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Highlights24

• A novel heterogeneous GNN-based approach is proposed for static traffic assignment25

• GNN model includes "real" roadway links and "virtual" links connecting OD pairs26

• Flow conservation loss is added as a physics-based term in the loss function.27

• Model is generalizable to different network topologies and OD demands.28



Abstract29

The traffic assignment problem is one of the significant components of traffic flow analysis for which various
solution approaches have been proposed. However, deploying these approaches for large-scale networks
poses significant challenges. In this paper, we leverage the power of heterogeneous graph neural networks
to propose a novel end-to-end surrogate model for traffic assignment, specifically user equilibrium traffic
assignment problems. Our model integrates an adaptive graph attention mechanism with auxiliary "virtual"
links connecting origin-destination node pairs, This integration enables the model to capture spatial traffic
patterns across different links, By incorporating the node-based flow conservation law into the overall loss
function, the model ensures the prediction results in compliance with flow conservation principles, resulting
in highly accurate predictions for both link flow and flow-capacity ratios. We present numerical experiments
on urban transportation networks and show that the proposed heterogeneous graph neural network model
outperforms other conventional neural network models in terms of convergence rate and prediction accuracy.
Notably, by introducing two different training strategies, the proposed heterogeneous graph neural network
model can also be generalized to different network topologies. This approach offers a promising solution for
complex traffic flow analysis and prediction, enhancing our understanding and management of a wide range
of transportation systems.

Keywords: traffic assignment problem, graph neural network, traffic flow prediction, flow conservation,30
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1. Introduction33

Traffic assignment plays a significant role in transportation network analysis. Solving the traffic assignment34

problem (TAP) enables a deeper understanding of traffic flow patterns and provides insights into traffic35

congestion and environmental impacts (Nie et al., 2004; Cheng and Lin, 2024). The primary objective of the36

TAP is to determine the traffic flow distribution and identify traffic bottlenecks on a given road network.37

Such analysis enables city planners to make a strategic plan for mitigating traffic congestion. For solving38

traffic assignment problems, there are two major formulations with different assumptions (Seliverstov et al.,39

2017): (1) the user equilibrium (UE) assignment and (2) the system optimum (SO) assignment. The UE40

assignment identifies an equilibrium state in which drivers between each origin-destination (OD) pair cannot41

reduce travel costs by unilaterally shifting to another route. On the other hand, in the SO assignment, drivers42

choose the routes collaboratively so that the total system travel time is minimized.43

In addition to network analysis, traffic assignment has broader implications in various research and44

practical areas such as regional resilience and urban planning. For instance, city planners leverage traffic45

assignment to evaluate the network reliability under extreme event scenarios, including hurricanes (Zou46

and Chen, 2020) and earthquake (Liu and Meidani, 2023a). These evaluations ensure the transportation47

infrastructure aligns with the city’s evolving needs and requirements. Furthermore, the TAPs is employed in48

road network design and retrofit investment optimization as a lower-level constraint in a bi-level optimization49

problem (Madadi and de Almeida Correia, 2024).50

A preliminary and critical step in setting up TAPs involves obtaining accurate regional OD demands.51

While there have been significant methodological advancements in OD demand estimation (Tang et al., 2021),52

the existing practical challenges lead to inaccurate estimation (Sun et al., 2022). To illustrate, the current53

traffic assignment methodologies don’t fully investigate the model performance under incomplete/missing OD54

demand information. This issue underscores a research gap in effectively solving TAPs and estimating traffic55

flows under inaccurate OD demand scenarios.56

Neural networks have demonstrated their capability for data imputation and data construction. Recently,57

convolutional neural networks (CNNs) (Fan et al., 2023) and graph neural networks (GNNs) (Rahman and58

Hasan, 2023) have been utilized to solve TAPs. Despite their improvement, these models encountered a few59

limitations. First of all, the CNN-based model cannot fully capture the topologies of transportation systems.60

Furthermore, the aforementioned models don’t adequately consider the transportation network under various61

scenarios, e.g., link capacity reduction due to traffic accidents or lane closures due to maintenance. Last but62

not least, how these models perform under out-of-distribution data is not comprehensively explored. These63

limitations highlight the need for further research to enhance the adaptability and real-world applicability of64

neural networks for traffic assignment problems, specifically under the scenarios of unexpected events and65

incomplete OD demand.66

It should be noted that the distribution of link flows depends on the demand levels between different OD67

pairs. However, generally the graph representation of the transportation system only includes the physical68

roadway links, and a direct link between origin and destination nodes does not exist in the graph model69

for OD pairs that are not directly connected. This motivates us to also include virtual links between origin70

and destination node pairs in addition to the roadway links into the graph model. Considering this, we71

propose a novel heterogeneous GNN surrogate model, to also integrate comprehensive OD demand information72

and thereby enhance feature propagation across the network. Furthermore, our proposed model includes73

a novel adaptive graph attention mechanism to propagate the node features efficiently, a component to74

transform node embeddings into link embeddings for link flow and flow-capacity ratio estimation, and a75

conservation-based loss function. To summarize, the major contributions of this work are as follows: (1) This76

is the first GNN learning of UE-TAP that integrates interdependencies between origin and destination nodes77

via a heterogeneous graph structure that consists of physical and virtual links and an adaptive attention-based78

mechanism; (2) the proposed model is trained using data and the governing conservation law and as a result,79

the estimated flows are more accurate; (3) due to the integration of virtual links and regularization based80

on the conservation law, the performance on unseen graphs is improved. In this paper, the efficiency and81

generalization capability of the proposed model are investigated through multiple experiments with different82

road network topologies, link characteristics, and OD demands.83

The remainder of this article is structured as follows. Section 2 provides a review of related literature.84

General backgrounds on the traffic assignment problem, the neural network and graph neural network models85
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are presented in Section 3. Section 4 includes the explanation of the proposed heterogeneous graph neural86

network for traffic assignment. Furthermore, the experiments with urban road networks and generalized87

synthetic networks are presented to demonstrate the accuracy and generalization capability of the proposed88

framework in Section 5. Finally, the conclusion and discussion of the proposed framework are presented in89

Section 6.90

2. Related Literature91

The literature related to the estimation of traffic flows in transportation networks is discussed below under92

two areas of OD demand estimation and traffic assignment. By drawing insights from these related works,93

we have developed a robust and comprehensive approach to address the challenges associated with traffic94

assignment problems, particularly under network disruption events and incomplete OD demand data.95

2.1. OD Demand Estimation96

The primary challenge in predicting OD demands lies in the inability to directly measure demand using97

traffic sensors. Instead, researchers have developed models to infer the demand information from aggregated98

data collected on roadways. For instance, the autoregressive integrated moving average model has been99

developed to forecast traffic demand across different regions (Deng and Ji, 2011). Also, OD demands were100

estimated based on high-quality link flow counts using the Kalman filter (Zhou and Mahmassani, 2007).101

In an optimization framework, Zhang et al. (2020) formulated the OD estimation problem as a quadratic102

programming and then solved it using the alternating direction method of multipliers.103

More recently, neural networks have been widely adopted for OD demand estimation due to their capability104

to model complex temporal and spatial dependencies in transportation datasets. For instance, Xiong et al.105

(2020) integrated link graph neural networks with Kalman filters to predict OD demand. Also, Tang et al.106

(2021) employed a three-dimensional convolution neural network to learn the high-dimensional correlations107

between local traffic patterns and OD flows. Despite these methodological advancements, practical challenges108

such as sensor failures and malfunctions pose significant risks. These issues can result in the loss of relevant109

and reliable OD demand information, leading to inaccuracies in demand estimation, and consequently in the110

prediction of traffic flows Sun et al. (2022).111

2.2. Traffic Assignment Problem112

Solving the traffic assignment problem provides a deeper understanding of traffic flow patterns and offers113

insights into managing traffic congestion. As a result, more efficient and reliable solution of traffic assignment114

problem has been the focus of many recent studies. For instance, Lee et al. (2003) aimed at improving115

convergence and computational efficiency in large-scale traffic networks by proposing a conjugate gradient116

projection to enhance the gradient projection. Furthermore, Babazadeh et al. (2020) proposed a reduced117

gradient algorithm by selecting non-basic paths, to effectively manage computational complexity. However,118

these models rely on the assumption that the regional OD demand is accurate. In scenarios where OD119

demand information is incomplete or missing, conventional approaches tend to underestimate the link-wise120

traffic flow.121

Recently, neural networks have demonstrated remarkable capabilities in data reconstruction and general-122

ization (Zhang et al., 2018; Liu and Meidani, 2024), presenting a potential solution for the issue of missing123

OD demands. However, the literature on neural networks in TAPs remains relatively scarce. One of the main124

approaches utilizes convolutional neural networks. For instance, Fan et al. (2023) utilized recurrent CNNs for125

traffic assignment problems by considering the transportation network as the grid map, specifically under126

incomplete OD demands. Furthermore, since GNNs are inherently able to capture spatial information from127

graph topologies (Liu and Meidani, 2022), they were also used to solve TAPs Rahman and Hasan (2023).128

2.3. Summary129

In summary, despite significant advances enabled by deep learning, a comprehensive graph neural network-130

based framework for equilibrium-based traffic assignment and link-wise flow estimation remains elusive.131

Firstly, it is challenging to recover the traffic flow distribution from incomplete OD demand. Secondly, the132

performance of these models under out-of-distribution data has not been thoroughly investigated. Last but133

not least, further investigations are required to adequately consider the transportation network under various134

scenarios, e.g., link capacity reduction and lane closures.135
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3. Technical Background136

3.1. Traffic Assignment Problem137

The traffic assignment problem involves assigning traffic volumes or flows to each edge in the network.138

Given a transportation network represented as a graph G = (V, E), where nodes V represent intersections of139

roads and edges E represent roads or links connecting these locations, The general form of traffic assignment140

problem can be considered as an optimization task:141

min
f

:
∑
e∈E

Ze(fe), (1)

where fe and Ze(fe) are the total flow and the link cost function on link e, respectively. The link cost function142

can be expressed as the function of travel time, travel distance, or other relevant factors. Besides, the traffic143

assignment problem can have different formulations depending on the specific objectives and assumptions. For144

instance, the (Beckmann et al., 1956) addresses the user equilibrium traffic assignment problem by optimizing145

the following objective function:146

min : z(x) =
∑
e∈E

∫ xe

0

te(ω)dω

s.t.
∑
k

frs
k = qrs, ∀r, s ∈ V ,

frs
k ≥ 0, ∀k, r, s ∈ V ,

xe =
∑
rs

∑
k

frs
k ζrse,k, ∀e ∈ E ,

(2)

where the objective function is the summation over all road segments of the integral of the link travel time147

function between 0 and the link flow. te(·) is the link travel time function, qrs is the total demand from148

source r to destination s, frs
k represents the flow on kth path from r to s. ζrse,k is the binary value, which149

equals 1 when link e is on kth connecting r and s. It is noted that the objective function in Beckmann’s150

formulation serves more as a mathematical construct for optimization than a direct physical representation.151

Compared with UE-TAP, SO-TAP changes the objective function to the summation of the travel time of all152

vehicles, which reflects a system-optimized perspective.153

3.2. Neural Networks154

Without loss of generality, we begin by considering a neural network with a single layer. Given a155

p-dimensional input vector hk ∈ Rp, q-dimensional the output hk+1 ∈ Rq of single layer neural network, the156

layer indexed by k can be expressed as:157

hk+1 = σ(hkWk + bk), (3)

where Wk ∈ Rp×q and bk ∈ R1×q represent the weight and bias term, respectively. The non-linear activation158

function σ(·) is utilized in the neural network. Theoretically, a single-layer neural network with an infinite159

number of neurons can approximate any continuous function to arbitrary accuracy, given a sufficiently large160

dataset (Hornik et al., 1989). However, due to limitations in network width, dataset size, and the challenge161

of tuning parameters, a single-layer network is not optimal for achieving top performance, which leads to162

overfitting and poor generalization performance. To alleviate the limitation, multiple neural network layers163

are stacked together to enhance its expressibility and capture complex hierarchical features.164

3.3. Graph Neural Network165

Neural networks have shown remarkable performance in various applications. In most neural network166

applications, input data structures are normally fixed, which is also called Euclidean data. However, non-167

Euclidean data structure such as graph-structured data is pervasive in different applications. The complexity168

and variability of the graph structure data make it difficult to model with conventional neural network169

architectures. To address this challenge, GNNs are specifically designed to handle graph-structured data.170
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It operates on the node features and edge features and learns to extract embedding from nodes and edges,171

aiming to capture the underlying graph structure.172

There are different types of graph neural network formulation. One of the popular approaches is the173

spectral approach (Wang and Zhang, 2022). Spectral graph convolution is a type of convolution operation on174

graph signals that uses the graph Fourier transform. It operates in the frequency domain and utilizes the175

eigenvalues and eigenvectors of the graph Laplacian to filter the node features. Given a graph G = (V, E)176

with adjacency matrix A and diagonal degree matrix D = diag(A1⃗), the Laplacian matrix and normalized177

Laplacian matrix of the graph is defined as L = D −A and Lnorm = D− 1
2LD− 1

2 , respectively. The spectral178

graph convolution is defined mathematically as:179

gθ ∗ x = Ugθ(U
Tx), (4)

where gθ is a filter with learnable parameters θ, x ∈ R|V|×NF is the input features with |V| nodes and NF180

features per node, and U is the eigenvectors of Lnorm. The input signal is first transformed into the spectral181

domain. The features are passed through the learnable filter and transformed back into the spatial domain.182

The graph spectral operator can be applied to graphs of varying sizes. As a different approach to modeling183

graph data, the graph attention network (GAT) learns the graph feature by computing attention scores for184

each node based on its features and the features of its neighbors (Veličković et al., 2017). The graph attention185

network computes the new node representation x′
i for each node i as follows:186

x′
i = σ

 N∑
j=1

αijWxxj

 , (5)

where σ is an activation function, Wx is a learnable weight matrix, and αij is the attention weight assigned187

to the node j related to its neighbour node i. The attention weights are computed as follows:188

αij =
exp(σ(aT [Wxxi ⊕Wxxj ]))∑

k∈N (i) exp(σ(a
T [Wxxi ⊕Wxxj ]))

, (6)

where a is a learnable weight vector, N (i) is the set of neighboring nodes of node i, ⊕ denotes concatenation189

function. The graph attention mechanism can be stacked into multiple layers, with each layer learning190

increasingly complex representations of the graph. The attention mechanism allows the network to learn the191

different importance of different nodes within a neighborhood, which can improve model performance.192

The aforementioned formulation is valid for homogeneous graphs, where all nodes and edges have the same193

semantic meaning. However, it is noted that real-world graphs are not always homogeneous. For instance, in194

the literature citation graph, nodes can represent various entities such as papers, authors, and journals, while195

edges may denote different semantic relationships. When the graph contains different types of nodes or edges,196

it is considered as a heterogeneous graph. Utilizing GNNs on heterogeneous graphs offers notable advantages197

over homogeneous counterparts, particularly in the ability to learn type-specific representations for each node198

and edge type (Wang et al., 2019b; Fu et al., 2020). This allows for more accurate and targeted modeling199

of each entity and relationship, leading to improved performance on downstream tasks (Zhao et al., 2021).200

In the following sections, we will leverage the expressiveness of the heterogeneous graph neural network to201

estimate the traffic flow performance under different OD demand settings.202

4. Heterogeneous Graph Neural Networks for Traffic Assignment203

In this section, we elaborate on the proposed architecture of the heterogeneous graph neural networks for204

traffic assignment. The illustration of the proposed model is shown in Fig. 1. It consists of three modules:205

graph construction & feature preprocessing module; spatial feature extraction module, and edge prediction206

module. The detail explanation of each module is described as follows.207

4.1. Graph Construction & Feature Preprocessing208

The heterogeneous graph G = (V, Er, Ev) for traffic assignment consists of one type of node representing209

the intersections of road segments and two edge types: real links and virtual links. The real links represent the210
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Figure 1: The illustration of the heterogeneous graph neural network for traffic assignment. The proposed model consists of
three parts: graph construction & feature preprocessing module; spatial feature extraction module, and edge prediction module.
The graph features are first passed into the virtual encoder (V-Encoder) through the virtual links. Then the graph embeddings
are passed into the real encoder (R-Encoder) through the real links. The flow-capacity ratio and link flow of each link are
calculated using the source node feature, destination node feature, and normalized edge feature.

road segments in the road network, while the virtual links represent the auxiliary link between the origin and211

destination nodes. The incorporation of the virtual link, as an edge augmentation technique, is strategically212

employed to facilitate enhanced feature updating. In this model, the node feature attribute is denoted as213

Xn ∈ R|V|×(|V|+2), where V represents the graph’s node set. Specifically, each row xu ∈ R1×(|V|+2) within214

this matrix corresponds to the feature vector of a single node u ∈ V including the origin-destination demand215

as well as geographical coordinates. The feature representation for the entire set of real edges is represented216

with Xe,r ∈ R|Er|×2. Each row in this matrix includes the free-flow travel time and the link capacity for a217

single link.218

Furthermore, the original node features are often sparse and non-normalized. To address this issue, we219

employ a preprocessing step to encode the raw features into a lower-dimensional representation. This process220

not only captures the essential attributes of the data but also retains the semantic information. The generated221

node feature embedding size is X0
n ∈ R|V|×Nv , where Nv is the embedding size. Similarly, the edge features222

are also normalized before being propagated in the message passing. Additionally, it should be noted that223

there is an overlap between the real links and virtual links in the heterogeneous graph because it is possible224

that a road and an OD demand both exist between the same node pair.225

4.2. Graph Spatial Features Extraction226

As discussed in Section 3.3, the key challenge in heterogeneous graphs lies in effectively aggregating diverse227

node and edge information. To address this challenge, we propose a novel sequential graph encoder for feature228

extraction and propagation. The sequential graph encoder is twofold: virtual graph encoder (V-Encoder) and229

real graph encoder (R-Encoder). Each part leverages attention mechanisms tailored to either virtual or real230

links, respectively. We will elaborate on these components in the following sections.231

4.2.1. Virtual Graph Encoder (V-Encoder)232

As the first step of spatial feature extraction, we employ a graph transformer-based attention mechanism233

on graph features to enhance the modeling capability. Specifically, we transform node features into key,234

query, and value matrices and then calculate the attention score between node pairs. Furthermore, since the235

virtual links are synthetically generated without inherent edge features, we introduce a learnable adaptive236

weight for virtual links, serving as their edge features. The adaptive weight for each node pair is derived237

by concatenating the two node features and passing through a position-wise feed-forward network (FFN).238

Mathematically, Lth V-Encoder can be expressed as:239

qL,i,kL,i,vL,i = xL
u [WL,i

q ,WL,i
k ,WL,i

v ], ∀u ∈ V

βL,i
e = FFN

(
[xL,i

u ⊕ xL,i
v ];WL,i

β , bL,i
β

)
, ∀e = (u, v) ∈ Ev

sL,i
e = exp

(
qL,i
u kL,i

v√
dL

βL,i
e

)
, ∀e = (u, v) ∈ Ev

(7)

where xL
u is the feature embedding of node u ∈ V at Lth layer of V-Encoder. q(·) ∈ RdL , k(·) ∈ RdL , and240

v(·) ∈ RdL is the query, key, and value vector at ith head in V-Encoder where dL denotes the dimensionality241
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of the feature vectors. W(·) and b(·) is the learnable parameters. βL,i
e ∈ R and sL,i

e ∈ R represents the242

learnable adaptive weight and the unnormalized attention score of the edge e = (u, v) ∈ Ev at ith head of243

Lth layer, respectively. ⊕ is the concatenation operator. The introduction of edge-level adaptive weights244

is motivated by the fact that the observed variability in low-dimensional node embedding, in turn reflects245

the variability in node OD demand. Specifically, node pairs with higher OD demands should receive higher246

attention scores since they have more significant impacts on the flow distribution. By introducing the247

adaptive edge-level weight, the graph encoder can adjust the attention score among these node pairs and248

adaptively propagate the most relevant information through virtual links, thereby enriching the model’s249

contextual understanding. Then value vectors normalized by the attention scores, are processed through250

another position-wise feed-forward network, accompanied by layer normalization. Additionally, a residual251

connection supplements the final output of the layer, ensuring the integration of original input features with252

learned representations for enhanced model performance. Finally, the output of the V-encoder is obtained by253

concatenating the outputs from all attention heads:254

zL,i
u =

∑
v∈No(u)

sL,i
(u,v)v

L,i
v /

∑
v∈No(u)

sL,i
(u,v),

xL+1,i
u = xL,i

u + LayerNorm
(
FFN

(
zL,i
u ;WL,i

z , bL,i
z

))
, ∀u ∈ V

xL+1
u =

[
xL+1,0
u ⊕ xL+1,1

u ⊕ · · · ⊕ xL+1,Nh
u

]
,

(8)

where zL,i
u represents the normalized weighted vector of node u and No(u) represents all the outgoing nodes255

connected to u. Nh represents the number of attention heads of the V-Encoder. To enhance the propagation256

of node features throughout the network, we sequentially stack multiple layers of the V-Encoder. The final257

output of this stacked V-Encoder, denoted as H0
n, serves as the input for the subsequent encoder.258

4.2.2. Real Graph Encoder (R-Encoder)259

The R-Encoder is designed to enhance and complement the functionality of the V-Encoder. These two260

encoders share a similar architecture but slightly differ in the graph attention score mechanism. To illustrate,261

some nodes in the V-Encoder do not exchange messages with others due to the absence of virtual link262

connections. The R-Encoder addresses this issue by updating node features through real links, ensuring a263

comprehensive assessment of direct and indirect node relationships. From a mathematical perspective, the264

M th layer of R-Encoder is expressed as follows:265

qM,j ,kM,j ,vM,j = hM
u [WM,j

q ,WM,j
k ,WM,j

v ], ∀u ∈ V

sM,j
e = exp

(
P∑

p=1

qM,j
u kM,j

v√
dL

βr
e,p

)
, ∀e = (u, v) ∈ Er

zM,j
u =

∑
v∈No(u)

sM,j
(u,v)v

M,j
v /

∑
v∈No(u)

sM,j
(u,v), ∀u ∈ V

hM+1,j
u = hM,j

u + LayerNorm
(
FFN

(
zM,j
u ;WM,j

z , bM,j
z

))
, ∀u ∈ V

hM+1
u =

[
hM+1,0
u ⊕ hM+1,1

u ⊕ · · · ⊕ hM+1,Nh
u

]
, ∀u ∈ V

(9)

where hM
u is the feature embedding of node u ∈ V at M th layer of R-Encoder. q(·) ∈ RdL , k(·) ∈ RdL , and266

v(·) ∈ RdL is the query, key, and value matrices at jth head of R-Encoder. W(·) and b(·) are the learnable267

parameters. βr
e,p represents the pth normalized edge feature of link e ∈ Er. Despite the subtle difference in268

the attention mechanism, the node features are propagated in two distinct patterns in the V-Encoder and269

R-Encoder. To illustrate, the V-Encoder captures the long-range dependency between nodes and integrates270

the contextual information from non-adjacent nodes. On the contrary, the R-Encoder captures the local271

topological relationships. Compared with the homogeneous graph with only real links, the additional feature272

propagation through virtual links can be considered as a dimension-reduction technique to reduce the number273

of hops required for distant nodes to gather messages. Consequently, it requires fewer GNN layers for effective274

feature aggregation and following edge prediction. Similar to the V-Encoder, the multiple R-Encoder layers275

are stacked together, and the output of the last R-Encoder O, serves as the input for link flow prediction.276
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4.3. Graph Edge Prediction277

To predict the traffic flow at the edge level, the node embedding of the source node and destination node,278

and the normalized real edge feature are concatenated and passed through a feed-forward neural network. In279

this paper, we consider the flow-capacity ratio α̃e as the quantity of the final link prediction, which is the280

link flow normalized by the link capacity:281

α̃e = MLP([ou ⊕ ov ⊕ βr
e ];Wo, bo), ∀e = (u, v) ∈ Er (10)

where o(·) represent the node embedding. Wo and bo is the learnable parameters associated with the282

multilayer perception. The predicted link flows f̃e can be calculated by multiplying the link capacity with283

the predicted flow-capacity ratio. Subsequently, selecting an appropriate loss function becomes crucial to284

ensure the model’s effective convergence. The proposed model employs a composite loss function comprising285

two components. The first part is the supervised loss, which measures the difference between prediction and286

ground truth. It considers both the discrepancy from the flow-capacity ratio Lα and the link flow Lf on each287

link:288

Ls = Lα + Lf

=
1

|Er|
∑
e∈Er

∥αe − α̃e∥+
1

|Er|
∑
e∈Er

∥fe − f̃e∥, (11)

where the αe and α̃e represent the ground truth and prediction of flow-capacity ratio on link e ∈ E . The289

fe and f̃e represent the ground truth and prediction of link flow on link e ∈ E . The second part of the290

loss function originates from the principle of node-based flow conservation, where the total flow of traffic291

entering a node equals the total flow of traffic exiting that node. The node-based flow conservation law can292

be represented mathematically:293

∑
k

fki −
∑
j

fij = ∆fi =

{ ∑
v∈V Ov,i −

∑
v∈V Oi,v, if i ∈ VOD,

0 otherwise ,
(12)

where fki denotes the flow on the link (k, i), ∆fi represents the difference between flow receiving and sending294

at node i, Ov,i represents the number of OD demand from v to i. VOD denote the origin-destination node set.295

The node-based flow conservation law can be considered as a normalization loss, thereby ensuring compliance296

with the fundamental principle of flow conservation. One common way to incorporate conservation law into297

the loss function is to define a residual loss function:298

Lc =
∑
i

|
∑

k∈Ni(i)

f̃ki −
∑

j∈No(i)

f̃ij −∆fi|, (13)

where Ni(i) represent the incoming edges of node i. The normalization loss Lc measures how the flow299

prediction satisfies the flow conservation law. Minimizing this loss function during training will encourage the300

model to learn traffic flow patterns that satisfy the conservation law. Consequently. the total loss for the flow301

prediction Ltotal is the weighted summation of the supervised loss and the conservation loss:302

Ltotal = wαLα + wfLf + wcLc, (14)

where the wα, wf and wc represent the normalized weight for supervised loss of flow-capacity ratio, supervised303

loss of actual flow, and the conservation loss, respectively.304

5. Numerical Experiments305

Two numerical experiments are conducted to evaluate the accuracy, efficiency, and generalization capability306

of the proposed graph neural network. The first experiment is on urban transportation networks. The second307

experiment is on multiple synthetic graphs with different topologies. The details of the experiments will be308

explained in the following sections.309
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Table 1: The detail of urban transportation network. Three networks, including Sioux Falls, East Massachusetts, and Anaheim,
are considered.

Network Name |V| |E| Average Degree OD Demand
Sioux Falls 24 76 3.17 188,960

EMA 74 258 3.49 132,106
Anaheim 416 914 3.05 226,279

5.1. Experiments on Urban Transportation Networks310

5.1.1. Characteristics of networks311

As case studies, three urban transportation networks are selected: Sioux Falls network, East Massachusetts312

Network (EMA), and Anaheim network. The information about the network topology, link characteristics,313

and the OD demand of these networks are obtained from (Bar-Gera et al., 2023). The statistics and the314

illustration of the network topologies are shown in Table 1 and Figure 2, respectively. To create demand315

variation, we scaled the demand by a scaling factor according to316

Õs,t = δos,t Os,t, (15)

where Os,t is the default OD demand between source s and destination t and δos,t ∼ U(0.5, 1.5) is the uniformly317

distributed random scaling factor for the OD pair (s, t). Additionally, to account for variations in network318

properties, variable link capacities are created according to319

c̃a = δca ca, (16)

where ca is the original link capacity for link a, and δca is the scaling factor for link a. Capacity variations320

are considered to be due to traffic accidents, road construction/damage, and adverse weather conditions,321

which reduce the link capacity. In this work, three levels of capacity reduction are considered: (L): light322

disruption with δca ∼ U(0.8, 1.0); (M) moderate disruption with δca ∼ U(0.5, 1.0); (H) high disruption with323

δca ∼ U(0.2, 1.0).324

5.1.2. Training setup and model architecture325

The size of the dataset for each network at each disruption scenario is 5000, which is split into the326

training set and the testing set with a ratio of 80% and 20%, respectively. To demonstrate the dataset is327

sufficiently diverse to cover enough scenarios, the coefficient of variation of network link capacity and OD328

demand is calculated and the histogram of the link capacity and the OD demand of training and testing329

data is shown in Figure 3. The OD demand of each network is normalized to 100 in order to facilitate a330

standardized comparison across different networks regardless of their actual size or demand volumes. The331

minimum coefficient of variation of link capacity and OD demand among the three networks is 0.45 and 0.22,332

respectively, which indicates the training and testing data are sufficiently diverse to cover different scenarios333

(Bedeian and Mossholder, 2000; Campbell et al., 2010).334

(a) Sioux Falls network (b) EMA network (c) Anaheim network

Figure 2: The illustrations of urban transportation networks, including Sioux Falls, EMA, and Anaheim.
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Figure 3: The histogram of the link capacity and OD demand in the training and testing data. Three transportation networks
are considered including Sioux Falls, EMA, and Anaheim network.

The training and testing dataset are obtained by solving UE-TAP with the Frank-Wolfe algorithm335

(Fukushima, 1984). The algorithm converges when the square root of the sum of the squared differences336

between the link flow in two successive iterations, normalized by the sum of the values of the link flow, falls337

below the threshold of 1e-5. The GNN model is implemented using PyTorch (Paszke et al., 2019) and DGL338

(Wang et al., 2019a). The preprocessing layer consists of a three-layer fully connected neural network with an339

embedding size of 32. The number of GNN layers in the proposed model is 4, including two V-Encoders and340

two R-Encoders. The number of heads in the attention block is 8. For hyper-parameter selection, the hidden341

layer size is chosen as 64, which is common in neural network implementation (Liu and Meidani, 2023b). The342

learning rate and batch size of training are 0.001 and 128, respectively. The weights of Lα, Lf , and Lc in343

equation 14 are chosen as 1.0, 0.005, and 0.05, respectively.344

We evaluated the performance of our proposed heterogeneous GNN model (referred to by HetGAT) and345

compared it with three benchmark models: a fully connected neural network (FCNN), a homogeneous graph346

attention network (GAT), and a homogeneous graph convolution network (GCN) (Rahman and Hasan, 2023).347

The FCNN consisted of five fully connected layers with an embedding size of 64. The GAT and GCN both348

have four layers of graph message passing layer, followed by three layers of FCNN with an embedding size of349

64. The metrics to evaluate performance include the mean absolute error (MAE), root mean square error350

(RMSE), and the normalized conservation loss L̃c:351

MAE =
1

N

N∑
i=1

|yi − ỹi|, (17)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ỹi)2, (18)

L̃c =

∑
i |
∑

k∈Ni(i)
f̃ki −

∑
j∈No(i)

f̃ij −∆fi|∑
s

∑
t Õs,t

, (19)

where y and ỹ respectively represent the ground truth and predicted values for quantity of interest. We352

conducted a 5-fold cross-validation for each experiment to ensure the robustness of our results across different353

subsets of the data.354

5.1.3. Numerical results355

The training histories of the studied models are shown in Figure 4. The results indicate that the FCNN356

model performed poorly during training compared to GNN-based models, as shown by the high training357

loss and early stagnation. In contrast, GCN and GAT models exhibited similar convergence rates. Our358

proposed model outperformed both GCN and GAT in terms of training loss. Especially when used for larger359

networks, the proposed model demonstrated superior convergence performance compared to GCN and GAT;360

for the Anaheim network, the training loss of the proposed model is almost 1/3 of that of GAT in the first361

25 iterations. This is because GCN and GAT only consider homogeneous edges, which limits the message362
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passing to adjacent nodes. In contrast, the proposed GNN model uses virtual links and provides augmented363

connectivity to long-hop node pairs, which makes the node feature updating in HetGAT more efficient.364

(a) Sioux Falls network (b) EMA network (c) Anaheim network

Figure 4: Training loss history under urban transportation network. Three benchmarks, including FCNN, GCN, and GAT, are
compared with HetGAT.

(a) Sioux Falls network (b) EMA network (c) Anaheim network

Figure 5: Illustrations of the link-wise flow distribution for different transportation networks. Three transportation networks
under major disruption are considered, including Sioux Falls, EMA, and Anaheim networks. 50 links are selected for each
network.

After the training is finished, the model performance is evaluated on the testing set. The experiments365

under the urban road network are conducted in three different settings. The first setting, referred to as366

LMH-LMH, involved using all levels of disruption (flow reduction scaling levels) in both the training and367

testing sets. The second setting, namely L-M, involves training the model on light disruption data and368

testing it on medium disruption data. The third case, which is labeled as M-H, involves training on medium369

disruption data and testing on high disruption data. The L-M and M-H scenarios will therefore involve370

unseen cases that don’t exist in the training data. Figure 5 shows the variations in link flows over the three371

networks under high disruption. The average coefficients of variation of actual link flow for three networks372

are 0.297, 0.242, and 0.201, respectively. Furthermore, Figure 6 shows the predicted value and ground373

truth of the link flows on multiple samples in the Anaheim network under the LMH-LMH setting. In total,374

the flow-capacity ratio on 10,000 edges is predicted using HetGAT, GAT, and GCN, respectively. Also, to375

compare the predictions with ground truth, ccorrelation coefficients and pairwise comparisons are shown in376

Figure 6, indicating that HetGAT outperforms GAT and GCN.377

Table 2 summarizes the prediction performance of all methods under different settings, and shows that378

HetGAT, compared to other models, offers better performance. When the graph size increases, the proposed379

model maintains a relatively low MAE compared to GCN and GAT. For instance, in the EMA network,380

HetGAT offers flow MAEs that are 39.5%, 56.4%, and 38.8% lower than the second best result, in LMH-LMH,381

L-M, and M-H settings, respectively. In the Anaheim network, HetGAT offers flow MAEs that are 27.2%,382

47.4%, and 33.1% lower than the second-best result in LMH-LMH, L-M, and M-H settings, respectively. This383

shows that the inclusion of virtual links can assist GNN models in better learning the traffic flow patterns. In384

addition to the prediction accuracy, the training time is also an important factor in evaluating the efficiency385
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and practicality of machine learning models. The computational time is mainly threefold: time for solving386

UE-TAP, GNN training time, and GNN inference time. For Sioux Falls, EMA, and Anaheim networks, the387

time for solving UE-TAP is 56.8, 575.2, and 2612.5 min, respectively. In comparison, the training time of388

HetGAT is 26.8, 28.9, and 59.7 min, respectively. Moreover, for every 1000 graphs, the inference time of the389

proposed model is notably efficient at 0.13, 0.15, and 0.31 min, respectively. The computational time of each390

component demonstrates the computational efficiency of the proposed model for solving traffic assignment391

problems.392

(a) HetGAT (b) GAT (c) GCN

Figure 6: Comparison of link flow between ground truth and surrogate model prediction in the Anaheim network under
LMH-LMH setting.

Table 2: Performance comparison of HetGAT with benchmark methods. Three different settings are included: LMH-LMH, L-M,
M-H. The mean absolute error, root mean square error, and normalized conservation loss are used to evaluate the prediction
performance on the testing set.

Network Model
LMH-LMH L-M M-H

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Sioux Falls

FCNN 19.31 30.22 16.29% 26.39% 0.38 18.64 27.31 15.87% 24.55% 0.37 32.85 48.08 30.09% 44.99% 0.70
GCN 5.62 8.80 4.78% 7.74% 0.11 5.43 7.95 4.62% 7.15% 0.14 9.57 14.00 8.64% 12.87% 0.22
GAT 5.60 8.75 4.74% 7.68% 0.11 5.54 8.18 4.62% 7.15% 0.11 9.55 13.99 8.76% 13.10% 0.20

HetGAT 3.58 5.56 2.99% 4.74% 0.07 3.73 5.39 2.99% 4.36% 0.07 7.01 10.39 6.32% 9.52% 0.08

EMA

FCNN 7.51 14.82 25.56% 63.89% 0.81 9.04 17.70 32.36% 61.87% 0.46 13.82 24.68 60.47% 122.94% 0.62
GCN 1.99 3.92 7.62% 18.32% 0.17 2.39 4.69 7.78% 14.65% 0.08 3.66 6.53 14.35% 30.33% 0.12
GAT 1.77 3.62 6.77% 16.91% 0.21 2.39 4.69 8.57% 16.38% 0.12 3.83 6.87 16.01% 32.54% 0.17

HetGAT 0.98 2.21 3.48% 8.08% 0.07 1.05 2.06 3.52% 6.85% 0.03 2.49 4.79 9.24% 20.50% 0.07

Anaheim

FCNN 10.61 16.73 24.72% 45.03% 0.81 15.82 28.59 38.44% 69.66% 0.23 18.74 29.82 49.70% 84.45% 0.25
GCN 2.18 3.44 6.54% 11.53% 0.29 3.25 5.88 9.31% 17.09% 0.07 3.85 6.13 12.37% 20.74% 0.08
GAT 1.47 2.55 4.77% 8.69% 0.16 2.32 4.18 7.42% 13.45% 0.05 3.31 5.14 9.59% 16.30% 0.05

HetGAT 1.04 1.81 2.97% 5.46% 0.08 1.19 1.85 3.31% 5.45% 0.02 2.17 3.37 6.66% 10.85% 0.03

5.1.4. Incomplete OD demand data393

As an additional experiment, we consider a realistic scenario where the regional OD demand values are394

incomplete by introducing a random binary mask to the original OD demand, More specifically, given a395

specific missing ratio, we randomly select a number of OD pairs and mask their corresponding OD demand396

values as zeros in the input node feature. In this way, the model is expected to learn the inherent patterns397

and structures of the transportation network, even when some of the demand information is missing. The398

effectiveness of the proposed model under incomplete OD demand scenarios will be evaluated by comparing the399

predicted traffic flows against the ground truth data obtained from the complete OD demand. Three missing400

ratios are considered in the experiment: 20%, 30%, and 40%. The training setting and the hyperparameters401

remain the same as those in the aforementioned experiments. Table 3 summarizes the results of prediction402

performance under different missing rate scenarios for the LMH-LMH setting. The FCNN model is not403

considered in these experiments because of their very poor performance in the previous experiments under full404

OD demand. HetGAT still outperforms GAT and GCN under different networks and different missing ratios.405
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additionally, the flow predictions by HetGAT have relatively better compliance with the flow conservation law406

compared with GAT and GCN. The superior performance of HetGAT in scenarios with missing OD demand407

can be attributed to inclusion of virtual OD links and an adaptive attention mechanism, which captures the408

inherent correlation between OD demand features and link flows from a lower-dimensional embedding space.409

With the help of the V-encoder and R-encoder, HetGAT seeks to align incomplete demand embeddings with410

complete OD demand embeddings in the embedding space. This alignment enables the model to effectively411

reconstruct full OD demands from partial data, thereby enhancing the accuracy of its predictions.412

Table 3: Comparison of the performance of HetGAT with benchmark under incomplete OD demand. Three missing ratios
are considered in the experiments: 20%, 30%, and 40%. The mean absolute error, root mean square error, and normalized
conservation loss, are used to evaluate the prediction performance on the testing set.

Network Model
Missing ratio = 20% Missing ratio = 30% Missing ratio =40%

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Sioux Falls
GCN 6.50 10.00 5.39% 8.62% 0.15 6.54 10.02 5.72% 9.19% 0.15 7.54 11.06 6.68% 10.60% 0.16
GAT 6.64 10.11 5.83% 9.25% 0.14 7.19 10.50 6.11% 9.45% 0.14 6.68 10.13 5.78% 9.20% 0.15

HetGAT 4.05 6.04 3.33% 5.06% 0.08 4.13 6.14 3.38% 5.13% 0.09 4.15 6.08 3.45% 5.16% 0.09

EMA
GCN 2.14 4.11 8.06% 16.94% 0.24 2.15 4.10 7.87% 16.47% 0.25 2.14 4.12 8.03% 17.09% 0.26
GAT 1.87 3.71 6.89% 16.65% 0.18 1.86 3.73 7.00% 16.77% 0.19 1.87 3.73 7.07% 16.97% 0.19

HetGAT 1.15 2.37 3.98% 8.40% 0.08 1.15 2.37 4.00% 8.24% 0.08 1.21 2.41 4.17% 8.67% 0.09

Anaheim
GCN 2.16 3.38 6.31% 10.86% 0.14 2.24 3.43 6.65% 11.18% 0.14 2.28 3.56 6.82% 11.72% 0.15
GAT 1.62 2.70 4.80% 8.70% 0.12 1.74 2.85 5.21% 9.34% 0.13 1.68 2.78 4.98% 8.97% 0.12

HetGAT 1.11 1.91 3.17% 5.78% 0.06 1.08 1.87 3.08% 5.65% 0.05 1.09 1.89 3.12% 5.72% 0.05

5.2. Experiments on Generalized Synthetic Networks413

In this section, unlike the experiments in Section 5.1, which involved training and testing on an identical414

network topology, we examine the generalization capability of the proposed model to networks with varied415

topologies. In particular, we consider real-world scenarios in which certain links in the network are fully416

closed due to governmental directives or catastrophic events such as bridge collapses, leading to significant417

alterations in network topology. Another scenario for topology alternation is when cities consider network418

expansion to better serve increased mobility demands due to current urbanization trends. Under all these419

scenarios, the resulting urban networks may exhibit both commonalities and disparities in their topologies420

(Rodrigue, 2020). This is while training models separately for each distinct network requires substantial time421

and effort. Motivated by the aforementioned considerations, our aim is to explore the generalization ability of422

our HetGAT model over varying topologies. In this work, we conduct experiments on two sets of networks:423

(1) modified urban networks of Section 5.1; (2) synthetic networks. The first set, includes networks that are424

modifications of the original Sioux Falls, EMA, and Anaheim networks by adding and removing links.425

5.2.1. Modified urban networks426

In this section, we generate synthetic networks by modifying the three urban networks used in previous427

seciton. For each of these networks, we generate 20 unique topological variations. Additionally, we incorporate428

three configurations of OD demand in our experiments: complete OD setting, 20% and 40% incomplete429

OD setting. The training setting and the hyperparameters remain the same as those in the aforementioned430

experiments in Section 5.1. The results are presented in Table 4. It can be seen that compared to the results431

in Table 2, HetGAT exhibits comparable levels of effectiveness for all networks. Additionally, in comparison432

to other baseline models, our proposed HetGAT model consistently outperforms both GAT and GCN over433

all networks, under both complete and incomplete OD scenarios. It is noteworthy that compared to the434

homogeneous GNN model, since our model has captured the influence of OD pairs via virtual links, the435

HetGAT model is more expressive and can better capture and learn the impact of topology alterations on436

flow distributions.437

5.2.2. Randomly generated graphs and generalization to variable graph size438

The second set of synthetic networks are randomly generated by starting with a grid graph and then439

adding links between randomly selected nodes. Furthermore, to emulate the real road network, a number of440

13



Table 4: Performance comparison of HetGAT with benchmark methods on modified urban transportation network with link
addition and removal. The mean absolute error, root mean square error, and normalized conservation loss are used to evaluate
the prediction performance on the testing set.

Network Model
Missing Ratio = 0% Missing Ratio = 20% Missing Ratio = 40%

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Sioux
GCN 10.12 13.97 8.31% 11.77% 0.15 10.96 14.82 9.22% 13.05% 0.15 10.94 15.04 9.05% 12.86% 0.15
GAT 7.16 9.89 6.10% 8.77% 0.13 10.78 14.40 9.11% 12.77% 0.14 12.20 16.42 10.34% 14.58% 0.17

HetGAT 3.04 4.22 2.56% 3.75% 0.07 3.33 4.53 2.79% 3.96% 0.07 3.46 4.69 2.88% 4.08% 0.08

EMA
GCN 4.60 7.82 15.11% 26.42% 0.26 4.09 6.68 13.97% 24.71% 0.24 4.04 6.57 15.24% 31.99% 0.23
GAT 2.70 4.50 9.97% 18.21% 0.14 2.73 4.55 10.04% 20.05% 0.15 2.86 4.72 10.50% 19.94% 0.15

HetGAT 1.28 2.39 4.09% 7.91% 0.06 1.34 2.47 4.29% 8.17% 0.07 1.42 2.57 4.56% 8.42% 0.07

Anaheim
GCN 6.02 9.93 16.29% 26.78% 0.40 5.93 9.83 15.98% 26.40% 0.31 6.04 9.99 16.24% 26.73% 0.37
GAT 5.43 9.16 14.94% 25.20% 0.25 5.37 9.02 14.83% 25.01% 0.40 5.53 9.28 15.23% 25.60% 0.34

HetGAT 1.14 2.22 3.29% 6.79% 0.09 1.15 2.08 3.34% 6.49% 0.09 1.29 2.38 3.71% 7.40% 0.10

nodes and edges are randomly removed until the number of nodes in the graph reaches a predefined threshold.441

Two sets of synthetic networks are considered: one with 100 nodes and another with 300 nodes. For each442

graph size, 20 different graph topologies are generated. Three of these randomly generated graphs of size443

100 are shown in Figure 7. The OD demand and the link capacity are also randomly generated using the444

scaling factor according to Equations 15 and 16, respectively. To demonstrate the diversity of these examples,445

similar to Section 5.1, the histograms of the link capacities and the OD demands in the generated dataset are446

shown in Figure 8, indicating the training and testing data are sufficiently diverse to cover different scenarios.447

Figure 7: The illustrations of sampled generalized synthetic networks with the network size of 100. The link color represents the
link capacity of each link.

Figure 8: The histogram of the link capacity and normalized OD demand in the training and testing data of synthetic networks.
Two sizes of datasets are included: 100 and 300.

In this section, we investigate the generalization of the proposed method when graph sizes in the training448

and test cases are different. In particular, we consider two different graph sizes, with the node numbers449

N = 100 and N = 300. It should be noted that a node feature in our proposed HetGAT model has a450
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dimension equal to the total number of nodes in the graph. Therefore, to handle variable graph sizes in the451

dataset, we need to make an adjustment to the model. To this end, we propose two training strategies for452

HetGAT:453

• Transfer learning: In this approach, we use the model trained from previous experiments as a pre-454

trained model and let the parameters of its preprocessing and final layers be re-trained. The remaining455

parameters will be frozen and unchanged during this re-training. So, for subsequent training involving456

graphs of the new size, the optimization will be relatively fast as it is only done for the parameters in457

two layers, rather than the entire model. Two cases are studied: when testing is done on graphs with458

N = 100 and training is done with N = 300, and vice versa.459

• Homogenized training: In this approach, we set a ceiling (maximum) for the node number Nmax,460

anticipating the largest graph that can ever be handled. Then, for all the graphs containing fewer nodes,461

we add enough dummy nodes to the graph for it size to reach Nmax. This approach ensures uniform462

formulation and architecture across different graphs, allowing a single model to be used for graphs of463

varying sizes. To numerically study this strategy, the model is trained once using graphs with sizes464

N = 100 and N = 300. This trained model is then tested on graphs with N = 100 and graphs with465

N = 300 separately.466

In order to evaluate the effectiveness of our proposed model compared to baseline models, we compare467

our results in a standard training, where training and test graphs are of the same size. That means for test468

graphs with N = 100, HetGAT was trained in the standard way of the previous section, with only graphs469

with N = 100. Similarly, training and test graphs of size N = 300 were used for the second set of “standard470

training” results.471

The training setting and the hyperparameters remain the same as those in the previous experiments. The472

prediction performance metrics for the testing sets are presented in Table 5 and 6. First, it can be seen that473

the proposed HetGAT model achieves the best accuracy levels compared to other model architectures on474

randomly generated graphs when same graph size is used in training and test. Furthermore, for the cases475

with variable graph sizes, even though the performance decline under the transfer and homogenized learning476

setting, the proposed HetGAT model maintains a competitive edge, outperforming baseline models such as477

GAT and GCN.478

Table 5: Comparison of the performance of HetGAT with that of GAT and GCN on generalized synthetic networks. The
graph size in testing dataset is 100. We consider three different training strategies: standard training, transfer learning, and
homogenized learning.

Testing
dataset

Model

Standard training Transfer learning Homogenized learning
Training N = 100 Training N = 300 Training N = {100, 300}

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

N=100
GCN 1.62 2.40 17.85% 26.89% 0.38 1.82 2.63 20.09% 29.70% 0.10 1.45 2.08 15.76% 23.11% 0.11
GAT 1.68 2.48 18.40% 27.49% 0.33 1.92 2.79 21.11% 31.30% 0.10 1.63 2.42 17.90% 27.59% 0.11

HetGAT 0.25 0.38 2.75% 4.27% 0.19 0.38 0.56 4.18% 6.29% 0.09 0.74 1.16 8.46% 14.35% 0.09

Table 6: Comparison of the performance of HetGAT with that of GAT and GCN on generalized synthetic networks. The
graph size in testing dataset is 300. We consider three different training strategies: standard training, transfer learning, and
homogenized learning.

Testing
dataset

Model

Standard training Transfer learning Homogenized learning
Training N = 300 Training N = 100 Training N = {100, 300}

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

Flow
(1× 102)

Link
utilization L̃c

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

N=300
GCN 2.97 4.11 31.87% 44.14% 0.15 3.09 4.28 33.17% 45.97% 0.13 3.04 4.23 32.65% 45.32% 0.14
GAT 2.81 3.89 30.10% 41.58% 0.18 2.94 4.05 31.43% 43.33% 0.15 2.85 3.94 30.56% 42.19% 0.16

HetGAT 0.46 0.69 4.99% 7.51% 0.11 0.78 1.17 8.45% 12.89% 0.06 0.52 0.77 5.63% 8.45% 0.13
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6. Conclusion and Discussion479

In this paper, we proposed a novel approach for traffic assignment using an end-to-end heterogeneous graph480

neural network. Compared to conventional homogeneous graph neural networks, our proposed architecture481

includes additional virtual links connecting origin-destination node pairs, to better uncover dependencies482

between link flows and OD demand. We also proposed a novel adaptive graph attention mechanism to483

effectively capture the semantic and contextual features through different types of links. The extensive484

experiments on three real-world urban transportation networks showed that the proposed model outperforms485

other state-of-the-arth models in terms of convergence rate and prediction accuracy. Notably, by introducing486

two different training strategies, the proposed heterogeneous graph neural network model can also be487

generalized to different network topologies, underscoring its potential in real-world scenarios.488

The proposed framework in this work can serve as a surrogate model that can significantly accelerate489

complex optimization tasks in areas such as resource allocation and infrastructure asset management. The490

significant reduction in computational time allows planners to analyze networks under a large number of491

scenarios in a more comprehensive and more realistic decision-making process. The generalization advantage492

of this model is particularly beneficial for network design, especially considering network expansion options.493

Moreover, it was demonstrated the HetGAT model can robustly predict link flows from inaccurate OD494

demand data. In this current version, the proposed HetGAT model only learns and predicts the static traffic495

flow patterns. As a potential extension of this work, the proposed framework can be extended to learn the496

dynamic traffic flow patterns. Furthermore, the current proposed GNN model uses training data collected497

from conventional solvers of static traffic assignment. In future work, we will explore how these models can498

be trained on traffic data collected from sensors, such as loop detectors, cameras, or GPS devices.499
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