural networks, we need first to create node202

feature and edge feature using the failure probability computed in 3. The edge feature is the failure203

probability of each edge, which has already been computed. It should be noted that in conventional204

connectivity analysis, there is no feature directly assigned to the nodes, i.e., the intersection of the205

roadways. In this work, however, we consider node features in the graph neural network models.206

Four local and global graph characteristics are considered as features of node 𝑣: the degree of the207

node deg(𝑣); the largest failure probability of edges connected to the node max({𝑝(𝑒),∀𝑒 ∈ E(𝑣)});208

the smallest failure probability of edges connected to the node min({𝑝(𝑒),∀𝑒 ∈ E(𝑣)}) and number209

of hops on the shortest path to the target node 𝑡 h(v, t). All the node features in the graph are denoted210

by 𝑋𝑛 ∈ R|𝑁 |×𝐹𝑛 with the number of node features 𝐹𝑛 = 4.211

The proposed node features characterize each node from several perspectives: the degree212

represents the possible paths connecting the node to its neighbors; the range of failure probabilities213

of edges connected to the node represents the distribution of the failure probability; the number214

of hops represents a global feature characterizing the distance with respect to the target node. It215

should be noted that in addition to the range of edge failure probabilities (the largest and smallest216

failure probabilities of connected edges), one can also consider multiple quantiles to more precisely217

capture the distribution of failure probabilities for a potentially more accurate analysis.218

The architecture of the proposed graph neural network model for bridge connectivity analysis is219

shown in Figure 3. A single block of message passing consists of a message-passing layer, a dropout220

layer, and an activation layer. The skipping layer connection is used in our proposed architecture to221

mitigate vanishing or exploding gradient problems. A regression block with multiple feed-forward222

fully connected layers is concatenated after the last message passing block. The output of the223

model is the node-level connectivity probability 𝑃𝑐 ∈ R|𝑉 |×1. The L1 loss is used for quantifying224

the difference between the MCS and prediction.225

EXPERIMENTS AND RESULTS226
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Experiment Setup227

The proposed GNN-based reliability analysis is applied to the highway bridge system of the228

California Bay Area. The transportation system contains highways, freeways, and expressways229

connecting major airports and hospitals. The considered study area includes the major cities of230

Santa Clara, Mountain View, and San Jose, with a large population base. Therefore, it is important231

to maintain the connectivity of the highway bridge system after extreme events. In this experiment,232

three different regions of study are considered (levels 1 to 3). The map illustrations are shown in233

Figure 4 obtained from Google Map (Google 2022). The 1989 Loma Prieta earthquake is chosen234

as the seismic event. The earthquake of scenario 𝑖 is scaled to different magnitudes:235

𝑀𝑖 = 𝑀𝑢 − 𝜆𝑖, (10)236

Where 𝑀𝑢 is the upper bound of the possible earthquake magnitude and set to be 8.0 in this study,237

and 𝜆𝑖 is a random sample following truncated exponential distribution with the shape parameter238

of 1.5. Furthermore, in this paper, without loss of generality in evaluating our proposed GNN239

approach, we assume the seismic intensities at the location of components are perfectly correlated240

(Adachi and Ellingwood 2009), where the residual of PGA will be the same for all the components241

in the transportation system. Figure 2 shows the pipeline of data generation. The details of these242

three regions, including the number of nodes, 𝑁𝑛, number of edges, 𝑁𝑏, and number of bridges, 𝑁𝑏,243

are shown in Table 1. In the Monte Carlo simulation (MCS) approach, the number of samples 𝑁𝑠244

is set to 10,000. For each node in the graph, 200 earthquake realizations are generated, where the245

first 100 realizations are allocated for training and the subsequent 100 realizations are designated246

for testing. Also, we held out 20% of the nodes for testing. To ensure that the removed nodes are247

more or less evenly scattered on the network, the serial graph partitioning algorithm (Karypis and248

Kumar 2022) is applied for the partitioning of the graph.249

The graph neural network used in this work consists of five graph message-passing layers and250

three fully connected layers for regression purposes. The dimension of the hidden message passing251
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layer and fully connected layer is 512. The rectified linear unit (ReLU) is chosen as the activation252

function. The dropout rate is set to 0.1, and the Adam optimizer is used to minimize the L1253

loss, which is the mean absolute error, with a learning rate of 0.001. The model is trained using254

mini-batch training with 200 epochs and a batch size of 64, which is commonly chosen in the neural255

network training (Liu and Meidani 2023b).256

Prediction Results257

We test the performance of the proposed approach from multiple perspectives. First, we consider258

a regression problem where we calculate the probability of connectivity between a target node and259

the rest of the nodes in the region. The target node is located in downtown San Jose, which is260

a critical location for the large population base. We do this for three regions of interest. The261

prediction results for the Level 1 region are shown in Figure 5. The maximum and average mean262

absolute error (MAE) between MCS and GNN prediction is 0.037 and 0.020, respectively. Figure263

6 shows the prediction results and the corresponding error for the Level 3 graph. For this case, the264

maximum MAE in the graph is 0.051 and the mean prediction MAE is 0.015. This demonstrates265

the accuracy of the proposed GNN surrogate model.266

Furthermore, from the perspective of decision-making, stakeholders may choose to consider a267

set of node connectivity classes. In this case, we evaluate how accurate the predicted classes will268

be compared to the MCS approach. It should be noted that a different classification model is not269

trained in this case. We only predict the connectivity classes by assigning the predicted connec-270

tivity probability of each node into a class. In this example, three classes for node connectivity271

probabilities, namely normal connection, minor disconnection and major disconnection, for the272

connectivity probabilities falling in the ranges [0.75, 1.0], [0.5, 0.75] and [0, 0.5], respectively.273

Figure 7 shows the classification result using the same example in Figure 5. F1 score is chosen as274

the classification evaluation metric, which is 1.0 in this example.275

Moreover, we conducted an ablation study on hyperparameters to assess their influence in both276

regression and classification tasks comprehensively. The study encompasses various hyperparam-277

eters, including the number of GNN layers, the dimension of the hidden layer, the learning rate278
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during training, and the features employed in the training process. Three metrics including MAE279

and F1 score of two-class and three-class classification are considered in the ablation study, which280

is aligned with the aforementioned experiment. Each scenario was subjected to three runs utilizing281

different random seeds, and the reported results represent the average values over these runs. Table 2282

provides a summarized overview of performance metrics for different regions. Notably, a reduction283

in the number of GNN layers is associated with a decrease in prediction performance. Furthermore,284

an increase in the learning rate and a decrease in the dimension of the hidden layer results in less285

stable training performance, thereby diminishing overall performance. When utilizing solely the286

edge feature during both training and prediction, it becomes evident that message passing is less ef-287

fective when compared with the performance of the complete model. This observation underscores288

the importance of the pipeline’s efficiency and the hyperparameter selection.289

The proposed model is also compared with other neural network models including support290

vector regression (SVR), fully connected neural network (FCNN), graph convolutional network291

(GCN), and graph attention network (GAT) (Veličković et al. 2017), where the evaluation metrics292

are the same as the ablation study. The performance comparison over different regions is shown293

in Table 3. The fully connected network has a relatively low accuracy due to the reason that it294

lacks generalization capability to different graphs, and it cannot learn the graph feature effectively.295

Compared to GAT and GCN prediction, the proposed model still has a relatively high accuracy in296

terms of MAE and F1 scores in all three regions.297

In order to assess the robustness of the proposed approach, we run several experiments in which298

the number of training nodes within the graph varies. Specifically, a subset of the nodes is considered299

as the target nodes in training. For each case, a specific ratio of the graph nodes is selected as the300

"training" target nodes. These ratios are chosen between 5% and 80%. The evaluation metrics301

include mean square error, mean absolute error, and F1 score. The performances with different302

levels are demonstrated in Figure 8, which shows that when the ratio of training target nodes is303

from 20% to 40%, the F1 score can reach 0.85 and MAE is less than 0.08. Furthermore, when the304

training target node ratio is 60%, the F1 score can reach above 0.9, and MAE is less than 0.01. To305
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further evaluate the robustness of the proposed approach, Figure 9 compares the MCS and GNN306

predictions of node connectivity for all earthquake realizations. The percentage in each figure307

indicates the ratio of false positive (FP) and false negative (FN) samples among all samples with308

the cutoff threshold 0.75, which is less than 5%. It can also be seen that the Pearson Correlation309

coefficients between MCS and GNN prediction for all region levels are higher than 0.93.310

Model Performance Under Special Cases311

Previous research (Xu et al. 2020) indicates that neural networks are vulnerable to small312

perturbations to the original data, which will might change the neural network prediction drastically.313

To illustrate the robustness of our approach for reliability analysis, the proposed GNN model is314

evaluated on the slightly modified testing data. As the context, we consider the cases where bridge315

failure probabilities are decreased or increased because of repairs or deterioration through the life316

cycle. To test the robustness of the proposed model among all region levels, we generate perturbed317

features by adding to each edge failure probability a zero-mean Gaussian noise with a standard318

deviation set equal to 20% of the original edge failure probability. The resulting failure probability319

is truncated at 0 and 1. Following this perturbation to the edge features, the node features are also320

updated accordingly. Then the GNN prediction of node connectivities is performed for all three321

regions as described in Section 4 and the comparison between the prediction and MCS in this322

perturbed case is also shown in Figures 10 and 11. It can be seen in Figure 11, that even though323

there is more discrepancy between the GNN and MCS compared to the original case in Figure 9,324

the overall the performance is acceptable for an unseen case where all edges have different features.325

The F1 score of prediction with perturbed data is 0.964, 0.959, and 0.972 for three region levels,326

respectively.327

Finally, we assess the capability of the proposed approach in generalization or inductive inference328

and prediction. Specifically, we evaluate whether the model can be used for predicting out-of-329

distribution (OOD) data, that is, producing accurate predictions for test cases that are distributed330

differently from the way training data was distributed. As opposed to transfer learning, where the331

model is retrained on the new data, in generalization or inductive learning, we do not modify the332
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previously trained model and only evaluate it on the new data. In practice, this can be used to333

assess network connectivity when new bridges or roads are either added to a network expansion or334

removed due to a disaster.335

In these cases, to assess whether the trained model has generalization capacity without additional336

fine-tuning, we consider the base training of the model to be done at the Level 2 region level. We337

then test the performance of the trained model on the Level 3 region. In general, this is a challenging338

task because many of the nodes in the larger Level 3 region are unseen and were not included in339

the previous training. Furthermore, another challenge in this task is that the input and output340

dimensions of the neural network change, where the conventional machine learning model cannot341

handle this scenario. However, as can be seen in Figure 12, the proposed GNN model has an342

acceptable performance. It can be seen that the F1 score in this case is 0.96 when 80% of the nodes343

in the smaller region (Level 2) were used as training nodes, for a prediction at a large region (Level344

3). This good performance in handling inductive learning tasks is achieved because the mechanism345

of the message passing used in the GNN architecture enables a modular understanding of how the346

graph features are aggregated and collectively influence the task at hand.347

CONCLUSION AND DISCUSSION348

Rapid evaluation of large-scale infrastructure system reliability is critical to enhance the prepa-349

ration, risk mitigation and response management under probabilistic natural hazard events. In350

this paper, we propose a rapid seismic reliability assessment approach for roadway transportation351

systems with seismic damage on bridges using the graph neural network. Compared with the352

common reliability assessment approaches, which consider the response at the system or graph353

level, we focus on a more detailed notion of reliability where the seismic impact is quantified at354

the node-level for transportation systems. The proposed GNN surrogate bypasses extensive sam-355

pling that is required in Monte Carlo-based approaches and offers high efficiency while preserving356

accuracy. Additionally, the message-passing component of the proposed GNN model creates a357

modular model structure that can offer a good generalization capacity, i.e., can effectively predict358

system reliability in unseen graphs. The numerical experiments demonstrate the effectiveness,359
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robustness, and efficiency of the proposed approach in enabling rapid assessment of large-scale360

network reliability with high accuracy. As extensions to this work, measures other than node-361

to-node connectivity can be considered. Examples include travel distance, travel time, or traffic362

flow. Currently, only the damage beyond the extensive damage is considered in the paper. Another363

direction for future research is to investigate the influence of multiple damage states in the resulting364

network level performances, which can provide more insights for the practical implications of the365

reliability analysis of transportation systems.366
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TABLE 1. Statistic of different region levels

Graph Level # Node 𝑁𝑛 # Edge 𝑁𝑒 # Bridge 𝑁𝑏

Level 1 39 64 245
Level 2 84 133 448
Level 3 103 159 628
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TABLE 2. Ablation study of hyperparameters on three different regions. Three metrics is
considered in the comparison: MAE, F1 score of two-class and three-class classification. The cutoff
thresholds for two-class and three-class classification are {0.75} and {0.5, 0.75}, respectively.

Level 1 Level 2 Level 3

Model MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class)

# GNN layer = 3 0.047 0.905 0.876 0.049 0.925 0.870 0.051 0.939 0.889
# GNN layer = 1 0.061 0.878 0.853 0.092 0.851 0.760 0.112 0.863 0.760
Hidden size = 32 0.044 0.903 0.878 0.052 0.923 0.868 0.064 0.926 0.862

Learning rate = 0.01 0.070 0.858 0.829 0.138 0.756 0.636 0.175 0.805 0.618
No node feature 0.065 0.869 0.838 0.094 0.844 0.760 0.138 0.831 0.715

Full model 0.032 0.937 0.921 0.029 0.953 0.919 0.038 0.956 0.919
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TABLE 3. Performance comparison among different models on three regions. FCNN, GAT and
GCN are considered to compare with the proposed model. Three metrics are considered in the
comparison: MAE, F1 score of two-class and three-class classification. The cutoff thresholds for
two-class and three-class classification are {0.75} and {0.5, 0.75}, respectively.

Level 1 Level 2 Level 3

Model MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class)

SVR 0.061 0.874 0.834 0.092 0.821 0.738 0.172 0.793 0.672
FCNN 0.081 0.848 0.827 0.148 0.717 0.604 0.198 0.759 0.598
GAT 0.079 0.834 0.775 0.079 0.869 0.782 0.083 0.901 0.816
GCN 0.056 0.886 0.853 0.037 0.944 0.906 0.055 0.937 0.878

Our model 0.032 0.973 0.921 0.029 0.953 0.919 0.038 0.956 0.919
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Fig. 1. Message-passing with both node and edge features.
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Fig. 2. Pipeline of connectivity analysis of highway bridge system.
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Fig. 3. Architecture of graph neural network model for node-level connectivity analysis.
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Fig. 4. Map illustration of the studied regions in different levels.
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(a) Predicted connectivity probability from GNN

(b) Absolute error between GNN and MCS predictions

Fig. 5. Prediction of connectivity probabilities between the target node (red circle) and the other
nodes in the Level 1 region. The nodes are color-coded based on the predicted connectivity
probability (top) and the absolute error between predicted connectivity probabilities from GNN
and MCS (bottom).
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(a) Predicted connectivity probability from GNN

(b) Absolute error between MCS and GNN predictions

Fig. 6. Prediction of connectivity probabilities between the target node (red circle) and the other
nodes in the Level 3 region. The nodes are color-coded based on the predicted connectivity
probability (top) and the absolute error between predicted connectivity probabilities from GNN
and MCS (bottom).
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(a) Predicted connectivity classes from MCS

(b) Predicted connectivity class from GNN

Fig. 7. Identical predictions of connectivity classes obtained from GNN and MCS models for the
Level 1 region. The red circle shows the target node. Three classes represent normal connection,
minor disconnection, and major disconnection.
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(a) Level 1

(b) Level 2

(c) Level 3

Fig. 8. Relationship between different metrics and the percentage of training nodes shown for the
three regions.
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(a) Level 1

(b) Level 2

(c) Level 3

Fig. 9. Relationship between predicted node connectivity and MCS predictions shown for the three
regions. The percentage in the figure represents the proportion of false positive (FP) and false
negative (FN) results.
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(a) Level 1

(b) Level 2

(c) Level 3

Fig. 10. Relationship between different performance metrics and different ratios of training target
nodes, shown for the three regions with perturbed edge features.
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(a) Level 1

(b) Level 2

(c) Level 3

Fig. 11. Comparison of predicted node connectivity between MCS and GNN in the three regions
with perturbed edge features.
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Fig. 12. Assessment of the performance of inductive learning from the Level 2 region to Level 3
region, in terms of the classification results (top) and regression results (bottom).
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