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ABSTRACT 
Sustainability encompasses many wicked problems involving complex interdependencies across 
social, natural, and engineered systems. We argue holistic multiscale modeling and decision-sup-
port frameworks are needed to address multifaceted interdisciplinary aspects of these wicked 
problems. This review highlights three emerging research areas for artificial intelligence (AI) and 
machine learning (ML) in molecular-to-systems engineering for sustainability: (1) molecular dis-
covery and materials design, (2) automation and self-driving laboratories, (3) process and sys-
tems-of-systems optimization. Recent advances in AI and ML are highlighted in four contemporary 
application areas in chemical engineering design: (1) equitable energy systems, (2) decarbonizing 
the power sector, (3) circular economies for critical materials, and (4) next-generation heating and 
cooling. These examples illustrate how AI and ML enable more sophisticated interdisciplinary mul-
tiscale models, faster optimization algorithms, more accurate uncertainty quantification, smarter 
and faster data collection, and incorporation of diverse stakeholders into decision-making pro-
cesses, improving the robustness of engineering and policy designs while focusing on the multi-
faceted goals and constraints in wicked problems. 
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INTRODUCTION 
Creating engineered solutions to help achieve UN 

sustainable development goals (e.g., clean water and 
sanitation, affordable and clean energy, responsible con-
sumption and production), 1 requires managing complex 
trade-offs across diverse molecular, material, device, 
process, and infrastructure scales2. As such, break-
throughs at a single scale are often insufficient to realize 
global impact. Moreover, these wicked problems3,4 re-
quire interdisciplinary teams to manage interdependen-
cies across social, natural, and engineered complex sys-
tems. 

Using four contemporary sustainability challenges in 
chemical engineering, this short paper argues recent ad-
vances in artificial intelligence (AI) and machine learning 
(ML) methods for product and process design offer new
capabilities to accelerate decision-making across molec-
ular-to-system length and timescale. For brevity, we di-
rect the reader to several excellent review articles and
editorials for technical overviews of AI5,6, ML7–11, and data

science (DS)12–14 methods used in chemical engineering.  
This paper focuses on advances and opportunities for AI, 
ML, and DS for product and materials design, which we 
argue is inherently multiscale and interdisciplinary. Many 
now consider AI as an academic discipline, and ML is a 
field within AI15. Similarly, DS is an interdisciplinary field 
focused on extracting knowledge from data, which his-
torical roots in applied statistics16. We do not dwell on the 
formal distinction between AI, ML, and DS. 

MOTIVATING APPLICATIONS 
We start by framing four sustainability challenges, 

each of which presents many opportunities for innova-
tions in designing materials, products, and processes. 
However, fully realizing the benefits of technology devel-
opment requires holistic systems engineering ap-
proaches, which AI and ML help facilitate. 

Equitable Energy Transitions 
Social, natural, and engineered systems around the 
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globe must adapt to climate change17. While the poorest 
and most marginalized have contributed minimally to 
global emissions, they are impacted the most by climate 
change18. Thus, it is critical to consider equity and envi-
ronmental justice dimensions of technologies and poli-
cies to transition the global energy economy from fossil 
to renewable resources. Decision-making must consider 
many objectives and perspectives from diverse stake-
holders19 to manage complex interdependencies across 
social, natural, and engineered systems. Best practices 
to broaden representation in policy processes18 can be 
integrated with systems thinking to enable participatory 
research on materials and chemical products focused on 
the authentic needs of poor and marginalized communi-
ties. 

Decarbonizing the Power Sector 
A key aspect of climate adaptation is decarbonizing 

electricity generation through greater adoption of car-
bon-neutral or renewable energy sources. One key tech-
nical challenge is that non-dispatchable renewable 
sources, carbon capture systems, and nuclear genera-
tors are often less flexible than fossil fuel generators. 
New sources of dynamic flexibility are needed to contin-
uously balance electricity generation and production and 
ensure resiliency to extreme events (e.g., weather). 
Technoeconomic analysis of grid-connect systems, in-
cluding power generators, storage systems, building, and 
(chemical) manufacturing processes, must consider the 
time-varying value of electrical energy, ancillary services, 
and demand response incentives20–23 while considering 
uncertainty24 and trade-offs between flexible operation 
and emissions25. Moreover, systems modeling can help 
inform the value of flexibility26,27 and set performance tar-
gets for materials development, e.g., degradation in en-
ergy storage systems28. However, introducing new gen-
erators, energy storage, or integrated energy systems 
can distort prices in energy markets29,30, which empha-
sizes the need for system-of-systems modeling to as-
sess the economics of new technologies properly. Ex-
pansion planning31,32 and similar decision-support tools33 
are needed to establish multi-decade decarbonization 
pathways34,35 that ultimately inform materials design and 
technology development. 

Circular Economies for Critical Materials 
Reducing society's carbon footprint requires robust 

supply chains of critical minerals and materials (CMMs), 
including rare-earth elements (REEs)36. CMMs and REEs 
are essential to modern technologies, including energy 
storage, permanent magnetics in high-efficiency motors, 
and wind turbines. However, primary sources of REEs 
(and many CMMs) are environmentally costly to extract, 
separate, and refine37. Moreover, global pandemics, pol-
icies, and geopolitics can complicate CMM and REE 

supply chains38,39. Thus, there is a need for new materials 
that enable new separations and processes to recycle 
CMMs and REEs from distributed sources such as used 
batteries and consumer electronics40. In these proceed-
ings, Dougher et al.41 elaborates on opportunities for pro-
cess systems engineering to accelerate membrane sep-
arations for CMMs and REEs. 

Next Generation Heating and Cooling 
As part of climate adaptation, recent international 

agreements mandate the phaseout of hydrofluorocarbon 
(HFC) refrigerants due to their high global warming po-
tential. However, recycling existing HFCs requires new 
materials such as membranes42,43, sorbents44, ionic liq-
uids45–51, and deep eutectic solvents52 to separate (near)-
azeotropic mixtures. Beyond vapor recompression sys-
tems, new technologies such as solid-state devices may 
improve performance and lower carbon footprints53. Sim-
ilarly, thermoelectric materials and devices can be engi-
neered to power distributed electronics or convert waste 
heat into electrical energy54. These technologies require 
sophisticated co-optimization of materials composition55, 
manufacturing processes56,57, and device designs while 
considering performance targets from systems models. 
 Policy-mandated phase-outs and transformations in 
the heating and cooling section provide another example 
of complex interactions between social, natural, and en-
gineered systems58. Systems-of-system models are 
needed to understand the development of HFC recycling 
supply chains and consumer behavior, e.g., adopting new 
technologies to establish a circular economy, especially 
considering changing climates. For example, policy inter-
ventions may be needed to ensure that next-generation 
heating and cooling technologies remain affordable for 
everyone. New materials and technologies must be 
benchmarked using systems models that capture these 
complexities. 

AI & ML FOR MOLECULAR-TO-SYSTEMS 
These four motivating examples emphasize the 

complexities of engineering new materials, chemical 
products, and processes to help meet sustainable devel-
opment goals. This section highlights recent advances in 
AI and ML to address these challenges. 

Molecular Discovery and Materials Design 
 Computer-aided molecular design (CAMD) methods 
integrate predictive models to engineer novel molecules 
and materials, often in conjunction with processes59,60. 
Classic examples include co-optimizing refrigerants and 
refrigeration cycles, creating designer solvents (e.g., 
ionic liquids) for a wide range of separations and reac-
tions (e.g., CO2 capture, crystallization, pharmaceutical 
manufacturing), and engineering new materials for 
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energy storage (e.g., electrolytes). Advances in deep 
learning61 combined with massive datasets enabled by 
new data/text mining62 can provide CAMD approaches 
with more accurate models to predict thermophysical 
and mixture properties as a function of molecular/mate-
rials structure. 
 Molecular simulations accelerate the engineering of 
new molecules and materials by providing new scientific 
insights or predicting properties at conditions impractical 
to measure. AI and ML offer several opportunities to im-
prove the speed and accuracy of molecular simulations63. 
For example, ML surrogate models and Bayesian Optimi-
zation (BO)64 can improve the speed and accuracy of pa-
rameter estimation for force fields65,66. We proposed67 
and refined68 an ML-assisted optimization workflow to 
develop new force fields for seven refrigerants. Moreo-
ver, these physically interpretable force fields accurately 
predict properties not considered in calibration69. An al-
ternative approach is to replace the force field 

expression with an ML model70,71. Both ML approaches 
are important because the lack of accurate force fields 
has historically hindered the use of molecular simulations 
to engineer some new classes of chemical products and 
functional materials. 

Generative AI methods are emerging to engineer 
new molecules, materials, and synthesis pathways72,73. 
One popular approach uses variational autoencoders to 
reduce molecular descriptors into a latent space. BO64 or 
reinforcement learning74 can then optimize molecules in 
the latent space. ML frameworks are also emerging to co-
optimize the material design, manufacturing, and end-
use. For thermoelectric materials, we recently developed 
data science and BO methods to optimize photonic sin-
tering57 (advanced manufacturing), aerosol jet printing56 
(additive manufacturing), and dopant composition55 (ma-
terial design). These studies combined ML with expert in-
tuition and laboratory experiments. 

 
Figure 1: Overview of opportunties for AI and ML to accelerate molecular-to-systems engineering (adapted from 
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Automation and Self-Driving Laboratories  
 Self-driving laboratories (SDLs) are revolutionizing 
molecular discovery and materials design by combining 
recent advances in robotic automation with ML75,76. Most 
SDLs use black-box data-driven ML models to predict 
experiment outcomes (e.g., material properties, synthe-
sis yields) from input decisions. AI methods such as BO 
or active learning plan the next sequence or batch of ex-
periments. SDLs have successfully optimized materials 
and chemical syntheses, including learning the Pareto 
trade-offs between competing objectives, e.g., material 
properties77. 
 Many functional materials for unit operations need 
to be optimized in the context of broader systems, which 
is likely too complex for SDLs with only data-driven ML 
models. For example, designing new membranes is not 
as simple as maximizing one property, such as selectivity 
or permeability, but instead, deciding how to balance ma-
terial properties in the context of the broader separation 
system78,79. Instead, we propose combining automation 
and dynamic experiments for membrane characterization 
with science-based mathematical models80. Then model-
based design of experiments methods81 can be used to 
first distinguish between competing transport mecha-
nisms and then optimize experiments to reduce model 
uncertainty. ML surrogate models can help reduce the 
computational burden of optimal experiment design82 
and model calibration83. Ultimately, this approach results 
in mathematical models with quantified uncertainty, i.e., 
digital twins84, for process and infrastructure scale opti-
mization. 
 

Process and System-of-Systems 
Optimization 
 AI and ML provide new capabilities to improve the 
computational tractability, accuracy, and ease of imple-
mentation of integrated multiscale optimization across 
molecular, material, device, process, and infrastructure 
scales. 
 ML hybrid83,85 or reduced-order surrogate models 
provide new scale-bridging approaches, especially con-
sidering the recent advances in computational optimiza-
tion with embedded ML models86,87. For example, Rall et 
al.88 used artificial neural network (ANN) surrogate mod-
els to incorporate high-fidelity ion transport membrane 
model performance predictions into the global super-
structure optimization of a separation process. This 
methodology is especially powerful because it integrates 
rigorous models from another discipline (e.g., membrane 
science) with process systems engineering analyses. 
There is a significant opportunity for surrogate models to 
quantitatively establish (membrane) material property 
and device performance targets using process and sys-
tems models78,79. 

 Similarly, ML surrogate models can enhance sys-
tems-of-systems modeling. For example, Jalving et al.89 
trained ANN surrogate models to predict how replac-
ing/retrofitting a generator impacts transmission net-
work-wide outcomes in a wholesale electricity market. 
These ANNs were then embedded into the steady-state 
co-optimization of generator design and operation. This 
example highlights the complex interactions between in-
dividual agents (e.g., generators) in the context of a 
larger system (electric market). In the broader sustaina-
bility context, systems-of-systems models combine eco-
nomic, societal, and environmental submodels90,91. ML 
surrogate models provide new opportunities to further in-
tegrate these with technology submodels (e.g., materials, 
processes, supply chains, infrastructure) while leverag-
ing multi-objective computation optimization. Moreover, 
ML surrogate models can enable next-generation deci-
sion-support tools where diverse stakeholders interact in 
real time with system-of-system optimization models to 
facilitate negotiations. Data reduction and visualization 
approaches are critical to understanding and explaining 
trade-offs between tens or more (often correlated) ob-
jectives in sustainability problems25.  
 ML also provides new methods to quantify and mit-
igate uncertainty in decision-making. For example, Ken-
nedy and O’Hagan hybrid models92 can quantify the ep-
istemic (model-form) uncertainty from simplifications in 
multiscale models93,94. We argue that Bayesian inference 
methods, which interpret probability as a belief, are con-
ceptually aligned with stochastic and chance-con-
strained programming, which optimize over a probability 
distribution, i.e., the posterior from Bayesian model cali-
bration. In contrast, frequentist statistical methods inter-
pret probability as long-term error rates. Frequentist 
methods output confidence regions conceptually aligned 
with uncertainty sets for robust optimization. This per-
spective helps align the foundations of the data science 
and ML methods used to characterize uncertainty with 
the choice of optimization under uncertainty paradigm. 
Computational tractability remains a significant challenge 
to incorporating uncertainty in multiscale simulation and 
optimization problems. ML facilitates improved decom-
position methods95, aggregation and clustering96, and 
branching strategies97. New generative AI methods are 
emerging to either accelerate or replace classical mixed 
integer optimization algorithms, e.g., fast sensitivity anal-
ysis98. 
 Finally, generative AI can accelerate the problem 
formulation and time to solution. For example, generative 
AI for flowsheet synthesis99 can dramatically reduce the 
time to screen novel materials (e.g., new catalyst) in the 
context of a chemical manufacturing process. Likewise, 
generative AI can propose model reformulations, variable 
and constraint scaling, and initialization to improve model 
diagnostics100,101 to reduce the barriers to nonlinear 
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optimization. These advances would make sophisticated 
optimization paradigms more accessible to general 
chemical engineering practitioners instead of highly spe-
cialized experts. 

CONCLUDING REMARKS 
 AI and ML improve the tractability of multiscale op-
timization, use data more effectively to quantify and mit-
igate uncertainty, and facilitate automation and faster 
time to solutions. These new capabilities complement re-
cent trends in modeling software102 that enable process 
systems engineers to guide the development of novel 
molecules, materials, devices, processes, and systems to 
address global grand challenges such as sustainable de-
velopment. AI and ML provide methods that help facili-
tate bidirectional feedback across diverse scales and 
disciplines2. The described themes and opportunities are 
broadly relevant to sustainability challenges beyond the 
four motivating examples, such as recycling plastics, re-
mediating legacy pollutants (e.g., perfluoroalkyl and 
polyfluoroalkyl substances (PFAS), lead), and decarbon-
izing chemical production (e.g., H2, ammonia, biofuels). 
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