10

11

12

13

14

15

16

17

18

19

20

21

22

23

Title:

End-to-End Heterogeneous Graph Neural Networks for Traffic Assignment

Authors:

Tong Liu

Department of Civil and Environmental Engineering
University of Illinois, Urbana-Champaign
tongl5@illinois.edu
https://orcid.org/0000-0002-3667-917X

Hadi Meidani*

Department of Civil and Environmental Engineering
University of Illinois, Urbana-Champaign
meidani@illinois.edu
https://orcid.org/0000-0003-4651-2696

Corresponding Author:
Hadi Meidani, meidani@illinois.edu

N

4

25

26

27

28

Highlights

A novel heterogeneous GNN-based approach is proposed for static traffic assignment
GNN model includes "real" roadway links and "virtual" links connecting OD pairs
Flow conservation loss is added as a physics-based term in the loss function.

Model is generalizable to different network topologies and OD demands.

29

30

31

32

Abstract

The traffic assignment problem is one of the significant components of traffic flow analysis for which various
solution approaches have been proposed. However, deploying these approaches for large-scale networks
poses significant challenges. In this paper, we leverage the power of heterogeneous graph neural networks
to propose a novel end-to-end surrogate model for traffic assignment, specifically user equilibrium traffic
assignment problems. Our model integrates an adaptive graph attention mechanism with auxiliary "virtual"
links connecting origin-destination node pairs, This integration enables the model to capture spatial traffic
patterns across different links, By incorporating the node-based flow conservation law into the overall loss
function, the model ensures the prediction results in compliance with flow conservation principles, resulting
in highly accurate predictions for both link flow and flow-capacity ratios. We present numerical experiments
on urban transportation networks and show that the proposed heterogeneous graph neural network model
outperforms other conventional neural network models in terms of convergence rate and prediction accuracy.
Notably, by introducing two different training strategies, the proposed heterogeneous graph neural network
model can also be generalized to different network topologies. This approach offers a promising solution for
complex traffic flow analysis and prediction, enhancing our understanding and management of a wide range
of transportation systems.

Keywords: traffic assignment problem, graph neural network, traffic flow prediction, flow conservation,
heterogeneity

Preprint submitted to Transportation Research Part C: Emerging Technologies February 19, 2025

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

1. Introduction

Traffic assignment plays a significant role in transportation network analysis. Solving the traffic assignment
problem (TAP) enables a deeper understanding of traffic flow patterns and provides insights into traffic
congestion and environmental impacts (Nie et al., 2004; Cheng and Lin, 2024). The primary objective of the
TAP is to determine the traffic flow distribution and identify traffic bottlenecks on a given road network.
Such analysis enables city planners to make a strategic plan for mitigating traffic congestion. For solving
traffic assignment problems, there are two major formulations with different assumptions (Seliverstov et al.,
2017): (1) the user equilibrium (UE) assignment and (2) the system optimum (SO) assignment. The UE
assignment identifies an equilibrium state in which drivers between each origin-destination (OD) pair cannot
reduce travel costs by unilaterally shifting to another route. On the other hand, in the SO assignment, drivers
choose the routes collaboratively so that the total system travel time is minimized.

In addition to network analysis, traffic assignment has broader implications in various research and
practical areas such as regional resilience and urban planning. For instance, city planners leverage traffic
assignment to evaluate the network reliability under extreme event scenarios, including hurricanes (Zou
and Chen, 2020) and earthquake (Liu and Meidani, 2023a). These evaluations ensure the transportation
infrastructure aligns with the city’s evolving needs and requirements. Furthermore, the TAPs is employed in
road network design and retrofit investment optimization as a lower-level constraint in a bi-level optimization
problem (Madadi and de Almeida Correia, 2024).

A preliminary and critical step in setting up TAPs involves obtaining accurate regional OD demands.
While there have been significant methodological advancements in OD demand estimation (Tang et al., 2021),
the existing practical challenges lead to inaccurate estimation (Sun et al., 2022). To illustrate, the current
traffic assignment methodologies don’t fully investigate the model performance under incomplete/missing OD
demand information. This issue underscores a research gap in effectively solving TAPs and estimating traffic
flows under inaccurate OD demand scenarios.

Neural networks have demonstrated their capability for data imputation and data construction. Recently,
convolutional neural networks (CNNs) (Fan et al., 2023) and graph neural networks (GNNs) (Rahman and
Hasan, 2023) have been utilized to solve TAPs. Despite their improvement, these models encountered a few
limitations. First of all, the CNN-based model cannot fully capture the topologies of transportation systems.
Furthermore, the aforementioned models don’t adequately consider the transportation network under various
scenarios, e.g., link capacity reduction due to traffic accidents or lane closures due to maintenance. Last but
not least, how these models perform under out-of-distribution data is not comprehensively explored. These
limitations highlight the need for further research to enhance the adaptability and real-world applicability of
neural networks for traffic assignment problems, specifically under the scenarios of unexpected events and
incomplete OD demand.

It should be noted that the distribution of link flows depends on the demand levels between different OD
pairs. However, generally the graph representation of the transportation system only includes the physical
roadway links, and a direct link between origin and destination nodes does not exist in the graph model
for OD pairs that are not directly connected. This motivates us to also include virtual links between origin
and destination node pairs in addition to the roadway links into the graph model. Considering this, we
propose a novel heterogeneous GNN surrogate model, to also integrate comprehensive OD demand information
and thereby enhance feature propagation across the network. Furthermore, our proposed model includes
a novel adaptive graph attention mechanism to propagate the node features efficiently, a component to
transform node embeddings into link embeddings for link flow and flow-capacity ratio estimation, and a
conservation-based loss function. To summarize, the major contributions of this work are as follows: (1) This
is the first GNN learning of UE-TAP that integrates interdependencies between origin and destination nodes
via a heterogeneous graph structure that consists of physical and virtual links and an adaptive attention-based
mechanism; (2) the proposed model is trained using data and the governing conservation law and as a result,
the estimated flows are more accurate; (3) due to the integration of virtual links and regularization based
on the conservation law, the performance on unseen graphs is improved. In this paper, the efficiency and
generalization capability of the proposed model are investigated through multiple experiments with different
road network topologies, link characteristics, and OD demands.

The remainder of this article is structured as follows. Section 2 provides a review of related literature.
General backgrounds on the traffic assignment problem, the neural network and graph neural network models

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

are presented in Section 3. Section 4 includes the explanation of the proposed heterogeneous graph neural
network for traffic assignment. Furthermore, the experiments with urban road networks and generalized
synthetic networks are presented to demonstrate the accuracy and generalization capability of the proposed
framework in Section 5. Finally, the conclusion and discussion of the proposed framework are presented in
Section 6.

2. Related Literature

The literature related to the estimation of traffic flows in transportation networks is discussed below under
two areas of OD demand estimation and traffic assignment. By drawing insights from these related works,
we have developed a robust and comprehensive approach to address the challenges associated with traffic
assignment problems, particularly under network disruption events and incomplete OD demand data.

2.1. OD Demand Estimation

The primary challenge in predicting OD demands lies in the inability to directly measure demand using
traffic sensors. Instead, researchers have developed models to infer the demand information from aggregated
data collected on roadways. For instance, the autoregressive integrated moving average model has been
developed to forecast traffic demand across different regions (Deng and Ji, 2011). Also, OD demands were
estimated based on high-quality link flow counts using the Kalman filter (Zhou and Mahmassani, 2007).
In an optimization framework, Zhang et al. (2020) formulated the OD estimation problem as a quadratic
programming and then solved it using the alternating direction method of multipliers.

More recently, neural networks have been widely adopted for OD demand estimation due to their capability
to model complex temporal and spatial dependencies in transportation datasets. For instance, Xiong et al.
(2020) integrated link graph neural networks with Kalman filters to predict OD demand. Also, Tang et al.
(2021) employed a three-dimensional convolution neural network to learn the high-dimensional correlations
between local traffic patterns and OD flows. Despite these methodological advancements, practical challenges
such as sensor failures and malfunctions pose significant risks. These issues can result in the loss of relevant
and reliable OD demand information, leading to inaccuracies in demand estimation, and consequently in the
prediction of traffic flows Sun et al. (2022).

2.2. Traffic Assignment Problem

Solving the traffic assignment problem provides a deeper understanding of traffic flow patterns and offers
insights into managing traffic congestion. As a result, more efficient and reliable solution of traffic assignment
problem has been the focus of many recent studies. For instance, Lee et al. (2003) aimed at improving
convergence and computational efficiency in large-scale traffic networks by proposing a conjugate gradient
projection to enhance the gradient projection. Furthermore, Babazadeh et al. (2020) proposed a reduced
gradient algorithm by selecting non-basic paths, to effectively manage computational complexity. However,
these models rely on the assumption that the regional OD demand is accurate. In scenarios where OD
demand information is incomplete or missing, conventional approaches tend to underestimate the link-wise
traffic flow.

Recently, neural networks have demonstrated remarkable capabilities in data reconstruction and general-
ization (Zhang et al., 2018; Liu and Meidani, 2024), presenting a potential solution for the issue of missing
OD demands. However, the literature on neural networks in TAPs remains relatively scarce. One of the main
approaches utilizes convolutional neural networks. For instance, Fan et al. (2023) utilized recurrent CNNs for
traffic assignment problems by considering the transportation network as the grid map, specifically under
incomplete OD demands. Furthermore, since GNNs are inherently able to capture spatial information from
graph topologies (Liu and Meidani, 2022), they were also used to solve TAPs Rahman and Hasan (2023).

2.8. Summary

In summary, despite significant advances enabled by deep learning, a comprehensive graph neural network-
based framework for equilibrium-based traffic assignment and link-wise flow estimation remains elusive.
Firstly, it is challenging to recover the traffic flow distribution from incomplete OD demand. Secondly, the
performance of these models under out-of-distribution data has not been thoroughly investigated. Last but
not least, further investigations are required to adequately consider the transportation network under various
scenarios, e.g., link capacity reduction and lane closures.

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

3. Technical Background

3.1. Traffic Assignment Problem

The traffic assignment problem involves assigning traffic volumes or flows to each edge in the network.
Given a transportation network represented as a graph G = (V, £), where nodes V represent intersections of
roads and edges &£ represent roads or links connecting these locations, The general form of traffic assignment
problem can be considered as an optimization task:

mfin: ZZe(fe), (1)

ecf

where f. and Z.(f.) are the total flow and the link cost function on link e, respectively. The link cost function
can be expressed as the function of travel time, travel distance, or other relevant factors. Besides, the traffic
assignment problem can have different formulations depending on the specific objectives and assumptions. For
instance, the (Beckmann et al., 1956) addresses the user equilibrium traffic assignment problem by optimizing
the following objective function:

min: 2(z) =3 /O (@)

ecf

s.t. Zf};g = qps, Vr,s €YV,
k

25 >0, Ve, r,s €V,
Te= Y FIC5. Ve €L,
rs k

where the objective function is the summation over all road segments of the integral of the link travel time
function between 0 and the link flow. ¢.(-) is the link travel time function, ¢,s is the total demand from
source r to destination s, f;® represents the flow on kY™ path from 7 to s. ngc is the binary value, which
equals 1 when link e is on k*" connecting r and s. It is noted that the objective function in Beckmann’s
formulation serves more as a mathematical construct for optimization than a direct physical representation.
Compared with UE-TAP, SO-TAP changes the objective function to the summation of the travel time of all
vehicles, which reflects a system-optimized perspective.

3.2. Neural Networks

Without loss of generality, we begin by considering a neural network with a single layer. Given a
p-dimensional input vector h¥ € RP, g-dimensional the output h**! € R? of single layer neural network, the
layer indexed by k can be expressed as:

h** = o(K*Wy + by), (3)

where W), € RPX? and by, € R'*9? represent the weight and bias term, respectively. The non-linear activation
function o(-) is utilized in the neural network. Theoretically, a single-layer neural network with an infinite
number of neurons can approximate any continuous function to arbitrary accuracy, given a sufficiently large
dataset (Hornik et al., 1989). However, due to limitations in network width, dataset size, and the challenge
of tuning parameters, a single-layer network is not optimal for achieving top performance, which leads to
overfitting and poor generalization performance. To alleviate the limitation, multiple neural network layers
are stacked together to enhance its expressibility and capture complex hierarchical features.

3.3. Graph Neural Network

Neural networks have shown remarkable performance in various applications. In most neural network
applications, input data structures are normally fixed, which is also called Euclidean data. However, non-
Euclidean data structure such as graph-structured data is pervasive in different applications. The complexity
and variability of the graph structure data make it difficult to model with conventional neural network
architectures. To address this challenge, GNNs are specifically designed to handle graph-structured data.

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

It operates on the node features and edge features and learns to extract embedding from nodes and edges,
aiming to capture the underlying graph structure.

There are different types of graph neural network formulation. One of the popular approaches is the
spectral approach (Wang and Zhang, 2022). Spectral graph convolution is a type of convolution operation on
graph signals that uses the graph Fourier transform. It operates in the frequency domain and utilizes the
eigenvalues and eigenvectors of the graph Laplacian to filter the node features. Given a graph G = (V,€)
with adjacency matrix A and diagonal degree matrix D = diag(Af), the Laplacian matrix and normalized
Laplacian matrix of the graph is defined as L = D — A and Lo, = D :LD 2, respectively. The spectral
graph convolution is defined mathematically as:

go*x=Ugg(U), (4)

where gy is a filter with learnable parameters 0, & € RIVI*Nr is the input features with |V| nodes and Np
features per node, and U is the eigenvectors of L., The input signal is first transformed into the spectral
domain. The features are passed through the learnable filter and transformed back into the spatial domain.
The graph spectral operator can be applied to graphs of varying sizes. As a different approach to modeling
graph data, the graph attention network (GAT) learns the graph feature by computing attention scores for
each node based on its features and the features of its neighbors (Veli¢kovié et al., 2017). The graph attention
network computes the new node representation @ for each node i as follows:

N

ZB; =0 ZaijWI:cj s (5)
Jj=1

where o is an activation function, W, is a learnable weight matrix, and «;; is the attention weight assigned
to the node j related to its neighbour node . The attention weights are computed as follows:

_ exp(o(a’ [Wem; © Wowj)))
> keniy explo(a” [Wez; & Wexj]))’

where a is a learnable weight vector, N/ (7) is the set of neighboring nodes of node 4, & denotes concatenation
function. The graph attention mechanism can be stacked into multiple layers, with each layer learning
increasingly complex representations of the graph. The attention mechanism allows the network to learn the
different importance of different nodes within a neighborhood, which can improve model performance.

The aforementioned formulation is valid for homogeneous graphs, where all nodes and edges have the same
semantic meaning. However, it is noted that real-world graphs are not always homogeneous. For instance, in
the literature citation graph, nodes can represent various entities such as papers, authors, and journals, while
edges may denote different semantic relationships. When the graph contains different types of nodes or edges,
it is considered as a heterogeneous graph. Utilizing GNNs on heterogeneous graphs offers notable advantages
over homogeneous counterparts, particularly in the ability to learn type-specific representations for each node
and edge type (Wang et al., 2019b; Fu et al., 2020). This allows for more accurate and targeted modeling
of each entity and relationship, leading to improved performance on downstream tasks (Zhao et al., 2021).
In the following sections, we will leverage the expressiveness of the heterogeneous graph neural network to
estimate the traffic flow performance under different OD demand settings.

(6)

Otij

4. Heterogeneous Graph Neural Networks for Traffic Assignment

In this section, we elaborate on the proposed architecture of the heterogeneous graph neural networks for
traffic assignment. The illustration of the proposed model is shown in Fig. 1. It consists of three modules:
graph construction & feature preprocessing module; spatial feature extraction module, and edge prediction
module. The detail explanation of each module is described as follows.

4.1. Graph Construction & Feature Preprocessing

The heterogeneous graph G = (V, €., &,) for traffic assignment consists of one type of node representing
the intersections of road segments and two edge types: real links and virtual links. The real links represent the

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

Network Info —|

Figure 1: The illustration of the heterogeneous graph neural network for traffic assignment. The proposed model consists of
three parts: graph construction & feature preprocessing module; spatial feature extraction module, and edge prediction module.
The graph features are first passed into the virtual encoder (V-Encoder) through the virtual links. Then the graph embeddings
are passed into the real encoder (R-Encoder) through the real links. The flow-capacity ratio and link flow of each link are
calculated using the source node feature, destination node feature, and normalized edge feature.

road segments in the road network, while the virtual links represent the auxiliary link between the origin and
destination nodes. The incorporation of the virtual link, as an edge augmentation technique, is strategically
employed to facilitate enhanced feature updating. In this model, the node feature attribute is denoted as
X, € RIVIX(IVI+2) where V represents the graph’s node set. Specifically, each row x, € R'*(IVI+2) within
this matrix corresponds to the feature vector of a single node u € V including the origin-destination demand
as well as geographical coordinates. The feature representation for the entire set of real edges is represented
with X, , € RI€-1X2 Each row in this matrix includes the free-flow travel time and the link capacity for a
single link.

Furthermore, the original node features are often sparse and non-normalized. To address this issue, we
employ a preprocessing step to encode the raw features into a lower-dimensional representation. This process
not only captures the essential attributes of the data but also retains the semantic information. The generated
node feature embedding size is X0 € RIVIXNo where N, is the embedding size. Similarly, the edge features
are also normalized before being propagated in the message passing. Additionally, it should be noted that
there is an overlap between the real links and virtual links in the heterogeneous graph because it is possible
that a road and an OD demand both exist between the same node pair.

4.2. Graph Spatial Features Extraction

As discussed in Section 3.3, the key challenge in heterogeneous graphs lies in effectively aggregating diverse
node and edge information. To address this challenge, we propose a novel sequential graph encoder for feature
extraction and propagation. The sequential graph encoder is twofold: virtual graph encoder (V-Encoder) and
real graph encoder (R-Encoder). Each part leverages attention mechanisms tailored to either virtual or real
links, respectively. We will elaborate on these components in the following sections.

4.2.1. Virtual Graph Encoder (V-Encoder)

As the first step of spatial feature extraction, we employ a graph transformer-based attention mechanism
on graph features to enhance the modeling capability. Specifically, we transform node features into key,
query, and value matrices and then calculate the attention score between node pairs. Furthermore, since the
virtual links are synthetically generated without inherent edge features, we introduce a learnable adaptive
weight for virtual links, serving as their edge features. The adaptive weight for each node pair is derived
by concatenating the two node features and passing through a position-wise feed-forward network (FFN).
Mathematically, L*® V-Encoder can be expressed as:

Li 1L o Li_ L Li vyl yirLii
q kT vt =y (W W W Yu €V

BL = FFN ([a:ﬁz @zl Wi, bé’i) , Ve=(uv) €&,

(7)

I qL,ikL,i I
st =exp | H=-p5", Ve = (u,v) € €,
b= (L) s

where ! is the feature embedding of node u € V at L' layer of V-Encoder. q0) € Rz, k. e R, and
vy € R? is the query, key, and value vector at i*" head in V-Encoder where d;, denotes the dimensionality

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

of the feature vectors. W(, and b is the learnable parameters. Lt e R and st € R represents the
learnable adaptive weight and the unnormalized attention score of the edge e = (u,v) € &, at i*™® head of
L™ layer, respectively. @ is the concatenation operator. The introduction of edge-level adaptive weights
is motivated by the fact that the observed variability in low-dimensional node embedding, in turn reflects
the variability in node OD demand. Specifically, node pairs with higher OD demands should receive higher
attention scores since they have more significant impacts on the flow distribution. By introducing the
adaptive edge-level weight, the graph encoder can adjust the attention score among these node pairs and
adaptively propagate the most relevant information through virtual links, thereby enriching the model’s
contextual understanding. Then value vectors normalized by the attention scores, are processed through
another position-wise feed-forward network, accompanied by layer normalization. Additionally, a residual
connection supplements the final output of the layer, ensuring the integration of original input features with
learned representations for enhanced model performance. Finally, the output of the V-encoder is obtained by
concatenating the outputs from all attention heads:

zi)i = Z (Luzv) v / Z (U v)?

vEN, (u) vEN, (u)
Lt = gl' + LayerNorm (FFN ()", W' bl1)) |, VueV ®)
bt = [azﬁ“” ozt e @l
where zL ¢ represents the normalized weighted vector of node u and N, (u) represents all the outgoing nodes

connected to u. Nj represents the number of attention heads of the V-Encoder. To enhance the propagation
of node features throughout the network, we sequentially stack multiple layers of the V-Encoder. The final
output of this stacked V-Encoder, denoted as H?, serves as the input for the subsequent encoder.

4.2.2. Real Graph Encoder (R-Encoder)

The R-Encoder is designed to enhance and complement the functionality of the V-Encoder. These two
encoders share a similar architecture but slightly differ in the graph attention score mechanism. To illustrate,
some nodes in the V-Encoder do not exchange messages with others due to the absence of virtual link
connections. The R-Encoder addresses this issue by updating node features through real links, ensuring a
comprehensive assessment of direct and indirect node relationships. From a mathematical perspective, the
M*h layer of R-Encoder is expressed as follows:

M M M — hM [WM,j Wé\ij WMJ]’ Yu ey
, a]kMJ
sMI = exp (Z du ip) , Ve = (u,v) € &,
AMi = S MM 3 Yu eV ©)
u (u v) Uy (u v)’

veN, (u) vEN, (u)
hMFLi — pMJ 4 LayerNorm (FFN (2 M.j. wMi bM’j)) , VueV
RM+L = [hMJrlO@hMH1@...@hﬁ4+1th] , Yu eV

where hM is the feature embedding of node u € V at M*" layer of R-Encoder. q. € Réz, ke R and
vy € R? is the query, key, and value matrices at j* head of R-Encoder. W, and by are the learnable
parameters. (; , represents the p'? normalized edge feature of link e € &,. Despite the subtle difference in
the attention mechanism, the node features are propagated in two distinct patterns in the V-Encoder and
R-Encoder. To illustrate, the V-Encoder captures the long-range dependency between nodes and integrates
the contextual information from non-adjacent nodes. On the contrary, the R-Encoder captures the local
topological relationships. Compared with the homogeneous graph with only real links, the additional feature
propagation through virtual links can be considered as a dimension-reduction technique to reduce the number
of hops required for distant nodes to gather messages. Consequently, it requires fewer GNN layers for effective
feature aggregation and following edge prediction. Similar to the V-Encoder, the multiple R-Encoder layers
are stacked together, and the output of the last R-Encoder O, serves as the input for link flow prediction.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

4.8. Graph Edge Prediction

To predict the traffic flow at the edge level, the node embedding of the source node and destination node,
and the normalized real edge feature are concatenated and passed through a feed-forward neural network. In
this paper, we consider the flow-capacity ratio &, as the quantity of the final link prediction, which is the
link flow normalized by the link capacity:

@& = MLP(Jo, ® 0, @© BL]; W, b,), Ve = (u,v) €&, (10)

where o(.,y represent the node embedding. W, and b, is the learnable parameters associated with the
multilayer perception. The predicted link flows fe can be calculated by multiplying the link capacity with
the predicted flow-capacity ratio. Subsequently, selecting an appropriate loss function becomes crucial to
ensure the model’s effective convergence. The proposed model employs a composite loss function comprising
two components. The first part is the supervised loss, which measures the difference between prediction and
ground truth. It considers both the discrepancy from the flow-capacity ratio L, and the link flow L; on each
link:

LS:L + L

11

S lae = el + == S llfe = Lol ()
|5‘ees |5|eeg

where the o, and a. represent the ground truth and prediction of flow-capacity ratio on link e € £. The
fe and f. represent the ground truth and prediction of link flow on link e € £. The second part of the
loss function originates from the principle of node-based flow conservation, where the total flow of traffic
entering a node equals the total flow of traffic exiting that node. The node-based flow conservation law can
be represented mathematically:

Ovi — Npey Oinws it i € Vo,
S fi— > fii=Afi= { 2 vey Ovii = 2y O, oD (12)
k J

0 otherwise ,

where fi; denotes the flow on the link (k,7), Af; represents the difference between flow receiving and sending
at node ¢, O, ; represents the number of OD demand from v to . Vop denote the origin-destination node set.
The node-based flow conservation law can be considered as a normalization loss, thereby ensuring compliance
with the fundamental principle of flow conservation. One common way to incorporate conservation law into
the loss function is to define a residual loss function:

Le=> 1 > fu— > fij—Afil, (13)

i keN;(3) JENG (i)

where N;(i) represent the incoming edges of node i. The normalization loss L. measures how the flow
prediction satisfies the flow conservation law. Minimizing this loss function during training will encourage the
model to learn traffic flow patterns that satisfy the conservation law. Consequently. the total loss for the flow
prediction Lsetq; is the weighted summation of the supervised loss and the conservation loss:

Ltotal = waLa + waf + wch (14)

where the w,, wy and w, represent the normalized weight for supervised loss of flow-capacity ratio, supervised
loss of actual flow, and the conservation loss, respectively.

5. Numerical Experiments

Two numerical experiments are conducted to evaluate the accuracy, efficiency, and generalization capability
of the proposed graph neural network. The first experiment is on urban transportation networks. The second
experiment is on multiple synthetic graphs with different topologies. The details of the experiments will be
explained in the following sections.

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Table 1: The detail of urban transportation network. Three networks, including Sioux Falls, East Massachusetts, and Anaheim,
are considered.

Network Name [V| || Average Degree OD Demand

Sioux Falls 24 76 3.17 188,960
EMA 74 258 3.49 132,106
Anaheim 416 914 3.05 226,279

5.1. Ezxperiments on Urban Transportation Networks
5.1.1. Characteristics of networks

As case studies, three urban transportation networks are selected: Sioux Falls network, East Massachusetts
Network (EMA), and Anaheim network. The information about the network topology, link characteristics,
and the OD demand of these networks are obtained from (Bar-Gera et al., 2023). The statistics and the
illustration of the network topologies are shown in Table 1 and Figure 2, respectively. To create demand
variation, we scaled the demand by a scaling factor according to

Oss =62, O, (15)

where O ; is the default OD demand between source s and destination ¢ and 03 , ~ U(0.5,1.5) is the uniformly
distributed random scaling factor for the OD pair (s, t). Additionally, to account for variations in network
properties, variable link capacities are created according to

6a - 52 Ca, (16)

where ¢, is the original link capacity for link a, and 6 is the scaling factor for link a. Capacity variations
are considered to be due to traffic accidents, road construction/damage, and adverse weather conditions,
which reduce the link capacity. In this work, three levels of capacity reduction are considered: (L): light
disruption with §5 ~ U(0.8,1.0); (M) moderate disruption with §¢ ~ U(0.5,1.0); (H) high disruption with
d¢ ~ U(0.2,1.0).

5.1.2. Training setup and model architecture

The size of the dataset for each network at each disruption scenario is 5000, which is split into the
training set and the testing set with a ratio of 80% and 20%, respectively. To demonstrate the dataset is
sufficiently diverse to cover enough scenarios, the coefficient of variation of network link capacity and OD
demand is calculated and the histogram of the link capacity and the OD demand of training and testing
data is shown in Figure 3. The OD demand of each network is normalized to 100 in order to facilitate a
standardized comparison across different networks regardless of their actual size or demand volumes. The
minimum coefficient of variation of link capacity and OD demand among the three networks is 0.45 and 0.22,

respectively, which indicates the training and testing data are sufficiently diverse to cover different scenarios
(Bedeian and Mossholder, 2000; Campbell et al., 2010).

500 80 120
43.61 e — 42.7 33.87{ 4 \
400 ~ 0 [NQNQE : 100
/ : % Y ~N— 80 B
X X
4357 — 300 o 325 505> 93383 ~ J OIS >
2 S 3 g 2 ; 60 G
=1 ° = 40 % =1 (1 4
5 2008 ®uog s 5 . &
43.53 N © -4 308 33.79 a0 ©
£ / £ LA A <
/ 100= 235 A 20 ~
43.49 421 10 33.75
—96.80 -96.75 —96.70 0 -70.4 -70.2 -70.0 —-69.8 0 -118.0 -117.9 -117.8 0
Longitude Longitude Longitude
(a) Sioux Falls network (b) EMA network (c) Anaheim network

Figure 2: The illustrations of urban transportation networks, including Sioux Falls, EMA, and Anaheim.

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

0.3

Sioux Falls Sioux Falls
EMA . EMA
. Anaheim ' Anaheim
30.2 3
= C
g 204
=3 o
Qo (9]
0.1 fre
0.2
2! =
0075100 200 300 400 0.0 25 50 75 100
Link capacity (1 x 102 veh) Normalized OD demand

Figure 3: The histogram of the link capacity and OD demand in the training and testing data. Three transportation networks
are considered including Sioux Falls, EMA, and Anaheim network.

The training and testing dataset are obtained by solving UE-TAP with the Frank-Wolfe algorithm
(Fukushima, 1984). The algorithm converges when the square root of the sum of the squared differences
between the link flow in two successive iterations, normalized by the sum of the values of the link flow, falls
below the threshold of 1e-5. The GNN model is implemented using PyTorch (Paszke et al., 2019) and DGL
(Wang et al., 2019a). The preprocessing layer consists of a three-layer fully connected neural network with an
embedding size of 32. The number of GNN layers in the proposed model is 4, including two V-Encoders and
two R-Encoders. The number of heads in the attention block is 8. For hyper-parameter selection, the hidden
layer size is chosen as 64, which is common in neural network implementation (Liu and Meidani, 2023b). The
learning rate and batch size of training are 0.001 and 128, respectively. The weights of L, L¢, and L. in
equation 14 are chosen as 1.0, 0.005, and 0.05, respectively.

We evaluated the performance of our proposed heterogeneous GNN model (referred to by HetGAT) and
compared it with three benchmark models: a fully connected neural network (FCNN), a homogeneous graph
attention network (GAT), and a homogeneous graph convolution network (GCN) (Rahman and Hasan, 2023).
The FCNN consisted of five fully connected layers with an embedding size of 64. The GAT and GCN both
have four layers of graph message passing layer, followed by three layers of FCNN with an embedding size of
64. The metrics to evaluate performance include the mean absolute error (MAE), root mean square error
(RMSE), and the normalized conservation loss Le:

N
1 _
MAE = N Z lyi — il (17)
i=1
1 N
RMSE = | + > (i —)% (18)
i=1

i > ZkeM(i) i — Zje/\/’,,(i) fij — Afil
Es Zt Os,t ’

where y and gy respectively represent the ground truth and predicted values for quantity of interest. We
conducted a 5-fold cross-validation for each experiment to ensure the robustness of our results across different
subsets of the data.

(19)

5.1.83. Numerical results

The training histories of the studied models are shown in Figure 4. The results indicate that the FCNN
model performed poorly during training compared to GNN-based models, as shown by the high training
loss and early stagnation. In contrast, GCN and GAT models exhibited similar convergence rates. Our
proposed model outperformed both GCN and GAT in terms of training loss. Especially when used for larger
networks, the proposed model demonstrated superior convergence performance compared to GCN and GAT;
for the Anaheim network, the training loss of the proposed model is almost 1/3 of that of GAT in the first
25 iterations. This is because GCN and GAT only consider homogeneous edges, which limits the message

10

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

passing to adjacent nodes. In contrast, the proposed GNN model uses virtual links and provides augmented
connectivity to long-hop node pairs, which makes the node feature updating in HetGAT more efficient.

10! 101 10!
—— FCNN —— FCNN
—— FCNN

= —— HetGAT g 10 — HetGAT 2 —— HetGAT
£ g £
c = c .
‘s 1071 ‘T ‘s 107t ——

1072 -2 1072

0 50 100 150 200 1075 100 150 200 0 50 100 150 200
Epoch Epoch Epoch
(a) Sioux Falls network (b) EMA network (c) Anaheim network

Figure 4: Training loss history under urban transportation network. Three benchmarks, including FCNN, GCN, and GAT, are
compared with HetGAT.

= il o | T]
;100 ; E | .
§ - MW@ Méw %# YM }M %éﬁ ﬁ ? % 50 WM %M ww WN%MQ W g N %WMMwwMmW%mﬁt

Figure 5: Illustrations of the link-wise flow distribution for different transportation networks. Three transportation networks
under major disruption are considered, including Sioux Falls, EMA, and Anaheim networks. 50 links are selected for each
network.

After the training is finished, the model performance is evaluated on the testing set. The experiments
under the urban road network are conducted in three different settings. The first setting, referred to as
LMH-LMH, involved using all levels of disruption (flow reduction scaling levels) in both the training and
testing sets. The second setting, namely L-M, involves training the model on light disruption data and
testing it on medium disruption data. The third case, which is labeled as M-H, involves training on medium
disruption data and testing on high disruption data. The L-M and M-H scenarios will therefore involve
unseen cases that don’t exist in the training data. Figure 5 shows the variations in link flows over the three
networks under high disruption. The average coeflicients of variation of actual link flow for three networks
are 0.297, 0.242, and 0.201, respectively. Furthermore, Figure 6 shows the predicted value and ground
truth of the link flows on multiple samples in the Anaheim network under the LMH-LMH setting. In total,
the flow-capacity ratio on 10,000 edges is predicted using HetGAT, GAT, and GCN, respectively. Also, to
compare the predictions with ground truth, ccorrelation coefficients and pairwise comparisons are shown in
Figure 6, indicating that HetGAT outperforms GAT and GCN.

Table 2 summarizes the prediction performance of all methods under different settings, and shows that
HetGAT, compared to other models, offers better performance. When the graph size increases, the proposed
model maintains a relatively low MAE compared to GCN and GAT. For instance, in the EMA network,
HetGAT offers flow MAEs that are 39.5%, 56.4%, and 38.8% lower than the second best result, in LMH-LMH,
L-M, and M-H settings, respectively. In the Anaheim network, HetGAT offers flow MAEs that are 27.2%,
47.4%, and 33.1% lower than the second-best result in LMH-LMH, L-M, and M-H settings, respectively. This
shows that the inclusion of virtual links can assist GNN models in better learning the traffic flow patterns. In
addition to the prediction accuracy, the training time is also an important factor in evaluating the efficiency

11

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

and practicality of machine learning models. The computational time is mainly threefold: time for solving
UE-TAP, GNN training time, and GNN inference time. For Sioux Falls, EMA, and Anaheim networks, the
time for solving UE-TAP is 56.8, 575.2, and 2612.5 min, respectively. In comparison, the training time of
HetGAT is 26.8, 28.9, and 59.7 min, respectively. Moreover, for every 1000 graphs, the inference time of the
proposed model is notably efficient at 0.13, 0.15, and 0.31 min, respectively. The computational time of each
component demonstrates the computational efficiency of the proposed model for solving traffic assignment
problems.

40 40 40
R? = 0.987 R? = 0.969

v\g 30 ‘g 30 v\g 30

— ~— —

X X X

520 §20 520

© © ©

] °]

2 2 2

a 10 a 10 a 10

0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Ground truth (x10?) Ground truth (x10?) Ground truth (x10?)
(a) HetGAT (b) GAT (c) GCN

Figure 6: Comparison of link flow between ground truth and surrogate model prediction in the Anaheim network under
LMH-LMH setting.

Table 2: Performance comparison of HetGAT with benchmark methods. Three different settings are included: LMH-LMH, L-M,
M-H. The mean absolute error, root mean square error, and normalized conservation loss are used to evaluate the prediction
performance on the testing set.

LMH-LMH L-M M-H
Network Model Flow Link Flow Link Flow Link
(1 x 10?) utilization L. (1 x 10%) utilization L. (1% 10?) utilization L.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

FCNN 1931 30.22 16.29% 26.39% 0.38 | 18.64 27.31 15.87% 24.55% 0.37 | 32.85 48.08 30.09% 44.99% 0.70
GCN 5.62 8.80 4.78% 7.74% 011 | 543 7.95 4.62% 7.15% 0.14 | 9.57 14.00 8.64% 12.87% 0.22
GAT 5.60 8.75 4.74% 7.68% 0.11 | 5.54 8.18 4.62% 7.15% 0.11 | 9.55 13.99 876% 13.10% 0.20
HetGAT 3.58 5.56 2.99% 4.74% 0.07 | 3.73 5.39 2.99% 4.36% 0.07 | 7.01 10.39 6.32% 9.52% 0.08
FCNN 7.51 14.82 25.56% 63.89% 0.81 | 9.04 17.70 32.36% 61.87% 0.46 | 13.82 24.68 60.47% 122.94% 0.62
GCN 1.99 3.92 7.62% 18.32% 0.17 | 2.39 4.69 7.78% 14.65% 0.08 | 3.66 6.53 14.35% 30.33% 0.12

Sioux Falls

EMA GAT 1.77 3.62 6.77% 16.91% 0.21 | 2.39 4.69 8.57% 16.38% 0.12 | 3.83 6.87 16.01% 32.54% 0.17
HetGAT 0.98 2.21 3.48% 8.08% 0.07 | 1.05 2.06 3.52% 6.85% 0.03 | 2.49 4.79 9.24% 20.50% 0.07

FCNN 10.61 16.73 24.72% 45.03% 0.81 | 15.82 2859 38.44% 69.66% 0.23 | 18.74 29.82 49.70% 84.45% 0.25

Anaheim GCN 2.18 3.44 6.54% 11.53% 0.29 | 3.25 5.88 9.31% 17.09% 0.07 | 3.85 6.13 12.37% 20.74% 0.08

GAT 1.47 2.55 4.77% 8.69% 0.16 | 2.32 4.18 7.42% 13.45% 0.05 | 3.31 5.14 9.59% 16.30% 0.05
HetGAT 1.04 1.81 2.97% 5.46% 0.08 | 1.19 1.85 3.31% 5.45% 0.02 | 2.17 3.37 6.66% 10.85% 0.03

5.1.4. Incomplete OD demand data

As an additional experiment, we consider a realistic scenario where the regional OD demand values are
incomplete by introducing a random binary mask to the original OD demand, More specifically, given a
specific missing ratio, we randomly select a number of OD pairs and mask their corresponding OD demand
values as zeros in the input node feature. In this way, the model is expected to learn the inherent patterns
and structures of the transportation network, even when some of the demand information is missing. The
effectiveness of the proposed model under incomplete OD demand scenarios will be evaluated by comparing the
predicted traffic flows against the ground truth data obtained from the complete OD demand. Three missing
ratios are considered in the experiment: 20%, 30%, and 40%. The training setting and the hyperparameters
remain the same as those in the aforementioned experiments. Table 3 summarizes the results of prediction
performance under different missing rate scenarios for the LMH-LMH setting. The FCNN model is not
considered in these experiments because of their very poor performance in the previous experiments under full
OD demand. HetGAT still outperforms GAT and GCN under different networks and different missing ratios.

12

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

425

426

427

428

429

430

431

432

433

435

436

437

438

439

440

additionally, the flow predictions by HetGAT have relatively better compliance with the flow conservation law
compared with GAT and GCN. The superior performance of HetGAT in scenarios with missing OD demand
can be attributed to inclusion of virtual OD links and an adaptive attention mechanism, which captures the
inherent correlation between OD demand features and link flows from a lower-dimensional embedding space.
With the help of the V-encoder and R-encoder, HetGAT seeks to align incomplete demand embeddings with
complete OD demand embeddings in the embedding space. This alignment enables the model to effectively
reconstruct full OD demands from partial data, thereby enhancing the accuracy of its predictions.

Table 3: Comparison of the performance of HetGAT with benchmark under incomplete OD demand. Three missing ratios
are considered in the experiments: 20%, 30%, and 40%. The mean absolute error, root mean square error, and normalized
conservation loss, are used to evaluate the prediction performance on the testing set.

Missing ratio = 20% Missing ratio = 30% Missing ratio =40%
Network Model Flow Link Flow Link Flow Link
(1x10?) utilization L. (1x10%) utilization L. (1x10%) utilization L.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GCN 6.50 10.00 5.39% 8.62% 0.15 | 6.54 10.02 5.72% 9.19% 0.15 | 7.54 11.06 6.68% 10.60% 0.16

Sioux Falls GAT 6.64 1011 5.83% 9.25% 0.14 | 7.19 10.50 6.11% 9.45% 0.14 | 6.68 1013 5.78% 9.20% 0.15
HetGAT 4.05 6.04 3.33% 5.06% 0.08 | 4.13 6.14 3.38% 5.13% 0.09 | 4.15 6.08 3.45% 5.16% 0.09

GCN 2.14 4.11 8.06% 16.94% 0.24 | 2.15 4.10 787% 16.47% 0.25 | 2.14 4.12 8.03% 17.09% 0.26

EMA GAT 1.87 3.71 6.89% 16.65% 0.18 | 1.86 3.73 7.00% 16.77% 0.19 | 1.87 3.73 7.01% 16.97% 0.19
HetGAT 1.15 2.37 3.98% 8.40% 0.08 | 1.15 2.37 4.00% 8.24% 0.08 | 1.21 2.41 4.17% 8.67% 0.09

GCN 2.16 3.38 6.31% 10.86% 0.14 | 2.24 3.43 6.65% 11.18% 0.14 | 2.28 3.56 6.82% 11.72% 0.15

Anaheim GAT 1.62 2.70 4.80% 8.70% 012 | 1.74 2.85 521% 9.34% 013 | 1.68 2.78 4.98% 8.97% 0.12
HetGAT 1.11 1.91 3.17% 5.78% 0.06 | 1.08 1.87 3.08% 5.65% 0.05 | 1.09 1.89 3.12% 5.72% 0.05

5.2. Ezperiments on Generalized Synthetic Networks

In this section, unlike the experiments in Section 5.1, which involved training and testing on an identical
network topology, we examine the generalization capability of the proposed model to networks with varied
topologies. In particular, we consider real-world scenarios in which certain links in the network are fully
closed due to governmental directives or catastrophic events such as bridge collapses, leading to significant
alterations in network topology. Another scenario for topology alternation is when cities consider network
expansion to better serve increased mobility demands due to current urbanization trends. Under all these
scenarios, the resulting urban networks may exhibit both commonalities and disparities in their topologies
(Rodrigue, 2020). This is while training models separately for each distinct network requires substantial time
and effort. Motivated by the aforementioned considerations, our aim is to explore the generalization ability of
our HetGAT model over varying topologies. In this work, we conduct experiments on two sets of networks:
(1) modified urban networks of Section 5.1; (2) synthetic networks. The first set, includes networks that are
modifications of the original Sioux Falls, EMA, and Anaheim networks by adding and removing links.

5.2.1. Modified urban networks

In this section, we generate synthetic networks by modifying the three urban networks used in previous
seciton. For each of these networks, we generate 20 unique topological variations. Additionally, we incorporate
three configurations of OD demand in our experiments: complete OD setting, 20% and 40% incomplete
OD setting. The training setting and the hyperparameters remain the same as those in the aforementioned
experiments in Section 5.1. The results are presented in Table 4. It can be seen that compared to the results
in Table 2, HetGAT exhibits comparable levels of effectiveness for all networks. Additionally, in comparison
to other baseline models, our proposed Het GAT model consistently outperforms both GAT and GCN over
all networks, under both complete and incomplete OD scenarios. It is noteworthy that compared to the
homogeneous GNN model, since our model has captured the influence of OD pairs via virtual links, the
HetGAT model is more expressive and can better capture and learn the impact of topology alterations on
flow distributions.

5.2.2. Randomly generated graphs and generalization to variable graph size

The second set of synthetic networks are randomly generated by starting with a grid graph and then
adding links between randomly selected nodes. Furthermore, to emulate the real road network, a number of

13

441

442

443

444

445

446

447

448

449

450

Table 4: Performance comparison of HetGAT with benchmark methods on modified urban transportation network with link
addition and removal. The mean absolute error, root mean square error, and normalized conservation loss are used to evaluate
the prediction performance on the testing set.

Missing Ratio = 0% Missing Ratio = 20% Missing Ratio = 40%
Network Model Flow Link Flow Link Flow Link
(1 x 10%) utilization L. (1 x 10%) utilization L. (1 x 10%) utilization L.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GCN 10.12 1397 831% 11.77% 0.15 | 10.96 14.82 9.22% 13.05% 0.15 | 10.94 1504 9.05% 12.86% 0.15

Sioux GAT 7.16 9.89 6.10% 877% 0.13 | 10.78 14.40 9.11% 12.77% 0.14 | 1220 16.42 10.34% 14.58% 0.17
HetGAT 3.04 4.22 2.56% 3.75% 0.07 | 3.33 4.53 2.79% 3.96% 0.07 | 3.46 4.69 2.88% 4.08% 0.08

GCN 4.60 7.82 15.11% 26.42% 0.26 | 4.09 6.68 13.97% 24.71% 0.24 | 4.04 6.57 15.24% 31.99% 0.23

EMA GAT 2.70 4.50 9.97% 18.21% 0.14 | 2.73 4.55 10.04% 20.05% 0.15 | 2.86 4.72 10.50% 19.94% 0.15
HetGAT 1.28 2.39 4.09% 7.91% 0.06 | 1.34 2.47 4.29% 8.17% 0.07 | 1.42 2.57 4.56% 8.42% 0.07

GCN 6.02 9.93 16.29% 26.78% 0.40 | 5.93 9.83 15.98% 26.40% 0.31 | 6.04 9.99 16.24% 26.73% 0.37

Anaheim GAT 5.43 9.16 14.94% 25.20% 0.25 | 5.37 9.02 14.83% 25.01% 0.40 | 5.53 9.28 15.23% 25.60% 0.34
HetGAT 1.14 2.22 3.29% 6.79% 0.09 | 1.15 2.08 3.34% 6.49% 0.09 | 1.29 2.38 3.71% 7.40% 0.10

nodes and edges are randomly removed until the number of nodes in the graph reaches a predefined threshold.
Two sets of synthetic networks are considered: one with 100 nodes and another with 300 nodes. For each
graph size, 20 different graph topologies are generated. Three of these randomly generated graphs of size
100 are shown in Figure 7. The OD demand and the link capacity are also randomly generated using the
scaling factor according to Equations 15 and 16, respectively. To demonstrate the diversity of these examples,
similar to Section 5.1, the histograms of the link capacities and the OD demands in the generated dataset are
shown in Figure 8, indicating the training and testing data are sufficiently diverse to cover different scenarios.

20.0 20.0 20.0
1.0 17.5 1.0 175 1.0 17.5
o8 1505 g4, 1505 Bos 1509
2 X 2 T 2 X
=1 = =1 Z
So6 253§ 1252 Hog 1253
> 2 —0.6 > > =
9 100 g 2 10 O-E g 10.0°Q
04 75 & Soa g o4 75 8
2 o g 75 8 g O
502 50 & 5 ¥ 502 50 £
S0 0 £ go02 50 So. 0 £
0.0 2.5 0.0 2.5 0.0 2.5
0.00 0.25 0.50 0.75 1.00 0.0 0.00 0.25 0.50 0.75 1.00 0.0 0.00 0.25 0.50 0.75 1.00 0.0
Normalized Longitude Normalized Longitude Normalized Longitude

Figure 7: The illustrations of sampled generalized synthetic networks with the network size of 100. The link color represents the
link capacity of each link.

Graph size 100 Graph size 100
Graph size 300 0.06 Graph size 300
0.06
0.05
> >
2 £20.04
90.04 g
g $0.03
[.
£ i
0.02 0.02
0.01
0.00
0 -5 10 15 20 0004 25 50 75 160
Link capacity (1 x 102 veh) Normalized OD demand

Figure 8: The histogram of the link capacity and normalized OD demand in the training and testing data of synthetic networks.
Two sizes of datasets are included: 100 and 300.

In this section, we investigate the generalization of the proposed method when graph sizes in the training
and test cases are different. In particular, we consider two different graph sizes, with the node numbers
N = 100 and N = 300. It should be noted that a node feature in our proposed HetGAT model has a

14

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

475

476

477

478

dimension equal to the total number of nodes in the graph. Therefore, to handle variable graph sizes in the

dataset, we need to make an adjustment to the model. To this end, we propose two training strategies for
HetGAT:

e Transfer learning: In this approach, we use the model trained from previous experiments as a pre-
trained model and let the parameters of its preprocessing and final layers be re-trained. The remaining
parameters will be frozen and unchanged during this re-training. So, for subsequent training involving
graphs of the new size, the optimization will be relatively fast as it is only done for the parameters in
two layers, rather than the entire model. Two cases are studied: when testing is done on graphs with
N =100 and training is done with N = 300, and vice versa.

e Homogenized training: In this approach, we set a ceiling (maximum) for the node number Nyax,
anticipating the largest graph that can ever be handled. Then, for all the graphs containing fewer nodes,
we add enough dummy nodes to the graph for it size to reach Np.x. This approach ensures uniform
formulation and architecture across different graphs, allowing a single model to be used for graphs of
varying sizes. To numerically study this strategy, the model is trained once using graphs with sizes
N =100 and N = 300. This trained model is then tested on graphs with N = 100 and graphs with
N = 300 separately.

In order to evaluate the effectiveness of our proposed model compared to baseline models, we compare
our results in a standard training, where training and test graphs are of the same size. That means for test
graphs with N = 100, Het GAT was trained in the standard way of the previous section, with only graphs
with V = 100. Similarly, training and test graphs of size N = 300 were used for the second set of “standard
training” results.

The training setting and the hyperparameters remain the same as those in the previous experiments. The
prediction performance metrics for the testing sets are presented in Table 5 and 6. First, it can be seen that
the proposed HetGAT model achieves the best accuracy levels compared to other model architectures on
randomly generated graphs when same graph size is used in training and test. Furthermore, for the cases
with variable graph sizes, even though the performance decline under the transfer and homogenized learning
setting, the proposed HetGAT model maintains a competitive edge, outperforming baseline models such as
GAT and GCN.

Table 5: Comparison of the performance of HetGAT with that of GAT and GCN on generalized synthetic networks. The
graph size in testing dataset is 100. We consider three different training strategies: standard training, transfer learning, and
homogenized learning.

Standard training Transfer learning Homogenized learning
Testing Model Training N = 100 Training N = 300 Training N = {100, 300}
dataset Flow Link Flow Link Flow Link
(1 x 102) utilization L. (1 x 10%) utilization L. (1 x 10%) utilization L.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GCN 1.62 240 17.85% 26.89% 0.38 1.82 2.63 20.09% 29.70% 0.10 1.45 2.08 15.76% 23.11% 0.11
N=100 GAT 1.68 248 18.40% 27.49% 033 1.92 279 21.11% 31.30% 0.10 1.63 2.42 17.90% 27.59% 0.11
HetGAT 0.25 0.38 2.75% 4.27% 0.19 0.38 0.56 4.18% 6.29% 0.09 0.74 1.16 8.46% 14.35% 0.09

Table 6: Comparison of the performance of HetGAT with that of GAT and GCN on generalized synthetic networks. The
graph size in testing dataset is 300. We consider three different training strategies: standard training, transfer learning, and
homogenized learning.

Standard training Transfer learning Homogenized learning
Testing Model Training N = 300 Training N = 100 Training N = {100, 300}
dataset Flow Link Flow Link Flow Link
(1 x 10%) utilization L. (1 x 10%) utilization L. (1 x 10%) utilization L.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GCN 2.97 4.11 31.87% 44.14% 0.15 3.09 4.28 3317% 4597% 0.13 3.04 423 32.65% 45.32% 0.14
N=300 GAT 2.81 3.89 30.10% 41.58% 0.18 2.94 4.05 31.43% 43.33% 0.15 2.85 3.94 30.56% 42.19% 0.16
HetGAT 0.46 0.69 4.99% 7.51% 0.11 0.78 1.17 8.45% 12.89% 0.06 0.52 0.77 5.63% 8.45% 0.13

15

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

6. Conclusion and Discussion

In this paper, we proposed a novel approach for traffic assignment using an end-to-end heterogeneous graph
neural network. Compared to conventional homogeneous graph neural networks, our proposed architecture
includes additional virtual links connecting origin-destination node pairs, to better uncover dependencies
between link flows and OD demand. We also proposed a novel adaptive graph attention mechanism to
effectively capture the semantic and contextual features through different types of links. The extensive
experiments on three real-world urban transportation networks showed that the proposed model outperforms
other state-of-the-arth models in terms of convergence rate and prediction accuracy. Notably, by introducing
two different training strategies, the proposed heterogeneous graph neural network model can also be
generalized to different network topologies, underscoring its potential in real-world scenarios.

The proposed framework in this work can serve as a surrogate model that can significantly accelerate
complex optimization tasks in areas such as resource allocation and infrastructure asset management. The
significant reduction in computational time allows planners to analyze networks under a large number of
scenarios in a more comprehensive and more realistic decision-making process. The generalization advantage
of this model is particularly beneficial for network design, especially considering network expansion options.
Moreover, it was demonstrated the HetGAT model can robustly predict link flows from inaccurate OD
demand data. In this current version, the proposed HetGAT model only learns and predicts the static traffic
flow patterns. As a potential extension of this work, the proposed framework can be extended to learn the
dynamic traffic flow patterns. Furthermore, the current proposed GNN model uses training data collected
from conventional solvers of static traffic assignment. In future work, we will explore how these models can
be trained on traffic data collected from sensors, such as loop detectors, cameras, or GPS devices.

7. Acknowledgment

This work was supported in part by the National Science Foundation under Grant CMMI-1752302.

References

Babazadeh, A., Javani, B., Gentile, G., Florian, M., 2020. Reduced gradient algorithm for user equilibrium
traffic assignment problem. Transportmetrica A: Transport Science 16, 1111-1135.

Bar-Gera, H., Stabler, B., Sall, E., 2023. Transportation networks for research core team. Transportation
Network Test Problems. Available online: https://github.com/bstabler /TransportationNetworks (accessed
on May 14 2023) .

Beckmann, M., McGuire, C.B., Winsten, C.B., 1956. Studies in the Economics of Transportation. Technical
Report.

Bedeian, A.G., Mossholder, K.W., 2000. On the use of the coefficient of variation as a measure of diversity.
Organizational Research Methods 3, 285-297.

Campbell, M.J., Machin, D., Walters, S.J., 2010. Medical statistics: a textbook for the health sciences. John
Wiley & Sons.

Cheng, X., Lin, J., 2024. Network equilibrium modeling for long-haul electric trucks, in: 2024 Forum for
Innovative Sustainable Transportation Systems (FISTS), IEEE. pp. 1-6.

Deng, Z., Ji, M., 2011. Spatiotemporal structure of taxi services in shanghai: Using exploratory spatial data
analysis, in: 2011 19th International Conference on Geoinformatics, IEEE. pp. 1-5.

Fan, W., Tang, Z., Ye, P., Xiao, F., Zhang, J., 2023. Deep learning-based dynamic traffic assignment with
incomplete origin—destination data. Transportation Research Record 2677, 1340-1356.

Fu, X., Zhang, J., Meng, Z., King, 1., 2020. Magnn: Metapath aggregated graph neural network for
heterogeneous graph embedding, in: Proceedings of The Web Conference 2020, pp. 2331-2341.

16

522

523

524

525

526

527

528

529

530

531

532

533

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

Fukushima, M., 1984. A modified frank-wolfe algorithm for solving the traffic assignment problem. Trans-
portation Research Part B: Methodological 18, 169-177.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators.
Neural networks 2, 359-366.

Lee, D.H., Nie, Y., Chen, A., 2003. A conjugate gradient projection algorithm for the traffic assignment
problem. Mathematical and computer modelling 37, 863-878.

Liu, T., Meidani, H., 2022. Graph neural network surrogate for seismic reliability analysis of highway bridge
system. arXiv preprint arXiv:2210.06404 .

Liu, T., Meidani, H., 2023a. Optimizing seismic retrofit of bridges: Integrating efficient graph neural network
surrogates and transportation equity, in: Proceedings of Cyber-Physical Systems and Internet of Things
Week 2023, pp. 367-372.

Liu, T., Meidani, H., 2023b. Physics-informed neural networks for system identification of structural systems
with a multiphysics damping model. Journal of Engineering Mechanics 149, 04023079.

Liu, T., Meidani, H., 2024. Neural network surrogate models for aerodynamic analysis in truck platoons:
Implications on autonomous freight delivery. International Journal of Transportation Science and Technology

Madadi, B., de Almeida Correia, G.H., 2024. A hybrid deep-learning-metaheuristic framework for bi-level
network design problems. Expert Systems with Applications 243, 122814.

Nie, Y., Zhang, H., Lee, D.H., 2004. Models and algorithms for the traffic assignment problem with link
capacity constraints. Transportation Research Part B: Methodological 38, 285-312.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al., 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems 32.

Rahman, R., Hasan, S., 2023. Data-driven traffic assignment: A novel approach for learning traffic flow
patterns using graph convolutional neural network. Data Science for Transportation 5, 11.

Rodrigue, J.P., 2020. The geography of transport systems. Routledge.

Seliverstov, Y.A., Seliverstov, S.A., Malygin, I.G., Tarantsev, A.A., Shatalova, N.V., Lukomskaya, O.Y.,
Tishchenko, I.P., Elyashevich, A.M., 2017. Development of management principles of urban traffic under
conditions of information uncertainty, in: Creativity in Intelligent Technologies and Data Science: Second
Conference, CIT&DS 2017, Volgograd, Russia, September 12-14, 2017, Proceedings 2, Springer. pp. 399—418.

Sun, W., Shao, H., Wu, T., Shao, F., Fainman, E.Z., 2022. Reliable location of automatic vehicle identification
sensors to recognize origin-destination demands considering sensor failure. Transportation research part C:
emerging technologies 136, 103551.

Tang, K., Cao, Y., Chen, C., Yao, J., Tan, C., Sun, J., 2021. Dynamic origin-destination flow estimation
using automatic vehicle identification data: A 3d convolutional neural network approach. Computer-Aided
Civil and Infrastructure Engineering 36, 30-46.

Veli¢kovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017. Graph attention networks.
arXiv preprint arXiv:1710.10903 .

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., et al., 2019a.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 .

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S., 2019b. Heterogeneous graph attention network,
in: The world wide web conference, pp. 2022-2032.

17

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Wang, X., Zhang, M., 2022. How powerful are spectral graph neural networks, in: International Conference
on Machine Learning, PMLR. pp. 23341-23362.

Xiong, X., Ozbay, K., Jin, L., Feng, C., 2020. Dynamic origin—destination matrix prediction with line graph
neural networks and kalman filter. Transportation Research Record 2674, 491-503.

Zhang, Q., Yuan, Q., Zeng, C., Li, X., Wei, Y., 2018. Missing data reconstruction in remote sensing image with
a unified spatial-temporal-spectral deep convolutional neural network. IEEE Transactions on Geoscience
and Remote Sensing 56, 4274-4288.

Zhang, 7., Li, M., Lin, X., Wang, Y., 2020. Network-wide traffic flow estimation with insufficient volume
detection and crowdsourcing data. Transportation Research Part C: Emerging Technologies 121, 102870.

Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., Ye, Y., 2021. Heterogeneous graph structure learning for graph
neural networks, in: Proceedings of the AAAI conference on artificial intelligence, pp. 4697-4705.

Zhou, X., Mahmassani, H.S., 2007. A structural state space model for real-time traffic origin—destination
demand estimation and prediction in a day-to-day learning framework. Transportation Research Part B:
Methodological 41, 823-840.

Zou, Q., Chen, S., 2020. Resilience modeling of interdependent traffic-electric power system subject to
hurricanes. Journal of Infrastructure Systems 26, 04019034.

18

	Introduction
	Related Literature
	OD Demand Estimation
	Traffic Assignment Problem
	Summary

	Technical Background
	Traffic Assignment Problem
	Neural Networks
	Graph Neural Network

	Heterogeneous Graph Neural Networks for Traffic Assignment
	Graph Construction & Feature Preprocessing
	Graph Spatial Features Extraction
	Virtual Graph Encoder (V-Encoder)
	Real Graph Encoder (R-Encoder)

	Graph Edge Prediction

	Numerical Experiments
	Experiments on Urban Transportation Networks
	Characteristics of networks
	Training setup and model architecture
	Numerical results
	Incomplete OD demand data

	Experiments on Generalized Synthetic Networks
	Modified urban networks
	Randomly generated graphs and generalization to variable graph size

	Conclusion and Discussion
	Acknowledgment

