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Bendable non-silicon RISC-V microprocessor

Emre Ozer1,4 ✉, Jedrzej Kufel1,4, Shvetank Prakash1,2,4, Alireza Raisiardali1, Olof Kindgren3, 
Ronald Wong1, Nelson Ng1, Damien Jausseran1, Feras Alkhalil1, David Kong2, Gage Hills2, 
Richard Price1 & Vijay Janapa Reddi2

Semiconductors have already had a very profound effect on society, accelerating 
scientific research and driving greater connectivity. Future semiconductor hardware 
will open up new possibilities in quantum computing, artificial intelligence and edge 
computing, for applications such as cybersecurity and personalized healthcare.  
By nature of its ethos, open hardware provides opportunities for even greater 
collaboration and innovations across education, academic research and industry. 
Here we present Flex-RV, a 32-bit microprocessor based on an open RISC-V (ref. 1) 
instruction set fabricated with indium gallium zinc oxide thin-film transistors2 on a 
flexible polyimide substrate, enabling an ultralow-cost bendable microprocessor. 
Flex-RV also integrates a programmable machine learning (ML) hardware accelerator 
inside the microprocessor and demonstrates new instructions to extend the RISC-V 
instruction set to run ML workloads. It is implemented, fabricated and demonstrated 
to operate at 60 kHz consuming less than 6 mW power. Its functionality when 
assembled onto a flexible printed circuit board is validated while executing programs 
under flat and tight bending conditions, achieving no worse than 4.3% performance 
variation on average. Flex-RV pioneers an era of sub-dollar open standard non-silicon 
32-bit microprocessors and will democratize access to computing and unlock 
emerging applications in wearables, healthcare devices and smart packaging.

We present Flex-RV, a 32-bit RISC-V microprocessor based on an open- 
source 32-bit RISC-V central processing unit (CPU) extended with 
machine learning (ML) features fabricated with indium gallium zinc 
oxide (IGZO) thin-film transistors (TFTs), enabling an ultralow-cost 
and conformable microprocessor for emerging applications.

Emerging applications such as fast-moving consumer goods (for 
example, smart labels and packaging), healthcare wearables (for exam-
ple, smart patches and dressings), single-use healthcare implantables 
(for example, neural interfaces), and single-use healthcare test strips 
(for example, lateral flow tests, microfluidics) have not been embedded 
with microprocessors mainly because of cost and form factor. Cost is 
the determining factor in enabling these applications, in particular, 
in smart labels and packaging for goods. Moreover, form factor, in 
the context of physical flexibility and bendability, is important for 
healthcare wearables and implantables. The computational require-
ments of these emerging applications are not intensive in terms of 
speed and communication bandwidth. Data sampling rates required  
by the sensors in these applications are no higher than 200 Hz (ref. 3);  
in some cases, sampling rates can be as high as 1 kHz, so microproces-
sors operating at low clock frequencies (for example, <100 kHz) can 
meet the computational requirements of the applications.

Silicon (Si) has been the underlying semiconductor technology to 
develop microprocessors for over 50 years improving performance, 
area, power consumption and cost in its evolutionary path, mainly 
driven by Moore’s law. Over this period, microprocessors have gone 
faster from kHz to GHz because the transistor geometry shrunk from a 
few µm to 2–3 nm today, and the unit cost up to a few dollars for low-end 

microcontrollers. However, the unit cost of a few dollars for a micro-
processor is a non-starter for many of these emerging applications. 
There are three key reasons why the unit cost cannot be reduced to 
sub-dollar levels: (1) Si fab capital costs; (2) CPU instruction set, intel-
lectual property (IP) licence and non-recurring engineering (NRE) costs; 
and (3) cost of microprocessor chip packaging.
1.	 Si fab capital: the state-of-the-art silicon fabrication plants req

uire several millions in capital investment and focus primarily 
on high-end microprocessors for advanced nodes (for example, 
2–3 nm). Lower-end microprocessors such as microcontrollers for 
embedded systems can be produced in older, legacy fabs (>65 nm) 
to minimize investment costs. However, factories invest compara-
tively less in legacy fabs, which leads to increased operational and 
compliance costs over time along with environmental concerns4.

2.	IP licence and NRE costs: every microprocessor has a CPU that exe
cutes programs based on its specific instruction set architecture 
(ISA), which can be either proprietary (for example, x86 by Intel & 
AMD, ARMvX by Arm) or open source (that is, RISC-V; ref. 1). Pro-
prietary ISAs offer a mature ecosystem but are costly to license and 
offer limited customization as adding new instructions is generally 
restricted. Alternatives include licensing an existing CPU that incurs 
upfront IP costs, or developing a new proprietary ISA, which entails 
CPU design NRE costs and software toolset development expenses, 
both of which increase unit cost.

3.	Chip packaging: Si dies are sensitive to environmental conditions, inc
luding mechanical stress. They are brittle and need to be assembled 
onto a separate package (for example, plastic, ceramic) to protect 
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them from the environment. The cost of die attachment, assem-
bly, packaging material and packaged chip test increases the nomi-
nal unit cost of a microprocessor. Moreover, embedding a rigid Si  
microprocessor into one of these wearable or implantable devices 
is challenging because the chip package of the microprocessor will 
limit the abilities of the device in terms of its rigidity and thickness. 
The rigid chip packaging material must be eliminated to reduce the 
cost of the microprocessor and to allow its conformability in emerg-
ing applications.

There is a need for a microprocessor that is ultralow cost and con-
formable providing acceptable performance to meet the requirements 
of the emerging applications. To realize a sub-dollar and physically flex-
ible microprocessor, two enabling technologies can help us overcome 
the previous limitations:
1.	 RISC-V ISA: it is essential that the NRE costs of a CPU inside the 

sub-dollar microprocessor are minimized (for example, ISA/IP  
licensing). RISC-V (ref. 1) is an open and free ISA standard that allows 
anyone to develop a CPU implementing the ISA, which eliminates 
the ISA licence fees, and therefore the NRE costs of microprocessor 
development. Moreover, the RISC-V ecosystem encourages innova-
tion and does not restrict modifications or extensions (for example, 
new instructions), enabling designers to tailor the microprocessor to 
meet bespoke or application needs without the burden of additional 
costs or restrictive licences.

2.	IGZO TFTs: a sub-dollar microprocessor must be fabricated in a 
semiconductor technology alternative to Si in a fab that is orders 
of magnitude cheaper with a reduced carbon footprint than Si fabs 
(including legacy fabs)5 in which carbon footprint in this context 
refers to the CO2 emissions during the processes of chip design and 
fabrication. IGZO is a metal-oxide semiconductor material that can 
be used to develop TFTs2 on a flexible polyimide substrate using a 
low-temperature lithography process. The TFTs are manufactured 
by deposition of semiconductor, dielectric and electrodes on an 
insulator substrate as opposed to developing MOSFETs (metal-oxide 
semiconductor field effect transistors) using doped Si on a rigid 
silicon wafer. FlexLogic fab of Pragmatic can manufacture flexible 
chips or FlexICs made of IGZO TFTs, which have orders of magnitude 
lower carbon footprint per FlexIC than an equivalent Si fab6. Also, 
FlexICs do not need additional chip packaging (for example, plastic, 
ceramic) like Si dies to protect them from mechanical stress because 
they are not brittle and can resist mechanical stress such as bending. 
This reduces the microprocessor unit cost further into sub-dollar 
levels at high volumes while also enabling flexion capabilities.

There have been previous non-silicon microprocessor prototypes 
on flexible substrates. Early works were based on 8-bit CPUs that use 
low-temperature poly-silicon TFTs7–10 and organic, hybrid-oxide and 
metal-oxide TFTs11–13. In ref. 14, the authors presented PlasticARM—the 
first 32-bit microprocessor based on the proprietary ARM ISA that uses 
IGZO-based TFTs. PlasticARM was not a programmable microproces-
sor running only three hardwired programs in its on-chip read-only 
memory. Although not on a flexible substrate, ref. 15 demonstrated 
a 16-bit CPU derived from the RISC-V ISA built with complementary 
carbon nanotube transistors on a conventional Si-wafer. Apart from 
non-silicon microprocessors, previous studies16–20 have demonstrated 
several ML ASICs (application-specific integrated circuits) designed 
and implemented using IGZO TFTs fabricated on flexible substrates.

Flex-RV is different from previous non-silicon microprocessors in 
three aspects: (1) The 32-bit microprocessor is programmable and can 
run arbitrary compiled programs written in high-level languages (for 
example, C). (2) The open-source nature of RISC-V allows extending 
the ISA with new instructions, so Flex-RV also features a program-
mable ML accelerator tightly coupled to the CPU with custom RISC-V 
instructions added. (3) We demonstrate the functionality of the micro-
processor beyond wafer-level testing by assembling the micropro-
cessor bare die onto a flexible printed circuit board (FlexPCB) using 
an innovative technique developed for this work called over-edge 
printing or OEP, whereas all other previous works were demonstrated 
at wafer level without being released from the glass carrier and diced.

This allows us to conduct physical bending tests on Flex-RV while 
running the programs to validate the functionality under mechanical 
stress. We demonstrate the functionality of the Flex-RV assembled 
onto the FlexPCB, and quantify the performance across several test 
programs. Our results show that Flex-RV assembled on a FlexPCB can 
run as fast as 60 kHz while consuming less than 6 mW and can be bent 
to a radius of curvature below 5 mm while still executing programs 
correctly.

This work unlocks the next generation of intelligent, ubiquitous 
computing in which the integration of flexible, programmable proces-
sors with ML capabilities embeds smart sensing into everyday objects.

Flex-RV system architecture
We use the open-source Serv RISC-V CPU21 to implement the micropro-
cessor, which is one of the smallest open-source RISC-V CPUs devel-
oped so far. Serv is a bit-serial CPU in which 32-bit computations are 
performed bit by bit rather than in parallel as a more typical CPU would 
do. This reduces the design complexity of a 32-bit RISC-V processor at 
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the expense of performance, and its low design complexity is the main 
reason why Serv is chosen as the CPU for Flex-RV. We design a simple 
system-on-a-chip (SOC) around the Serv CPU to develop the micropro-
cessor that can communicate with the external world.

Flex-RV is designed to be a simple SOC consisting of a Serv RISC-V 
CPU and additional peripherals. The Servant SOC22 that was developed 
as a reference platform for Serv is used as a starting point for Flex-RV. 
Servant as shown in Fig. 1a contains the Serv CPU, a register file (RF), 
a debug switch, a multiplexor switch, an arbiter, a Random Access 
Memory (RAM) interface, an on-chip RAM block and a General-purpose 
Input/Output (GPIO) interface. Serv supports the RISC-V RV32I ISA 
(ref. 1) that has 32 general-purpose registers, and four extra control 
and status registers. The code and data are loaded into the on-chip 
RAM through the debug switch from an external memory. The GPIO 
interface can be used to communicate with the external world (for 
example, display).

We modified some of the features in Servant to develop Flex-RV as 
shown in Fig. 1b. For example, Serv is modified to support the RV32E 
ISA (ref. 1), which supports the same instruction set as RV32I but uses 
only the first 16 registers. We removed the debug switch and on-chip 
RAM. As the current FlexIC technology does not allow us to put a sizable 

on-chip memory (for example, >1kB SRAM) for area/power reasons, we 
opt to use an off-chip memory to access the code and data, and there-
fore, added a custom Serial Peripheral Interface (SPI) or C-SPI block to 
communicate with the external memory. The C-SPI block fetches 32-bit 
RISC-V instructions from the external memory as well as performing 
32-bit data load/store operations from/to the memory. The main reason 
for using the C-SPI to communicate with the external memory rather 
than accessing it using parallel data, address and control buses is to 
reduce the number of off-chip pads to simplify the assembly process 
of Flex-RV onto a FlexPCB. The details of the C-SPI block, including the 
memory transactions, can be found in the Methods.

We also designed a programmable ML accelerator that is an SIMD 
(single instruction multiple data) engine for speeding up matrix multi-
plication and post-processing operations commonly used in contem-
porary ML algorithms. The ML accelerator is tightly coupled to Serv as 
a custom functional unit (CFU)23, and four new instructions were added 
to the RV32E ISA so that the accelerator can be programmed. The details 
of the ML model, accelerator architecture, four new instructions and 
programming interface are described in the Methods.

Flex-RV has been validated using the RISC-V architectural compliance 
suite24 for RV32E ISA. Several test benchmarks were also developed 
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Fig. 3 | Test infrastructure. a, Wafer-on-glass test infrastructure using an FPGA 
board connected to the probe card attached to the semi-automatic wafer probe 
station. b, The FlexPCB on which the die is assembled. c, The FlexPCB is 
connected to the FPGA board. The GPIO signal from the test chip is connected 

back to the FPGA, encoded and connected to UART2USB to display the output 
of the program on a laptop. d, The distribution of the highest achievable clock 
frequencies in kHz for all test benchmarks per Flex-RV in a violin plot is shown 
for Flex-RVs assembled onto 13 FlexPCBs.
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to verify its functionality, which were written in C (with some inline 
assembly code), and compiled using the RISC-V GNU compiler tools. 
The details of the test benchmarks and the compilation environment 
can be found in the Methods.

We implement Flex-RV using 0.6 µm FlexIC technology of Pragmatic 
that uses a unipolar logic consisting of an n-type IGZO TFT and a resis-
tive pull-up. The chip implementation (that is, synthesis, place and 
route, static timing analysis, post-place-and-route simulation and 
sign-off) is performed using commercial Electronic Design Automa-
tion (EDA) tools. The RF is a dual-ported array having one read and one 
write port with an array size of 20 × 32 bits (or 80 bytes). It is imple-
mented with latches using a layout abutment method to increase the 
density of the array (see the Methods for the details). The layout and die 
photo of the chip are shown in Fig. 2. The test chip has a 9 mm × 6 mm 
die size and 20 pins, and two Flex-RV microprocessors are fitted into 

the chip. Each Flex-RV microprocessor has a core area of 17.5 mm2, a 
NAND2-equivalent gate count of 12,596, and a power consumption of 
5.8 mW at 3 V. The 5.8 mW power consumption is predominantly static 
(99%) because of the resistive pull-up logic.

Test chips were fabricated in FlexLogic fab of Pragmatic on 200 mm 
polyimide wafers with a thickness of 30 µm using the thin-film depo-
sition process that creates patterned layers of metal-oxide TFTs and 
resistors, with four routable metal layers and an additional RDL (redis-
tribution layer) to re-route the core pads of a chip to the periphery pads 
that will be the interface to the external world.

Test infrastructure and results
A test infrastructure consists of two integral phases: (1) wafer-on-glass 
testing and (2) FlexPCB testing.
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Fig. 4 | Bendability tests of Flex-RV on a FlexPCB while executing test 
programs. The FlexPCB is rolled around a non-conductive cylinder along an 
axis parallel to the connector of the FlexPCB and, therefore, along the length of 
the Flex-RV chip until it is bent to a radius of curvature of the cylinder. a, Tensile 
mode. b, Compressive mode. c, A Flex-RV microprocessor is running the  
‘Hello World’ displayed on the screen while bent in tensile mode (see also the 
Supplementary Video for the microprocessor operating in the entire bending 

cycle). d, The distributions of relative speedups in tensile and compressive 
modes with respect to the flat position for 3 mm, 4 mm and 5 mm bending radii 
of curvature in violin plots are shown. The relative speedup is measured as the 
percentage increase in the clock frequency of a Flex-RV chip in a bent mode 
with respect to the clock frequency of the chip at the flat position. Negative 
speedup implies slowdown.
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A MicroZed Zynq−7000 field-programmable gate array (FPGA) 
board25 is used to test the Flex-RVs. The FPGA chip is programmed to 
emulate the external memory and communicates with the Flex-RVs 
on the wafer through an SPI block implemented also on the FPGA. The 
binaries of the compiled test benchmarks are loaded into the memory 
on the FPGA, and the FPGA board resets each Flex-RV in a test chip after 
which they start executing each kernel. The results of the test bench-
marks are transmitted through the GPIO pin of each Flex-RV, which 
is connected through FPGA to the universal asynchronous receiver–
transmitter (UART) interface of a personal computer (PC) to display 
the results on the screen. The FPGA board also supplies each test chip 
with power, clock and reset signals.

In the first phase, the test chips are functionally tested on wafer using 
a semi-automatic wafer probe station (Fig. 3a) to identify functional 
Flex-RVs. In the second phase, the functional Flex-RVs identified in the 
first phase are assembled onto FlexPCBs using OEP—a new assembly 
method developed for this work (Fig. 3b). The assembled FlexPCB is 
then connected to the FPGA board through an FPC connector (Fig. 3c). 
The details of the FPGA-based test infrastructure and the OEP assembly 
process can be found in the Methods.

Figure 3d shows the distribution of the highest achievable clock 
frequencies in kilohertz (kHz) at which a Flex-RV microprocessor in a 
test chip can run all test benchmarks across 13 assembled FlexPCBs. 
The average and maximum clock frequencies across 13 FlexPCBs are 
52 kHz and 60 kHz, respectively.

Finally, we validate the functionality of the Flex-RVs assembled FlexP-
CBs under mechanical stress, and measure the variations in the highest 
achievable clock frequencies. The mechanical stress is achieved by 
rolling each FlexPCB around a non-conductive cylinder along an axis 
parallel to the connector of the FlexPCB (also along the length of the 
Flex-RV) until the test chip is bent to a radius of curvature of the cylinder. 
IGZO TFTs are known to be bent to a radius of curvature of 3 mm without 
damage, and device parameters such as mobility and threshold voltage 
change under different strain scenarios26. However, these tests aimed 
at individual IGZO TFT devices while we study primarily the bendability 
tolerance at the FlexIC level.

There has been no study to demonstrate the bendability of a com-
plex FlexIC like Flex-RV alone or assembled on a FlexPCB while it is 
powered up and running. We demonstrate the bendability of Flex-RV 
assembled a FlexPCB using three different cylinders having 3 mm, 
4 mm and 5 mm radii and test them in tensile (that is, the curvature 
of the chip is outwards) and compressive (that is, the curvature of the 
chip is inwards) modes as shown in Fig. 4a,b, respectively. A total of 
seven assembled FlexPCBs comprising nine Flex-RV microprocessors 
are tested for bendability analysis. This is a dynamic bendability test 
as rolling the FlexPCB and bending the Flex-RV chip occur while both 
Flex-RV microprocessors in the chip are running the test benchmarks—
an example shown in Fig. 4c. The test benchmarks start running on a 
microprocessor when a FlexPCB is flat. While the programs are running, 
the FlexPCB/Flex-RV is bent to the tensile mode around the cylinder 
and then brought back to flat. Next, they are bent to the compressive 
mode and then brought back to flat again. This is repeated twice per 
Flex-RV microprocessor per FlexPCB.

Figure 4d shows the speedup results of the bending experiments 
across three different bending radii. Test benchmarks are run to com-
pletion on each Flex-RV microprocessor when the chip is in a tensile 
or compressive mode during the dynamic bending test. We measure 
the highest achievable clock frequency of a Flex-RV microprocessor 
across all test benchmarks when in a tensile or compressive mode, 
and compare it to the highest achievable clock frequency when it is 
flat, which is the speedup in clock frequency. Our results show that 
Flex-RV microprocessors demonstrate flexibility as each micropro-
cessor goes back to its highest achievable clock frequency, that is, 
between two flat positions, two tensile and compressive modes. We 
also observe two trends: (1) Flex-RV gets faster in tensile mode but 

runs slower in compressive mode, which is attributed to the change 
in the device (that is, TFTs and resistors) and wire parameters (for 
example, resistance and capacitance). (2) As the radius of curvature 
decreases, its performance increases in tensile mode. This is because 
as the chip gets more tensile, the device and wire parameters change 
proportionally to improve the performance of Flex-RV, whereas the 
opposite is observed in compressive mode. The bending experiments 
demonstrate that Flex-RV can function correctly at a bending radius 
of 3 mm, and on average, Flex-RV can operate 2.3% faster in tensile 
mode and 4.3% slower in compressive mode with respect to the  
flat position.

Conclusions
We have developed a sub-dollar, bendable and flexible microproces-
sor, Flex-RV, using a non-silicon technology based on 0.6 µm IGZO TFT 
technology and supporting the open RISC-V instruction set. Moreo-
ver, we have incorporated a programmable hardware accelerator into 
Flex-RV to enable ML applications. Flex-RV has been fabricated on a 
polyimide substrate having a thickness of 30 µm in the low-cost and 
low-environmental footprint FlexLogic fab and then assembled onto 
a FlexPCB with a thickness of 45 µm to build an ultrathin computing 
system. Our experimental results have shown that Flex-RV can run as 
fast as 60 kHz while consuming less than a total power of 6 mW and 
can operate correctly down to a 3-mm bending radius of curvature 
with performance variation from 2.3% speedup to 4.3% slowdown on 
average while running programs. Thus, it can meet the requirements of 
many emerging applications in fast-moving consumer goods, wearables 
and healthcare devices.

Flex-RV is an important milestone in building an ultralow-cost 
bendable computer that does not rely on any conventional electronic  
components.
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Methods

In this section, we describe the microarchitecture of the C-SPI IP block, 
the ML hardware accelerator, the new instructions to program it, the 
description of the test benchmarks, the compilation environment, 
the implementation details of the latch-based RF, the details of the 
FPGA-based test infrastructure and the OEP assembly method.

Architecture of the C-SPI
To reduce the complexity of assembling Flex-RV onto a FlexPCB in terms 
of the number of pads, we have developed C-SPI to communicate with 
external memory by interfacing the 79 RAM ports to 4 SPI ports rather 
than exposing the 79 ports to the pads of the chip. This results in slower 
memory access but facilitates the assembly of Flex-RV onto a FlexPCB.

The internal and external ports of the C-SPI are shown in Extended 
Data Fig. 1. The number of address bits is set to 10 and allows the pro-
cessor to access 4 kB of external memory, which is sufficient to store 
the code and data for the largest test bench.

As Serv requires a single-cycle memory access, C-SPI implements a 
top-level clock gate that halts the rest of the Flex-RV microprocessor 
when any external memory transaction occurs using a gated clock 
signal. The gated clock signal is also sent as an output to the external 
controller such as an FPGA.

There are two internal registers dedicated to transmission in the 
C-SPI. The transfer register consists of a 46-bit transmit register and 
a 32-bit receive register. The transmit register serves the purpose of 
writing to the memory (that is, store operation) and transmitting the 
designated address for reading, whereas the receive register is used to 
capture the desired data (that is, load operation). Each write transfer 
requires a total of 47 clock cycles. The initial clock cycle designates 
the write mode, followed by 10 clock cycles for sending the memory 
address, and subsequently, 32 clock cycles for transmitting the write 
data. The final four cycles are allocated for the write mode type deter-
mined by the 4-bit ‘Write En’. The commands are provided in Extended 
Data Table 1.

Every read transfer involves a total of 46 clock cycles. The initial cycle 
is dedicated to specifying the reading mode, followed by 10 clock cycles 
for transmitting the memory address. Subsequently, three cycles are 
allocated for reading data from the memory and preparing for transmis-
sion. Finally, 32 clock cycles are necessary to receive the 32-bit data. The 
state machine in Extended Data Fig. 2 shows the write and read modes 
broken down into states.

Microarchitecture of the ML hardware accelerator
The ML hardware accelerator is a tightly coupled CFU23 extending 
the data path of the CPU. It follows the RISC-V instruction R-format in 
which it receives two operands from the RF and writes one result back. 
Extended Data Fig. 3 shows the microarchitecture of the ML accelerator 
in relation to the rest of the CPU. The boundary between the CPU and 
CFU is strictly logical. The current implementation flattens the design 
and optimizes, places and routes it all together.

The accelerator features a SIMD multiply–accumulate processing 
engine composed of two 8 × 4 multipliers and two 4 × 4 multipliers as 
prior art27 has shown sufficient accuracy using 4-bit integer quantiza-
tion for weights of embedded ML models with 8-bit inputs. The accel-
erator also has specialized hardware for handling post-processing of 
activations such as bias addition, applying non-linearity (for example, 
ReLU) and quantization rescaling. These architectural features can 
be invoked in software using four custom instructions: (1) use the two 
8 × 4 multipliers alone; (2) use all four multipliers with 4 × 4 precision; 
(3) apply bias addition and non-linearity to activations; and (4) rescale 
activations for quantization.

To test our accelerator, we developed a Tiny Machine Learning 
(TinyML) model using Tensorflow28 to perform ECG anomaly detection 
using the ECG5000 time series classification dataset29. Our tiny neural 

network consists of a one-dimensional convolution followed by a fully 
connected layer, an approach commonly used in simple time series 
classification. We use linear symmetric affine quantization instead 
of asymmetric quantization to avoid the additional computation of 
subtracting offsets for each loop iteration.

Using post-training quantization, we quantize our model down to 
4-bit precision for weights and activations with minimal accuracy loss. 
However, the bias must be kept at 32-bit precision to avoid large degra-
dations in accuracy. Finally, we implemented the power of two scaling 
for our step size so that multiplication during post-processing of a layer 
could be done using bit shifts. These model optimizations coupled 
with our hardware co-design enable us to run ML algorithms even in 
these deeply embedded application settings in which computational 
resources are limited and constrained.

Test benchmarks and compilation environment
We have written several test benchmarks in C language with some 
inline RISC-V RV32E assembly code to use in functional testing of the 
wafers and assembled FlexPCBs. The test benchmarks, as shown in 
Extended Data Table 2, were developed to exercise many hardware 
blocks in Flex-RV such as the functional units inside the Serv CPU such 
as the arithmetic logic unit, RF, ML accelerator and also outside the 
CPU such as the C-SPI (through memory reads and writes). The core of 
the test benchmarks is written in C, whereas the GPIO communication 
code is written in RV32E assembly. At the end of each test benchmark, 
the results from the test benchmark are sent through the GPIO to the 
external world. In our test infrastructure, the external world is the FPGA 
board that reads the data coming out of the GPIO output, and the FPGA 
board relays the data to a PC through UART to display the results on 
the PC screen.

The test benchmarks were compiled for bare metal execution 
using the riscv64-unknown-elf-gcc compiler with the flags of ‘rv32e’, 
‘ilp32e’, ‘nostdlib’ and ‘nostartfiles’ to generate an elf file, which was 
then translated into a hex file using riscv64-unknown-elf-objcopy with 
the flag ‘-O verilog’. The hex files can be used to test Flex-RV in Verilog 
simulation environments as well as in wafer and assembled FlexPCB 
tests when the FPGA memory is loaded with the hex file of each test  
benchmark.

To invoke and compile the custom instructions for ML workloads, 
the ‘asm’ directive for inlining assembly is used within the C kernel to 
directly insert assembly language instructions. This approach bypasses 
the need for the compiler to understand the custom instruction by 
manually coding it into the program. The custom instruction is defined 
using the ‘.word’ directive followed by the opcode and operand speci-
fiers, which are filled in based on the provided C variables holding 
the operands to be used. When the processor sees the dedicated 
opcode for the custom instruction, the operands are passed to the  
accelerator unit.

Implementation of the RF circuitry
The block diagram of the dual-port latch-based memory used as an 
RF is shown in Extended Data Fig. 4 allowing one register read and 
one write at the same cycle. Write and read address decoders are syn-
thesized using standard cells. Logic gates in the highlighted region 
instantiate special standard cells that allow signal connection through 
the abutment. During implementation, the placement of these cells 
is controlled through relative cell placement. This achieves much 
higher cell density and reduces the amount of routing that would 
otherwise be performed by the EDA tool. All latches use an addi-
tional enable signal shown as RWL (read word line), which enables 
the output RBL (read bit line). To reduce the static power consump-
tion, latches in the bottom word line implement a pull-up resistor 
on the RBL output, whereas latches in other word lines do not imple-
ment such a resistor. Hence, there is only one pull-up resistor per  
bit column.
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FPGA-based test infrastructure
The test infrastructure uses MicroZed FPGA board with Zynq−7000 
SOC (ref. 25). Our testing methodology involves two distinct phases: 
wafer-on-glass testing and FlexPCB testing. These phases serve differ-
ent purposes and are integral parts of our test infrastructure.
1.	 Wafer-on-glass testing validates the functionality of each Flex-RV on 

the wafer (or more specifically wafer on glass) using a semi-automatic 
wafer probe station. The goal of this phase is to identify functional 
Flex-RVs that are suitable for FlexPCB assembly and testing. The 
test probe card of the wafer probe station is connected to the FPGA 
board that sends each test benchmark as an input to a Flex-RV on the 
wafer, and the output of the executed benchmark from the Flex-RV 
is sent through the probe card to the FPGA for verification. We also 
connect a logic analyser to verify that all input and output signals 
of the Flex-RVs are within specifications. The logic analyser has an 
input capacitance of 10 pF that has an effect on the performance of 
the IO drivers inside Flex-RVs. This leads to achieving lower clock 
frequencies for Flex-RVs.

2.	The second phase is FlexPCB testing in which the wafers are released 
from the glass carrier, and the dies are diced. The goal of FlexPCB test-
ing is to evaluate the performance of functional Flex-RVs or known 
good dies (KGDs) in their intended flexible configuration. The KGDs 
identified in the first phase are separated from the faulty dies and 
assembled onto FlexPCBs. The FlexPCB is a polyimide substrate 
with a thickness of 45 µm onto which a KGD is assembled. The KGD 
is attached to the FlexPCB using epoxy, whereas the die pads are 
aligned with the PCB pads. A silver paste is printed onto the aligned 
pads to bond the pads electrically and mechanically through the OEP 
assembly method as described below. The PCB traces connect the die 
pads to an FPC connector through which the FlexPCB is connected 
directly with the same FPGA board. No logic analyser is used in this 
phase as functional correctness was already verified in the previous 
phase. Once the functionality is confirmed, the FlexPCB tests can be 
conducted without the logic analyser.

Our experiments showed that the highest achievable clock frequen-
cies in wafer-on-glass testing are 25–30% lower than the FlexPCB testing 
because of high capacitive loading from the logic analyser on the IO 
drivers of Flex-RVs. The total resistance and capacitive of PCB traces 
between the test chip and the FPGA board have much less effect com-
pared with the effect of the logic analyser. The total resistance and 
capacitance from test chips to the FPGA board in wafer-on-glass test 
setup are 2 Ω and about 2.5 pF, whereas these values are about 1 Ω and 
2.5 pF on the FlexPCB test setup. The additional 10 pF capacitance 
from the logic analyser is the reason for lower clock frequencies in 
the wafer-on-glass test setup.

The block diagram of FPGA implementation is shown in Extended 
Data Fig. 5. The Python script running on the processing system controls 
the test. Flex-RV is held in reset during the initial setup stage, whereas 
the 4 kB memory is programmed with benchmark binary and the data 
flow is configured. Although GPIO from Flex-RV could be connected 
directly to UART Tx pin, as the clock to Serv is halted with every memory 
transaction, the bitstream is corrupted. Therefore, the GPIO data are 
captured and re-encoded into the correct UART bitstream using the 
gated clock signal. Moreover, UART transactions are stored in a separate 
1 kB memory and later compared with the expected response. This 
allows a frequency sweep to be run for each benchmark.

OEP assembly method
With conventional flip-chip assembly approaches—for example, 
anisotropic conductive paste and anisotropic conductive film, with 
applying relatively high thermo-compression force—there is a high 
chance of circuitry damage by conductive particles or thickness dif-
ference of the area on which the chip is bonded. An alternative is to 

attach the flexible chip face-up (non-flip chip) with thermode-free 
assembly process named OEP assembly method developed by 
Pragmatic. OEP has the following steps as shown in Extended  
Data Fig. 6:
1.	 Underfill adhesive application: non-conductive adhesive is applied 

on the FlexPCB as underfill adhesive to hold the FlexIC. The volume 
and position of the underfill adhesive must be well controlled for the 
coverage of the four edges to prevent undesired conductive path 
formed by infiltration underneath the FlexIC. At the same time, the 
underfill adhesive must not overflow on top of the FlexIC during the 
die attachment process, because that could hinder the conductive 
path formation above the contact pads.

2.	Die attachment: FlexIC is bonded with the RDL layer facing up. Spe-
cially designed ejectors release singulated chips from release tape on 
the frame, preventing damage to the FlexIC circuitry. The levelling 
and bond force control must be optimized to achieve 100% coverage 
of the four edges but no underfill adhesive overflowing on top of the 
FlexIC.

3.	Interconnection formation: stretchable isotropic conductive adhe-
sive is applied by a high-precision time-pressure controlled dispens-
ing machine with camera alignment functionality with high place-
ment accuracy. Dispense height measurement is essential to control 
the isotropic conductive adhesive thickness and its uniformity. The 
isotropic conductive adhesive material is specially chosen to be 
stretchable, which can maintain low-resistance electrical connectiv-
ity under bending conditions. The coefficient of thermal expansion 
and elongation should match with the materials such as FlexIC and 
FlexPCB to keep the devices functional and reliable during and after 
bending conditions.

Data availability
Source data are provided with this paper.

Code availability
Serv is an open-source CPU, which is freely available at GitHub (https://
github.com/olofk/serv). The source code of the test benchmarks, the 
changes made in the Serv CPU Verilog code, and the Verilog code of 
the ML hardware accelerator are available from the corresponding 
author upon request.
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Extended Data Fig. 1 | C-SPI. It shows the diagram of the C-SPI block that provides the interfacing of the 79 RAM internal ports to 4 SPI ports. C-SPI also generates 
two gated clocks: one to stall the entire Flex-RV microprocessor, and another one to signal an external controller (e.g., an FPGA board).
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Extended Data Fig. 2 | C-SPI State Machine. Resetting to Idle state and progressing through sequential states upon receipt of R/W request.



Extended Data Fig. 3 | ML Accelerator Microarchitecture. The ML accelerator is tightly coupled to Serv’s datapath to behave as a custom functional unit of Serv. 
Serv sends the custom instructions to run on the accelerator, which returns the result back to Serv.
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Extended Data Fig. 4 | Register file inside the microprocessor. The dual-port (one read and one write) latch-based register file is built by the abutment method.



Extended Data Fig. 5 | FPGA set-up. The block diagram of the FPGA-based test infrastructure is shown. FPGA controls all the test protocol to test Flex-RVs.
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Extended Data Fig. 6 | OEP assembly. The cross-section of the OEP assembly process of assembling Flex-RV as a FlexIC onto a FlexPCB is shown.



Extended Data Table 1 | C-SPI commands

Write modes and corresponding data portion written into the 32-bit memory word are shown. 
Either a byte or a word can be written.
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Extended Data Table 2 | Test benchmarks used to test Flex-RV

At the end of the run, each test benchmark sends the results through the GPIO pin.
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