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Abstract
The Arrow–Debreu extension of the classic Hylland–Zeckhauser scheme (Hylland and Zeck-
hauser in J Polit Econ 87(2):293–314, 1979) for a one-sided matching market—called ADHZ 
in this paper—has natural applications but has instances which do not admit equilibria. By 
introducing approximation, we define the �-approximate ADHZ model and give the following 
results. 1. Existence of equilibrium under linear utility functions. We prove that the equilib-
rium allocation satisfies Pareto optimality, approximate envy-freeness, and approximate weak 
core stability. 2. A combinatorial polynomial time algorithm for an �-approximate ADHZ 
equilibrium for the case of dichotomous, and more generally bi-valued, utilities. 3. An instance 
of ADHZ, with dichotomous utilities and a strongly connected demand graph, which does 
not admit an equilibrium. 4. A rational convex program for HZ under dichotomous utilities; 
a combinatorial polynomial time algorithm for this case was given in Vazirani and Yannaka-
kis (in: Innovations in theoretical computer science, pp 59–15919, 2021). The �-approximate 
ADHZ model fills a void in the space of general mechanisms for one-sided matching markets; 
see details in the paper.

Keywords  Arrow–Debreu model · Hylland–Zeckhauser scheme · One-sided matching 
markets · Rational convex program · Dichotomous utilities

1  Introduction

A one-sided matching market is defined by a set of n indivisible goods and a set of n agents 
with preferences. The goal is to find a matching of each agent to a distinct good that has 
desirable fairness and efficiency properties. These markets can be classified along two 
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directions: whether the preferences are cardinal or ordinal, and whether agents have initial 
endowments or not. For the cardinal setting, an allocation based on market equilibrium 
provides remarkable fairness and efficiency guarantees. The two fundamental market mod-
els are Fisher and Arrow–Debreu. An Arrow–Debreu (exchange) market is like a barter 
system, where each agent comes to the market with an endowment of goods and exchanges 
them with others to maximize her utility. On the other hand, a Fisher market is a special 
case of the exchange model where each agent has a fixed budget.

Hylland–Zeckhauser (HZ) is the classic mechanism [1] for one-sided matching markets 
without endowments, based on the Fisher model. In this paper, we define an Arrow–Debreu 
extension of the HZ mechanism. This fills a void in the space of general1 mechanisms for 
one-sided matching markets. The other possibilities are covered as follows: (cardinal, 
Fisher) by the Hylland–Zeckhauser scheme [1]; (ordinal, Fisher) by Probabilistic Serial [3] 
and Random Priority [4]; and (ordinal, Arrow–Debreu) by Top Trading Cycles [5]. Details 
about these mechanisms are given in Sect. 1.1.

The two ways of expressing utilities of goods—ordinal and cardinal—have their own 
pros and cons and neither dominates the other. On the one hand, the former is easier to 
elicit from agents and on the other, the latter is far more expressive, enabling an agent to 
not only report if she prefers good A to good B but also by how much. Abdulkadiroğlu 
et  al. [6] exploited this greater expressivity of cardinal utilities to give mechanisms for 
school choice which provides a better solution, as illustrated in the following example.

Consider an instance with three types of goods, T1, T2, T3 , and these goods are pre-
sent in the proportion of (1%, 97%, 2%) . Based on their utility functions, the agents are 
partitioned into two sets A1 and A2 , where A1 constitute 1% of the agents and A2 , 99% . 
The utility functions of agents in A1 and A2 for the three types of goods are (1, �, 0) and 
(1, 1 − �, 0) , respectively, for a small number 𝜖 > 0 . The main point is that whereas agents 
in A2 marginally prefer T1 to T2 , those in A1 overwhelmingly prefer T1 to T2.

Clearly, the ordinal utilities of all agents in A1 ∪ A2 are the same. Therefore, a mecha-
nism based on such utilities will not be able to distinguish between the two types of agents. 
On the other hand, the HZ mechanism, which uses cardinal utilities, will fix the price of 
goods in T3 to be zero and those in T1 and T2 appropriately so that by and large, the bundles 
of A1 and A2 consist of goods from T1 and T2 , respectively.

The Arrow–Debreu setting of one-sided matching markets has several natural applica-
tions beyond the Fisher setting, e.g., allocating students to rooms in a dorm for the next 
academic year, assuming their current room is their initial endowment. Similarly, school 
choice, when a student’s initial endowment is a seat in a school that they already have. The 
issue of obtaining such an extension of the HZ mechanism, called ADHZ in this paper, was 
studied by Hylland and Zeckhauser. However, this culminated in an example that inher-
ently does not admit an equilibrium [1].

One recourse to this was given by Echenique, Miralles, and Zhang [7] via their notion of 
an �-slack Walrasian equilibrium: This is a hybrid between the Fisher and Arrow–Debreu 
settings. Agents have initial endowments of goods, and for a fixed � ∈ (0, 1] , the budget 
of each agent, for given prices of goods, is � + (1 − �) ⋅ m , where m is the value for her 
initial endowment; the agent spends this budget to obtain an optimal bundle of goods. Via 
a non-trivial proof, using the Kakutani Fixed Point Theorem, they proved that an �-slack 
equilibrium always exists.

1  As opposed to mechanisms for specific one-sided matching markets.
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In this paper, we show that we can remain within a pure Arrow–Debreu setting provided 
we relax the notion of equilibrium to an approximate equilibrium, a notion that has become 
commonplace in the study of equilibria within computer science due to irrational-valued 
equilibria and intractability; see, e.g., [8, 9]. We call this the �-approximate ADHZ model. 
For this model, we give the following results.

We prove the existence of an equilibrium for arbitrary cardinal utility functions, using 
the fact from the paper [7] that an �-slack equilibrium always exists for 𝛼 > 0.

We prove that the equilibrium allocation in our �-approximate ADHZ model is Pareto 
optimal, approximately envy-free, and approximately weak core stable.2 In contrast, the 
allocation found by an HZ equilibrium is Pareto optimal and envy-free [1].

For an Arrow–Debreu market under linear utilities, Gale [10] defined a demand graph: 
a directed graph on agents with an edge (i, j) if agent i likes a good that agent j has in her 
initial endowment. He proved that a sufficiency condition for the existence of equilibrium 
is that this graph be strongly connected. The following question arises naturally: Is this a 
sufficiency condition for equilibrium existence in ADHZ as well? We provide a negative 
answer to this question. We give an instance of ADHZ whose demand graph is not only 
strongly connected but also has dichotomous utilities (i.e., utilities in {0, 1} ), and yet it does 
not admit an equilibrium.

For the case of dichotomous utilities, we give a combinatorial polynomial-time algo-
rithm for computing an equilibrium for our �-approximate ADHZ model. This result also 
extends to the case of bi-valued utilities, i.e., each agent’s utility for individual goods 
comes from a set of cardinality two, though the sets may differ for different agents. These 
utilities are well-studied (see, e.g., [2, 11–14]), mainly due to their significance in practi-
cal applications. For example, it might be simpler for agents to answer whether their desire 
for a good is “high” or “low” with numerical values. We note that the polynomial-time 
algorithms for Arrow–Debreu markets under linear utilities [15, 16], as well as the recent 
strongly polynomial-time algorithm for the same problem [17] are quite complicated, in 
particular, because they resort to the use of balanced flows, which uses the l2 norm. In con-
trast, we managed to avoid using the l2 norm, and hence, we obtained a simple algorithm.

A corollary of the last result is that the equilibrium of the dichotomous utility case of 
the �-approximate ADHZ model involves only rational numbers. In contrast, we give an 
instance of ADHZ, whose unique equilibrium has irrational prices and allocations. This 
instance is obtained by appropriately modifying an instance for the HZ model, given in [2], 
whose (unique) equilibrium has irrational prices and allocations. This led us to ask if there 
is a rational convex program (RCP) that captures the equilibrium in this setting.

An RCP, defined in [18], is a nonlinear convex program whose parameters are rational 
numbers and always admits a rational solution in which the denominators are polynomially 
bounded. The quintessential such program is the Eisenberg-Gale convex program [19] for 
a linear Fisher market. The significance of finding such a program for a problem is that it 
directly implies the existence of a polynomial time algorithm for the underlying problem, 
since using the ellipsoid algorithm and Diophantine approximation [20, 21], an RCP can be 
solved exactly in polynomial time. As a result, it gives practitioners a direct way to com-
pute a solution using general-purpose convex programming solvers. Although we could not 
answer this question, we did find an RCP for HZ equilibrium under dichotomous utilities. 
A combinatorial polynomial time algorithm for this case was given in [2].

2  For definitions of these notions see Definitions 2 and 8
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1.1 � Related results

Matching markets have been intensely studied and have found many applications in various 
multi-agent settings. For a few recent examples, Aziz et al. [22] provided a reduction from 
different matching problems that preserve feasibility and stability. Beynier et al. [23] stud-
ied the fair and efficient allocation in housing markets where agents want to exchange their 
houses to improve their utilities. Gupta et al. [24] studied the stability in barter exchange 
markets. Hosseini et al. [25] studied the characteristics of one-sided matching mechanisms 
in which a set of items needs to be matched with a set of agents. Aziz [26] studied the strat-
egyproofness of the exchange markets in which agents have dichotomous preferences.

We start by stating the properties of mechanisms for one-sided matching markets listed 
in the Introduction. Random Priority [4] is strategyproof though not efficient or envy-free; 
Probabilistic Serial [3] is efficient and envy-free but not strategyproof; and Top Trading 
Cycles [5] is efficient, strategyproof and core stable.

Recently, Vazirani and Yannakakis [2] undertook a comprehensive study of the com-
putational complexity of the HZ scheme. They gave a combinatorial polynomial time 
algorithm for dichotomous utilities and an example with only irrational equilibria; con-
sequently, this problem is not in PPAD. They showed that the problem of computing an 
exact HZ equilibrium is in the class FIXP, and the problem of computing an approximate 
equilibrium is in PPAD. Very recently, Chen et al. [27] showed that computing an approxi-
mate HZ equilibrium is PPAD-hard. To deal with the computational intractability of HZ, a 
Nash-bargaining-based mechanism was proposed in [28].

The study of the dichotomous case of matching markets was initiated by Bogomolnaia 
and Moulin [11]. They studied a two-sided matching market, and they called it an “impor-
tant special case of the bilateral matching problem.” Using the Gallai-Edmonds decom-
position of a bipartite graph, they gave a mechanism that is Pareto optimal and group 
strategyproof. They also gave a number of applications of their setting, some of which are 
natural applications of one-sided markets, e.g., housemates distributing rooms with dif-
ferent features in a house. As in the HZ scheme, their mechanism also outputs a doubly 
stochastic matrix whose entries represent probability shares of allocations. However, they 
give another interesting interpretation of this matrix. They say, “Time sharing is the sim-
plest way to deal fairly with indivisibilities of matching markets: think of a set of workers 
sharing their time among a set of employers.” Roth, Sönmez and Ünver [29] extended these 
results to general graph matching under dichotomous utilities; this setting is applicable to 
the kidney exchange marketplace.

An interesting recent paper [30] defines the notion of a random partial improvement 
mechanism for a one-sided matching market. This mechanism truthfully elicits the cardinal 
preferences of the agents and outputs a distribution over matchings that approximates every 
agent’s utility in the Nash bargaining solution.

Several researchers have proposed Hylland–Zeckhauser-type mechanisms for a number 
of applications, for instance [31–34]. The basic scheme has also been generalized in sev-
eral different directions, including two-sided matching markets, adding quantitative con-
straints, and to the setting in which agents have initial endowments of goods instead of 
money, see [7, 35].

Organization of the rest of the paper Section  2 describes the HZ mechanism and its 
relation with linear Fisher markets. The �-Approximate ADHZ model and the existence 
and fairness properties of its equilibria are presented in Sect. 3. Section 4 presents an algo-
rithm for computing an equilibrium in a �-Approximate ADHZ model under dichotomous 
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utilities. An RCP for the HZ mechanism under dichotomous utilities showing that it admits 
a rational-valued equilibrium is presented in Sect. 5. Section 6 extends the rational-valued 
property to a notion of �-slack equilibrium in the ADHZ setting under dichotomous utili-
ties. Finally, we conclude in Sect. 7.

2 � The Hylland–Zeckhauser mechanism

The Hylland–Zeckhauser (HZ) mechanism can be viewed as a marriage between a frac-
tional perfect matching and a linear Fisher market, which consists of a set A of agents and 
a set G of goods. Each agent i comes to the market with a budget bi and has utilities uij ≥ 0 
for each good j. In the case of linear utilities, agent i’s utility from allocation (xij)j∈G is ∑

j uijxij . By fixing the units for each good, we may assume without loss of generality that 
there is a unit of each good in the market.

Definition 1  A Fisher equilibrium is a pair (x, p) consisting of an allocation (xij)i∈A,j∈G and 
non-negative prices (pj)j∈G with the following properties. 

1.	 Each agent i spends at most their budget, i.e., 
∑

j∈G pjxij ≤ bi.
2.	 Each agent i gets an optimal bundle, i.e., utility maximizing bundle at prices p. Formally: 

3.	 The market clears, i.e., each good with a positive price is fully allocated to the agents.

The set of equilibria of a linear Fisher market corresponds to the set of optimal solutions 
of the Eisenberg–Gale convex program [19], which is a rational convex program (RCP) 
and in fact it motivated the definition of this concept [18].

Fisher equilibrium allocations satisfy various nice properties, including equal-type 
envy-freeness and Pareto optimality.

Definition 2  (Envy-freeness and Pareto optimality) An allocation is envy-free if for 
any two agents i, i� ∈ A , agent i weakly prefers their allocation than those that i′ gets, i.e., ∑

j∈G uijxij ≥
∑

j∈G uijxi�j . It is equal-type envy-free if the above holds for any two agents 
with identical budgets.

An allocation x weakly dominates another allocation x′ if no agent prefers x′ to x. It 
strongly dominates x′ if it weakly dominates it, and some agent prefers x to x′ . An alloca-
tion x is Pareto efficient or Pareto optimal if there is no other allocation x′ which strongly 
dominates it.

Definition 3  A one-sided matching market consists of a set A of agents and a set G of 
goods. Each agent has preferences over goods, expressed either using cardinal or ordinal 
utility functions. An allocation is a perfect matching of agents to goods. The goal of the 
market is to find an allocation so that the underlying mechanism has some desirable game-
theoretic properties.

∑

j∈G

uijxij = max

{
∑

j∈G

uijyj ∣ y ∈ ℝ
G
≥0
,
∑

j∈G

pjyj ≤ bi

}
.



	 Autonomous Agents and Multi-Agent Systems (2024) 38:4040  Page 6 of 22

The HZ mechanism uses cardinal utility functions, in which each good is rendered 
divisible by viewing it as one unit of probability shares. An HZ equilibrium is defined as 
follows.

Definition 4  A Hylland–Zeckhauser (HZ) equilibrium is a pair (x, p) consisting of an allo-
cation (xij)i∈A,j∈G and non-negative prices (pj)j∈G with the following properties. 

1.	 x is a fractional perfect matching, i.e., 
∑

j∈G xij = 1 for all i and 
∑

i∈A xij = 1 for all j.
2.	 Each agent i spends at most their budget, i.e., 

∑
j∈G pjxij ≤ bi (usually bi = 1).

3.	 Each agent i gets an optimal bundle, which is defined to be a cheapest utility maximizing 
bundle, i.e., 

Unlike in a linear Fisher market, an agent’s utility in the HZ setting can be satiated, i.e., 
they may be able to reach their optimum utility without spending their entire budget. This 
is why the additional condition that each agent receives their cheapest optimal bundle is 
added. HZ equilibrium allocations are known to be Pareto optimal and envy-free (assuming 
unit budgets).3

The allocation x found by the HZ mechanism is a fractional perfect matching or a dou-
bly stochastic matrix. To get an integral perfect matching from x, a lottery can be carried 
out using the Theorem of Birkhoff [36] and von Neumann [37]. It states that any doubly-
stochastic matrix can be written as a convex combination of integral perfect matchings; 
moreover, this decomposition can be found efficiently. Picking a perfect matching accord-
ing to the discrete probability distribution determined by this convex combination yields 
the resulting allocation in the HZ mechanism.

3 � The �‑approximate ADHZ model

In this paper, we are interested in an exchange version of the HZ mechanism. Before 
defining it, we introduce the Arrow–Debreu (exchange) market under linear utility func-
tions, which consists of a set A of agents and a set G of goods. Each agent i comes to 
the market with an endowment eij ≥ 0 of each good j and also has a utility uij ≥ 0 . Each 
good j must be fully owned by the agents, i.e., 

∑
i∈A eij = 1 for all j ∈ G.

∑

j∈G

uijxij = max

{
∑

j

uijyj ∣
∑

j

yj = 1;
∑

j

pjyj ≤ bi

}
and

∑

j∈G

pjxij = min

{
∑

j

pjyj ∣
∑

j

yj = 1;
∑

j

uijyj ≥
∑

j

uijxij

}
.

3  Pareto optimality for HZ requires that each agent receives a cheapest utility maximizing bundle. Con-
sider an instance with two agents a1 and a2 , and two goods g1 and g2 with u11 = u21 = u22 = 1;u12 = 0 . 
The agents are assumed to have unit budgets. The prices (2,  0) together with the allocation 
x11 = x12 = x21 = x22 = 0.5 are optimal bundles, though not cheapest. The utilities in this equilibrium are 
0.5 for agent a1 and 1 for agent a2 . However, there is another HZ equilibrium with prices (1, p), for any 
p ∈ [0, 1] with utility 1 for both agents.
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Definition 5  An Arrow–Debreu (AD) equilibrium for a given AD market is a pair (x, p) 
consisting of an allocation (xij)i∈A,j∈G and non-negative prices (pj)j∈G with the following 
properties. 

1.	 Each agent spends at most the budget earned from the endowment, i.e., ∑
j pjxij ≤ bi ∶=

∑
j pjeij.

2.	 Each agent i gets an optimal bundle, i.e., 

3.	 The market clears, i.e., each good with a positive price is fully allocated to the agents.

The AD model generalizes the Fisher model in the sense that any Fisher market can 
be easily transformed into an AD market by giving each agent a fixed proportion of 
every good. Clearly, AD equilibria satisfy the condition of individual rationality, defined 
below, since every agent could always buy back their endowment.

Definition 6  An allocation in an AD market is individually rational if for every agent i we 
have 

∑
j uijxij ≥

∑
j uijeij , i.e., no agent loses utility by participating in the market.

However, individual rationality fundamentally clashes with envy-freeness. Consider 
a market consisting of two agents, each owning a distinct good. Assume that both agents 
prefer the good of agent 2 over the good of agent 1, then in any allocation, either agent 1 
envies agent 2 or agent 2’s individual rationality is violated. For this reason, we primar-
ily consider a version of equal-type envy-freeness in exchange markets, which demands 
envy-freeness only for agents with the same initial endowment.

AD equilibria do not always exist. However, there is a simple necessary and suffi-
cient condition for their existence based on strong connectivity of demand graph, due to 
Gale [10]. An RCP for this problem was given by Devanur, Garg, and Végh [38].

We now turn to the extension of the HZ mechanism to exchange markets. In the 
ADHZ market, we have a set A of agents and a set G of goods with |A| = |G| = n . Each 
agent i comes with an endowment eij ≥ 0 of each good j and utilities uij ≥ 0 . The endow-
ment vector e is a fractional perfect matching.

Definition 7  An ADHZ equilibrium for a given ADHZ market is a pair (x, p) consisting of 
an allocation (xij)i∈A,j∈G and non-negative prices (pj)j∈G with the following properties. 

1.	 x is a fractional perfect matching, i.e., 
∑

j∈G xij = 1 for all i and 
∑

i∈A xij = 1 for all j.
2.	 Each agent spends at most the budget earned from the endowment, i.e., ∑

j pjxij ≤ bi ∶=
∑

j pjeij.
3.	 Each agent i gets an optimal bundle, which is defined to be a cheapest utility maximizing 

bundle, i.e., 

∑

j∈G

uijxij = max

{
∑

j∈G

uijyj ∣ y ∈ ℝ
G
≥0
,
∑

j∈G

pjyj ≤ bi

}
.
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Theorem 1  ADHZ equilibrium allocations are Pareto optimal, individually rational, and 
equal-type envy-free.

Proof  Pareto optimality follows from the fact that any ADHZ equilibrium is an HZ equilib-
rium with certain budgets b. Since any HZ equilibrium allocation is Pareto optimal, we get 
the same for ADHZ.

Note that the budget of any agent is always enough to buy back their initial endowment. 
Since they get an optimal bundle, they must get something that they value at least as high 
as their initial endowment. Thus, individual rationality is guaranteed.

If two agents, say 1 and 2, have the same endowment, then their budget will be the 
same, and so agent 1 will never value the 2’s bundle higher than their own. Thus, ADHZ 
equilibrium allocations are equal-type envy-free. 	�  ◻

In addition, ADHZ equilibrium allocations also satisfy the following notion of core 
stability.

Definition 8  An allocation x in an ADHZ market is weakly core stable if for any subsets 
A′

⊆ A and G′
⊆ G , there does not exist an allocation x� ∈ ℝ

A�×G�

≥0
 such that

•	 x′ allocates at most one unit of goods to every agent in A′,
•	 Every good j ∈ G� is allocated at most to the extent of the endowments of the agents in 

A′ , i.e., 
∑

i∈A� x
�
ij
≤
∑

i∈A� eij , and
•	 Every agent in A′ receives strictly better utility in x′ than in x.

Theorem 2  ADHZ equilibrium allocations are weakly core stable.

Proof  Let (x,  p) be some ADHZ equilibrium. For the sake of a contradiction, assume 
that there are A′

⊆ A , G′
⊆ G , and x� ∈ ℝ

A�×G�

≥0
 as excluded by the definition of weak 

core stability. Now consider the total money spent “along allocation x′ ”, i.e., the quantity ∑
i∈A�

∑
j∈G� pjx

�
ij
.

On the one hand, we know that only the endowment of the agents in A′ is allocated by 
x′ . Thus

On the other hand, every agent i receives strictly better utility from x′ than from x. But 
since agents buy optimal bundles in (x, p), this implies that the bundles in x′ must be worth 
more than their budget, i.e.,

∑

j∈G

uijxij = max

{
∑

j

uijyj ∣
∑

j

yj = 1;
∑

j

pjyj ≤ bi

}
and

∑

j∈G

pjxij = min

{
∑

j∈G

pjyj ∣
∑

j

yj = 1;
∑

j∈G

uijyj ≥
∑

j∈G

uijxij

}
.

∑

i∈A�

∑

j∈G�

pjx
�
ij
≤
∑

i∈A�

∑

j∈G�

pjeij.

∑

j∈G�

pjx
�
ij
>

∑

j∈G

pjeij ≥
∑

j∈G�

pjeij.
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Summing this inequality over all i ∈ A� contradicts the previous inequality. 	� ◻

Like in the case of HZ, equilibrium prices in ADHZ are invariant under the operation 
of scaling the difference of prices from 1, as shown in the following lemma.

Lemma 3  Let p ≥ 0 be an equilibrium price vector. For any r > 0 , let p′ ≥ 0 be such that 
p�
j
− 1 = r(pj − 1) for all j ∈ G . Then p′ is also an equilibrium price vector.

Proof  Let y ∈ ℝ
G
≥0

 be some vector with 
∑

j∈G yj = 1 . Then we observe that

In other words, the total price under p′ is a strictly increasing function of the total price 
under p. Let x be an equilibrium allocation at prices p. Using this monotonicity observa-
tion, we show that the pair (x, p�) is also an equilibrium.

First, note that, by definition, for any agent i, we have 
∑

j∈G xijpj ≤
∑

j∈G eijpj . But then 
we also have that 

∑
j∈G xijp

�
j
≤
∑

j∈G eijp
�
j
 by monotonicity. In other words, x consists of fea-

sible bundles under p′.
On the other hand, note that for any agent i, there cannot be any better bundle than xi 

since such a bundle would be feasible under p as well (by monotonicity), contradicting the 
fact that (x, p) is an equilibrium. The same argument also shows that there cannot be any 
cheaper optimal bundle under prices p′ . 	�  ◻

Unlike HZ, which always admits an equilibrium, ADHZ has instances that do not 
admit an equilibrium, as observed by Hylland and Zeckhauser [1]. Below, we give a 
counterexample in which the demand graph is strongly connected and utilities are 
dichotomous.

Proposition 4  The ADHZ market with dichotomous utilities in Fig.  1 does not admit an 
equilibrium.

Proof  Assume this market has an equilibrium (x,  p). Further, using Lemma  3, we can 
assume that the minimum price is zero at p. This implies that no agent will buy a zero util-
ity good at a positive price since otherwise they are clearly not getting a cheapest optimal 
bundle.

Each agent buys a total of one unit of goods, and s is the only agent with positive util-
ity for goods a and b. Therefore, at least one of these goods is not fully sold to s and must 
be sold to an agent deriving zero utility from it. Therefore, this good must have zero price. 
Without loss of generality, assume pa = 0 (in fact, one could show that pb = 0 as well by 
the cheapest bundle condition, but we do not need this). Since a has no budget and c and d 
are desired only by a, pc = pd = 0 , otherwise c and d cannot be sold. For the same reason, 
pe = 0 . Now observe that both agents c and d have a utility 1 edge to a good of price zero, 
namely e. Therefore, the optimal bundle of both c and d is e. But then e would have to be 
matched twice, which is a contradiction. 	�  ◻

Even if ADHZ equilibria do exist, computing them is at least as hard as computing 
HZ equilibria. This follows from the following reduction.

∑

j∈G

yjp
�
j
=
∑

j∈G

yj(r(pj − 1) + 1) = r
∑

j∈G

yjpj + (1 − r).
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Proposition 5  Consider an HZ market with unit budgets. Define an ADHZ market by giving 
every agent as an endowment an equal amount of every good. Then, every HZ equilibrium 
in which the prices sum up to n is an ADHZ equilibrium, and every ADHZ equilibrium 
yields an HZ equilibrium by rescaling all prices by n∕

∑
j∈G pj.

Vazirani and Yannakakis [2] gave an instance of HZ with four agents and four goods 
which has one equilibrium in which all agents fully spend their budgets, and allocations 
and prices are irrational. Since this example satisfies the conditions of Proposition  5, 
we get that the modification of the example of [2], as stated in the Proposition, is an 
instance for ADHZ having only irrational equilibria.

3.1 � Existence and properties of �‑approximate ADHZ equilibria

Since ADHZ equilibria do not always exist, we study the following approximate equilib-
rium notion instead.

Definition 9  An �-approximate ADHZ equilibrium is an HZ equilibrium (x, p) for a budget 
vector b with

We also require that if two agents have the same endowment, their budget should be the 
same.

The additive error term in the upper bound is necessary since otherwise the counterex-
ample from Proposition 4 still works. On the other hand, the multiplicative lower bound is 
useful to get approximate individual rationality. However, one can always find approximate 
equilibria in which the sum of prices is bounded by n using Lemma 3, so we also get

(1 − �)
∑

j∈G

pjeij ≤ bi ≤ � +
∑

j∈G

pjeij for all i ∈ A .

Fig. 1   The demand graph of an 
ADHZ market with dichotomous 
utilities and no equilibrium. 
Each agent in this market has 
an endowment consisting of 
one unit of a unique good. Each 
node in the graph represents an 
agent together with their good. 
An arrow from i to j means that 
agent i has utility 1 for good j 
(i.e., the good which is in agent 
j’s endowment). All other utili-
ties are 0
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This implies that we can equivalently define the above notion with additive error terms on 
both upper and lower bounds.

In our notion of approximate equilibrium, we do not relax the fractional perfect 
matching constraints or the optimum bundle condition. We only allow agents’ budg-
ets to differ slightly from the money they would normally obtain in an ADHZ market. 
Hence, the step of randomly rounding the equilibrium allocation to an integral perfect 
matching is the same as in the HZ scheme.

Theorem 6  Any �-approximate ADHZ equilibrium allocation is Pareto optimal, �-approxi-
mately individually rational, equal-type envy-free.

Proof  Pareto optimality follows just as for the non-approximate ADHZ setting from the 
fact that an �-approximate ADHZ equilibrium is, first and foremost, an HZ equilibrium. 
For approximate individual rationality, note that every agent gets a budget of at least (1 − �) 
times the cost of their endowment. Hence, their utility can decrease by at most a factor of 
(1 − �) . Equal-type envy-freeness follows immediately from the condition that agents with 
the same endowment have the same budget. 	�  ◻

One can also define a suitably �-approximate notion of weak core stability, where 
instead of demanding that every agent strictly improves in the seceding coalition, we 
instead require that every agent improves by a factor of more than 1

1−�
.

Theorem 7  Any �-approximate ADHZ equilibrium is � - approximately weak-core stable.

Proof  Let (x, p) be an �-approximate ADHZ equilibrium for some budget vector b. Assume 
for the sake of a contradiction that there are A′

⊆ A , G′
⊆ G and x� ∈ ℝ

A�×G�

≥0
 such that the 

allocation x′ redistributes the endowments of agents in A′ in such a way that every agent 
in A′ improves their utility by a factor of more than 1

1−�
 . As in the proof of Theorem 2, we 

note that

since for every good j, only the part that is endowed to agents in A′ can be redistributed by 
x′.

On the other hand, in order for x′ to improve i’s utility by a factor of more than 1

1−�
 , i 

must spend more than bi

1−�
 , i.e.

where the second inequality follows from the fact that (x, p) is an �-approximate ADHZ 
equilibrium. Summing this inequality over i yields a contradiction to (1). 	�  ◻

∑

j∈G

pjeij − �
� ≤ bi ≤

∑

j∈G

pjeij + �
� for �

� ∶= n�.

(1)
∑

i∈A�

∑

j∈G�

pjx
�
ij
≤
∑

i∈A�

∑

j∈G�

pjeij

∑

j∈G�

pjx
�
ij
>

bi

1 − 𝜖

≥
∑

j∈G

pjeij



	 Autonomous Agents and Multi-Agent Systems (2024) 38:4040  Page 12 of 22

While approximate equilibrium notions are more amenable to computation, they gener-
ally do not lend themselves well to existence proofs. However, our notion of �-approximate 
ADHZ equilibrium is a slight relaxation of the notion of an �-slack equilibrium introduced 
in [7].

Definition 10  An �-slack ADHZ equilibrium for � ∈ (0, 1] is an HZ equilibrium (x, p) for a 
budget vector b in which bi = � + (1 − �)

∑
j∈G pjeij for all i ∈ A.

Theorem  8  (Theorem  2 in [7]) In any ADHZ market, �-slack equilibria always exist if 
𝛼 > 0.

Note that any �-slack equilibrium is automatically also an �-approximate equilibrium. 
Thus we get:

Theorem 9  In any ADHZ market, �-approximate equilibria always exist if 𝜖 > 0.

4 � Algorithm for �‑approximate ADHZ under dichotomous utilities

In this section we will focus on dichotomous utilities, i.e. we assume that each uij ∈ {0, 1} 
for all i, j. Before we can tackle the ADHZ setting, let us first give an algorithm that can 
compute HZ equilibria with non-uniform budgets. This extends the algorithm presented in 
[2]. In the following, fix some HZ market consisting of n agents and goods with uij ∈ {0, 1} 
for all i ∈ A and j ∈ G . If uij = 1 , we will say that i likes j (and dislikes otherwise). We 
assume that every agent likes at least one good.

Remark 1  Any HZ equilibrium (x, p) for the utilities uij is also an equilibrium for ũij where 
ũij = ai if uij = 0 and bi if uij = 1 for for all agents i, goods j, and arbitrary 0 ≤ ai < bi for 
every agent. This is because 

∑
j∈G ũijxij = ai + (bi − ai)

∑
j∈G uijxij since x is a fractional 

perfect matching. Hence utility function ũ is an affine transformation of utility function u; 
the former is called a bi-valued utility function.

Definition 11  Let (pj)j∈G be non-negative prices. For any � ≥ 0 , let G(�) be the goods that 
have price � and let A(�) be those agents for which the cheapest price of any liked good 
is � . We call the graph consisting of the utility 1 edges restricted to A(�) ∪ G(�) the price 
class �.

Lemma 10  Let (pj)j∈G be non-negative prices. Assume that

•	 There is a matching in price class 0 which covers all agents in A(0) and
•	 If 𝜌 > 0 is equal to the price of some good, then the flow network shown in Fig. 2 has a 

maximum flow of size ��G(�)� =
∑

i∈A(�) �i.

Then, we can find a fractional perfect matching x, which makes (x, p) an HZ equilibrium in 
polynomial time.
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Proof  Allocate every agent in A(0) to some good in G(0) according to the matching that 
exists by assumption. Let 𝜌 > 0 be the price of some good. Then we compute the maxi-
mum flow f (�) in the flow network from Fig.  2 and allocate xij = f

(�)

i,j
∕� for all i ∈ A(�) 

and j ∈ G(�) . Lastly, extend x to a fractional perfect matching by matching the remaining 
capacity of the agents to the remaining capacity of goods in G(0).

Clearly, no agent exceeds their budget. To see that this yields an HZ equilibrium, note 
that every agent only spends money on cheapest liked goods and if they do not get allo-
cated entirely to liked goods, then they additionally spend all of their budget. This ensures 
that every agent gets an optimum bundle. 	�  ◻

Definition 12  Given some prices (pj)j∈G and some agent i ∈ A , their effective budget �i 
is the price of their cheapest liked goods. Moreover, for any S ⊆ G , let Γ(S) be the set of 
agents which have a cheapest liked good in S.

Fig. 2   Shown is the flow network corresponding to finding an equilibrium allocation in price class � . Filled 
circles represent agents in A(�) with b

i
≥ � , empty circles are agents in A(�) with b

i
< 𝜌 , and diamond ver-

tices are goods in G(�) . The contiguous edges represent all utility 1 edges and have infinity capacity (utility 
0 edges are not part of the network). Dashed edges to empty circle vertices i have capacity b

i
 , whereas the 

other dashed edges have capacity �
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Theorem 11  For any rational budget vector b, Algorithm 1 computes an HZ equilibrium in 
polynomial time.

Proof  First, note that the algorithm terminates. The main observation here is that if prices 
keep rising, eventually, agents’ effective budgets become their actual budgets, and so there 
is always, in fact, a set S as demanded by line 6 of the algorithm. In each while loop itera-
tion, both A1 and G1 strictly decrease, so the algorithm terminates.

Next, we need to show correctness, i.e., that the prices established by the algorithm 
satisfy the constraints of Lemma  10. First, observe that in the very first iteration of the 
loop, we can indeed raise the price to some positive amount. If this were not the case, 
then this would imply that there is some set S ⊆ G1 such that |Γ(S) ∩ A1| = |S| . But then 
(A2 ∪ Γ(S)) ∪ (G1⧵S) would be a vertex cover which contradicts the minimality of G1 . This 
implies that A(0) = A2 and so the first condition of Lemma 10 is satisfied since A2 ∪ G1 is 
a vertex cover.

The second condition of Lemma 10 is satisfied because the condition on line 6 is chosen 
exactly so that the flow network as shown in Fig. 2 has a minimum cut of weight �|G(�)| 
for each price � . This is because a set S corresponds to the s-t-cut {s} ∪ (A1⧵Γ(S)) ∪ (G1⧵S) 
and vice versa.

Lastly, we want to see that the algorithm can be implemented to run in polynomial 
time, for which the main challenge lies in line  6: how do we compute the raised prices 
and the set S efficiently? We need to raise the price of all goods in G1 to some � such 
that 

∑
i∈Γ(S�)∩A1

�i ≤ �S��� for all S′ ⊆ G1 and there exists some non-empty S ⊆ G1 with ∑
i∈Γ(S)∩A1

�i = ��S� . Observe that the set of all � for which a suitable S exists is some inter-
val [�−, �+] . This makes it possible to find � using binary search or parametric search as 
long as we can decide for some � whether 𝜌 < 𝜌

− , � ∈ [�−, �+] , or 𝜌 > 𝜌
+.

As mentioned above, the sets S correspond to s-t-cuts in the flow network in Fig.  2. 
If 𝜌 > 𝜌

+ , there is some overtight S, which gives a cut of weight less than �|G1| , which 
can be detected with a max-flow algorithm. On the other hand, if 𝜌 < 𝜌

− , this means that 
the minimum s-t-cut in the flow network is unique and given by {s} ∪ A1 ∪ G1 (this essen-
tially corresponds to S = � ). Whereas for � ∈ [�−, �+] , there will be at least one more min-
cut corresponding to a non-empty S. This can be decided – and the set S obtained – from 
the residual graph after a max-flow computation in polynomial time. Thus, line 6 can be 
implemented in polynomial time using binary search or even in strongly polynomial time 
using parametric search. 	�  ◻

Lemma 12  Let b and b′ be two budget vectors with 0 ≤ b ≤ b′ . Assume we are given an HZ 
equilibrium (x, p) for the budgets b. Then we can compute a new HZ equilibrium (x�, p�) 
with p ≤ p′ for the budgets b′ in polynomial time.

Proof  We will run the same algorithm as in the proof of Theorem 11, except that this time 
we start with the prices p. More precisely, we increase the lowest non-zero price until a 
set goes tight or it becomes equal to the next higher price, then repeat this process until 
we once again get 

∑
i∈Γ(S) �i ≥

∑
j∈A pj and 

∑
i∈Γ(G1)

�i =
∑

j∈G1
pj where G1 is now defined 

as the set of goods with positive prices in (x, p). As in the proof of Theorem 11, this will 
freeze all prices in polynomial time, at which point we can use a max-flow min-cut argu-
ment to construct the new equilibrium allocation x′ in polynomial time. 	�  ◻
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Let us now return to the approximate ADHZ setting. Instead of budgets, fix now some 
fractional perfect matching of endowments (eij)i∈A,j∈G.

Theorem 13  An �-approximate ADHZ equilibrium for rational � ∈ (0, 1) , can be computed 
in time polynomial in 1

�

 and n, i.e. by a fully polynomial time approximation scheme.

Proof  We will iteratively apply Lemma 12. Start by setting b(1)
i

∶=
�

2
 for all i ∈ A and com-

puting an HZ equilibrium (x(1), p(1)) according to Theorem 11. Beginning with k ∶= 1 , we 
run the following algorithm. 

1.	 Let b(k+1)
i

∶=
�

2
+ (1 −

�

2
)
∑

j∈G p
(k)

j
eij for all i ∈ A.

2.	 Compute a new HZ equilibrium (x(k+1), p(k+1)) for budgets b(k+1) according to Lemma 12 
using the old equilibrium (x(k), p(k)) as the starting point. Note that since p(k) ≥ p(k−1) we 
always have b(k+1) ≥ b(k) and so this is well-defined.

3.	 Set k ∶= k + 1 and go back to step 1.

Note that

and thus

as otherwise we would get 
∑

i∈A b
(k+1)

i
<

∑
i∈A b

(k)

i
.

Let K be the first iteration such that p(K) ≤ 1−�∕2

1−�
p(K−1) . Note that

since all non-zero prices are initialized to at least � but are bounded by n. Then (x(K), p(K)) is 
an �-approximate ADHZ equilibrium with budget vector b(K) because for all i ∈ A we have

Lastly, we note that since the number of iterations is bounded by O( n
�

log(
n

�

)) and each 
iteration runs in polynomial time, the total runtime is polynomial in 1

�

 and n as claimed. 	
� ◻

∑

i∈A

b
(k+1)

i
=

�

2
n +

(
1 −

�

2

)∑

j∈G

p
(k)

j
≤

�

2
n +

(
1 −

�

2

)∑

i∈A

b
(k)

i

∑

j∈G

p
(k)

j
≤
∑

i∈A

b
(k)

i
≤ n

K ≤ n log 1−�∕2

1−�

(
n

�

)
= O

(
n

�

log
(
n

�

))

b
(K)

i
=

�

2
+
(
1 −

�

2

)∑

j∈G

p
(K−1)

j
eij

∈

[
(1 − �)

∑

j∈G

p
(K)

j
eij, � +

∑

j∈G

p
(K)

j
eij

]
.
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5 � An RCP for the HZ scheme under dichotomous utilities

Without loss of generality, we will assume that each agent i ∈ A likes some good j ∈ G , 
i.e., uij = 1 . We will show that the program (2) given below is the required RCP.

Let pj ’s and �i ’s denote the non-negative dual variables for the first and second constraints, 
respectively.

Theorem  14  Any HZ equilibrium is an optimal solution to (2), and every optimal solu-
tion of (2) can be trivially extended to an HZ equilibrium. Furthermore, the latter can be 
expressed via rational numbers whose denominators have polynomial, in n, number of bits, 
thereby showing that (2) is a rational convex program.

Proof  Let ui ∶=
∑

j∈G uijxij . Clearly, in any HZ equilibrium, since each agent i is allocated 
an optimal bundle of goods, she will be allocated a non-zero amount of a unit-utility good 
and hence will satisfy ui > 0 . Furthermore, in an optimal solution x of (2), every agent 
must have positive utility because otherwise the objective function value will be −∞ . 
Therefore, ∀i ∈ A ∶ ui > 0.

The KKT conditions of this program are: 

1.	 ∀i ∈ A ∶ �i ≥ 0.
2.	 ∀j ∈ G ∶ pj ≥ 0.
3.	 ∀i ∈ A ∶ If 𝛼i > 0 then 

∑
j xij = 1.

4.	 ∀j ∈ G ∶ If pj > 0 then 
∑

i xij = 1.
5.	 ∀i ∈ A, j ∈ G ∶ uij ≤ ui(pj + �i).
6.	 ∀i ∈ A, j ∈ G ∶ xij > 0 ⇒ uij = ui(pj + 𝛼i).

To prove the forward direction of the first statement, let (x, p) be an HZ equilibrium. Since 
x is a fractional perfect matching on agents and goods, it satisfies the constraints of (2) and 
is hence a feasible solution for it. We are left with proving optimality.

The KKT conditions 2, 3 and 4 are clearly satisfied by (x, p). Next, consider agent i. If 
there is a good j such that pj ≤ 1 and uij = 1 , then i will be allocated one unit of the cheap-
est such goods. Assume the price of the latter is p. Define �i = 1 − p . Clearly ui = 1 . It is 
easy to check that Conditions 1, 5, and 6 are also holding.

Next, assume that every good j such that uij = 1 has pj > 1 and let p be the cheapest such 
price. Clearly, i’s optimal bundle will contain 1/p amount of these goods, giving her total 
utility 1/p. Since the equilibrium always has a zero-priced good, that good, say j, must have 
uij = 0 . Now, i must buy such zero-utility, zero-priced goods to get to one unit of goods. 
We will define �i = 0 . Again, it is easy to check that Conditions 1, 5, and 6 are holding. 
Hence, we get that (x, p) is an optimal solution to (2).

Next, we prove the reverse direction of the first statement. Let (x, p) be an optimal solu-
tion to (2). Assume that agent i is allocated good j, i.e. xij > 0 . We consider the following 
two cases: 

(2)

max
∑

i∈A log
∑

j∈G uijxij
subject to ∀j ∈ G ∶

∑
i∈A xij ≤ 1

∀i ∈ A ∶
∑

j∈G xij ≤ 1

∀i ∈ A, j ∈ G ∶ xij ≥ 0

.
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(a)	� uij = 0 . Using Condition 6 and ui > 0 , we get that pj = �i = 0.
(b)	� uij = 1 . Using Conditions 5 and 6 and ui > 0 , we get that the price of good j is the 

cheapest among all goods for which i’s utility is 1.

For each agent i, multiply the equality in Condition 6 by xij and sum over all j to get:

After canceling ui from both sides, we obtain

Now, if 𝛼i > 0 , then 
∑

j xij = 1 and if �i = 0 , then �i
∑

j xij = 0 = �i . Therefore, in both 
cases �i

∑
j xij = �i . Hence,

We will view the dual variables p of the optimal solution (x, p) as prices of goods. The 
above statement then implies that agent i’s bundle costs 1 − �i.

Let S denote the set of agents who get less than one unit of goods, i.e., 
S ∶= {i ∈ A ∣

∑
j xij < 1} , and let T denote the set of partially allocated goods, i.e. 

T ∶= {j ∈ G ∣
∑

i xij < 1} . By Condition 4, pj = 0 for each j ∈ T  . Observe that if for i ∈ S 
and j ∈ T  , uij = 1 , then by allocating a positive amount of good j to i, the objective func-
tion value of program (2) strictly increases, giving a contradiction. Therefore, uij = 0.

Since the number of agents equals the number of goods, the total deficiency of agents in 
solution x equals the total amount of unallocated goods. Therefore, we can arbitrarily allo-
cate unallocated goods in T to deficient agents in S to obtain a fractional perfect matching, 
say x′ . Clearly, (x�, p) is still an optimal solution to (2) and is also an HZ equilibrium.

For the second statement, we will start with this solution (x�, p) . Let G′
⊆ G denote the 

set of goods with prices bigger than 1, i.e., G� = {j ∈ G ∣ pj > 1} and let A′
⊆ A be the set 

of agents who have allocations from G′ . By Cases (a) and (b), for each i ∈ A� , there is a 
j ∈ G� such that uij = 1 ; moreover this is the cheapest good for which i has utility 1. We 
first show that each agent i ∈ A� satisfies �i = 0 . If 

∑
j∈G xij < 1 , this follows from KKT 

Condition 3. Otherwise, there exists j ∈ G such that xij > 0 and uij = 0 . The last statement 
follows from the fact that 

∑
j xijpj ≤ 1 , which follows from (3). Again, by Case (a), �i = 0 . 

Now, by (3), the money spent by each agent in A′ is exactly 1 dollar on goods in G′.
Consider the connected components of bipartite graph (A�,G�,E) , where the set 

E = {(i, j) ∈ (A�,G�) ∣ xij > 0} . Cases (a) and (b) imply that all goods in a connected com-
ponent C must have the same price, say pC . Clearly, the sum of prices of all goods in C 
equals the total money of agents in C; the latter is simply the number of agents in C. This 
implies that pC is rational. Clearly, there is a rational allocation of 1∕pC amount of goods to 
every agent in C.

Let i ∈ A such that the cheapest good for which i has utility 1 has price 1. If �i = 0 , 
by (3), i buys 1 dollar, and hence 1 unit, of such goods. If 𝛼 > 0 , by KKT Condition 3, ∑

j∈G xij = 1 and therefore again i has bought 1 unit of such goods. Now, without loss of 
generality, we will assign to i an entire unit of one such good.

∑

j

xijuij = ui

∑

j

xij(pj + �i)

∑

j

xij(pj + �i) = 1 =
∑

j

xijpj + �i

∑

j

xij.

(3)
∑

j

xijpj = 1 − �i.
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Finally, let G′′
⊆ G denote the set of goods with prices in the interval (0,  1), i.e. 

G�� = {j ∈ G ∣ 0 < pj < 1} and let A′′
⊆ A be the set of agents who have allocations from 

G′′ . Let i ∈ A�� . Since 
∑

j xijpj < 1 , by (3) 𝛼 > 0 . Therefore, each agent in A′′ buys one unit 
of goods from G′′ . Hence, the allocation of goods from G′′ to A′′ forms a fractional perfect 
matching on (G��,A��) . Therefore, we can pick any perfect matching consistent with this 
fractional perfect matching and allocate goods from G′′ integrally to A′′.

Hence in all cases, the allocation consists of rational numbers, completing the proof. 	
� ◻

Remark 2  The proof of Theorem 14 shows that for the dichotomous case, the dual of (2) 
yields equilibrium prices. In contrast, for arbitrary utilities, there is no known mathemati-
cal construct, no matter how inefficient its computation, that yields equilibrium prices. In a 
sense, this should not be surprising since there is a polynomial time algorithm for comput-
ing an equilibrium for the dichotomous case [2].

Since the objective function in (2) is strictly concave, the utility derived by each agent i 
must be the same in all solutions of (2). Hence, we get the following corollary which could 
be seen as an analogue of the Rural Hospital Theorem from the theory of stable matchings; 
see [39].

Corollary 15  Each agent gets the same utility under all HZ equilibria with dichotomous 
utilities.

6 � Rationality of ̨ ‑slack equilibria under dichotomous utilities

If one wishes to compute exact equilibria (if they exist) instead of approximate ones, 
clearly, a necessary condition is that equilibria are always rational. As noted in Sect. 3.1, 
with general utilities, both HZ and ADHZ may have only irrational equilibria. On the other 
hand, with {0, 1}-utilities, there are always rational HZ equilibria. In this section, we extend 
this result to �-slack equilibria in the ADHZ setting.

Fix some ADHZ market with {0, 1}-utilities, rational endowment vectors e, and some 
rational 𝛼 > 0 . Our rationality proof will work in two steps: First, we show that as a con-
sequence of Theorem 11, there always exists a special �-slack equilibrium in which prices 
are minimal in some sense. Then, we will show that the price vector of such a special 
equilibrium is the unique solution to a system of linear equations with rational coefficients, 
proving the rationality of the prices (and hence, there also exists a rational allocation).

Definition 13  An HZ equilibrium (x, p) is called special if 

1.	 There is a good j ∈ G with pj = 0 , and
2.	 For every price 𝜌 > 0 in p, there is an agent i whose cheapest liked goods have price � 

and whose budget is at most � , i.e., � = min{pj ∣ uij = 1, j ∈ G} and bi ≤ �.

Lemma 16  The algorithm described in Theorem 11 always computes a special equilibrium.
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Proof  We will show that at any point in the algorithm, if there is some good of price 𝜌 > 0 , 
then there is some i ∈ A1 such that i’s cheapest desirable goods have price � and �i = bi . 
Note that this property holds at the beginning of the algorithm since the prices are set to 
the minimum budget of an agent in A1 . Furthermore, as prices increase, the number of 
agents i ∈ A1 with �i = bi can only increase.

So the only way in which this property could be lost is at the points where prices are 
frozen and the remaining prices are increased, thus decreasing the number of cheapest 
desirable goods for some agents. Let S ⊆ G1 be the set of goods that have been frozen at 
some point in the algorithm and assume that we have raised prices so that the price � of 
items in G1 ⧵ S is strictly larger than the prices in S. Furthermore, assume for the sake of a 
contradiction that for all i ∈ Γ(G1⧵S) , we have that 𝛽i = 𝜌 < bi . But then

This means that G1 ⧵ S would have already been frozen in the algorithm, contradicting the 
fact that � is strictly greater than the prices in S. 	�  ◻

Lemma 17  The prices of the HZ equilibrium as computed in Theorem 11 depend continu-
ously on the budgets, assuming the initial vertex cover is chosen consistently.

Proof  Let b and b′ be two distinct positive budget vectors with ‖b − b�‖∞ ≤ � for some 
𝜖 > 0 . Consider running the algorithm on b and b′ simultaneously; note that initially, prices 
differ by at most � everywhere. Whenever a set S is frozen for the budget b, all prices in 
that set must also be frozen for b′ soon afterward since there is at most n� more budget 
available (otherwise S would go overtight).

Let p and p′ be the prices computed for budgets b and b′ , respectively. Then we have just 
observed that p� ≤ p + n� and symmetrically p ≤ p� + n� . Thus, p depends continuously 
on b. 	�  ◻

Theorem 18  There exists a special �-slack equilibrium.

Proof  Let P ∶= {p ∈ ℝ
G
≥0

∣
∑

j∈G pj ≤ n} be the set of feasible price vectors. Given some 
p ∈ P , define f(p) to be the prices output by the algorithm from Theorem 11 when applied 
to the budgets

for all i ∈ A.
Clearly, f maps P into P and by Lemma 17, f is continuous. So, by Brouwer’s fixed point 

theorem, it has a fixed point p∗ ∈ P . But by definition of f, this fixed point yields an �-slack 
equilibrium, and by Lemma 16, this equilibrium is special. 	�  ◻

Lemma 19  Special �-slack equilibria have rational prices.

Proof  Let (x,  p) be a special �-slack equilibrium. Let 0 = �1 ≤ ⋯ ≤ �k be the distinct 
prices in p. For each 𝜌l > 0 , we let Am(𝜌l) ⊆ A(𝜌l) be those agents whose budget is at most 
�l and we let As(𝜌l) ⊆ A(𝜌l) be the remaining agents whose budget is more than �l.

Since (x, p) is an �-slack equilibrium, we then have that

∑

i∈Γ(G1⧵S)

�i = � ⋅ |Γ(G1 ⧵ S)| ≥ � ⋅ |G1 ⧵ S| =
∑

j∈G1⧵S

pj.

bi ∶= � + (1 − �)
∑

j∈G

pjeij
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where Am(�l) ≠ � since (x, p) is a special equilibrium. Together with �1 = 0 , this gives us a 
system of linear equations with rational coefficients that (�1,… , �k) is a solution to.

Finally, let us show that this system has unique solutions. To see this, let there be some 
other solution vector (��

1
,… , ��

k
) . Assume without loss of generality that there is some l 

with 𝜌l > 𝜌
′
l
 ; otherwise, we can swap � and �′ . Let l∗ be the index maximizing �l

�
′
l

 and con-
sider constraint (4) for this l∗ . But now assuming that �′ satisfies this constraint, �l cannot 
satisfy it since, compared to �′ , the right-hand side increases by a factor of �l

�
′
l

 whereas the 

left-hand side increases by strictly less due to the presence of 
∑

i∈Am(𝜌l∗ )
𝛼 > 0 . 	�  ◻

Theorem 20  There exists a rational �-slack equilibrium.

Proof  By Theorem 18, there always exists a special �-slack equilibrium and by Lemma 19, 
this equilibrium must have rational prices. To get a rational allocation, one can obtain an 
allocation via a flow network in each price class as shown in Lemma  10. The theorem 
follows since max-flows in networks with rational weights can always be chosen to be 
rational. 	� ◻

7 � Discussion

In this paper, we defined an �-approximate ADHZ model for one-sided matching markets with 
endowments. We showed that �-approximate ADHZ equilibrium always exists for every 𝜖 > 0 . 
We strengthened the non-existence of ADHZ equilibrium for the case when the demand graph 
is not strongly connected and agents have dichotomous utilities. We derived a novel combi-
natorial polynomial-time algorithm for computing an �-ADHZ equilibrium under dichoto-
mous utilities. Finally, we presented a rational convex program (RCP) for the HZ model under 
dichotomous utilities, which also implies that the problem is polynomial-time solvable.

Since finding an HZ equilibrium is PPAD-complete [2, 27], it will be interesting to obtain 
a similar result for the �-approximate ADHZ model. In Sect. 1.1, we stated a number of results 
that build on the HZ scheme and others that are generalizations of the HZ scheme. It will also 
be interesting to explore similar extensions of the �-approximate ADHZ model.
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(4)
∑

i∈Am(�l)

(
� + (1 − �)

k∑

l�=2

�l�

∑

j∈G(�l� )

eij

)
+ �l|As(�l)| = �l|G(�l)|.
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