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s artificial intelligence (AI) grows in generative capability, questions remain about

how to leverage it for science. AI for science promises to accelerate scientific

discovery and technological progress, in turn addressing pressing challenges

in areas like healthcare and sustainability. In our quest for greater scientific
knowledge in the service of such endeavors, seeing is believing. Whether it’s viruses, weather
systems, or exoplanets, making the unseen visible helps inform, motivate, and educate. As
computational imaging researchers, we aim to visualize scientific phenomena beyond the
reach of conventional cameras. Generative Al is an exciting tool for such visualizations.

Given that it can concoct scenes like
corgis traveling to space, perhaps it
can help us image “invisible” objects
that have eluded scientists for decades.

One such object, which until re-
cently has existed only in theoretical
papers and in our collective imagi-
nation, is a black hole. In April 2017,
the Event Horizon Telescope (EHT)
pointed its antennas at a supermas-
sive black hole known as M87* [1].
Residing 55 million light-years away
in the galaxy Messier 87, M87* evades
the view of any typical telescope. To
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get around this, researches built a
new type of telescope consisting not
of a single receiver but of disparate an-
tennas spread across the globe. Each
antenna could detect radio waves be-
ing emitted by the plasma swirling
around the black hole. The data col-
lected by all the antennas could then
be synchronized and processed to
appear as if they came from a single
earth-sized telescope. However, even
this virtual telescope could not per-
fectly capture the black hole.

An earth-sized telescope is still not

big enough to see all the tiny details
of the material surrounding the black
hole. Additionally, instrument noise
and atmospheric turbulence interfere
with the radio signal reaching the an-
tennas. These complications lead to
the key computational challenge of
imaging a black hole: creating an in-
terpretable image from a small and
garbled set of data.

This brings us back to AL The holes
in the data create room for imagina-
tion. When the first image of M87* was
released in 2019, AI was kept out of
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the picture. The EHT’s imaging team
incorporated only the most basic im-
age assumptions—Ilike light being
non-negative and changing gradually
across the image—to transform its
raw antenna data into the now-famous
photo. The wariness of Al is under-
standable. For such a momentous im-
age, any bias that might misrepresent
the data would raise eyebrows.

But the extra caution led to an im-
age that many of us can’t help but see
as blurry. Cognitive dissonance be-
tween the awe of the scientific feat and
the urge to squint at the photo charac-
terized the public reaction to the first
M87* image. Despite it being one of
the highestresolution photos ever cap-
tured, people expected to see more.

To see past the blur inevitably calls
for some amount of hallucination.
Generative Al excels at devising novel
images but transferring generative AI
to scientific imaging demands guard-
rails to keep its hallucinations in
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check. Our work centers on how to use
hallucinations to our advantage in a
principled way to image the invisible
without misrepresenting the factual
data. With collaborators we have de-
veloped computational methods for
bringing in different image assump-
tions to supplement observed data.
An exciting application of these meth-
ods is to re-imagine the M87* black
hole image under different assump-
tions and assess which visual features
withstand bias. Whereas previous
hand-designed imaging pipelines
made it difficult to disentangle hal-
lucinations and reality, an Al-based
approach lets us probe different sets
of assumptions to determine the con-
sistent, and therefore trustworthy,
features in the image.

IMAGING AS AN INVERSE PROBLEM

Taking a note from high-school math,
the first step to solving this imaging
problem is to translate it into an al-

gebraic equation with knowns and
unknowns. The task of inferring the
unknown from the known is called an
inverse problem. For us, the known is
the data collected by the EHT’s anten-
nas, and the unknown is the image of
the black hole. There are myriad other
imaging tasks that are inverse prob-
lems. If you’ve ever gotten an MRI scan,
the doctor might have shown you the
output of an inverse problem. An MRI
machine collects data (the known) that
help constrain an image of your in-
ternal tissue (the unknown). If you've
ever tried to snap a picture of someone
who doesn’t keep still, you’ve probably
been annoyed to keep getting a blurry
picture (the known). Restoring the per-
son to their crisp self (the unknown) is
called “motion deblurring,” an inverse
problem that your smartphone camera
can now solve for you.

But unlike in high-school algebra,
in inverse problems, the knowns are
not sufficient for solving for the un-
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knowns. To understand why, consider
the hypothetical inverse problem of
restoring an image with half its pix-
els missing. As long as you keep the
known pixels fixed, there are infinite-
ly many solutions for the unknown
pixels (see Figure 1 for an example).
In our case, infinitely many arrange-
ments of light around M87* could
have led to the data that the EHT ob-
served. To obtain any reasonable solu-
tion, we must supplement the known
data with additional assumptions
about the unknown image.
Traditional computational imag-
ing algorithms enforce assumptions
through something known as a “regu-
larizer.” Image regularizers are formu-
las that evaluate how likely an image
is according to our assumptions, and
they are typically hand-designed. A

common assumption is images tend
to be smooth, meaning brightness
does not change too much from pixel
to pixel. Naturally, a regularizer for
this assumption would penalize large
changes between pixels—an image of
pure white noise, for instance, would
fare poorly under this regularizer be-
cause every one of its pixels is com-
pletely different from its neighbors.
The EHT used such regularizers to in-
fer the first M87* image, but the range
of assumptions for which we can easily
hand-craft regularizers is limited.

The last several years have wit-
nessed a paradigm shift from tradi-
tional regularizers to generative Al
models for solving inverse problems.
While generative AI is known for cre-
ating novel, flashy pictures, we now
know it also offers a way to impose
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Figure 1. As a hypothetical inverse problem, suppose you're given animage with the
center portion missing. There is no way to perfectly recover the full photo from the
partial data. These three possible images are just some [of infinitely many] examples
of how we could fill in the missing pixels. Assuming the image is a photograph of a
person, the example on the far right is highly unlikely. If you could make additional
assumptions, such as the photo being of a boy, then you could further narrow down
the set of possible images. Images courtesy of Bingliang Zhang.
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Figure 2. To see beyond the blur of the original 2019 image of M87* requires
stronger biases to fill in the missing data. With the help of generative Al, we can
see what the image looks like under a variety of assumptions. These re-imagined
images of M87*, based on EHT data from April 5, 2017, all agree on the existence
of aring structure that is brighter on the bottom, although each portraying

itin their own style. [Note: The displayed images are centered for the sake of
comparison, although the data do not actually constrain the ring to lie in the
center of the image.] Image courtesy of EHT Collaboration [1].
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more sophisticated assumptions
than previously possible with regu-
larizers. Moreover, we can target dif-
ferent assumptions simply by train-
ing the generative model on different
image datasets. With the help of gen-
erative A, we can reconstruct images
from the same data under a variety of
assumptions.

Diffusion models are particularly
powerful generative AI models [2, 3].
They form the backbone of much of to-
day’s most popular generative Al tech-
nology, including Stable Diffusion,
DALL-E, and Midjourney. Once trained
on a set of example images, a diffusion
model can start from a random draw
of noise to generate images never seen
before. What’s more, the generated im-
ages are convincing, resembling what
we might expect to see as clean train-
ing images. This hints that it has some-
how learned our beliefs about what
types of images are likely and what
types are unlikely. By feeding the dif-
fusion model exemplary images dur-
ing training, we can teach the model
our assumptions about what a desired
image looks like. And by changing the
training images, we can target differ-
ent image assumptions.

RE-IMAGINING M87*
Along with collaborators, we devel-
oped a technique to turn a diffusion
model into a sophisticated regular-
izer for solving inverse problems in
imaging, and we used this technique
to explore the effects of different im-
age assumptions on the visualization
of M87* [4, 5]. We started by training
diffusion models on different image
datasets. One was trained on generic
natural images. Another was trained
on images of detailed simulations
of black holes. Another was trained
on images from a simpler shape-
based model of black holes. We even
trained one on pictures of celebrity
faces to see how the EHT data might
get visualized under such an absurd
assumption. We then paired each of
these diffusion models with the ob-
servations of M87* that the EHT gath-
ered in 2017. Using our algorithm, we
obtained different re-imaginings of
M87* assuming different visual statis-
tics (see Figure 2) [6].

No matter the assumptions im-
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posed by the diffusion model, the im-
ages all displayed a ring structure of
the same size that was brighter on the
bottom. Even assuming a celebrity face
did not get in the way of imaging a ring
from the data, the diffusion model
that had only ever seen pictures of peo-
ple’s faces still managed to craft a ring
by removing half the face and an eye,
leaving an ominous Phantom of the
Opera-esque mask.

In addition to the ring structure,
the diameter of the ring and loca-
tion of its bright spot were consistent
across assumptions. The rest of the
image was up to the diffusion model’s
interpretation. The diffusion model
trained on simulated black holes
gave us a thin ring with gas swirl-
ing around the shadow of the black
hole. In contrast, the assumption of a
simple geometric model of the black
hole offered less visual detail, show-
ing only the shape of a crescent. Such
idiosyncratic hallucinations—the
patchiness from the assumption of a
generic natural image, the dynamic
wisps from the assumption of a de-
tailed black-hole simulation, and the
nose from the assumption of a face—
should not be trusted as real features
of M87*. On the other hand, we can
rely on the assumption-independent
characteristics of our images, namely
the appearance of a ring with most of
its brightness on the bottom.

WILL THE REAL M87*

PLEASE STAND UP?

You might be wondering which of
these images most accurately por-
trays M87*. It is impossible to know.
Surely none of them depicts M87* ex-
actly, but viewed together they convey
a wealth of information. The multi-
tude of possible images might defy
your expectation of one “real” image,
but in fact most images you see are
not real. You're probably more com-
fortable with hallucinations in your
everyday digital life than you real-
ize. Most digital cameras use an RGB
color filter that captures just one pri-
mary color in each pixel, meaning the
colors in your digital photos are two-
thirds made-up. We accept the hal-
lucinated colors because they follow
unobjectionable assumptions. The
same can be true of AT hallucinations
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Our work centers

on how to use
hallucinations

to our advantage

in a principled

way to image the
invisible without
misrepresenting the
factual data.

as long as we accept the assumptions
of the Al model.

Much of the fear around AI stems
from a fear of unchecked hallucina-
tions, which could proliferate false in-
formation to the detriment of science,
society, and politics. Our research ef-
forts have shown it is possible to wield
Al responsibly. We can build trust in AI
hallucinations by thoroughly testing
their assumptions to determine which
image features are invariantand which
are sensitive to bias, helping us rule
out any false representations of reality.
We can accept assumption-dependent
hallucinations as real only if we agree
with the assumptions.

Hallucination is unavoidable as
we push the limits of imaging. Rather
than fear hallucinations, we should
design methods to apply it respon-
sibly, paving the way to a future in
which we are not held back by the
physical limits of pure imaging devic-
es. For example, the EHT is currently
aiming for a video of Sgr A*, the black
hole at the center of our galaxy, whose
surrounding plasma changes drasti-
cally within a matter of minutes [7].
Since today’s antennas are incapable
of capturing such faraway and fast
dynamics, hallucination will be a
necessary ingredient in the process
of reconstructing videos. Shifting our
focus from the skies to the lab bench,
researchers are looking to image
miniscule objects, such as proteins,
using cryo-electron microscopy. Cap-
turing high-resolution 3D molecular
structures will benefit from AI to help
fill in gaps in the data obtainable by
electron microscopes [8]. In all these

cases, although hallucination will
play a vital role, it should not obscure
the truth. We're excited to discover
what more we can see as we continue
to leverage the growing power of gen-
erative Al responsibly.
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