
Ordered Scheduling in Control-flow Distributed

Transactional Memory✩

Pavan Poudela,∗, Shishir Raib, Swapnil Guragainb

aATGWORK, Norcross, Georgia, USA
bKent State University, Kent, Ohio, USA

Abstract

Consider the control-flow model of transaction execution in a distributed system

modeled as a communication graph where shared objects positioned at nodes of

the graph are immobile but the transactions accessing the objects send requests to

the nodes where objects are located to read/write those objects. The control-flow

model offers benefits to applications in which the movement of shared objects is

costly due to their sizes and security purposes. In this paper, we study the ordered

scheduling problem of committing dependent transactions according to their prede-

fined priorities in this model. The considered problem naturally arises in areas, such

as loop parallelization and state-machine-based computing, where producing exe-

cutions equivalent to a priority order is needed to satisfy certain properties. Specif-

ically, we study ordered scheduling considering two performance metrics funda-

mental to any distributed system: (i) execution time - total time to commit all the

transactions and (ii) communication cost - the total distance traversed in accessing

required shared objects. We design scheduling algorithms that are individually or

simultaneously efficient for both the metrics and rigorously evaluate them through

several benchmarks on random and grid graphs, validating their efficiency. To our

best knowledge, this is the first study of ordered scheduling in the control-flow

model of distributed transaction execution.

Keywords: Distributed system; transactional memory; scheduling; control-flow

model; predefined order; execution time; communication cost; competitive ratio

✩A preliminary version of this paper appears in the Proceedings of ICDCIT’23 [1].
∗Corresponding author. Tel.: +1 800 551 7943

Email addresses: poudelpavan@gmail.com (Pavan Poudel), srai@kent.edu (Shishir Rai),

sguragai@kent.edu (Swapnil Guragain)

Preprint submitted to Theoretical Computer Science February 19, 2025

1. Introduction

Concurrent processes (threads) need to synchronize to avoid introducing incon-

sistencies while accessing shared data objects. Traditional mechanisms of locks

and barriers have well-known downsides, including deadlock, priority inversion,

reliance on programmer conventions, and vulnerability to failure or delay. Trans-

actional memory (TM) [2, 3] has emerged as an attractive alternative. Using TM,

program code is split into transactions, blocks of code that appear to execute atom-

ically. Transactions are executed speculatively: synchronization conflicts (or fail-

ures) may cause an executing transaction to abort: its effects are rolled back and the

transaction is restarted. In the absence of conflicts (or failures), a transaction typi-

cally commits, causing its effects to become visible to all threads. Several commer-

cial processors support TM, e.g., Intel’s Haswell [4] and IBM’s Blue Gene/Q [5],

zEnterprise EC12 [6], and Power8 [7].

TM has been studied extensively for multiprocessors, where processors operate

on a single shared memory and the latency to access (read/write) shared memory

is the same (and negligible) for each processor. However, recently, the comput-

ing trend is shifting toward distributed multiprocessors, where the memory access

latency varies depending on the processor in which the thread executes and the

physical segment of memory that stores the requested memory location. Therefore,

the recent research focus is on how to support TM in distributed multiprocessors.

Some proposals in this direction include TM2C [8], Nemo [9], cluster-TM [10, 11],

GPU-TM [12], and Hyflow [13].

TM is beneficial in distributed systems where data is spread across multiple

nodes. For example, distributed data centers can use TM to simplify the burden of

distributed synchronization and provide more reliable and efficient program execu-

tion while accessing data from remote nodes. Distributed TM (DTM) designed for

such systems need to execute transactions effectively by taking into consideration

the system’s infrastructure. The network structure can play a crucial role in the

DTM performance, since the data transactions access has to be reached across the

network in a timely manner.

In this paper, we study ordered scheduling (denoted as OrdS) problem in dis-

tributed multiprocessors. We model distributed multiprocessors as an n-node con-

nected, undirected, and weighted graph G, where each node denotes a processor

and each edge denotes a communication link between two processors. A set of w

shared objects S := {S 1, S 2, . . . , S w} reside on the (possibly different) nodes of G.

We consider the control-flow model [14], where objects are immobile but transac-

tions send access requests to the nodes the required objects are located. Consider

a set T := {T (v1, age1),T (v2, age2), . . .} of transactions mapped (arbitrarily) to the

nodes of G with each T (vi, agei) accessing an arbitrary subset of the shared objects

2

S(T (vi, agei)) ⊆ S, where age is an externally provided parameter that is unique

for each transaction providing a priority order. We can assume the existence of a

module that can assign such unique priorities (ages) to transactions; a detailed study

on this module is beyond the scope of this paper.

We say transaction T (vi, agei) is dependent on T (v j, age j), age j < agei, if at

least an object read/write by T (vi, agei) is being written by T (v j, age j). The OrdS

problem is to commit the dependent transactions in the age order. For example,

transaction T (vi, agei) that depends on T (v j, age j), age j < agei, commits only af-

ter T (v j, age j) has been committed. Non-dependent transactions can execute and

commit in parallel, irrespective of their priority order. For example, among the two

transactions T (vi, agei) and T (v j, age j), age j < agei, let T (v j, age j) is not depen-

dent on any other transaction T (v′, age′), age′ < age j. Also, let T (vi, agei) is not

dependent on any other transaction T (v′′, age′′), age′′ < agei including T (v j, age j).

Then, T (vi, agei) and T (v j, age j) are called non-dependent transactions and can be

executed in parallel.

OrdS naturally arises in applications where producing (dependent) executions

equivalent to a priority order is needed to satisfy/guarantee certain properties. Ex-

ample applications include speculative loop parallelization and distributed compu-

tation using state machine approach [15]. In loop parallelization [16], loops de-

signed to run sequentially are parallelized by executing their operations concur-

rently using TM. Providing an order matching the sequential one is fundamental to

enforce equivalent semantics for both the parallel and sequential code. Regarding

state machine approach [17], many distributed systems order tasks before execut-

ing them to guarantee that a single state machine abstraction always evolves consis-

tently on distinct nodes, e.g., Paxos [18]. Some more instances of OrdS problem are

Network Function Virtualization systems [19, 20], Osmotic Computing [21], and

Cyber-physical Systems [22]. In a Network Function Virtualization (NFV) system,

network services are specified as service chains, obtained by the concatenation of

network functions which are dependent computational tasks to be executed in the

NFV infrastructure such as servers distributed over the network. In Osmotic Com-

puting system, an application is divided into microservices and are deployed over

an edge/cloud server infrastructure. When users send requests, an orchestrator han-

dles those requests processing in several of the microservices taking into account

the dependencies between the microservices. Cyber-physical systems also involve

performing dependent coordinated tasks in multiple subsystems.

OrdS has been studied heavily in multiprocessors [23, 15] where execution time

is the only metric of interest. However, those studies focused on empirical studies

and they do not extend to distributed multiprocessors as they do not consider la-

tency. Poudel et al. [24] studied for the first time the OrdS problem in a distributed

multiprocessor. However, they considered the data-flow model where transactions

3

are immobile but the objects are mobile. Since the data-flow model is direct oppo-

site of the control-flow model, the contributions in [24] do not apply to the control-

flow model.

Contributions. In this paper, we design a set of scheduling algorithms to solve

the OrdS problem in the control-flow model and establish complementary results

compared to [24]. We consider synchronous communication model [25, 26] where

time is divided into discrete steps. Notice that the algorithms we present correctly

schedule transactions even when there is no synchronous communication, but the

synchronous model helps to establish bounds on performance. We optimize two

performance metrics: (i) execution time ± the total time to execute and commit all

the transactions, and (ii) communication cost ± the total distance messages travel

to access shared objects. A transaction’s execution finishes as soon as it commits.

The presented algorithms determine the time step when each transaction executes

and commits. We measure the efficiency using a widely-studied notion of compet-

itiveness ± the ratio of total time (communication cost) for a designed algorithm

to the minimum time (communication cost) achievable by an optimal scheduling

algorithm.

Specifically, we have the following six contributions:

1. We provide an impossibility result showing that the optimal execution time

and optimal communication cost can not be achieved simultaneously.

2. For the offline version, we provide two algorithms, one with optimal execu-

tion time and another with 2-competitive on communication cost.

3. For the partial dynamic version with the knowledge of transactions and their

priorities (meaning that all transactions arrive in the beginning) but not the

shared objects, we provide an O(log2 n)±competitive algorithm for both exe-

cution time and communication cost.

4. For the fully dynamic version with transactions arriving over time (and hence

a transaction may not know how many other transactions are currently in the

system and their priorties), we provide an O(D)±competitive algorithm for

both execution time and communication cost, where D is the diameter of the

graph G.

5. We implement and rigorously evaluate the designed algorithms through

micro-benchmarks and complex STAMP benchmarks on random, grid and

small-world graphs, which validate the efficiency of the designed algorithms.

6. We compare the results of designed algorithms for the control-flow model

against the algorithms for data-flow model [24] and analyze them.

Techniques. For the offline version with complete knowledge of transactions, their

priorities, and the shared objects they access, we provide two algorithms, one is

optimal in terms of execution time and the other algorithm is 2-competitive in terms

4

of communication cost. The optimal time algorithm uses the shortest path to access

required objects. Each transaction sends access requests to all the required objects

in parallel following the shortest paths in G. The 2-competitive communication

cost algorithm uses that minimum Steiner tree to access the required objects. Each

transaction sends (combined) access requests through a minimum Steiner tree that

connects the graph nodes containing the required objects.

In the partial dynamic version (with the knowledge of transactions and their

priorities but not the shared objects), the proposed algorithm exploits the con-

cept of distributed directory protocols [27, 28]. Particularly, the directory protocol

technique based on the hierarchical partitioning of the graph into clusters is used.

This technique guarantees that the object access cost for a transaction is within an

O(log2 n) factor from the cost of minimum Steiner tree for that transaction. The

directory protocol technique is then extended to the dynamic version guaranteeing

O(D)-competitiveness without knowing transactions and their priorities a priori.

This bound is interesting since the hierarchical partitioning technique used in the

partial dynamic version is shown to only provide O(D log2 n)-competitive bound

for the fully dynamic version. The observation is that a transactions knows about

the existence of another dependent transaction only after its request reaches the root

node of the directory. Therefore, the dynamic algorithm uses the directory protocol

running on a spanning tree.

Related Work. Gonzalez-Mesa et al. [23] introduced the OrdS problem for mul-

tiprocessors and Saad et al. [15] presented three improved algorithms and eval-

uated them through empirical studies. Transaction scheduling with no predefined

ordering is widely-studied in multiprocessors providing provable upper and lower

bounds, and impossibility results [29, 30, 31, 32, 33], besides several other schedul-

ing algorithms that were only evaluated experimentally [34]. The multiprocessor

ideas are not suitable for distributed multiprocessors as they do not deal with a cru-

cial metric, communication cost. The mostly closely related work to ours is Poudel

et al. [24] where they studied the OrdS problem in the data-flow model (transac-

tions are immobile but objects move to the nodes where transactions are executing).

We consider the control-flow model [14] which is the direct opposite of the data-

flow model (objects are immobile and transactions send requests to objects) and the

solutions in the data-flow model do not apply to the control-flow model.

Many previous studies on transaction scheduling in distributed multiprocessors,

e.g., [35, 36, 37, 25, 26, 28, 38], considered the data-flow model. The papers

[27, 28, 39] focused on the data-flow model with the objective of minimizing com-

munication cost. Kim and Ravindran [40] provided communication cost bounds

for special workloads and problem instances with multiple shared objects. Exe-

cution time minimization is considered by Zhang et al. [39]. Busch et al. [36]

5

considered minimizing both execution time and communication cost. Busch et al.

[37] considered special topologies (e.g., grid, line, clique, star, hypercube, butter-

fly, and cluster) and provided offline algorithms minimizing execution time and

communication cost. Poudel and Sharma [41] provided an evaluation framework

for executing transactions in distributed multiprocessors. Later, Busch et al. [26]

provided dynamic (online) algorithms for minimizing execution time and commu-

nication cost. However, all these works have no predefined ordering requirement.

Some papers considered the hybrid model that combines data-flow with control-

flow. Hendler et al. [42] studied a lease based hybrid DTM which dynamically

determines whether to migrate transactions to the nodes that own the leases or to

demand the acquisition of these leases by the node that originated the transaction.

Palmieri et al. [43] presented a comparative study of data-flow versus control-flow

models. Recently, Busch et al. [44] provided a set of offline algorithms for transac-

tional memory on trees using hybrid model known as the dual-flow model, which

combines the data-flow and control-flow models by sometimes moving transactions

to object nodes and sometimes moving objects to transaction nodes. They provided

optimal algorithm when considering a single shared object and k−factor away when

considering multiple objects where k is the maximum number of objects accessed

by a transaction.

Some other papers considered transaction scheduling with no priority ordering

requirement in distributed multiprocessors through replication and multi-versioning

[45, 11, 46]. We do not consider replication and multi-versioning. In fact, we

assume that there is only one copy of the object for both read and write.

Paper Organization. We describe model and preliminaries in Section 2. In Sec-

tion 3, we establish the impossibility result. In Sections 4, 5 and 6, we provide our

algorithms for offline, partial dynamic, and dynamic versions of the OrdS problem,

respectively. Experimental results are discussed in Section 7 in which we also com-

pare our results with the data-flow model and analyze them. Finally, we conclude

in Section 8 with a short discussion.

2. Model and Preliminaries

Graph. We consider a distributed network G = (V, E,w) of n nodes (representing

processing nodes) V = {v1, v2, . . . , vn}, edges (representing communication links

between nodes) E ⊆ V×V , and edge weight functionw : E → Z
+. A path p in G is a

sequence of nodes (with respective edges between adjacent nodes) with length(p) =
∑

e∈pw(e). We assume that G is connected and dist(u, v) denotes the shortest path

length between two nodes u, v ∈ G. The diameter D := maxu,v∈G dist(u, v), the

maximum shortest path distance between two nodes u, v ∈ G. The communication

links are bidirectional ± messages can be sent in both directions. Both the nodes

6

and links are non-faulty and the links deliver messages in FIFO order. There is no

bandwidth restriction on the edges, i.e., the messages can be of any size and any

number of messages can traverse an edge at any time. The k-neighborhood of a

node u ∈ G is the set of nodes which are at distance ≤ k from u.

Transactions. Let S = {S 1, S 2, . . . , S w} denote the w shared objects residing on

nodes of G. Each object has some value which can be read/written. The node of

G where an object S i is currently positioned is called the owner of S i, denoted as

owner(S i). A transaction T (vi, agei) is an atomic block of code mapped at node vi

which requires a set of objects S(T (vi, agei)) ⊆ S and has priority agei. To simplify

the analysis, we assume that each object has a single copy (for both read/write). We

assume that each node runs a single thread and issues transactions sequentially.

Communication Model. We consider the synchronous communication model

where time is divided into discrete steps such that at each time step a node receives

messages, performs a local computation, and then transmits messages to adjacent

nodes [37, 25, 26]. For an edge e = (u, v) ∈ E, it takes w(e) time steps to transfer a

message msg from u to v (and vice-versa); the communication cost contributed by

msg is w(e). Moreover, we assume that a node can merge or unmerge the messages

that are directed to or originated from multiple nodes. If a transaction T (vi, agei)

contains multiple objects in S(T (vi, agei)), then T (vi, agei) merges multiple access

requests to (all or part of) those objects and sends it along the common path. The in-

termediate node at which the common path branches to reach the destination node,

it unmerges the message and sends individual object access requests to the respec-

tive nodes. Inversely, the reply messages are merged at those intermediate nodes

and sent to the origin node.

Control-flow Model. In the control-flow model, objects are static and transactions

move from one node to another to access the objects. Control-flow allows transac-

tions to send control requests, in a manner similar to remote procedure calls (RPCs),

to the nodes where the required objects are located [14, 47].

Let S 1 be an object required by a transaction T (vi, agei). Let owner(S 1) be

the owner node of S 1. We define ob jAccess(S 1) as the control request sent

by T (vi, agei) to owner(S 1) for accessing object S 1. If there is no conflict on

the request, then T (vi, agei) performs access operation (read or write) on S 1 and

owner(S 1) replies a grant message back to vi. Here, the grant message refers that

the request for accessing S 1 has been successful. If there is a conflict on the request

for accessing S 1, and T (vi, agei) cannot perform the requested access operation,

then owner(S 1) replies a deny message back to vi. The deny message refers that the

request for accessing S 1 has not been successful. If vi receives grant message for

each of the control requests sent for T (vi, agei), then T (vi, agei) commits. Other-

7

wise, T (vi, agei) aborts.

In our algorithms, we model control requests in two ways:

i. Solo Control Request: In solo control request, transaction T (vi, agei) sends

individual control request ob jAccess(S j) for each object S j ∈ S (T (vi, agei)).

There will be total |S (T (vi, agei))| number of solo control requests per trans-

action T (vi, agei). For each ob jAccess(S j), vi receives either a grant or deny

message. Transaction T (vi, agei) commits only if it receives grant messages

for all the ob jAccess(S j) requests where S j ∈ S (T (vi, agei)). We use solo

control requests for accessing the objects in parallel.

ii. Group Control Request: If a transaction sends a single control re-

quest for accessing two or more than two objects, then we define it as

a group control request. In a group control request, if the requested ob-

jects are at different nodes, those are accessed in a recursive order. Let

S (T (vi, agei)) := {S 1, S 2, . . . , S k} be the set of required objects for Ti

and {owner(S 1), owner(S 2), . . . , owner(S k)} be the order of nodes for ac-

cessing the objects. Then T (vi, agei) first sends the group control request

ob jAccess(S (T (vi, agei))) to owner(S 1) where it accesses object S 1. If the

access operation on S 1 is successful, owner(S 1) forwards the control request

to owner(S 2), otherwise it replies a deny message back to vi. The process

continues similarly in the recursive order of the nodes until either any node

replies a deny message or the ob jAccess(S (T (vi, agei))) reaches owner(S k).

Finally, at owner(S k), when T (vi, agei) successfully accesses S k, it replies

back the grant message to vi. As soon as vi receives the grant message for

ob jAccess(S (T (vi, agei))), T (vi, agei) commits. Otherwise if vi receives any

deny for ob jAccess(S (T (vi, agei))), T (vi, agei) aborts. We use group control

request for accessing the required objects recursively.

Throughout this paper, we use the terms control request and access request

interchangeably.

Transaction Execution and Conflicts. Let a transaction T (vi, agei) be located at

node vi and S(T (vi, agei)) ⊆ S be the set of objects that T (vi, agei) is going to read

or write. Node vi then sends object access request (READ or WRITE) on behalf

of T (vi, agei) to the owner node owner(S j) of each object S j ∈ S(T (vi, agei)). For

an access request received for S j from T (vi, agei), owner(S j) handles that request

by allowing T (vi, agei) to read or write (update) S j and replies a grant message

back to vi. If owner(S j) receives two access requests for object S j at the same

time and at least one of them is a write request, conflict is said to be occurred

between transactions accessing S j. owner(S j) handles such type of simultaneous

access requests by denying at least one request. In case owner(S j) denies the access

request, it replies a deny message back to node vi.

8

Performance Metrics. We consider two performance metrics fundamental to any

distributed system, namely execution time and communication cost. Let E be an

execution schedule following an algorithmA.

Definition 1 (Execution Time). For a set of transactions T , the total time for E is

the time elapsed until the last transaction finishes its execution in E. The execution

time of algorithmA is the maximum time over all possible executions for T .

Definition 2 (Communication Cost). For a set of transactions T , the communica-

tion cost of E is the sum of the distances messages travel during E. The communi-

cation cost ofA is the maximum cost over all possible executions for T .

The OrdS Problem. Each transaction T (vi, agei) is assigned age, agei, before it is

activated, and the age signifies the transaction commit order under dependencies.

Following [23, 24, 15], parameter age is (i) unique ± no two transactions can have

the same age, (ii) non-modifiable ± it never changes once assigned, and (iii) ex-

ternally determined ± it does not depend on transaction execution. We assume the

existence of a module that handles how to determine and assign unique age for each

transaction.

For a transaction T (vi, agei), let S(T (vi, agei)) := read(S(T (vi, agei))) ∪

write(S(T (vi, agei))) where read(S(T (vi, agei))) and write(S(T (vi, agei))) represent

the set of objects that need to be read and written by T (vi, agei), respectively. We

say T (vi, agei) is dependent on T (v j, age j), age j < agei, if (write(S(T (vi, agei))) ∩

read(S(T (v j, age j))) , ∅)∨ (read(S(T (vi, agei)))∩write(S(T (v j, age j))) , ∅). That

means, at least an object read/write by T (vi, agei) is being written by T (v j, age j).

If T (vi, agei) is dependent on T (v j, age j), then T (vi, agei) can commit only after

T (v j, age j) commits. Formally, the OrdS problem is defined as follows:

Definition 3 (The OrdS problem). Given a set of transactions T :=

{T (v1, age1),T (v2, age2), . . .}, possibly arriving over time, mapped (arbitrar-

ily) to the nodes of G, commit dependent transactions in T in the increasing order

of age in the control-flow model.

3. Impossibility Result

We show that it is impossible to simultaneously minimize execution time and

communication cost in the control-flow model of distributed transactional memory.

Minimizing the execution time results an increase in the communication cost and

vice-versa. Busch et al. [25] have shown that it is impossible to simultaneously

9

minimize execution time and communication cost in the data-flow model of dis-

tributed transactional memory. In this paper, we show that this result is also true for

the control-flow distributed transactional memory.

Let us start with an example. Consider a star graph G as shown in Figure 1

with eight rays going out from the center node. Let there be three nodes on each

ray (except the center node). Additionally, let the end nodes of consecutive rays

are connected. Suppose there are six objects a, b, c, d, e, and f positioned on six

consecutive end nodes, and a transaction T is mapped at the center node and it

requests all six objects. All edges have unit weight.

Figure 1: (i) Transaction T accessing objects in parallel through blue colored paths, (ii) T accessing

objects sequentially again through blue colored paths.

Each object is 3 units away from the node where transaction T is located. Thus,

in the control-flow model, when T sends solo control requests for accessing the ob-

jects in parallel, they can be reached in 3 steps. In next 3 steps, T gets reply (grant)

messages from all the object nodes, and in one additional step, it can execute and

commit. This gives optimal execution time of 7 steps. However, total communica-

tion cost becomes 36 (3 units to reach request to each object and 3 units to receive

reply back from each object).

Alternatively, let T accesses all the objects in a sequential order of a, b, c, d, e

and f . That means, T sends a group control request for accessing the objects first to

a and then to b, c, d, e, f in order. Note here that while processing the group control

request at the corresponding node, if the requested object can not be accessed, it

replies a deny message back to T , otherwise forwards the control request to the

next node in order after accessing the object. Finally, when the request reaches f ,

the node replies a grant message back to the node containing T after successfully

accessing f . Following the shortest path, the reply (grant) message traverses the

ray connecting f and T . Then, the total communication cost becomes 11, which is

10

optimal. But, on the other hand, it takes total 11 time steps to access and receive

the reply messages from all the objects. Thus, the total execution time becomes

11 + 1 = 12, which is sub-optimal.

Figure 1 (i) illustrates the scenario of minimum execution time with an increase

in the total communication cost and Figure 1 (ii) illustrates the scenario of minimum

communication cost with an increase in the total execution time.

We prove the following theorem:

Theorem 1. There are transaction scheduling instances for which execution time

and communication cost cannot be minimized simultaneously in the control-flow

model.

Proof. Let T = {T (v1, age1),T (v2, age2), . . . ,T (vn, agen)} be the set of trans-

actions and S = {S 1, S 2, . . . , S w} be the set of shared objects accessed by the

transactions. Both objects and transactions are arbitrarily positioned at the nodes

V = {v1, v2, . . . , vn} of graph G. To finish the execution of all the transactions in

T in the minimum possible time, let all of them start at time t = 0 and access the

required objects in parallel following the shortest path in G. Then, the minimum

execution time becomes,

Execmin = max
T (vi,agei)∈T

{

max
S j∈S(T (v1,age1))

2 · dist(vi, owner(S j)) + 1

}

.

And the total communication cost becomes,

Comm =
∑

T (vi,agei)∈T



















∑

S j∈S(T (v1,age1))

2 · dist(vi, owner(S j))



















.

However, this communication cost is not the minimum possible. Let us see

an instance of the schedule that provides minimum communication cost. For each

transaction in T (vi, agei) ∈ T , let the required objects are accessed in a sequence

of the shortest route to visit all of them. This becomes equivalent to the traveling

salesman problem (TSP) [48] where the transaction node represents the initial posi-

tion of the salesman and the nodes of required objects represent the cities where the

salesman needs to visit with the minimum cost and finally return to the initial posi-

tion. Using the minimum cost approximation algorithms [49] for TSP, for example

Christofides’ algorithm [50] that provides 3/2−approximation, all the transactions

can be executed with the minimum communication cost. Nevertheless, the execu-

tion time of each transaction in this case becomes the total length of the route to

visit the nodes of the required objects. That means, if Exec is the total execution

11

time for executing all the transactions in T , then,

Exec ≥ max
T (vi,agei)∈T

{

max
S j∈S(T (v1,age1))

2 · dist(vi, owner(S j)) + 1

}

≥ Execmin.

Hence, minimizing the execution time, the communication cost increases and

vice-versa. The theorem follows. □

4. Offline Algorithms

In this section, we study the offline version of the OrdS problem. Note that in

the offline version, the system has complete knowledge of transactions, their prior-

ities, and the shared objects they access a priori. We present two algorithms, one

called OffExec that achieves optimal execution time and another called OffComm

that is 2-competitive in communication cost.

4.1. Execution Time Algorithm: OffExec

OffExec accesses required objects for each transaction in parallel. All transac-

tions in T are initiated at time step t = 0. Therefore, at t = 0, all the transactions in

T send solo control requests to access the required objects to the respective owner

nodes following the shortest paths. Each owner node then replies grant message for

every request (after performing the read/write operation) respecting the age order

and dependency of the transactions at corresponding owner node.

For transaction T (vi, agei) at node vi, let S(T (vi, agei)) ⊆ S be the set of ob-

jects it needs. T (vi, agei) sends corresponding access requests to owner(S j) of each

object S j ∈ S(T (vi, agei)) following the shortest path from vi to owner(S j). After

the access request reaches owner(S j), owner(S j) sends grant message back to vi as

soon as T (vi, agei) is able to read/write that object respecting the age order. Specif-

ically, there can be two cases: (i) There is no T (vk, agek), agek < agei, in T which

also wants to access S j, then owner(S j) immediately sends grant message back to

vi (ii) There is another transaction T (vk, agek), agek < agei, in T that conflicts with

T (vi, agei) while accessing S j, then owner(S j) sends grant message to vk first and

to vi in the next time step. When vi receives grant messages from all owner(S j),

T (vi, agei) finishes its execution and commits.

Let t
S j

i
be the time step at which owner(S j) of object S j ∈ S (T (vi, agei)) replies

grant message back to node vi corresponding to the request sent by T (vi, agei).

Then,

t
S j

i
= max{t

S j

prev(T (vi,agei))
+ 1, dist(vi, owner(S j))},

where t
S j

prev(T (vi,agei))
is the time step at which owner(S j) replies to the dependent

transaction of T (vi, agei) that is immediately previous to T (vi, agei) in the age order.

12

For the lowest aged transaction T (v1, age1),

t
S j

1
= dist(v1, owner(S j)).

Let CTi be the time step at which transaction T (vi, agei) ∈ T commits. Then,

CTi =















CTprev(T (vi,agei)) + 1, if t′i < CTprev(T (vi,agei))

t′i + 1, otherwise.

where CTprev(T (vi,agei)) is the time at which the transaction dependent to T (vi, agei)

that is immediately previous to T (vi, agei) in the age order commits and

t′i = max
S j∈S(T (vi,agei))

(t
S j

i
+ dist(vi, owner(S j))).

For the lowest aged transaction T (v1, age1),

CT1 = max
S j∈S(T (v1,age1))

2 · dist(v1, owner(S j)) + 1.

Theorem 2. OffExec achieves optimal execution time.

Proof. The execution time depends on two factors. First, how long does a transac-

tion take to access required objects and second, when does each transaction com-

mit? In OffExec, each transaction accesses required objects using the shortest path

in G which is thus optimal. Now, we need to show that each transaction commits

at the earliest possible time. First, let there is no conflict between any transactions

in T . Then all the transactions can access required objects in parallel and as soon

as each transaction receives grant messages from the owner nodes of each required

object, it can commit. The total execution time becomes

max
T (vi,agei)∈T

{

max
S j∈S(T (v1,age1))

2 · dist(vi, owner(S j)) + 1

}

which is optimal. Now, let there are conflicts between transactions while ac-

cessing objects. Let T = {T (v1, age1),T (v2, age2), . . . ,T (vn, agen)} be the set of

transactions. Let a dependency graph H = (VH, EH) holds the dependency be-

tween the conflicting transactions where the nodes VH represent transactions in T

and the directed edges EH represent dependencies between the transactions. The

edge (T (vi, agei),T (v j, age j)) ∈ EH, where agei < age j, represents a dependency

between T (vi, agei) and T (v j, age j) such that T (v j, age j) can commit only after

T (vi, agei) commits. The OrdS problem requires the dependent transactions to

commit in their age order. The diameter DH of H provides the longest chain of

13

dependent transactions and the total execution time of any optimal algorithm will

be the time required by all the transactions that belong to DH to commit. During

the execution of OffExec, for each transaction T (vi, agei), if there is no any de-

pendent transaction in H or all the dependent transactions in H have already been

committed, then T (vi, agei) can commit as soon as it receives grant messages from

the owner nodes of all required objects. Note that, both object access requests and

grant messages are sent through the shortest paths in G. When the highest age

transaction that belongs to DH of H commits, OffExec finishes. Hence, the total

execution time is optimal. □

Theorem 3. OffExec is k-competitive in communication cost, where k is the max-

imum number of shared objects accessed by a transaction in T .

Proof. Let G be a graph with n > k nodes and T = {T (v1, age1),T (v2, age2), . . . ,

T (vn, agen)} be the set of transactions, each accessing at most k shared objects.

Then, using OffExec, communication cost incurred by a transaction T (vi, agei) is

Commi = 2 ·
∑

S j∈S(T (vi,agei))

dist(vi, owner(S j)) ≤ 2 · k · n = O(k · n).

On the other hand, using any optimal communication cost algorithm in the

control-flow model, the transaction can access the required objects in a sequential

order. Then, the optimal communication cost becomes

Commopt = 2 · c · max
S j∈S(T (vi,agei))

dist(vi, owner(S j)) = O(n),

where c ≤ k is a constant. Hence, Commi

Commopt
=

O(k·n)

O(n)
= O(k). □

4.2. Communication Cost Algorithm: OffComm

In OffComm, we convert the execution of each transaction to a Minimum Steiner

Tree (MST) [51, 52]. Steiner trees have been extensively studied in the context of

weighted graphs [53]. Given a graph G = (V, E) and a subset P ⊆ V , a Steiner

tree spans through P. The Steiner tree problem in our case is to find a Steiner

tree that connects all the vertices of P with the minimum possible total weight.

Computing MST is known to be NP-Hard. We follow the algorithm of Takahashi

and Matsuyama [54] which provides 2(1 − 1/|P|)±approximation for MST. The

algorithm of [54] constructs a Steiner tree as follows:

• Start from a participant node in P.

• Find the next participant that is closest to the current tree.

• Join the closest participant to the closest node of the tree.

14

• Repeat until all nodes in P are connected.

Now, we discuss how MST is constructed for each transaction in T . Let

S(T (vi, agei)) ⊆ S be the set of objects required by a transaction T (vi, agei) ∈ T .

Let Pi ⊆ V contains node vi and the owner node of each object S j ∈ S(T (vi, agei))

(i.e., Pi := (∀S j∈S(T (vi,agei))owner(S j)) ∪ vi). Now, the problem is to find a MST that

connects the nodes in Pi which is constructed by following the algorithm of [54]

and is denoted as MS Ti. Then, T (vi, agei) sends object access requests in MS Ti.

The total message cost incurred by transaction T (vi, agei) is 2.|MS Ti|. That means,

messages visit each edge of MS Ti exactly twice, one for sending access request and

the other for receiving reply (grant or deny) message from each owner node.

Instead of sending requests individually to access the objects in S (T (vi, agei)),

T (vi, agei) sends them collectively in MS Ti. Each neighboring node recursively

sends the request to the next neighbor in MS Ti until the request reaches all the

owner nodes of the required objects. To be specific, if vp, vq ∈ MS Ti be any two

owner nodes of objects which share a common path from vi up to some intermedi-

ate node vs, then the requests to vp and vq from vi are sent collectively up to vs as a

single message. The request is then divided into two at vs and they are forwarded

separately towards vp and vq. When all the access requests reach respective owner

nodes, the reply messages are collected in the opposite direction. Here, each in-

termediate node which had initially sent access requests to the neighboring nodes

later collects the reply messages from those neighboring nodes and returns them

collectively to the ancestor node. When vi receives reply messages from all the

neighboring nodes in MS Ti, T (vi, agei) commits (provided that all the reply mes-

sages are grant messages).

The OffComm algorithm works as follows. It produces a conflict-free execution

schedule. At time step t = 0, each transaction T (vi, agei) sends access requests

to required objects following its corresponding MS Ti. When the access request

reaches owner(S j), owner(S j) sends grant message back to vi as soon as T (vi, agei)

is able to read/write that object respecting the age order of the dependent transac-

tions. Let distMS Ti
(vi, v j) represents the distance between nodes vi and v j following

the shortest path in MS Ti. Then, for each T (vi, agei) ∈ T , owner(S j) of each

S j ∈ S (T (vi, agei)) replies grant message to vi at time step:

t
S j

i
= max{t

S j

prev(T (vi,agei))
+ 1, distMS Ti

(vi, owner(S j))},

where t
S j

prev(T (vi,agei))
is the time step at which owner(S j) replies to the dependent

transaction of T (vi, agei) that is immediately previous to T (vi, agei) in the age order.

15

The commit time step CTi for each T (vi, agei) is:

CTi =















CTprev(T (vi,agei)) + 1, if t′i < CTprev(T (vi,agei))

t′i + 1, otherwise.

where CTprev(T (vi,agei)) is the time at which the transaction dependent to T (vi, agei)

that is immediately previous to T (vi, agei) in the age order commits and

t′i = max
S j∈S(T (vi,agei))

(t
S j

i
+ distMS Ti

(vi, owner(S j))).

Theorem 4. OffComm is 2-competitive in communication cost.

Proof. Let MS Ti be the minimum cost Steiner tree constructed for transaction

T (vi, agei) in OffComm. Let distMS Ti
(vx, vy) be the shortest path distance between

vx and vy in MS Ti. If dist(vx, vy) be the shortest path distance in G, then we have:

distMS Ti
(vx, vy) ≤ 2 · dist(vx, vy). Since OffComm follows the shortest paths in re-

spective MSTs for accessing required objects, the communication cost CT (vi,agei) of

executing each transaction T (vi, agei) ∈ T is:

CT (vi,agei) = 2 ·C
T (vi,agei)
opt ,

where C
T (vi,agei)
opt is the cost of any optimal communication algorithm for executing

T (vi, agei) that accesses required objects following the shortest paths in G. If Ctotal

and Copt be the total communication costs of OffComm and any optimal algorithm,

respectively, such that Copt =
∑

T (vi,agei)∈T
C

T (vi,agei)
opt , then,

Ctotal =
∑

T (vi,agei)∈T

CT (vi,agei) =
∑

T (vi,agei)∈T

2 ·C
T (vi,agei)
opt = 2 ·Copt.

□

Theorem 5. OffComm is r-competitive in execution time, where r is the maximum

stretch of MST computed for each transaction in T which is given by:

r = max
T (vi,agei)∈T

{

max
S j∈S(T (vi,agei))

distMS T (vi, owner(S j))

dist(vi, owner(S j))

}

.

Proof. OffExec provides optimal execution time by accessing the required object

by a transaction T (vi, agei) through the shortest path in G. In OffComm, objects are

accessed by T (vi, agei) using the shortest path in MS Ti built on G for T (vi, agei).

If dist(vi, v j) and distMS Ti
(vi, v j) are the shortest path distances between two nodes

16

vi, v j in G and MS Ti, respectively, then the stretch of MS Ti (i.e., r =
distMS Ti

(vi,v j)

dist(vi,v j)
)

provides the competitiveness for T (vi, agei) for the time required to access any ob-

ject at v j. While executing all the transactions,

max
T (vi,agei)∈T

{

max
S j∈S(T (vi,agei))

distMS T (vi, owner(S j))

dist(vi, owner(S j))

}

provides the necessary competitiveness. □

5. Partial Dynamic Algorithm

Here we study the partial dynamic version of the OrdS problem, where a priori

knowledge on transactions and their priorities is available, but not the shared objects

they access and their locations. All transactions arrive at time t = 0. Thus, the

following two tasks are additional to the offline version:

i. Find the owner nodes of all the shared objects that a transaction requests.

ii. Find the node where the next transaction in the commit order is located and

the path to reach that node.

We present an efficient algorithm PartDyn using the well-studied distributed

directory protocol technique [35, 55, 27, 56, 28]. We compute two distributed

queues, the first helps transactions accessing required objects and the second helps

sending commit messages to the next dependent transaction in age order. The first

is called distributed object queue where object access tours are constructed for

each transaction. The second is called distributed transaction queue that satisfies

the commit order of transactions. Each transaction sends commit message to the

next transaction in order following the path in its respective transaction tour in the

distributed transaction queue. We use the hierarchy-of-clusters-based overlay tree

(OT) (discussed next) for the computation of both queues.

Overlay TreeOT Construction. The well-known approaches forOT construction

are based on either a spanning tree or a hierarchy of clusters on G. The spanning

tree was used in directory protocols [55, 35] and the hierarchy of clusters was used

in directory protocols [27, 28, 38].

Both approaches work, however, hierarchy-of-clusters-based overlay trees are

more suitable to control communication costs (and hence the execution time) com-

pared to the spanning-tree-based overlay trees. Therefore, in the following, we

discuss the construction of hierarchy-of-clusters-based overlay tree OT . In a high

level, divide the graph G into a hierarchy of clusters with H1 = ⌈log D⌉ + 1 layers

such that the clusters sizes grow exponentially (i.e., 2ℓ, 0 ≤ ℓ ≤ H1). A cluster is a

subset of nodes, and its diameter is the maximum distance between any two nodes.

17

The diameter of each cluster at layer ℓ, where 0 ≤ ℓ < H1, is no more than f (ℓ), for

some function f , and each node participates in no more than g(ℓ) clusters at layer

ℓ, for some other function g. Moreover, for each node u in G, there is a cluster at

layer ℓ such that the (2ℓ − 1)-neighborhood of u is contained in that cluster.

There are known algorithms, such as a hierarchical sparse cover of G, that give

a cluster hierarchy Z of H1 layers with f (ℓ) = O(ℓ log n) and g(ℓ) = O(log n).

This construction was used in the directory protocol, Spiral, by Sharma et al. [28],

where additionally, each layer ℓ is decomposed into H2 = O(log n) sub-layers of

clusters, such that a node participates in all the sub-layers of a layer but in a different

cluster within each sub-layer, i.e., at each layer ℓ a node u participates in g(ℓ) =

O(log n) clusters. Suppose a node in each cluster is designated as the leader of the

cluster. Connecting the leaders of the clusters in the subsequent levels gives OT .

An upward path p(u) for each node u ∈ G is built by visiting leader nodes in

all the clusters that u belongs to starting from layer 0 (the bottom layer in Z) up

to layer H1 (the top layer in Z). Within each layer, H2 sub-layers are visited by

p(u) according to the order of their sub-layer labels. The upward path p(u) visits

two subsequent leaders using shortest paths in G between them. Lets say two paths

intersect if they have a common node. Using this definition, two upward paths

intersect at layer i if they visit the same leader at layer i. The lemmas below are

satisfied in the construction of [28].

Lemma 1. The upward paths p(u) and p(v) of any two nodes u, v ∈ G intersect at

layer min{H1, ⌈log(dist(u, v))⌉ + 1}.

Lemma 2. For any upward path p(u) for any node u ∈ G from the bottom layer

upto layer ℓ (and any sub-layer in layer ℓ), length(p(u)) ≤ O(2ℓ log2 n).

Computing Distributed Transaction Queue. We denote the distributed trans-

action queue by DT Queue(T). To construct DT Queue(T), each transaction

T (vi, agei) sends a f indT (T (vi, agei)) message in its upward path p(vi) in OT .

The f indT (T (vi, agei)) message contains information about the required objects

by T (vi, agei) and moves upward until it meets the similar messages sent by

it’s previous and next conflicting transactions in age order. When two mes-

sages f indT (T (vi, agei)) and f indT (T (v j, age j)) meet at some node vk, it can eas-

ily be found that whether T (vi, agei) and T (v j, age j) conflict with each other or

not by looking at the information of required objects for each of them. When

such meetings happen for all f indT (prev(T (vi, agei)), f indT (T (vi, agei)), and

f indT (next(T (vi, agei))), 1 ≤ i ≤ n, the computation of DT Queue(T) is completed.

The upward paths p(vi) and p(v j) for the two consecutive dependent transactions

T (vi, agei) and T (v j, age j) intersect at some node vk at some layer l > 0. Transaction

18

Figure 2: Illustration of computation of distributed object queue for transaction T (v3, 3) requir-

ing objects (a, b, c). T (v3, 3) sends ob jAccess(S R(T (v3, 3))) message in its upward path to clus-

ter C1,1 which recursively sends it to C2,1. C2,1 contains the owner node of object a (i.e., v4),

thus sends ob jAccess(a) message to v4. Then, after removing a from S R(T (v3, 3)), C2,1 sends

ob jAccess(S R(T (v3, 3))) message to cluster C3. C3 sends the message downward until the requests

reach nodes v5 and v6. Later, all three nodes v4, v5, and v6 reply grant messages which are combined

at clusters C1,3 and C2,1, and finally reach node v3. Then T (v3, 3) commits. The edges traversed by

the messages are highlighted in red.

T (vi, agei) sends a commit message to T (v j, age j) by first sending it upward in p(vi)

up to vk and then sending the message downward in p(v j) from vk up to node v j.

The following theorem follows from the hierarchy of clusters based OT .

Theorem 6. If d is the shortest path distance between nodes vi, v j ∈ G, then the

distance between vi, v j following the upward paths p(vi) and p(v j) in OT is O(d ·

log2 n).

Computing Distributed Object Queues. Distributed object queue for each trans-

action T (vi, agei) ∈ T is denoted as DOQueue(T (vi, agei)). DOQueue(T (vi, agei))

contains object tour(s) to access the object(s) requested by T (vi, agei).

DOQueue(T (vi, agei)) is constructed as follows. Let SR(T (vi, agei)) ⊆

S(T (vi, agei)) be the set of objects required by T (vi, agei) that are not present on

vi. T (vi, agei) sends ob jAccess(S R(T (vi, agei))) message in its upward path p(vi).

Let at some level l > 0, ob jAccess(SR(T (vi, agei))) reaches a cluster with node v j

that contains an object S j ∈ SR(T (vi, agei)). Then the leader of the cluster (say vl)

forwards ob jAccess(S j) to the node v j downward in the path p(v j). The leader also

removes object S j from SR(T (vi, agei)) and forwards ob jAccess(SR(T (vi, agei)))

message upward in the path p(vi) if SR(T (vi, agei)) is not empty. This process con-

tinues until SR(T (vi, agei)) becomes empty and by that time, the computation of

DOQueue(T (vi, agei)) is completed.

Later, during the execution of T (vi, agei), when the object access request

ob jAccess(S j) reaches the owner node of S j, owner(S j), T (vi, agei) performs read

19

or write operation on S j. After the read or write operation is completed, v j replies a

grant message back following the previous path in the opposite direction (i.e., up-

ward from v j to the leader node vl in p(v j)). Each leader node when receives reply

messages from the owner nodes of objects, combines them into a single message

and sends it back downward in the path p(vi) to node vi. The leader node waits to

combine the reply message until it receives reply messages from all the paths that

it has sent previously the access requests. Figure 2 illustrates this idea.

Algorithm PartDyn. PartDyn starts with computing distributed object queues

DOQueue(T (vi, agei)) for each transaction T (vi, agei) ∈ T and distributed trans-

action queue DT Queue(T). DOQueue(T (vi, agei)) contains object tours to access

all the required objects in S(T (vi, agei)).

All the transactions that do not depend on any lower aged transactions start ex-

ecution at time t = 0. T (v1, age1) starts at t = 0 and sends object access requests

recursively following object tours in DOQueue(T (v1, age1)). Then, for each object

S j ∈ S(T (v1, age1)), ob jAccess(S j) reaches the owner node owner(S j). T (v1, age1)

performs read or write operation on all S j and a grant message from each owner(S j)

is replied back following the object tours in the backward direction. T (v1, age1)

commits after it receives grant messages from all the owner nodes of required ob-

jects (possibly in combined form). Let T (v1, age1) commits at time step t1 > 0.

T (v1, age1) sends commit message commit(T (v1, age1)) to the next conflicting trans-

action in age order next(T (v1, age1)) = T (vk, agek), agek > agei, by following up-

ward paths in DT Queue(T). When T (vk, agek) receives commit messages from all

the dependent transactions, T (vk, agek) executes and commits at time step tk > t1

and sends commit(T (vk, agek)) message to next(T (vk, agek)). The process continues

until the highest aged transaction T (vh, ageh) commits at some time step th.

Theorem 7. PartDyn is O(log2 n)-competitive in both execution time and commu-

nication cost.

Proof. The OrdS problem requires all the dependent transactions to commit in

their age orders. So, if S T ⊆ T be the set of transactions containing the longest

chain of dependent transactions in T , the optimal total execution time for executing

all the transactions in T is

topt =
∑

T (vi,agei)∈S T

(

max
S j∈S(T (vi,agei))

dist
(

vi, owner(S j)
)

)

.

In PartDyn, each transaction T (vi, agei) sends commit message to the next con-

flicting transaction in the age order next(T (vi, agei) to maintain the predefined com-

mit order. We have from Theorem 6 that the distance between any two nodes in

20

the hierarchy of clusters based OT increases by O(log2 n) factor. In PartDyn, each

transaction T (vi, agei) uses DOQueue(T (vi, agei)) constructed using the hierarchy

of clusters based OT for accessing required objects. Then, the distance from vi

to the owner node owner(S j) of each object S j ∈ S(T (vi, agei)) also increases by

O(log2 n) factor. Moreover, when T (vi, agei) successfully accesses all the required

objects, it commits and sends the commit message to the next conflicting trans-

action in the age order T (v j, age j). To send the commit message, T (vi, agei) uses

DT Queue(T) and hence, again from Theorem 6, the distance between vi and v j in-

creases by O(log2 n) factor. Let distPART (vi, v j) represents the distance between any

two nodes vi and v j in PartDyn. Then,

distPART (vi, v j) = dist(vi, v j) · O(log2 n)

Let tPART be the total execution time in PartDyn, which becomes

tPART =
∑

T (vi,agei)∈S T

(max
S j∈S(T (vi,agei))

distPART (vi, owner(S j))

+ distPART (vi, owner(next(T (vi, agei)))))

=
∑

T (vi,agei)∈S T

(max
S j∈S(T (vi,agei))

dist(vi, owner(S j))

+ dist(vi, owner(next(T (vi, agei))))) · O(log2 n)

≤
∑

T (vi,agei)∈S T

(max
S j∈S(T (vi,agei))

dist(vi, owner(S j)))

· k · O(log2 n)

≤ topt.O(log2 n).

Any optimal communication cost algorithm communicates between nodes by

using the shortest paths in G. Since PartDyn uses hierarchy of cluster based OT ,

the distance between any two nodes increases by O(log2 n) factor. Thus, the cost

of sending object requests and receiving grant messages increases by O(log2 n).

In addition to this, each T (vi, agei) sends commit(T (vi, agei)) to the next conflict-

ing transaction in the age order. Which increases the communication cost by

O(k. log2 n) = O(log2 n). That means, in total, communication increases by the

factor of O(log2 n). □

6. Fully Dynamic Algorithm

Here, we study OrdS with no a priori knowledge on transactions, their priorities,

and the locations of the shared objects they access. Additionally, transactions arrive

21

at different nodes of G arbitrarily over time. Once a transaction arrives at some

node vi, it knows the priority (i.e., age) of that transaction and the objects needed

by it. Note that the age parameter of a transaction is unique in the dynamic case as

well and is defined when the transaction is assigned to a node. We can assume the

existence of a module that provides a unique age for each transaction issued. For

an illustration, suppose a distributed system containing a centralized server which

accepts job requests from end users continuously over time. The server assigns the

received job requests to different processing nodes by defining the priority of the

job. We present an algorithm Dyn that achieves O(D) competitive ratio in both ex-

ecution time and communication cost. Algorithm Dyn works on top of a spanning-

tree-based overlay tree, denoted as OTS T . The tree-based overlay is used to control

the costs since the requests may reach to the root of the overlay in the worst-case

and the cluster based overlays incur more cost than the tree based overlays/. Let

vroot be the root node of OT S T . For any node v, the upward path p(v) in OT S T is

the path obtained by connecting the parent nodes in S T from node v up to the root

vroot. Dyn executes in two phases:

• Phase 1 ± Object Advertisement in which each node of graph G is adver-

tised with the locations of all the objects.

• Phase 2 ± Transaction Execution in which transactions are executed and

committed according to age order.

Phase 1 ± Object Advertisement. The object advertisement phase makes each

node of G know the locations of all the shared objects. Later, when a transaction

at node vi needs some object S j, vi can forward object access request to the owner

node of that object. The ownership of each object is advertised in the form of a hash

map where each key-value pair represents (ob jID, nodeID), where ob jID is the ID

of an object located at node v ∈ V and nodeID is the ID of v.

Execution starts from leaf nodes of OT S T . Each leaf node vl sends a hash map

(ob jID, nodeID). If vl contains no object, vl sends an empty hash map. Also,

if vl contains more than one object, it sends a hash map with multiple key-value

pairs. When a parent node vp1 receives hash maps from all its child nodes, vp1

merges those into a single hash map and appends new key-val pair(s) if it contains

any object(s). The updated hash map is then sent upward to the next parent node

vp2. vp2 again merges all hash maps into a single one after receiving from all the

child nodes. This process is repeated until the current node is the root vroot. When

vroot receives hash maps from all of its child nodes, it merges them into a single

hash map and replies back the updated hash map to all the child nodes recursively.

This phase ends when all the leaf nodes receive updated hash map containing all

(ob jID, nodeID) pairs.

Lemma 3. Phase 1 finishes in O(D) time steps.

22

Proof. Since OT S T is based on minimum spanning tree, the height of OT S T is

O(D) where D is the diameter of graph G. The execution of Phase 1 starts from

leaf nodes of OT S T . Each leaf node sends corresponding hash maps to their parent

nodes with the information of objects located at it. Parent nodes merge the hash

maps received from all the child nodes and send them upward to the respective

parent nodes. Following this process, the root node vroot of OT S T receives all the

hash maps sent from leaf nodes in O(D) time steps. Now, vroot merges all the hash

maps received from all its child nodes and sends the merged hash map downward

up to the leaf nodes, which also takes O(D) time steps. Phase 1 ends after all the

leaf nodes receive the merged hash map from vroot. Thus, in total, Phase 1 finishes

in 2 · O(D) = O(D) time steps. □

Lemma 4. The communication cost in Phase 1 is O(n).

Proof. There are total n nodes and n − 1 edges in OT S T . Each node sends one

message (i.e., hash map) to the parent node in upward direction (except vroot) and

one message to the child nodes in downward direction (except leaf nodes). That

means, there are exactly two messages that traverse each edge of OT S T . Thus, the

total communication cost becomes 2(n − 1), i.e., O(n). □

Phase 2 ± Transaction Execution. Let H be the height of OT S T ,H ≤

D. As soon as transaction T (vi, agei) is initiated, it sends an arrival message

Tarrival(T (vi, agei), ti) to vroot following the upward path p(vi), where ti is the time

step at which T (vi, agei) arrives at node vi and agei is unique to the transaction

T (vi, agei) which shows the priority order of the T (vi, agei). Let Tt(vroot) be a list

maintained by vroot which contains the information of pending transactions at time

step t sorted by arrival time. The arrival message Tarrival(T (vi, agei), ti) sent from

node vi reaches vroot in ≤ H time steps. Thus, when vroot receives a transaction ar-

rival message Tarrival(T (vi, agei), ti) at some time step tr ≥ ti, it includes T (vi, agei)

in Tt(vroot) at time step t′i = ti + H.

Let T (vx, agex) ∈ Tt(vroot) be the lowest age transaction inTt(vroot) at time t. vroot

sends startExec(T (vx, agex)) message to node vx to execute T (vx, agex). T (vx, agex)

sends object access requests to the owner nodes ofS(T (vx, agex)). When T (vx, agex)

successfully accesses all the required objects in S(T (vx, agex)), it commits and

sends a commit message to vroot. Then, vroot removes T (vx, agex) from Tt(vroot) and

schedules next conflicting transaction in the age order to execute. Note that, vroot

can schedule multiple transactions together which are not dependent on any lower

aged transactions or receive commit messages from all the dependent transactions

during the execution. Phase 2 finishes when all the transactions in T commit.

Lemma 5. In Phase 2, each transaction finishes its execution in O(D) time steps.

23

Proof. Let transaction T (vi, agei) ∈ T starts execution at time step ti. T (vi, agei)

sends access requests to the owner nodes of the objects in S(T (vi, agei)) which takes

at most D time steps to reach them. When the request reaches the respective owner

node of the object, T (vi, agei) accesses that object and the owner node replies back

a grant message to the node vi. The grant message takes at most another D time

steps to reach node vi. So, at time step t′i ≤ ti+2D, T (vi, agei) successfully accesses

all the required objects and receives grant messages from each owner node of the

required objects. Then, T (vi, agei) commits at time step t′′i ≤ ti + 2D + 1 and sends

commit message commit(T (vi, agei) to vroot. commit(T (vi, agei) reaches vroot at time

step t′′′i ≤ ti + 3D + 1. vroot now removes T (vi, agei) from Tt(vroot) and schedules

next transaction which was dependent on T (vi, agei) to execute. Therefore, each

transaction in Phase 2 finishes its execution in O(3D + 1) = O(D) time steps. □

Lemma 6. The communication cost for each transaction in Phase 2 is O(D)-

competitive.

Proof. The communication cost for executing a transaction T (vi, agei) in Phase

2 of Dyn consists of the traversal of four types of messages: Tarrival(T (vi, agei), ti)

(from node vi to vroot), startExec(T (vi, agei)) (from vroot to vi), ob jAccess(∗) (re-

quest and response messages to and from the owner nodes of all the required objects

of T (vi, agei)), and commit(T (vi, agei)) (from vi to vroot). The communication cost

incurred due to Tarrival(T (vi, agei), ti), startExec(T (vi, agei)) and commit(T (vi, agei))

is at most 3D. Moreover, since the distance between any two nodes in a mini-

mum spanning tree may increase by at most O(D) factor compared to the shortest

path distance between them, the communication cost due to ob jAccess(∗) message

traversal may also increase by at most O(D) factor compared to that in optimal case.

That means, if c be the communication cost due to ob jAccess(∗) message traversal

in optimal algorithm, then the total communication cost for transaction T (vi, agei)

becomes at most (c ·D+ 3D). Let Ci,OPT and Ci,ALG be the communication costs for

executing transaction T (vi, agei) in optimal and Dyn, respectively, then,

Ci,ALG = Ci,OPT · O(D).

□

Combining Lemmas 3±6, we have,

Theorem 8. Dyn is O(D)-competitive in both execution time and communication

cost.

Proof. Dyn executes in two phases, Phase 1 and Phase 2, sequentially. Phase 1

finishes in O(D) time steps. In Phase 2, each transaction in T spends O(D) time

24

steps to execute and commit. So, for all n transactions in T , it takes O(n · D) time

steps to execute and commit. In total, both Phase 1 and Phase 2 of Dyn end in

O(D) + O(n · D) = O(n · D) time steps. Since, transactions need to follow the age

order to commit, any optimal algorithm requires at least O(n) time steps to execute

and commit. Hence, Dyn is O(D)-competitive in execution time. The same analysis

works to show O(D)-competitive in communication cost. □

7. Evaluation

We have implemented all four proposed algorithms (OffExec, OffComm, Part-

Dyn, and Dyn) and evaluated them using a set of micro and complex STAMP bench-

marks. We compared the results against that of the data-flow model in [24]. The ex-

periments were performed on an Intel Core i7-7700K processor with 32 GB RAM.

We wrote our own discrete-event simulator representing a distributed network. Both

micro and complex (STAMP) benchmarks donot have already defined transaction

priorities (i.e., ages). We defined our own parameter setting in the implementation

to assign the age of the transactions. To be specific, we assigned a random unique

number between 0 to the total number of transactions for each transaction in each

benchmark and the transaction with lower age number has higher priority. The

experiments were run preserving the dependency order of the transactions. That

means, the conflicting (i.e., dependent) transactions were executed in the increas-

ing order of age whereas non-conflicting (i.e., non-dependent) transactions were

executed in parallel without waiting for lower aged transactions to commit. We

simulated three different communication graphs, namely random, small-world, and

grid.

To build a random graph, we used the Erdős-RÂenyi model [57] and generated

random graphs of different sizes. Particularly, we used the G(n, ρ) variant of the

Erdős-RÂenyi model [57] where a graph G is constructed connecting nodes randomly

such that each edge is included in G with probability 0 < ρ < 1, independent from

every other edge. The graphs we used in the experiments were generated by setting

ρ = 0.01. In case where the model generates a disconnected graph, we made it

connected by adding a disconnected node to the longest connected component and

attached smaller connected components to longer ones.

For small-world graphs, we used Watts±Strogatz model presented in [58] to

build graphs where most nodes are not connected by an edge but they can still

be reached in a few hops through other neighboring nodes. We used p = 0.03

as the probability to rewire an existing edge. We followed the requirement

n ≫ k ≫ ln(n) ≫ 1 to select k edges for n nodes. Specifically, we used 15 edges for

64 nodes, 17 for 128, 20 for 256, and 28 for 512, respectively. In case the generated

graph was disconnected, we ran the model until a connected graph is built.

25

Graph type Number of nodes
Diameter

(Weighted) (Unweighted)

random

16 22 3
32 21 4
64 55 9

128 109 20
256 69 12
512 38 8

small-world

16 7 2
32 9 3
64 11 4

128 14 4
256 16 5
512 13 5

grid

16 27 6
36 42 10
64 49 14

144 79 22
256 107 30
529 148 44

Table 1: Graph sizes and their diameters for ordered scheduling experimentation

Grid graphs are two-dimensional grids where corner nodes are connected to two

neighbors each, the remaining boundary nodes are connected to three neighbors

each, and inner nodes are connected to four neighbors each.

The graphs and their respective diameters are shown in Table 1. For random

and small-world graphs, total number of nodes varied from 16 to 512, and for grid

graphs, from 16 to 529. The total number of shared objects, transactions, and the

transaction sizes vary based on specific applications in each benchmark. The results

presented are the average of 10 runs. Figures 3-8 contain results for three different

graphs we considered. Top row in each figure is for random graphs, middle row is

for small-world graphs, and finally the third row is for grid graphs.

In the experiments, execution time is measured as the number of time steps.

Communication cost is measured as the total distance traversed by the transactions

to access objects and send commit notifications in the respective communication

graphs. Latency is defined as the distance between two nodes in the network. That

means, if two nodes v1 and v2 are directly connected by an edge between them, we

assume that it takes dist(v1, v2) time step to reach from v1 to v2 (or vice-versa) and

the communication cost to send a message between them is also dist(v1, v2).

Results on micro-benchmarks: We experimented the algorithms against three

micro-benchmarks bank, linked list, and skip list. Figures 3±5 show their results

26

in random, small-world and grid graphs, respectively.

Results on STAMP benchmarks: We experimented the algorithms against in-

truder, genome, and vacation from STAMP [59] benchmarks. Figures 6±8 show

their results in random, small-world and grid graphs, respectively.

7.1. Results Discussion

For all graph topologies, OffExec has the lowest execution time (optimal) in all

benchmarks. The execution time for OffComm is higher than OffExec. Similarly,

in all the benchmarks, OffComm has the minimum communication cost, which is

within a factor of 2 from optimal. The experimental results also show that the ex-

ecution time of PartDyn is always within O(log2 n) factor compared to OffExec.

Moreover, the execution time in Dyn is always within O(D) factor. The commu-

nication cost results follow the same pattern and are substantially better than the

theoretical bounds of PartDyn and Dyn. We can also see that Dyn has less execu-

tion time and less communication cost than PartDyn in all the benchmarks. This is

because of D < log2 n in the experiment.

7.2. Comparison between Data-flow and Control-flow Models

We compared the results obtained for OrdS in the data-flow model in [24] with

the results for the control-flow model obtained here. In the data-flow model, for

the offline setting with complete knowledge of transactions, their priorities, and the

shared objects they need, [24] presents an offline algorithm (Off-Opt) that is op-

timal in terms of both execution time and communication cost. However, for the

same setting in the control-flow model, we have two different algorithms, OffExec

and OffComm, the first is optimal in execution time and the second is optimal in

communication cost. We have shown that, in the control-flow model, it is impossi-

ble to have an algorithm that achieves simultaneously optimal execution time and

communication cost (Theorem 1).

In the offline setting, with partial knowledge (i.e., transactions and their priori-

ties are known beforehand, but the shared objects and their locations are not known

until runtime), we have presented O(log2 n)-competitive algorithms for both execu-

tion time and communication cost. In the dynamic setting where transactions arrive

arbitrarily over time, we have presented O(D)-competitive algorithms for both met-

rics.

In spite of having the same competitive bounds, the execution time (and commu-

nication cost) incurred in the data-flow [24] and control-flow models are different.

The execution time achieved by a transaction in Off-Opt while running in the data-

flow model is different than the execution time for the same transaction in OffExec

while running in the control-flow model. This applies to both execution time and

27

Figure 3: Execution time and communication cost (log scale) in bank micro-benchmark on random,

the top row, small-world, the middle row, and grid graphs, the bottom row, respectively.

28

Figure 4: Execution time and communication cost (log scale) in linked-list micro-benchmark on

random, the top row, small-world, the middle row, and grid graphs, the bottom row, respectively.

29

Figure 5: Execution time and communication cost (log scale) in skip-list micro-benchmark on ran-

dom, the top row, small-world, the middle row, and grid graphs, the bottom row, respectively.

30

Figure 6: Execution time and communication cost (log scale) in genome benchmark on random, the

top row, small-world, the middle row, and grid graphs, the bottom row, respectively.

31

Figure 7: Execution time and communication cost (log scale) in intruder benchmark on random, the

top row, small-world, the middle row, and grid graphs, the bottom row, respectively.

32

Figure 8: Execution time and communication cost (log scale) in vacation benchmark on random, the

top row, small-world, the middle row, and grid graphs, the bottom row, respectively.

33

communication cost in all three settings. Thus, it is interesting to see how the two

metrics differ in the two models with the experimental results.

Figures 3±8 show the comparison of the data-flow and control-flow models in

terms of execution time and communication cost in random, small-world, and grid

graphs, respectively. They provide the comparison results for offline, dynamic, and

partial dynamic algorithms in both models. The results show that the control-flow

model incurs more execution time as well as communication cost than the data-flow

model. To be specific, the control-flow model has as much as 2× more execution

time and communication cost than the data-flow model. In the data-flow model,

when a transaction needs to access an object, the object directly moves to the node

where the transaction is located. But, in the control-flow model, the transaction

sends an object access request to the owner node of the object and when the access

request is successful, a grant message is sent to the transaction. That means, in

the data-flow model, there is a one-way traversal to access an object whereas, in

the control-flow model, there is a two-way traversal to access each object. Thus,

the control-flow model has as much as 2×more execution time and communication

cost than the data-flow model.

In general, control-flow achieves worse performance than data-flow. But this is

not always the case. For scheduling lightweight transactions (with minimum read-

write sets), data-flow model seems less expensive. But, if the application is data-

intensive then the movements of data become costly, so the control-flow model will

be more efficient for achieving lower communication cost. This can be seen in the

results for the benchmarks genome and intruder (Figures 6 and 7) where we can

see data-flow incurs higher communication cost. This is due to transactions in these

benchmarks requiring a lot of read-write sets. Hence, the selection of the execution

model depends on the requirement and the nature of the actual application.

8. Concluding Remarks

In this paper, we have studied the ordered scheduling problem of committing

transactions according to their predefined priorities in the control-flow distributed

transactional memory, minimizing execution time and communication cost. The

control-flow model is important because in many applications, the movement of

data is costly due to its size and security purposes. We have provided a range of

algorithms considering this problem in the offline and dynamic settings. Our results

are (i) optimal in the offline setting with complete knowledge to (ii) poly-log com-

petitive in the offline setting with partial knowledge to (iii) diameter competitive

in the dynamic online setting. We also presented the comparative results for the

algorithms in the data-flow and control-flow models. As a future work, it will be

34

interesting to deploy the algorithms in real distributed system(s) and measure the

wall clock results.

References

[1] P. Poudel, S. Rai, S. Guragain, G. Sharma, Ordered scheduling in control-flow dis-

tributed transactional memory, in: A. R. Molla, G. Sharma, P. Kumar, S. Rawat (Eds.),

Distributed Computing and Intelligent Technology - 19th International Conference,

ICDCIT 2023, Bhubaneswar, India, January 18-22, 2023, Proceedings, Vol. 13776 of

Lecture Notes in Computer Science, Springer, 2023, pp. 67±83.

[2] M. Herlihy, J. E. B. Moss, Transactional memory: Architectural support for lock-free

data structures, in: A. J. Smith (Ed.), Proceedings of the 20th Annual International

Symposium on Computer Architecture, San Diego, CA, USA, May 1993, ACM, 1993,

pp. 289±300.

[3] N. Shavit, D. Touitou, Software transactional memory, Distributed Comput. 10 (2)

(1997) 99±116.

[4] Intel, http://software.intel.com/en-us/blogs/2012/02/07/transactional-

synchronization-in-haswell (2012).

[5] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Co-

teus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G. Chiu, P. Boyle,

N. Chist, C. Kim, The ibm blue gene/q compute chip, IEEE Micro 32 (2) (2012)

48±60.

[6] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, H. Tomari, Quantitative compar-

ison of hardware transactional memory for blue gene/q, zenterprise ec12, intel core,

and POWER8, in: ISCA, 2015, pp. 144±157.

[7] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, H. Q. Le, Robust archi-

tectural support for transactional memory in the power architecture, in: A. Mendel-

son (Ed.), The 40th Annual International Symposium on Computer Architecture,

ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, ACM, 2013, pp. 225±236.

[8] V. Gramoli, R. Guerraoui, V. Trigonakis, Tm2c: a software transactional memory for

many-cores, Distributed Comput. 31 (5) (2018) 367±388.

[9] M. Mohamedin, S. Peluso, M. J. Kishi, A. Hassan, R. Palmieri, Nemo: Numa-aware

concurrency control for scalable transactional memory, in: Proceedings of the 47th In-

ternational Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, August

13-16, 2018, ACM, 2018, pp. 38:1±38:10.

35

[10] R. L. B. Jr., V. S. Adve, B. L. Chamberlain, Software transactional memory for large

scale clusters, in: S. Chatterjee, M. L. Scott (Eds.), Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP

2008, Salt Lake City, UT, USA, February 20-23, 2008, ACM, 2008, pp. 247±258.

[11] K. Manassiev, M. Mihailescu, C. Amza, Exploiting distributed version concurrency

in a transactional memory cluster, in: J. Torrellas, S. Chatterjee (Eds.), Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPOPP 2006, New York, New York, USA, March 29-31, 2006, ACM, 2006, pp. 198±

208.

[12] W. W. L. Fung, I. Singh, A. Brownsword, T. M. Aamodt, Hardware transactional

memory for GPU architectures, in: C. Galuzzi, L. Carro, A. Moshovos, M. Prvulovic

(Eds.), 44rd Annual IEEE/ACM International Symposium on Microarchitecture, MI-

CRO 2011, Porto Alegre, Brazil, December 3-7, 2011, ACM, 2011, pp. 296±307.

[13] A. Turcu, B. Ravindran, R. Palmieri, Hyflow2: a high performance distributed trans-

actional memory framework in scala, in: M. PlÈumicke, W. Binder (Eds.), Proceedings

of the 2013 International Conference on Principles and Practices of Programming

on the Java Platform: Virtual Machines, Languages, and Tools, Stuttgart, Germany,

September 11-13, 2013, ACM, 2013, pp. 79±88.

[14] M. M. Saad, B. Ravindran, Snake: Control flow distributed software transactional

memory, in: X. DÂefago, F. Petit, V. Villain (Eds.), Stabilization, Safety, and Security

of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,

October 10-12, 2011. Proceedings, Vol. 6976 of Lecture Notes in Computer Science,

Springer, 2011, pp. 238±252.

[15] M. M. Saad, M. J. Kishi, S. Jing, S. Hans, R. Palmieri, Processing transactions in a

predefined order, in: J. K. Hollingsworth, I. Keidar (Eds.), Proceedings of the 24th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP 2019, Washington, DC, USA, February 16-20, 2019, ACM, 2019, pp. 120±

132.

[16] M. M. Saad, R. Palmieri, B. Ravindran, Lerna: Parallelizing dependent loops using

speculation, in: Proceedings of the 11th ACM International Systems and Storage Con-

ference, SYSTOR 2018, HAIFA, Israel, June 04-07, 2018, ACM, 2018, pp. 37±48.

[17] S. Hirve, R. Palmieri, B. Ravindran, Archie: a speculative replicated transactional

system, in: L. RÂeveillère, L. Cherkasova, F. TaÈıani (Eds.), Proceedings of the 15th In-

ternational Middleware Conference, Bordeaux, France, December 8-12, 2014, ACM,

2014, pp. 265±276.

[18] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998) 133±

169.

36

[19] J. Gil Herrera, J. F. Botero, Resource allocation in nfv: A comprehensive survey,

IEEE Trans. on Netw. and Serv. Manag. 13 (3) (2016) 518±532. doi:10.1109/

TNSM.2016.2598420.

URL https://doi.org/10.1109/TNSM.2016.2598420

[20] A. M. Alwakeel, A. K. Alnaim, E. B. Fernandez, A survey of network function vir-

tualization security, in: SoutheastCon 2018, 2018, pp. 1±8. doi:10.1109/SECON.

2018.8479121.

[21] M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ranjan, Osmotic computing: A new

paradigm for edge/cloud integration, IEEE Cloud Computing 3 (6) (2016) 76±83.

doi:10.1109/MCC.2016.124.

[22] S. K. Roy, R. Devaraj, A. Sarkar, D. Senapati, Slaqa: Quality-level aware scheduling

of task graphs on heterogeneous distributed systems, ACM Trans. Embed. Comput.

Syst. 20 (5). doi:10.1145/3462776.

URL https://doi.org/10.1145/3462776

[23] M. A. Gonzalez-Mesa, E. GutiÂerrez, E. L. Zapata, O. G. Plata, Effective transactional

memory execution management for improved concurrency, ACM Trans. Archit. Code

Optim. 11 (3) (2014) 24:1±24:27.

[24] P. Poudel, S. Rai, G. Sharma, Processing distributed transactions in a predefined order,

in: ICDCN ’21: International Conference on Distributed Computing and Networking,

Virtual Event, Nara, Japan, January 5-8, 2021, ACM, 2021, pp. 215±224.

[25] C. Busch, M. Herlihy, M. Popovic, G. Sharma, Time-communication impossibility

results for distributed transactional memory, Distributed Comput. 31 (6) (2018) 471±

487.

[26] C. Busch, M. Herlihy, M. Popovic, G. Sharma, Dynamic scheduling in distributed

transactional memory, in: 2020 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), New Orleans, LA, USA, May 18-22, 2020, IEEE, 2020, pp.

874±883.

[27] M. Herlihy, Y. Sun, Distributed transactional memory for metric-space networks, Dis-

tributed Comput. 20 (3) (2007) 195±208.

[28] G. Sharma, C. Busch, Distributed transactional memory for general networks, Dis-

tributed Comput. 27 (5) (2014) 329±362.

[29] H. Attiya, L. Epstein, H. Shachnai, T. Tamir, Transactional contention management

as a non-clairvoyant scheduling problem, Algorithmica 57 (1) (2010) 44±61.

37

[30] A. Dragojevic, R. Guerraoui, A. V. Singh, V. Singh, Preventing versus curing: avoid-

ing conflicts in transactional memories, in: S. Tirthapura, L. Alvisi (Eds.), Proceed-

ings of the 28th Annual ACM Symposium on Principles of Distributed Computing,

PODC 2009, Calgary, Alberta, Canada, August 10-12, 2009, ACM, 2009, pp. 7±16.

[31] R. Guerraoui, M. Herlihy, B. Pochon, Toward a theory of transactional contention

managers, in: M. K. Aguilera, J. Aspnes (Eds.), Proceedings of the Twenty-Fourth

Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, Las

Vegas, NV, USA, July 17-20, 2005, ACM, 2005, pp. 258±264.

[32] G. Sharma, C. Busch, A competitive analysis for balanced transactional memory

workloads, Algorithmica 63 (1-2) (2012) 296±322.

[33] G. Sharma, C. Busch, Window-based greedy contention management for transactional

memory: theory and practice, Distributed Comput. 25 (3) (2012) 225±248.

[34] R. M. Yoo, H. S. Lee, Adaptive transaction scheduling for transactional memory sys-

tems, in: F. M. auf der Heide, N. Shavit (Eds.), SPAA 2008: Proceedings of the 20th

Annual ACM Symposium on Parallelism in Algorithms and Architectures, Munich,

Germany, June 14-16, 2008, ACM, 2008, pp. 169±178.

[35] H. Attiya, V. Gramoli, A. Milani, Directory protocols for distributed transactional

memory, in: R. Guerraoui, P. Romano (Eds.), Transactional Memory. Foundations,

Algorithms, Tools, and Applications - COST Action Euro-TM IC1001, Vol. 8913 of

Lecture Notes in Computer Science, Springer, 2015, pp. 367±391.

[36] C. Busch, M. Herlihy, M. Popovic, G. Sharma, Impossibility results for distributed

transactional memory, in: C. Georgiou, P. G. Spirakis (Eds.), Proceedings of the 2015

ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-

San SebastiÂan, Spain, July 21 - 23, 2015, ACM, 2015, pp. 207±215.

[37] C. Busch, M. Herlihy, M. Popovic, G. Sharma, Fast scheduling in distributed trans-

actional memory, in: C. Scheideler, M. T. Hajiaghayi (Eds.), Proceedings of the 29th

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Wash-

ington DC, USA, July 24-26, 2017, ACM, 2017, pp. 173±182.

[38] G. Sharma, C. Busch, A load balanced directory for distributed shared memory ob-

jects, J. Parallel Distributed Comput. 78 (2015) 6±24.

[39] B. Zhang, B. Ravindran, R. Palmieri, Distributed transactional contention manage-

ment as the traveling salesman problem, in: M. M. HalldÂorsson (Ed.), Structural Infor-

mation and Communication Complexity - 21st International Colloquium, SIROCCO

2014, Takayama, Japan, July 23-25, 2014. Proceedings, Vol. 8576 of Lecture Notes in

Computer Science, Springer, 2014, pp. 54±67.

38

[40] J. Kim, B. Ravindran, On transactional scheduling in distributed transactional memory

systems, in: S. Dolev, J. A. Cobb, M. J. Fischer, M. Yung (Eds.), Stabilization, Safety,

and Security of Distributed Systems - 12th International Symposium, SSS 2010, New

York, NY, USA, September 20-22, 2010. Proceedings, Vol. 6366 of Lecture Notes in

Computer Science, Springer, 2010, pp. 347±361.

[41] P. Poudel, G. Sharma, Graphtm: An efficient framework for supporting transactional

memory in a distributed environment, in: N. Mukherjee, S. V. Pemmaraju (Eds.),

ICDCN 2020: 21st International Conference on Distributed Computing and Network-

ing, Kolkata, India, January 4-7, 2020, ACM, 2020, pp. 11:1±11:10.

[42] D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano, A. Suissa, Exploiting lo-

cality in lease-based replicated transactional memory via task migration, in: Y. Afek

(Ed.), Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem,

Israel, October 14-18, 2013. Proceedings, Vol. 8205 of Lecture Notes in Computer

Science, Springer, 2013, pp. 121±133.

[43] R. Palmieri, S. Peluso, B. Ravindran, Transaction execution models in partially repli-

cated transactional memory: The case for data-flow and control-flow, in: R. Guer-

raoui, P. Romano (Eds.), Transactional Memory. Foundations, Algorithms, Tools, and

Applications - COST Action Euro-TM IC1001, Vol. 8913 of Lecture Notes in Com-

puter Science, Springer, 2015, pp. 341±366.

[44] C. Busch, B. S. Chlebus, M. Herlihy, M. Popovic, P. Poudel, G. Sharma, Flexible

scheduling of transactional memory on trees, in: S. Devismes, F. Petit, K. Altisen,

G. A. D. Luna, A. F. Anta (Eds.), Stabilization, Safety, and Security of Distributed

Systems - 24th International Symposium, SSS 2022, Clermont-Ferrand, France,

November 15-17, 2022, Proceedings, Vol. 13751 of Lecture Notes in Computer Sci-

ence, Springer, 2022, pp. 146±163.

[45] J. Kim, B. Ravindran, Scheduling transactions in replicated distributed software trans-

actional memory, in: 13th IEEE/ACM International Symposium on Cluster, Cloud,

and Grid Computing, CCGrid 2013, Delft, Netherlands, May 13-16, 2013, IEEE

Computer Society, 2013, pp. 227±234.

[46] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, L. E. T. Rodrigues, When scalability

meets consistency: Genuine multiversion update-serializable partial data replication,

in: 2012 IEEE 32nd International Conference on Distributed Computing Systems,

Macau, China, June 18-21, 2012, IEEE Computer Society, 2012, pp. 455±465.

[47] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, A. Wollrath, Jini Specification,

Addison-Wesley Longman Publishing, 1999.

[48] G. Z. Gutin, A. P. Punnen, The traveling salesman problem, Discret. Optim. 3 (1)

(2006) 1.

39

[49] D. P. Williamson, D. B. Shmoys, The Design of Approximation Algorithms, Cam-

bridge University Press, 2011.

[50] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman

problem, Oper. Res. Forum 3 (1).

[51] F. K. Hwang, On steiner minimal trees with rectilinear distance, SIAM Journal on

Applied Mathematics 30 (1) (1976) 104±114.

[52] F. Hwang, D. Richards, P. Winter, The Steiner Tree Problem, ISSN, Elsevier Science,

1992.

[53] L. E. N. Gouveia, T. L. Magnanti, Network flow models for designing diameter-

constrained minimum-spanning and steiner trees, Networks 41 (3) (2003) 159±173.

[54] T. Hiromitsu, M. Akira, An approximate solution for the steiner problem in graphs,

MATH. JAP.; JPN; DA. 1980; VOL. 24; NO 6; PP. 573-577; BIBL. 9 REF.

[55] M. J. Demmer, M. Herlihy, The arrow distributed directory protocol, in: S. Kutten

(Ed.), Distributed Computing, 12th International Symposium, DISC ’98, Andros,

Greece, September 24-26, 1998, Proceedings, Vol. 1499 of Lecture Notes in Com-

puter Science, Springer, 1998, pp. 119±133.

[56] S. Rai, G. Sharma, C. Busch, M. Herlihy, Load balanced distributed directories, Inf.

Comput. 285 (Part) (2022) 104700.

[57] P. ErdÈos, A. RÂenyi, On random graphs i, Publicationes Mathematicae Debrecen 6

(1959) 290.

[58] D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature

393 (6684) (1998) 440±442.

[59] C. C. Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: stanford transactional

applications for multi-processing, in: D. Christie, A. Lee, O. Mutlu, B. G. Zorn (Eds.),

4th International Symposium on Workload Characterization (IISWC 2008), Seattle,

Washington, USA, September 14-16, 2008, IEEE Computer Society, 2008, pp. 35±

46.

40

	Introduction
	Model and Preliminaries
	Impossibility Result
	Offline Algorithms
	Execution Time Algorithm: OffExec
	Communication Cost Algorithm: OffComm

	Partial Dynamic Algorithm
	Fully Dynamic Algorithm
	Evaluation
	Results Discussion
	Comparison between Data-flow and Control-flow Models

	Concluding Remarks

