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the picture. The EHT’s imaging team 

incorporated only the most basic im-

age assumptions—like light being 

non-negative and changing gradually 

across the image—to transform its 

raw antenna data into the now-famous 

photo. The wariness of AI is under-

standable. For such a momentous im-

age, any bias that might misrepresent 

the data would raise eyebrows.

But the extra caution led to an im-

age that many of us can’t help but see 

as blurry. Cognitive dissonance be-

tween the awe of the scientific feat and 

the urge to squint at the photo charac-

terized the public reaction to the first 

M87* image. Despite it being one of 

the highest-resolution photos ever cap-

tured, people expected to see more.

To see past the blur inevitably calls 

for some amount of hallucination. 

Generative AI excels at devising novel 

images but transferring generative AI 

to scientific imaging demands guard-

rails to keep its hallucinations in 

check. Our work centers on how to use 

hallucinations to our advantage in a 

principled way to image the invisible 

without misrepresenting the factual 

data. With collaborators we have de-

veloped computational methods for 

bringing in different image assump-

tions to supplement observed data. 

An exciting application of these meth-

ods is to re-imagine the M87* black 

hole image under different assump-

tions and assess which visual features 

withstand bias. Whereas previous 

hand-designed imaging pipelines 

made it difficult to disentangle hal-

lucinations and reality, an AI-based 

approach lets us probe different sets 

of assumptions to determine the con-

sistent, and therefore trustworthy, 

features in the image.

IMAGING AS AN INVERSE PROBLEM

Taking a note from high-school math, 

the first step to solving this imaging 

problem is to translate it into an al-

gebraic equation with knowns and 

unknowns. The task of inferring the 

unknown from the known is called an 

inverse problem. For us, the known is 

the data collected by the EHT’s anten-

nas, and the unknown is the image of 

the black hole. There are myriad other 

imaging tasks that are inverse prob-

lems. If you’ve ever gotten an MRI scan, 

the doctor might have shown you the 

output of an inverse problem. An MRI 

machine collects data (the known) that 

help constrain an image of your in-

ternal tissue (the unknown). If you’ve 

ever tried to snap a picture of someone 

who doesn’t keep still, you’ve probably 

been annoyed to keep getting a blurry 

picture (the known). Restoring the per-

son to their crisp self (the unknown) is 

called “motion deblurring,” an inverse 

problem that your smartphone camera 

can now solve for you.

But unlike in high-school algebra, 

in inverse problems, the knowns are 

not sufficient for solving for the un-
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posed by the diffusion model, the im-

ages all displayed a ring structure of 

the same size that was brighter on the 

bottom. Even assuming a celebrity face 

did not get in the way of imaging a ring 

from the data, the diffusion model 

that had only ever seen pictures of peo-

ple’s faces still managed to craft a ring 

by removing half the face and an eye, 

leaving an ominous Phantom of the 

Opera-esque mask.

In addition to the ring structure, 

the diameter of the ring and loca-

tion of its bright spot were consistent 

across assumptions. The rest of the 

image was up to the diffusion model’s 

interpretation. The diffusion model 

trained on simulated black holes 

gave us a thin ring with gas swirl-

ing around the shadow of the black 

hole. In contrast, the assumption of a 

simple geometric model of the black 

hole offered less visual detail, show-

ing only the shape of a crescent. Such 

idiosyncratic hallucinations—the 

patchiness from the assumption of a 

generic natural image, the dynamic 

wisps from the assumption of a de-

tailed black-hole simulation, and the 

nose from the assumption of a face—

should not be trusted as real features 

of M87*. On the other hand, we can 

rely on the assumption-independent 

characteristics of our images, namely 

the appearance of a ring with most of 

its brightness on the bottom.

WILL THE REAL M87*  

PLEASE STAND UP?

You might be wondering which of 

these images most accurately por-

trays M87*. It is impossible to know. 

Surely none of them depicts M87* ex-

actly, but viewed together they convey 

a wealth of information. The multi-

tude of possible images might defy 

your expectation of one “real” image, 

but in fact most images you see are 

not real. You’re probably more com-

fortable with hallucinations in your 

everyday digital life than you real-

ize. Most digital cameras use an RGB 

color filter that captures just one pri-

mary color in each pixel, meaning the 

colors in your digital photos are two-

thirds made-up. We accept the hal-

lucinated colors because they follow 

unobjectionable assumptions. The 

same can be true of AI hallucinations 

cases, although hallucination will 

play a vital role, it should not obscure 

the truth. We’re excited to discover 

what more we can see as we continue 

to leverage the growing power of gen-

erative AI responsibly.
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as long as we accept the assumptions 

of the AI model.

Much of the fear around AI stems 

from a fear of unchecked hallucina-

tions, which could proliferate false in-

formation to the detriment of science, 

society, and politics. Our research ef-

forts have shown it is possible to wield 

AI responsibly. We can build trust in AI 

hallucinations by thoroughly testing 

their assumptions to determine which 

image features are invariant and which 

are sensitive to bias, helping us rule 

out any false representations of reality. 

We can accept assumption-dependent 

hallucinations as real only if we agree 

with the assumptions.

Hallucination is unavoidable as 

we push the limits of imaging. Rather 

than fear hallucinations, we should 

design methods to apply it respon-

sibly, paving the way to a future in 

which we are not held back by the 

physical limits of pure imaging devic-

es. For example, the EHT is currently 

aiming for a video of Sgr A*, the black 

hole at the center of our galaxy, whose 

surrounding plasma changes drasti-

cally within a matter of minutes [7]. 

Since today’s antennas are incapable 

of capturing such faraway and fast 

dynamics, hallucination will be a 

necessary ingredient in the process 

of reconstructing videos. Shifting our 

focus from the skies to the lab bench, 

researchers are looking to image 

miniscule objects, such as proteins, 

using cryo-electron microscopy. Cap-

turing high-resolution 3D molecular 

structures will benefit from AI to help 

fill in gaps in the data obtainable by 

electron microscopes [8]. In all these 

Our work centers 
on how to use 
hallucinations 
to our advantage 
in a principled 
way to image the 
invisible without 
misrepresenting the 
factual data.
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