
Nature  |  Vol 634  |  10 October 2024  |  341

Article

Bendable non-silicon RISC-V microprocessor

Emre Ozer1,4 ✉, Jedrzej Kufel1,4, Shvetank Prakash1,2,4, Alireza Raisiardali1, Olof Kindgren3,
Ronald Wong1, Nelson Ng1, Damien Jausseran1, Feras Alkhalil1, David Kong2, Gage Hills2,
Richard Price1 & Vijay Janapa Reddi2

Semiconductors have already had a very profound effect on society, accelerating
scientific research and driving greater connectivity. Future semiconductor hardware
will open up new possibilities in quantum computing, artificial intelligence and edge
computing, for applications such as cybersecurity and personalized healthcare.
By nature of its ethos, open hardware provides opportunities for even greater
collaboration and innovations across education, academic research and industry.
Here we present Flex-RV, a 32-bit microprocessor based on an open RISC-V (ref. 1)
instruction set fabricated with indium gallium zinc oxide thin-film transistors2 on a
flexible polyimide substrate, enabling an ultralow-cost bendable microprocessor.
Flex-RV also integrates a programmable machine learning (ML) hardware accelerator
inside the microprocessor and demonstrates new instructions to extend the RISC-V
instruction set to run ML workloads. It is implemented, fabricated and demonstrated
to operate at 60 kHz consuming less than 6 mW power. Its functionality when
assembled onto a flexible printed circuit board is validated while executing programs
under flat and tight bending conditions, achieving no worse than 4.3% performance
variation on average. Flex-RV pioneers an era of sub-dollar open standard non-silicon
32-bit microprocessors and will democratize access to computing and unlock
emerging applications in wearables, healthcare devices and smart packaging.

We present Flex-RV, a 32-bit RISC-V microprocessor based on an open-
source 32-bit RISC-V central processing unit (CPU) extended with
machine learning (ML) features fabricated with indium gallium zinc
oxide (IGZO) thin-film transistors (TFTs), enabling an ultralow-cost
and conformable microprocessor for emerging applications.

Emerging applications such as fast-moving consumer goods (for
example, smart labels and packaging), healthcare wearables (for exam-
ple, smart patches and dressings), single-use healthcare implantables
(for example, neural interfaces), and single-use healthcare test strips
(for example, lateral flow tests, microfluidics) have not been embedded
with microprocessors mainly because of cost and form factor. Cost is
the determining factor in enabling these applications, in particular,
in smart labels and packaging for goods. Moreover, form factor, in
the context of physical flexibility and bendability, is important for
healthcare wearables and implantables. The computational require-
ments of these emerging applications are not intensive in terms of
speed and communication bandwidth. Data sampling rates required
by the sensors in these applications are no higher than 200 Hz (ref. 3);
in some cases, sampling rates can be as high as 1 kHz, so microproces-
sors operating at low clock frequencies (for example, <100 kHz) can
meet the computational requirements of the applications.

Silicon (Si) has been the underlying semiconductor technology to
develop microprocessors for over 50 years improving performance,
area, power consumption and cost in its evolutionary path, mainly
driven by Moore’s law. Over this period, microprocessors have gone
faster from kHz to GHz because the transistor geometry shrunk from a
few µm to 2–3 nm today, and the unit cost up to a few dollars for low-end

microcontrollers. However, the unit cost of a few dollars for a micro-
processor is a non-starter for many of these emerging applications.
There are three key reasons why the unit cost cannot be reduced to
sub-dollar levels: (1) Si fab capital costs; (2) CPU instruction set, intel-
lectual property (IP) licence and non-recurring engineering (NRE) costs;
and (3) cost of microprocessor chip packaging.
1.	 Si fab capital: the state-of-the-art silicon fabrication plants req

uire several millions in capital investment and focus primarily
on high-end microprocessors for advanced nodes (for example,
2–3 nm). Lower-end microprocessors such as microcontrollers for
embedded systems can be produced in older, legacy fabs (>65 nm)
to minimize investment costs. However, factories invest compara-
tively less in legacy fabs, which leads to increased operational and
compliance costs over time along with environmental concerns4.

2.	IP licence and NRE costs: every microprocessor has a CPU that exe
cutes programs based on its specific instruction set architecture
(ISA), which can be either proprietary (for example, x86 by Intel &
AMD, ARMvX by Arm) or open source (that is, RISC-V; ref. 1). Pro-
prietary ISAs offer a mature ecosystem but are costly to license and
offer limited customization as adding new instructions is generally
restricted. Alternatives include licensing an existing CPU that incurs
upfront IP costs, or developing a new proprietary ISA, which entails
CPU design NRE costs and software toolset development expenses,
both of which increase unit cost.

3.	Chip packaging: Si dies are sensitive to environmental conditions, inc
luding mechanical stress. They are brittle and need to be assembled
onto a separate package (for example, plastic, ceramic) to protect

https://doi.org/10.1038/s41586-024-07976-y

Received: 3 April 2024

Accepted: 21 August 2024

Published online: 25 September 2024

Open access

 Check for updates

1Pragmatic Semiconductor, Cambridge, UK. 2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. 3Qamcom, Karlstad, Sweden. 4These authors
contributed equally: Emre Ozer, Jedrzej Kufel, Shvetank Prakash. ✉e-mail: eozer@pragmaticsemi.com

https://doi.org/10.1038/s41586-024-07976-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07976-y&domain=pdf
mailto:eozer@pragmaticsemi.com

342  |  Nature  |  Vol 634  |  10 October 2024

Article

them from the environment. The cost of die attachment, assem-
bly, packaging material and packaged chip test increases the nomi-
nal unit cost of a microprocessor. Moreover, embedding a rigid Si
microprocessor into one of these wearable or implantable devices
is challenging because the chip package of the microprocessor will
limit the abilities of the device in terms of its rigidity and thickness.
The rigid chip packaging material must be eliminated to reduce the
cost of the microprocessor and to allow its conformability in emerg-
ing applications.

There is a need for a microprocessor that is ultralow cost and con-
formable providing acceptable performance to meet the requirements
of the emerging applications. To realize a sub-dollar and physically flex-
ible microprocessor, two enabling technologies can help us overcome
the previous limitations:
1.	 RISC-V ISA: it is essential that the NRE costs of a CPU inside the

sub-dollar microprocessor are minimized (for example, ISA/IP
licensing). RISC-V (ref. 1) is an open and free ISA standard that allows
anyone to develop a CPU implementing the ISA, which eliminates
the ISA licence fees, and therefore the NRE costs of microprocessor
development. Moreover, the RISC-V ecosystem encourages innova-
tion and does not restrict modifications or extensions (for example,
new instructions), enabling designers to tailor the microprocessor to
meet bespoke or application needs without the burden of additional
costs or restrictive licences.

2.	IGZO TFTs: a sub-dollar microprocessor must be fabricated in a
semiconductor technology alternative to Si in a fab that is orders
of magnitude cheaper with a reduced carbon footprint than Si fabs
(including legacy fabs)5 in which carbon footprint in this context
refers to the CO2 emissions during the processes of chip design and
fabrication. IGZO is a metal-oxide semiconductor material that can
be used to develop TFTs2 on a flexible polyimide substrate using a
low-temperature lithography process. The TFTs are manufactured
by deposition of semiconductor, dielectric and electrodes on an
insulator substrate as opposed to developing MOSFETs (metal-oxide
semiconductor field effect transistors) using doped Si on a rigid
silicon wafer. FlexLogic fab of Pragmatic can manufacture flexible
chips or FlexICs made of IGZO TFTs, which have orders of magnitude
lower carbon footprint per FlexIC than an equivalent Si fab6. Also,
FlexICs do not need additional chip packaging (for example, plastic,
ceramic) like Si dies to protect them from mechanical stress because
they are not brittle and can resist mechanical stress such as bending.
This reduces the microprocessor unit cost further into sub-dollar
levels at high volumes while also enabling flexion capabilities.

There have been previous non-silicon microprocessor prototypes
on flexible substrates. Early works were based on 8-bit CPUs that use
low-temperature poly-silicon TFTs7–10 and organic, hybrid-oxide and
metal-oxide TFTs11–13. In ref. 14, the authors presented PlasticARM—the
first 32-bit microprocessor based on the proprietary ARM ISA that uses
IGZO-based TFTs. PlasticARM was not a programmable microproces-
sor running only three hardwired programs in its on-chip read-only
memory. Although not on a flexible substrate, ref. 15 demonstrated
a 16-bit CPU derived from the RISC-V ISA built with complementary
carbon nanotube transistors on a conventional Si-wafer. Apart from
non-silicon microprocessors, previous studies16–20 have demonstrated
several ML ASICs (application-specific integrated circuits) designed
and implemented using IGZO TFTs fabricated on flexible substrates.

Flex-RV is different from previous non-silicon microprocessors in
three aspects: (1) The 32-bit microprocessor is programmable and can
run arbitrary compiled programs written in high-level languages (for
example, C). (2) The open-source nature of RISC-V allows extending
the ISA with new instructions, so Flex-RV also features a program-
mable ML accelerator tightly coupled to the CPU with custom RISC-V
instructions added. (3) We demonstrate the functionality of the micro-
processor beyond wafer-level testing by assembling the micropro-
cessor bare die onto a flexible printed circuit board (FlexPCB) using
an innovative technique developed for this work called over-edge
printing or OEP, whereas all other previous works were demonstrated
at wafer level without being released from the glass carrier and diced.

This allows us to conduct physical bending tests on Flex-RV while
running the programs to validate the functionality under mechanical
stress. We demonstrate the functionality of the Flex-RV assembled
onto the FlexPCB, and quantify the performance across several test
programs. Our results show that Flex-RV assembled on a FlexPCB can
run as fast as 60 kHz while consuming less than 6 mW and can be bent
to a radius of curvature below 5 mm while still executing programs
correctly.

This work unlocks the next generation of intelligent, ubiquitous
computing in which the integration of flexible, programmable proces-
sors with ML capabilities embeds smart sensing into everyday objects.

Flex-RV system architecture
We use the open-source Serv RISC-V CPU21 to implement the micropro-
cessor, which is one of the smallest open-source RISC-V CPUs devel-
oped so far. Serv is a bit-serial CPU in which 32-bit computations are
performed bit by bit rather than in parallel as a more typical CPU would
do. This reduces the design complexity of a 32-bit RISC-V processor at

4 SPI
signalsGPIO

Dbus

Arbiter

Ibus

Mux

GPIO

Custom SPI

Serv 32-bit
RISC-V CPU
(RV32E ISA)

External
memory

(code + data)

Register �le
16 GPRs

+ 4 CSRs

On-chip RAM
(code + data)

Serv 32-bit
RISC-V CPU
(RV32I ISA)

Debug switch
Wishbone
interface

bus

Dbus

Mux

Debug

GPIO

GPIO

Arbiter

Ibus

Register �le
32 GPRs +

4 CSRs

RAM interface

a b

ML
accelerator

RAM interface

Gated CLK

CLK RST

CLK RST

Gated
CLK

External
memory

(code + data)

Fig. 1 | System architecture. a, Servant as the baseline system architecture for Flex-RV. b, Modified Servant and additional blocks added to Servant to create
Flex-RV. GPRs, general-purpose registers; CSRs, control and status registers; CLK, clock; RST, reset; Dbus, data bus; Ibus, instruction bus; Mux, multiplexer.

Nature  |  Vol 634  |  10 October 2024  |  343

the expense of performance, and its low design complexity is the main
reason why Serv is chosen as the CPU for Flex-RV. We design a simple
system-on-a-chip (SOC) around the Serv CPU to develop the micropro-
cessor that can communicate with the external world.

Flex-RV is designed to be a simple SOC consisting of a Serv RISC-V
CPU and additional peripherals. The Servant SOC22 that was developed
as a reference platform for Serv is used as a starting point for Flex-RV.
Servant as shown in Fig. 1a contains the Serv CPU, a register file (RF),
a debug switch, a multiplexor switch, an arbiter, a Random Access
Memory (RAM) interface, an on-chip RAM block and a General-purpose
Input/Output (GPIO) interface. Serv supports the RISC-V RV32I ISA
(ref. 1) that has 32 general-purpose registers, and four extra control
and status registers. The code and data are loaded into the on-chip
RAM through the debug switch from an external memory. The GPIO
interface can be used to communicate with the external world (for
example, display).

We modified some of the features in Servant to develop Flex-RV as
shown in Fig. 1b. For example, Serv is modified to support the RV32E
ISA (ref. 1), which supports the same instruction set as RV32I but uses
only the first 16 registers. We removed the debug switch and on-chip
RAM. As the current FlexIC technology does not allow us to put a sizable

on-chip memory (for example, >1kB SRAM) for area/power reasons, we
opt to use an off-chip memory to access the code and data, and there-
fore, added a custom Serial Peripheral Interface (SPI) or C-SPI block to
communicate with the external memory. The C-SPI block fetches 32-bit
RISC-V instructions from the external memory as well as performing
32-bit data load/store operations from/to the memory. The main reason
for using the C-SPI to communicate with the external memory rather
than accessing it using parallel data, address and control buses is to
reduce the number of off-chip pads to simplify the assembly process
of Flex-RV onto a FlexPCB. The details of the C-SPI block, including the
memory transactions, can be found in the Methods.

We also designed a programmable ML accelerator that is an SIMD
(single instruction multiple data) engine for speeding up matrix multi-
plication and post-processing operations commonly used in contem-
porary ML algorithms. The ML accelerator is tightly coupled to Serv as
a custom functional unit (CFU)23, and four new instructions were added
to the RV32E ISA so that the accelerator can be programmed. The details
of the ML model, accelerator architecture, four new instructions and
programming interface are described in the Methods.

Flex-RV has been validated using the RISC-V architectural compliance
suite24 for RV32E ISA. Several test benchmarks were also developed

Latch-
based RF

Microprocessor 1

Latch-
based RF

Microprocessor 2

a b

Fig. 2 | Flex-RV chip. a, Layout of the 9 mm × 6 mm test chip containing two Flex-RV microprocessors. b, Die photo of the test chip taken under a microscope.

c

ba

d

C
lo

ck
 fr

eq
ue

nc
y

(k
H

z)

60

58

56

54

52

50

48

46

44

Fig. 3 | Test infrastructure. a, Wafer-on-glass test infrastructure using an FPGA
board connected to the probe card attached to the semi-automatic wafer probe
station. b, The FlexPCB on which the die is assembled. c, The FlexPCB is
connected to the FPGA board. The GPIO signal from the test chip is connected

back to the FPGA, encoded and connected to UART2USB to display the output
of the program on a laptop. d, The distribution of the highest achievable clock
frequencies in kHz for all test benchmarks per Flex-RV in a violin plot is shown
for Flex-RVs assembled onto 13 FlexPCBs.

344  |  Nature  |  Vol 634  |  10 October 2024

Article

to verify its functionality, which were written in C (with some inline
assembly code), and compiled using the RISC-V GNU compiler tools.
The details of the test benchmarks and the compilation environment
can be found in the Methods.

We implement Flex-RV using 0.6 µm FlexIC technology of Pragmatic
that uses a unipolar logic consisting of an n-type IGZO TFT and a resis-
tive pull-up. The chip implementation (that is, synthesis, place and
route, static timing analysis, post-place-and-route simulation and
sign-off) is performed using commercial Electronic Design Automa-
tion (EDA) tools. The RF is a dual-ported array having one read and one
write port with an array size of 20 × 32 bits (or 80 bytes). It is imple-
mented with latches using a layout abutment method to increase the
density of the array (see the Methods for the details). The layout and die
photo of the chip are shown in Fig. 2. The test chip has a 9 mm × 6 mm
die size and 20 pins, and two Flex-RV microprocessors are fitted into

the chip. Each Flex-RV microprocessor has a core area of 17.5 mm2, a
NAND2-equivalent gate count of 12,596, and a power consumption of
5.8 mW at 3 V. The 5.8 mW power consumption is predominantly static
(99%) because of the resistive pull-up logic.

Test chips were fabricated in FlexLogic fab of Pragmatic on 200 mm
polyimide wafers with a thickness of 30 µm using the thin-film depo-
sition process that creates patterned layers of metal-oxide TFTs and
resistors, with four routable metal layers and an additional RDL (redis-
tribution layer) to re-route the core pads of a chip to the periphery pads
that will be the interface to the external world.

Test infrastructure and results
A test infrastructure consists of two integral phases: (1) wafer-on-glass
testing and (2) FlexPCB testing.

a

b

c

d

Bending radius of curvature (mm)

5 4 3

Bending radius of curvature (mm)

5 4 3

Tensile Compressive

S
p

ee
d

up
s

(%
)

4.0

3.0

2.0

1.0

0

S
p

ee
d

up
s

(%
)

–1.0

–3.0

–5.0

–4.0

–2.0

–6.0

–7.0

Fig. 4 | Bendability tests of Flex-RV on a FlexPCB while executing test
programs. The FlexPCB is rolled around a non-conductive cylinder along an
axis parallel to the connector of the FlexPCB and, therefore, along the length of
the Flex-RV chip until it is bent to a radius of curvature of the cylinder. a, Tensile
mode. b, Compressive mode. c, A Flex-RV microprocessor is running the
‘Hello World’ displayed on the screen while bent in tensile mode (see also the
Supplementary Video for the microprocessor operating in the entire bending

cycle). d, The distributions of relative speedups in tensile and compressive
modes with respect to the flat position for 3 mm, 4 mm and 5 mm bending radii
of curvature in violin plots are shown. The relative speedup is measured as the
percentage increase in the clock frequency of a Flex-RV chip in a bent mode
with respect to the clock frequency of the chip at the flat position. Negative
speedup implies slowdown.

Nature  |  Vol 634  |  10 October 2024  |  345

A MicroZed Zynq−7000 field-programmable gate array (FPGA)
board25 is used to test the Flex-RVs. The FPGA chip is programmed to
emulate the external memory and communicates with the Flex-RVs
on the wafer through an SPI block implemented also on the FPGA. The
binaries of the compiled test benchmarks are loaded into the memory
on the FPGA, and the FPGA board resets each Flex-RV in a test chip after
which they start executing each kernel. The results of the test bench-
marks are transmitted through the GPIO pin of each Flex-RV, which
is connected through FPGA to the universal asynchronous receiver–
transmitter (UART) interface of a personal computer (PC) to display
the results on the screen. The FPGA board also supplies each test chip
with power, clock and reset signals.

In the first phase, the test chips are functionally tested on wafer using
a semi-automatic wafer probe station (Fig. 3a) to identify functional
Flex-RVs. In the second phase, the functional Flex-RVs identified in the
first phase are assembled onto FlexPCBs using OEP—a new assembly
method developed for this work (Fig. 3b). The assembled FlexPCB is
then connected to the FPGA board through an FPC connector (Fig. 3c).
The details of the FPGA-based test infrastructure and the OEP assembly
process can be found in the Methods.

Figure 3d shows the distribution of the highest achievable clock
frequencies in kilohertz (kHz) at which a Flex-RV microprocessor in a
test chip can run all test benchmarks across 13 assembled FlexPCBs.
The average and maximum clock frequencies across 13 FlexPCBs are
52 kHz and 60 kHz, respectively.

Finally, we validate the functionality of the Flex-RVs assembled FlexP-
CBs under mechanical stress, and measure the variations in the highest
achievable clock frequencies. The mechanical stress is achieved by
rolling each FlexPCB around a non-conductive cylinder along an axis
parallel to the connector of the FlexPCB (also along the length of the
Flex-RV) until the test chip is bent to a radius of curvature of the cylinder.
IGZO TFTs are known to be bent to a radius of curvature of 3 mm without
damage, and device parameters such as mobility and threshold voltage
change under different strain scenarios26. However, these tests aimed
at individual IGZO TFT devices while we study primarily the bendability
tolerance at the FlexIC level.

There has been no study to demonstrate the bendability of a com-
plex FlexIC like Flex-RV alone or assembled on a FlexPCB while it is
powered up and running. We demonstrate the bendability of Flex-RV
assembled a FlexPCB using three different cylinders having 3 mm,
4 mm and 5 mm radii and test them in tensile (that is, the curvature
of the chip is outwards) and compressive (that is, the curvature of the
chip is inwards) modes as shown in Fig. 4a,b, respectively. A total of
seven assembled FlexPCBs comprising nine Flex-RV microprocessors
are tested for bendability analysis. This is a dynamic bendability test
as rolling the FlexPCB and bending the Flex-RV chip occur while both
Flex-RV microprocessors in the chip are running the test benchmarks—
an example shown in Fig. 4c. The test benchmarks start running on a
microprocessor when a FlexPCB is flat. While the programs are running,
the FlexPCB/Flex-RV is bent to the tensile mode around the cylinder
and then brought back to flat. Next, they are bent to the compressive
mode and then brought back to flat again. This is repeated twice per
Flex-RV microprocessor per FlexPCB.

Figure 4d shows the speedup results of the bending experiments
across three different bending radii. Test benchmarks are run to com-
pletion on each Flex-RV microprocessor when the chip is in a tensile
or compressive mode during the dynamic bending test. We measure
the highest achievable clock frequency of a Flex-RV microprocessor
across all test benchmarks when in a tensile or compressive mode,
and compare it to the highest achievable clock frequency when it is
flat, which is the speedup in clock frequency. Our results show that
Flex-RV microprocessors demonstrate flexibility as each micropro-
cessor goes back to its highest achievable clock frequency, that is,
between two flat positions, two tensile and compressive modes. We
also observe two trends: (1) Flex-RV gets faster in tensile mode but

runs slower in compressive mode, which is attributed to the change
in the device (that is, TFTs and resistors) and wire parameters (for
example, resistance and capacitance). (2) As the radius of curvature
decreases, its performance increases in tensile mode. This is because
as the chip gets more tensile, the device and wire parameters change
proportionally to improve the performance of Flex-RV, whereas the
opposite is observed in compressive mode. The bending experiments
demonstrate that Flex-RV can function correctly at a bending radius
of 3 mm, and on average, Flex-RV can operate 2.3% faster in tensile
mode and 4.3% slower in compressive mode with respect to the
flat position.

Conclusions
We have developed a sub-dollar, bendable and flexible microproces-
sor, Flex-RV, using a non-silicon technology based on 0.6 µm IGZO TFT
technology and supporting the open RISC-V instruction set. Moreo-
ver, we have incorporated a programmable hardware accelerator into
Flex-RV to enable ML applications. Flex-RV has been fabricated on a
polyimide substrate having a thickness of 30 µm in the low-cost and
low-environmental footprint FlexLogic fab and then assembled onto
a FlexPCB with a thickness of 45 µm to build an ultrathin computing
system. Our experimental results have shown that Flex-RV can run as
fast as 60 kHz while consuming less than a total power of 6 mW and
can operate correctly down to a 3-mm bending radius of curvature
with performance variation from 2.3% speedup to 4.3% slowdown on
average while running programs. Thus, it can meet the requirements of
many emerging applications in fast-moving consumer goods, wearables
and healthcare devices.

Flex-RV is an important milestone in building an ultralow-cost
bendable computer that does not rely on any conventional electronic
components.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07976-y.

1.	 Waterman, A., Lee, L., Patterson, D. A. & Krste A. The RISC-V instruction set manual,
Volume I: Base user-level ISA. Report UCB/EECS-2011-62 (EECS Department, University of
California, Berkeley, 2011).

2.	 Weimer, P. K. The TFT: a new thin-film transistor. Proc. IRE 50, 1462–1469 (1962).
3.	 Bleier, N. et al. Exploiting short application lifetimes for low cost hardware encryption in

flexible electronics. In Proc. Design, Automation & Test in Europe Conference & Exhibition
(DATE), 1–6 (Institute of Electrical and Electronics Engineers, 2023).

4.	 Chen, S., Gautam, A. & Weig, F. Bringing Energy Efficiency to the Fab (McKinsey, 2013).
5.	 Ahamed, A., Anand, C. & Young, J. Intelligent Low-Carbon Semiconductor Manufacturing

White Paper (Pragmatic, 2023).
6.	 Ahamed, A., Anand, C. & Young, J. Life Cycle Analysis of FlexICs White Paper (Pragmatic,

2023).
7.	 Takayama, T. et al. A CPU on a plastic film substrate. In Symposium on VLSI Technology

230–231 (IEEE, 2004).
8.	 Dembo, H. et al. RFCPUs on glass and plastic substrates fabricated by TFT transfer

technology. IEEE International Electron Devices Meeting (IEDM) 125–127 (IEEE, 2005).
9.	 Karaki, N. et al. A flexible 8b asynchronous microprocessor based on low-temperature

poly-silicon TFT technology. IEEE International Solid-State Circuits Conference (ISSCC)
272–273 (IEEE, 2005).

10.	 Kurokawa, Y. et al. UHF RFCPUs on flexible and glass substrates for secure RFID systems.
IEEE J. Solid-State Circuits 43, 292–299 (2008).

11.	 Myny, K., van Veenendaal, E., Gelinck, G. H., Genoe, J. & Dehaene, W. An 8-bit,
40-instructions-per-second organic microprocessor on plastic foil. IEEE J. Solid-State
Circuits 47, 284–291 (2012).

12.	 Myny, K. et al. 30.1 8b Thin-film microprocessor using a hybrid oxide-organic
complementary technology with inkjet-printed P2ROM memory. In IEEE International
Solid-State Circuits Conference (ISSCC) 486–487 (IEEE, 2014).

13.	 Çeliker, H. et al. Flex6502: a flexible 8b microprocessor in 0.8µm metal-oxide thin-film
transistor technology implemented with a complete digital design flow running complex
assembly code. In IEEE International Solid-State Circuits Conference (ISSCC), 272−274
(IEEE, 2022).

https://doi.org/10.1038/s41586-024-07976-y

346  |  Nature  |  Vol 634  |  10 October 2024

Article
14.	 Biggs, J. et al. A natively flexible 32-bit Arm microprocessor. Nature 595, 532–536 (2021).
15.	 Hills, G. et al. Modern microprocessor built from complementary carbon nanotube

transistors. Nature 572, 595–602 (2019).
16.	 Ozer, E. et al. Bespoke machine learning processor development framework on flexible

substrates. In IEEE International Conference on Flexible and Printable Sensors and Systems
(FLEPS), 1–3 (IEEE, 2019).

17.	 Ozer, E. et al. A hardwired machine learning processing engine fabricated with submicron
metal-oxide thin-film transistors on a flexible substrate. Nat. Electron. 3, 419–425 (2020).

18.	 Ozer, E. et al. Binary neural network as a flexible integrated circuit for odour classification.
In IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS),
1–4 (IEEE, 2020).

19.	 Ozer, E. et al. Malodour classification with low-cost flexible electronics. Nat. Commun. 14,
777 (2023).

20.	 Iordanou, K. et al. Low-cost and efficient prediction hardware for tabular data using tiny
classifier circuits. Nat. Electron. 7, 405–413 (2024).

21.	 SERV - The SErial RISC-V CPU. GitHub github.com/olofk/serv (Olof Kindgren, 2020).
22.	 Servant: FPGA reference platform. SERV serv.readthedocs.io/en/latest/servant.html

(Olof Kindgren, 2020).
23.	 Prakash, S. et al. CFU playground: full-stack open-source framework for Tiny Machine

Learning (TinyML) acceleration on FPGAs. In IEEE International Symposium on Performance
Analysis of Systems and Software 157–167 (IEEE, 2023).

24.	 RISC-V Architecture Test. GitHub https://github.com/riscv-non-isa/riscv-arch-test (2024).

25.	 Avnet. MicroZedTM FPGA board with Zynq®-7000. Product Brief (2022).
26.	 Jang, H.-W., Kim, G.-H. & Yoon, S.-M. Analysis of mechanical and electrical origins of

degradations in device durability of flexible InGaZnO thin-film transistors. ACS Appl.
Electron. Mater. 2, 2113–2122 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License, which permits any
non-commercial use, sharing, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this
article or parts of it. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

https://github.com/olofk/serv
https://serv.readthedocs.io/en/latest/servant.html
https://github.com/riscv-non-isa/riscv-arch-test
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

In this section, we describe the microarchitecture of the C-SPI IP block,
the ML hardware accelerator, the new instructions to program it, the
description of the test benchmarks, the compilation environment,
the implementation details of the latch-based RF, the details of the
FPGA-based test infrastructure and the OEP assembly method.

Architecture of the C-SPI
To reduce the complexity of assembling Flex-RV onto a FlexPCB in terms
of the number of pads, we have developed C-SPI to communicate with
external memory by interfacing the 79 RAM ports to 4 SPI ports rather
than exposing the 79 ports to the pads of the chip. This results in slower
memory access but facilitates the assembly of Flex-RV onto a FlexPCB.

The internal and external ports of the C-SPI are shown in Extended
Data Fig. 1. The number of address bits is set to 10 and allows the pro-
cessor to access 4 kB of external memory, which is sufficient to store
the code and data for the largest test bench.

As Serv requires a single-cycle memory access, C-SPI implements a
top-level clock gate that halts the rest of the Flex-RV microprocessor
when any external memory transaction occurs using a gated clock
signal. The gated clock signal is also sent as an output to the external
controller such as an FPGA.

There are two internal registers dedicated to transmission in the
C-SPI. The transfer register consists of a 46-bit transmit register and
a 32-bit receive register. The transmit register serves the purpose of
writing to the memory (that is, store operation) and transmitting the
designated address for reading, whereas the receive register is used to
capture the desired data (that is, load operation). Each write transfer
requires a total of 47 clock cycles. The initial clock cycle designates
the write mode, followed by 10 clock cycles for sending the memory
address, and subsequently, 32 clock cycles for transmitting the write
data. The final four cycles are allocated for the write mode type deter-
mined by the 4-bit ‘Write En’. The commands are provided in Extended
Data Table 1.

Every read transfer involves a total of 46 clock cycles. The initial cycle
is dedicated to specifying the reading mode, followed by 10 clock cycles
for transmitting the memory address. Subsequently, three cycles are
allocated for reading data from the memory and preparing for transmis-
sion. Finally, 32 clock cycles are necessary to receive the 32-bit data. The
state machine in Extended Data Fig. 2 shows the write and read modes
broken down into states.

Microarchitecture of the ML hardware accelerator
The ML hardware accelerator is a tightly coupled CFU23 extending
the data path of the CPU. It follows the RISC-V instruction R-format in
which it receives two operands from the RF and writes one result back.
Extended Data Fig. 3 shows the microarchitecture of the ML accelerator
in relation to the rest of the CPU. The boundary between the CPU and
CFU is strictly logical. The current implementation flattens the design
and optimizes, places and routes it all together.

The accelerator features a SIMD multiply–accumulate processing
engine composed of two 8 × 4 multipliers and two 4 × 4 multipliers as
prior art27 has shown sufficient accuracy using 4-bit integer quantiza-
tion for weights of embedded ML models with 8-bit inputs. The accel-
erator also has specialized hardware for handling post-processing of
activations such as bias addition, applying non-linearity (for example,
ReLU) and quantization rescaling. These architectural features can
be invoked in software using four custom instructions: (1) use the two
8 × 4 multipliers alone; (2) use all four multipliers with 4 × 4 precision;
(3) apply bias addition and non-linearity to activations; and (4) rescale
activations for quantization.

To test our accelerator, we developed a Tiny Machine Learning
(TinyML) model using Tensorflow28 to perform ECG anomaly detection
using the ECG5000 time series classification dataset29. Our tiny neural

network consists of a one-dimensional convolution followed by a fully
connected layer, an approach commonly used in simple time series
classification. We use linear symmetric affine quantization instead
of asymmetric quantization to avoid the additional computation of
subtracting offsets for each loop iteration.

Using post-training quantization, we quantize our model down to
4-bit precision for weights and activations with minimal accuracy loss.
However, the bias must be kept at 32-bit precision to avoid large degra-
dations in accuracy. Finally, we implemented the power of two scaling
for our step size so that multiplication during post-processing of a layer
could be done using bit shifts. These model optimizations coupled
with our hardware co-design enable us to run ML algorithms even in
these deeply embedded application settings in which computational
resources are limited and constrained.

Test benchmarks and compilation environment
We have written several test benchmarks in C language with some
inline RISC-V RV32E assembly code to use in functional testing of the
wafers and assembled FlexPCBs. The test benchmarks, as shown in
Extended Data Table 2, were developed to exercise many hardware
blocks in Flex-RV such as the functional units inside the Serv CPU such
as the arithmetic logic unit, RF, ML accelerator and also outside the
CPU such as the C-SPI (through memory reads and writes). The core of
the test benchmarks is written in C, whereas the GPIO communication
code is written in RV32E assembly. At the end of each test benchmark,
the results from the test benchmark are sent through the GPIO to the
external world. In our test infrastructure, the external world is the FPGA
board that reads the data coming out of the GPIO output, and the FPGA
board relays the data to a PC through UART to display the results on
the PC screen.

The test benchmarks were compiled for bare metal execution
using the riscv64-unknown-elf-gcc compiler with the flags of ‘rv32e’,
‘ilp32e’, ‘nostdlib’ and ‘nostartfiles’ to generate an elf file, which was
then translated into a hex file using riscv64-unknown-elf-objcopy with
the flag ‘-O verilog’. The hex files can be used to test Flex-RV in Verilog
simulation environments as well as in wafer and assembled FlexPCB
tests when the FPGA memory is loaded with the hex file of each test
benchmark.

To invoke and compile the custom instructions for ML workloads,
the ‘asm’ directive for inlining assembly is used within the C kernel to
directly insert assembly language instructions. This approach bypasses
the need for the compiler to understand the custom instruction by
manually coding it into the program. The custom instruction is defined
using the ‘.word’ directive followed by the opcode and operand speci-
fiers, which are filled in based on the provided C variables holding
the operands to be used. When the processor sees the dedicated
opcode for the custom instruction, the operands are passed to the
accelerator unit.

Implementation of the RF circuitry
The block diagram of the dual-port latch-based memory used as an
RF is shown in Extended Data Fig. 4 allowing one register read and
one write at the same cycle. Write and read address decoders are syn-
thesized using standard cells. Logic gates in the highlighted region
instantiate special standard cells that allow signal connection through
the abutment. During implementation, the placement of these cells
is controlled through relative cell placement. This achieves much
higher cell density and reduces the amount of routing that would
otherwise be performed by the EDA tool. All latches use an addi-
tional enable signal shown as RWL (read word line), which enables
the output RBL (read bit line). To reduce the static power consump-
tion, latches in the bottom word line implement a pull-up resistor
on the RBL output, whereas latches in other word lines do not imple-
ment such a resistor. Hence, there is only one pull-up resistor per
bit column.

Article

FPGA-based test infrastructure
The test infrastructure uses MicroZed FPGA board with Zynq−7000
SOC (ref. 25). Our testing methodology involves two distinct phases:
wafer-on-glass testing and FlexPCB testing. These phases serve differ-
ent purposes and are integral parts of our test infrastructure.
1.	 Wafer-on-glass testing validates the functionality of each Flex-RV on

the wafer (or more specifically wafer on glass) using a semi-automatic
wafer probe station. The goal of this phase is to identify functional
Flex-RVs that are suitable for FlexPCB assembly and testing. The
test probe card of the wafer probe station is connected to the FPGA
board that sends each test benchmark as an input to a Flex-RV on the
wafer, and the output of the executed benchmark from the Flex-RV
is sent through the probe card to the FPGA for verification. We also
connect a logic analyser to verify that all input and output signals
of the Flex-RVs are within specifications. The logic analyser has an
input capacitance of 10 pF that has an effect on the performance of
the IO drivers inside Flex-RVs. This leads to achieving lower clock
frequencies for Flex-RVs.

2.	The second phase is FlexPCB testing in which the wafers are released
from the glass carrier, and the dies are diced. The goal of FlexPCB test-
ing is to evaluate the performance of functional Flex-RVs or known
good dies (KGDs) in their intended flexible configuration. The KGDs
identified in the first phase are separated from the faulty dies and
assembled onto FlexPCBs. The FlexPCB is a polyimide substrate
with a thickness of 45 µm onto which a KGD is assembled. The KGD
is attached to the FlexPCB using epoxy, whereas the die pads are
aligned with the PCB pads. A silver paste is printed onto the aligned
pads to bond the pads electrically and mechanically through the OEP
assembly method as described below. The PCB traces connect the die
pads to an FPC connector through which the FlexPCB is connected
directly with the same FPGA board. No logic analyser is used in this
phase as functional correctness was already verified in the previous
phase. Once the functionality is confirmed, the FlexPCB tests can be
conducted without the logic analyser.

Our experiments showed that the highest achievable clock frequen-
cies in wafer-on-glass testing are 25–30% lower than the FlexPCB testing
because of high capacitive loading from the logic analyser on the IO
drivers of Flex-RVs. The total resistance and capacitive of PCB traces
between the test chip and the FPGA board have much less effect com-
pared with the effect of the logic analyser. The total resistance and
capacitance from test chips to the FPGA board in wafer-on-glass test
setup are 2 Ω and about 2.5 pF, whereas these values are about 1 Ω and
2.5 pF on the FlexPCB test setup. The additional 10 pF capacitance
from the logic analyser is the reason for lower clock frequencies in
the wafer-on-glass test setup.

The block diagram of FPGA implementation is shown in Extended
Data Fig. 5. The Python script running on the processing system controls
the test. Flex-RV is held in reset during the initial setup stage, whereas
the 4 kB memory is programmed with benchmark binary and the data
flow is configured. Although GPIO from Flex-RV could be connected
directly to UART Tx pin, as the clock to Serv is halted with every memory
transaction, the bitstream is corrupted. Therefore, the GPIO data are
captured and re-encoded into the correct UART bitstream using the
gated clock signal. Moreover, UART transactions are stored in a separate
1 kB memory and later compared with the expected response. This
allows a frequency sweep to be run for each benchmark.

OEP assembly method
With conventional flip-chip assembly approaches—for example,
anisotropic conductive paste and anisotropic conductive film, with
applying relatively high thermo-compression force—there is a high
chance of circuitry damage by conductive particles or thickness dif-
ference of the area on which the chip is bonded. An alternative is to

attach the flexible chip face-up (non-flip chip) with thermode-free
assembly process named OEP assembly method developed by
Pragmatic. OEP has the following steps as shown in Extended
Data Fig. 6:
1.	 Underfill adhesive application: non-conductive adhesive is applied

on the FlexPCB as underfill adhesive to hold the FlexIC. The volume
and position of the underfill adhesive must be well controlled for the
coverage of the four edges to prevent undesired conductive path
formed by infiltration underneath the FlexIC. At the same time, the
underfill adhesive must not overflow on top of the FlexIC during the
die attachment process, because that could hinder the conductive
path formation above the contact pads.

2.	Die attachment: FlexIC is bonded with the RDL layer facing up. Spe-
cially designed ejectors release singulated chips from release tape on
the frame, preventing damage to the FlexIC circuitry. The levelling
and bond force control must be optimized to achieve 100% coverage
of the four edges but no underfill adhesive overflowing on top of the
FlexIC.

3.	Interconnection formation: stretchable isotropic conductive adhe-
sive is applied by a high-precision time-pressure controlled dispens-
ing machine with camera alignment functionality with high place-
ment accuracy. Dispense height measurement is essential to control
the isotropic conductive adhesive thickness and its uniformity. The
isotropic conductive adhesive material is specially chosen to be
stretchable, which can maintain low-resistance electrical connectiv-
ity under bending conditions. The coefficient of thermal expansion
and elongation should match with the materials such as FlexIC and
FlexPCB to keep the devices functional and reliable during and after
bending conditions.

Data availability
Source data are provided with this paper.

Code availability
Serv is an open-source CPU, which is freely available at GitHub (https://
github.com/olofk/serv). The source code of the test benchmarks, the
changes made in the Serv CPU Verilog code, and the Verilog code of
the ML hardware accelerator are available from the corresponding
author upon request.

27.	 Banner, R., Nahshan, Y. & Soudry, D. Post training 4-bit quantization of convolutional

networks for rapid-deployment. In Proc. 33rd International Conference on Neural
Information Processing Systems Vol. 714, 7950–7958 (ACM, 2019).

28.	 Abadi, M. et al. Tensorflow: a system for large-scale machine learning. In Proceedings of
the 12th USENIX conference on Operating Systems Design and Implementation Vol. 16
(eds Keeton, K. & Roscoe, T.) 265–283 (Association for Computer Machinery, 2016).

29.	 Chen, Y. & Keogh, E. ECG5000 dataset https://www.timeseriesclassification.com/
description.php?Dataset=ECG5000 (2024).

Author contributions O.K. developed the open-source RV32I-based Serv and Servant. E.O. and
O.K. modified Serv to support RV32E ISA. E.O. architected the Flex-RV system architecture.
A.R. developed the C-SPI block. S.P., D.K., G.H. and V.J.R. developed the programmable ML
hardware accelerator and integrated it into Flex-RV. E.O., J.K., S.P. and A.R. did Flex-RV SOC
integration and simulation. J.K. developed the FPGA test setup and infrastructure. E.O. and S.P.
developed the test benchmarks and prepared the compilation environment. D.J. and J.K.
implemented the RF. J.K. did the physical chip implementation of Flex-RV. E.O., J.K. and R.P.
were involved in the facilitation of fabricating Flex-RV. E.O. and J.K. did the wafer-on-glass
functional testing. N.N., R.W. and F.A. assembled the KGDs onto FlexPCB. E.O., J.K. and S.P. did
the functional testing of the assembled FlexPCB, including the bending tests. E.O., J.K., S.P.,
A.R., R.W., V.J.R. and R.P. wrote the paper.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-024-07976-y.
Correspondence and requests for materials should be addressed to Emre Ozer.
Peer review information Nature thanks Subho Dasgupta, Gabriel Marques and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/olofk/serv
https://github.com/olofk/serv
https://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://doi.org/10.1038/s41586-024-07976-y
http://www.nature.com/reprints

Extended Data Fig. 1 | C-SPI. It shows the diagram of the C-SPI block that provides the interfacing of the 79 RAM internal ports to 4 SPI ports. C-SPI also generates
two gated clocks: one to stall the entire Flex-RV microprocessor, and another one to signal an external controller (e.g., an FPGA board).

Article

Extended Data Fig. 2 | C-SPI State Machine. Resetting to Idle state and progressing through sequential states upon receipt of R/W request.

Extended Data Fig. 3 | ML Accelerator Microarchitecture. The ML accelerator is tightly coupled to Serv’s datapath to behave as a custom functional unit of Serv.
Serv sends the custom instructions to run on the accelerator, which returns the result back to Serv.

Article

Extended Data Fig. 4 | Register file inside the microprocessor. The dual-port (one read and one write) latch-based register file is built by the abutment method.

Extended Data Fig. 5 | FPGA set-up. The block diagram of the FPGA-based test infrastructure is shown. FPGA controls all the test protocol to test Flex-RVs.

Article

Extended Data Fig. 6 | OEP assembly. The cross-section of the OEP assembly process of assembling Flex-RV as a FlexIC onto a FlexPCB is shown.

Extended Data Table 1 | C-SPI commands

Write modes and corresponding data portion written into the 32-bit memory word are shown.
Either a byte or a word can be written.

Article
Extended Data Table 2 | Test benchmarks used to test Flex-RV

At the end of the run, each test benchmark sends the results through the GPIO pin.

	Bendable non-silicon RISC-V microprocessor

	Flex-RV system architecture

	Test infrastructure and results

	Conclusions

	Online content

	Fig. 1 System architecture.
	Fig. 2 Flex-RV chip.
	Fig. 3 Test infrastructure.
	Fig. 4 Bendability tests of Flex-RV on a FlexPCB while executing test programs.
	Extended Data Fig. 1 C-SPI.
	Extended Data Fig. 2 C-SPI State Machine.
	Extended Data Fig. 3 ML Accelerator Microarchitecture.
	Extended Data Fig. 4 Register file inside the microprocessor.
	Extended Data Fig. 5 FPGA set-up.
	Extended Data Fig. 6 OEP assembly.
	Extended Data Table 1 C-SPI commands.
	Extended Data Table 2 Test benchmarks used to test Flex-RV.

