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ABSTRACT

Sustainability encompasses many wicked problems involving complex interdependencies across
social, natural, and engineered systems. We argue holistic multiscale modeling and decision-sup-
port frameworks are needed to address multifaceted interdisciplinary aspects of these wicked
problems. This review highlights three emerging research areas for artificial intelligence (Al) and
machine learning (ML) in molecular-to-systems engineering for sustainability: (1) molecular dis-
covery and materials design, (2) automation and self-driving laboratories, (3) process and sys-
tems-of-systems optimization. Recent advances in Al and ML are highlighted in four contemporary
application areas in chemical engineering design: (1) equitable energy systems, (2) decarbonizing
the power sector, (3) circular economies for critical materials, and (4) next-generation heating and
cooling. These examples illustrate how Al and ML enable more sophisticated interdisciplinary mul-
tiscale models, faster optimization algorithms, more accurate uncertainty quantification, smarter
and faster data collection, and incorporation of diverse stakeholders into decision-making pro-
cesses, improving the robustness of engineering and policy designs while focusing on the multi-
faceted goals and constraints in wicked problems.
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INTRODUCTION

Creating engineered solutions to help achieve UN
sustainable development goals (e.g., clean water and
sanitation, affordable and clean energy, responsible con-
sumption and production), ! requires managing complex
trade-offs across diverse molecular, material, device,
process, and infrastructure scales?. As such, break-
throughs at a single scale are often insufficient to realize
global impact. Moreover, these wicked problems®* re-
quire interdisciplinary teams to manage interdependen-
cies across social, natural, and engineered complex sys-
tems.

Using four contemporary sustainability challenges in
chemical engineering, this short paper argues recent ad-
vances in artificial intelligence (Al) and machine learning
(ML) methods for product and process design offer new
capabilities to accelerate decision-making across molec-
ular-to-system length and timescale. For brevity, we di-
rect the reader to several excellent review articles and
editorials for technical overviews of Al>¢, ML, and data

https://doi.org/10.69997/sct.114705

science (DS)'>'* methods used in chemical engineering.
This paper focuses on advances and opportunities for Al,
ML, and DS for product and materials design, which we
argue is inherently multiscale and interdisciplinary. Many
now consider Al as an academic discipline, and ML is a
field within AI'S. Similarly, DS is an interdisciplinary field
focused on extracting knowledge from data, which his-
torical roots in applied statistics'. We do not dwell on the
formal distinction between Al, ML, and DS.

MOTIVATING APPLICATIONS

We start by framing four sustainability challenges,
each of which presents many opportunities for innova-
tions in designing materials, products, and processes.
However, fully realizing the benefits of technology devel-
opment requires holistic systems engineering ap-
proaches, which Al and ML help facilitate.

Equitable Energy Transitions
Social, natural, and engineered systems around the
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globe must adapt to climate change’. While the poorest
and most marginalized have contributed minimally to
global emissions, they are impacted the most by climate
change’™. Thus, it is critical to consider equity and envi-
ronmental justice dimensions of technologies and poli-
cies to transition the global energy economy from fossil
to renewable resources. Decision-making must consider
many objectives and perspectives from diverse stake-
holders™ to manage complex interdependencies across
social, natural, and engineered systems. Best practices
to broaden representation in policy processes' can be
integrated with systems thinking to enable participatory
research on materials and chemical products focused on
the authentic needs of poor and marginalized communi-
ties.

Decarbonizing the Power Sector

A key aspect of climate adaptation is decarbonizing
electricity generation through greater adoption of car-
bon-neutral or renewable energy sources. One key tech-
nical challenge is that non-dispatchable renewable
sources, carbon capture systems, and nuclear genera-
tors are often less flexible than fossil fuel generators.
New sources of dynamic flexibility are needed to contin-
uously balance electricity generation and production and
ensure resiliency to extreme events (e.g., weather).
Technoeconomic analysis of grid-connect systems, in-
cluding power generators, storage systems, building, and
(chemical) manufacturing processes, must consider the
time-varying value of electrical energy, ancillary services,
and demand response incentives?°-2* while considering
uncertainty?* and trade-offs between flexible operation
and emissions?®. Moreover, systems modeling can help
inform the value of flexibility?6?” and set performance tar-
gets for materials development, e.g., degradation in en-
ergy storage systems?8. However, introducing new gen-
erators, energy storage, or integrated energy systems
can distort prices in energy markets?®3°, which empha-
sizes the need for system-of-systems modeling to as-
sess the economics of new technologies properly. Ex-
pansion planning®'32 and similar decision-support tools33
are needed to establish multi-decade decarbonization
pathways3435 that ultimately inform materials design and
technology development.

Circular Economies for Critical Materials

Reducing society's carbon footprint requires robust
supply chains of critical minerals and materials (CMMs),
including rare-earth elements (REEs)3. CMMs and REEs
are essential to modern technologies, including energy
storage, permanent magnetics in high-efficiency motors,
and wind turbines. However, primary sources of REEs
(and many CMMs) are environmentally costly to extract,
separate, and refine®”. Moreover, global pandemics, pol-
icies, and geopolitics can complicate CMM and REE
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supply chains382°, Thus, there is a need for new materials
that enable new separations and processes to recycle
CMMs and REEs from distributed sources such as used
batteries and consumer electronics*°. In these proceed-
ings, Dougher et al.*" elaborates on opportunities for pro-
cess systems engineering to accelerate membrane sep-
arations for CMMs and REEs.

Next Generation Heating and Cooling

As part of climate adaptation, recent international
agreements mandate the phaseout of hydrofluorocarbon
(HFC) refrigerants due to their high global warming po-
tential. However, recycling existing HFCs requires new
materials such as membranes?*?43, sorbents**, ionic lig-
uids*>-5' and deep eutectic solvents®? to separate (near)-
azeotropic mixtures. Beyond vapor recompression sys-
tems, new technologies such as solid-state devices may
improve performance and lower carbon footprints®3. Sim-
ilarly, thermoelectric materials and devices can be engi-
neered to power distributed electronics or convert waste
heat into electrical energy®*. These technologies require
sophisticated co-optimization of materials composition®,
manufacturing processes®®5’, and device designs while
considering performance targets from systems models.

Policy-mandated phase-outs and transformations in
the heating and cooling section provide another example
of complex interactions between social, natural, and en-
gineered systems®®. Systems-of-system models are
needed to understand the development of HFC recycling
supply chains and consumer behavior, e.g., adopting new
technologies to establish a circular economy, especially
considering changing climates. For example, policy inter-
ventions may be needed to ensure that next-generation
heating and cooling technologies remain affordable for
everyone. New materials and technologies must be
benchmarked using systems models that capture these
complexities.

Al & ML FOR MOLECULAR-TO-SYSTEMS

These four motivating examples emphasize the
complexities of engineering new materials, chemical
products, and processes to help meet sustainable devel-
opment goals. This section highlights recent advances in
Al and ML to address these challenges.

Molecular Discovery and Materials Design

Computer-aided molecular design (CAMD) methods
integrate predictive models to engineer novel molecules
and materials, often in conjunction with processes®%8°,
Classic examples include co-optimizing refrigerants and
refrigeration cycles, creating designer solvents (e.qg.,
ionic liquids) for a wide range of separations and reac-
tions (e.g., CO:2 capture, crystallization, pharmaceutical
manufacturing), and engineering new materials for
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energy storage (e.g., electrolytes). Advances in deep
learning® combined with massive datasets enabled by
new data/text mining®? can provide CAMD approaches
with more accurate models to predict thermophysical
and mixture properties as a function of molecular/mate-
rials structure.

Molecular simulations accelerate the engineering of
new molecules and materials by providing new scientific
insights or predicting properties at conditions impractical
to measure. Al and ML offer several opportunities to im-
prove the speed and accuracy of molecular simulations®2.
For example, ML surrogate models and Bayesian Optimi-
zation (BO)®4 can improve the speed and accuracy of pa-
rameter estimation for force fields®>68, We proposed®’
and refined®® an ML-assisted optimization workflow to
develop new force fields for seven refrigerants. Moreo-
ver, these physically interpretable force fields accurately
predict properties not considered in calibration®. An al-
ternative approach is to replace the force field
Dowling / LAPSE:2024.1504

expression with an ML model’®”', Both ML approaches
are important because the lack of accurate force fields
has historically hindered the use of molecular simulations
to engineer some new classes of chemical products and
functional materials.

Generative Al methods are emerging to engineer
new molecules, materials, and synthesis pathways’?73.
One popular approach uses variational autoencoders to
reduce molecular descriptors into a latent space. BO® or
reinforcement learning’* can then optimize molecules in
the latent space. ML frameworks are also emerging to co-
optimize the material design, manufacturing, and end-
use. For thermoelectric materials, we recently developed
data science and BO methods to optimize photonic sin-
tering® (advanced manufacturing), aerosol jet printing®®
(additive manufacturing), and dopant composition®® (ma-
terial design). These studies combined ML with expert in-
tuition and laboratory experiments.
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Automation and Self-Driving Laboratories

Self-driving laboratories (SDLs) are revolutionizing
molecular discovery and materials design by combining
recent advances in robotic automation with ML”576. Most
SDLs use black-box data-driven ML models to predict
experiment outcomes (e.g., material properties, synthe-
sis yields) from input decisions. Al methods such as BO
or active learning plan the next sequence or batch of ex-
periments. SDLs have successfully optimized materials
and chemical syntheses, including learning the Pareto
trade-offs between competing objectives, e.g., material
properties”’.

Many functional materials for unit operations need
to be optimized in the context of broader systems, which
is likely too complex for SDLs with only data-driven ML
models. For example, designing new membranes is not
as simple as maximizing one property, such as selectivity
or permeability, but instead, deciding how to balance ma-
terial properties in the context of the broader separation
system’87°. Instead, we propose combining automation
and dynamic experiments for membrane characterization
with science-based mathematical models®. Then model-
based design of experiments methods®' can be used to
first distinguish between competing transport mecha-
nisms and then optimize experiments to reduce model
uncertainty. ML surrogate models can help reduce the
computational burden of optimal experiment design®?
and model calibration®3. Ultimately, this approach results
in mathematical models with quantified uncertainty, i.e.,
digital twins®4, for process and infrastructure scale opti-
mization.

Process and System-of-Systems
Optimization

Al and ML provide new capabilities to improve the
computational tractability, accuracy, and ease of imple-
mentation of integrated multiscale optimization across
molecular, material, device, process, and infrastructure
scales.

ML hybrid®8% or reduced-order surrogate models
provide new scale-bridging approaches, especially con-
sidering the recent advances in computational optimiza-
tion with embedded ML models®®®’, For example, Rall et
al.28 used artificial neural network (ANN) surrogate mod-
els to incorporate high-fidelity ion transport membrane
model performance predictions into the global super-
structure optimization of a separation process. This
methodology is especially powerful because it integrates
rigorous models from another discipline (e.g., membrane
science) with process systems engineering analyses.
There is a significant opportunity for surrogate models to
quantitatively establish (membrane) material property
and device performance targets using process and sys-
tems models’879,
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Similarly, ML surrogate models can enhance sys-
tems-of-systems modeling. For example, Jalving et al.®®
trained ANN surrogate models to predict how replac-
ing/retrofitting a generator impacts transmission net-
work-wide outcomes in a wholesale electricity market.
These ANNs were then embedded into the steady-state
co-optimization of generator design and operation. This
example highlights the complex interactions between in-
dividual agents (e.g., generators) in the context of a
larger system (electric market). In the broader sustaina-
bility context, systems-of-systems models combine eco-
nomic, societal, and environmental submodels®®®, ML
surrogate models provide new opportunities to further in-
tegrate these with technology submodels (e.g., materials,
processes, supply chains, infrastructure) while leverag-
ing multi-objective computation optimization. Moreover,
ML surrogate models can enable next-generation deci-
sion-support tools where diverse stakeholders interact in
real time with system-of-system optimization models to
facilitate negotiations. Data reduction and visualization
approaches are critical to understanding and explaining
trade-offs between tens or more (often correlated) ob-
jectives in sustainability problems?>.

ML also provides new methods to quantify and mit-
igate uncertainty in decision-making. For example, Ken-
nedy and O’Hagan hybrid models®? can quantify the ep-
istemic (model-form) uncertainty from simplifications in
multiscale models®3%4. We argue that Bayesian inference
methods, which interpret probability as a belief, are con-
ceptually aligned with stochastic and chance-con-
strained programming, which optimize over a probability
distribution, i.e., the posterior from Bayesian model cali-
bration. In contrast, frequentist statistical methods inter-
pret probability as long-term error rates. Frequentist
methods output confidence regions conceptually aligned
with uncertainty sets for robust optimization. This per-
spective helps align the foundations of the data science
and ML methods used to characterize uncertainty with
the choice of optimization under uncertainty paradigm.
Computational tractability remains a significant challenge
to incorporating uncertainty in multiscale simulation and
optimization problems. ML facilitates improved decom-
position methods®, aggregation and clustering®, and
branching strategies®’. New generative Al methods are
emerging to either accelerate or replace classical mixed
integer optimization algorithms, e.g., fast sensitivity anal-
ysis®,

Finally, generative Al can accelerate the problem
formulation and time to solution. For example, generative
Al for flowsheet synthesis®® can dramatically reduce the
time to screen novel materials (e.g., new catalyst) in the
context of a chemical manufacturing process. Likewise,
generative Al can propose model reformulations, variable
and constraint scaling, and initialization to improve model
diagnostics''" to reduce the barriers to nonlinear
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optimization. These advances would make sophisticated
optimization paradigms more accessible to general
chemical engineering practitioners instead of highly spe-
cialized experts.

CONCLUDING REMARKS

Al and ML improve the tractability of multiscale op-
timization, use data more effectively to quantify and mit-
igate uncertainty, and facilitate automation and faster
time to solutions. These new capabilities complement re-
cent trends in modeling software’®? that enable process
systems engineers to guide the development of novel
molecules, materials, devices, processes, and systems to
address global grand challenges such as sustainable de-
velopment. Al and ML provide methods that help facili-
tate bidirectional feedback across diverse scales and
disciplines?. The described themes and opportunities are
broadly relevant to sustainability challenges beyond the
four motivating examples, such as recycling plastics, re-
mediating legacy pollutants (e.g., perfluoroalkyl and
polyfluoroalkyl substances (PFAS), lead), and decarbon-
izing chemical production (e.g., H2, ammonia, biofuels).
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