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Abstract

Consider the control-flow model of transaction execution in a distributed system
modeled as a communication graph where shared objects positioned at nodes of
the graph are immobile but the transactions accessing the objects send requests to
the nodes where objects are located to read/write those objects. The control-flow
model offers benefits to applications in which the movement of shared objects is
costly due to their sizes and security purposes. In this paper, we study the ordered
scheduling problem of committing dependent transactions according to their prede-
fined priorities in this model. The considered problem naturally arises in areas, such
as loop parallelization and state-machine-based computing, where producing exe-
cutions equivalent to a priority order is needed to satisfy certain properties. Specif-
ically, we study ordered scheduling considering two performance metrics funda-
mental to any distributed system: (i) execution time - total time to commit all the
transactions and (ii) communication cost - the total distance traversed in accessing
required shared objects. We design scheduling algorithms that are individually or
simultaneously efficient for both the metrics and rigorously evaluate them through
several benchmarks on random and grid graphs, validating their efficiency. To our
best knowledge, this is the first study of ordered scheduling in the control-flow
model of distributed transaction execution.
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1. Introduction

Concurrent processes (threads) need to synchronize to avoid introducing incon-
sistencies while accessing shared data objects. Traditional mechanisms of locks
and barriers have well-known downsides, including deadlock, priority inversion,
reliance on programmer conventions, and vulnerability to failure or delay. Trans-
actional memory (TM) [2, 3] has emerged as an attractive alternative. Using TM,
program code is split into transactions, blocks of code that appear to execute atom-
ically. Transactions are executed speculatively: synchronization conflicts (or fail-
ures) may cause an executing transaction to abort: its effects are rolled back and the
transaction is restarted. In the absence of conflicts (or failures), a transaction typi-
cally commits, causing its effects to become visible to all threads. Several commer-
cial processors support TM, e.g., Intel’s Haswell [4] and IBM’s Blue Gene/Q [5],
zEnterprise EC12 [6], and Power8 [7].

TM has been studied extensively for multiprocessors, where processors operate
on a single shared memory and the latency to access (read/write) shared memory
is the same (and negligible) for each processor. However, recently, the comput-
ing trend is shifting toward distributed multiprocessors, where the memory access
latency varies depending on the processor in which the thread executes and the
physical segment of memory that stores the requested memory location. Therefore,
the recent research focus is on how to support TM in distributed multiprocessors.
Some proposals in this direction include TM?C [8], Nemo [9], cluster-TM [10, 11],
GPU-TM [12], and HyrLow [13].

TM is beneficial in distributed systems where data is spread across multiple
nodes. For example, distributed data centers can use TM to simplify the burden of
distributed synchronization and provide more reliable and efficient program execu-
tion while accessing data from remote nodes. Distributed TM (DTM) designed for
such systems need to execute transactions effectively by taking into consideration
the system’s infrastructure. The network structure can play a crucial role in the
DTM performance, since the data transactions access has to be reached across the
network in a timely manner.

In this paper, we study ordered scheduling (denoted as OrDpS) problem in dis-
tributed multiprocessors. We model distributed multiprocessors as an n-node con-
nected, undirected, and weighted graph G, where each node denotes a processor
and each edge denotes a communication link between two processors. A set of w
shared objects S := {S1,S52,...,5,} reside on the (possibly different) nodes of G.
We consider the control-flow model [14], where objects are immobile but transac-
tions send access requests to the nodes the required objects are located. Consider
aset7 :={T(vi,agey),T(v,,age,),...} of transactions mapped (arbitrarily) to the
nodes of G with each T'(v;, age;) accessing an arbitrary subset of the shared objects



S(T(vi,age;)) € S, where age is an externally provided parameter that is unique
for each transaction providing a priority order. We can assume the existence of a
module that can assign such unique priorities (ages) to transactions; a detailed study
on this module is beyond the scope of this paper.

We say transaction T'(v;, age;) is dependent on T(v;,age;),age; < age;, if at
least an object read/write by T'(v;, age;) is being written by T'(v;, age;). The OrbS
problem is to commit the dependent transactions in the age order. For example,
transaction T'(v;, age;) that depends on T'(v;,age;),age; < age;, commits only af-
ter T'(vj, age;) has been committed. Non-dependent transactions can execute and
commit in parallel, irrespective of their priority order. For example, among the two
transactions T'(v;,age;) and T(v;,age;),age; < age;, let T(v;, age;) is not depen-
dent on any other transaction T'(V',age’),age’ < age;. Also, let T (v;, age;) is not
dependent on any other transaction T (v, age”’), age” < age; including T'(v;, age;).
Then, T (v;, age;) and T (v}, age;) are called non-dependent transactions and can be
executed in parallel.

OrpS naturally arises in applications where producing (dependent) executions
equivalent to a priority order is needed to satisfy/guarantee certain properties. Ex-
ample applications include speculative loop parallelization and distributed compu-
tation using state machine approach [15]. In loop parallelization [16], loops de-
signed to run sequentially are parallelized by executing their operations concur-
rently using TM. Providing an order matching the sequential one is fundamental to
enforce equivalent semantics for both the parallel and sequential code. Regarding
state machine approach [17], many distributed systems order tasks before execut-
ing them to guarantee that a single state machine abstraction always evolves consis-
tently on distinct nodes, e.g., Paxos [18]. Some more instances of OrDS problem are
Network Function Virtualization systems [19, 20], Osmotic Computing [21], and
Cyber-physical Systems [22]. In a Network Function Virtualization (NFV) system,
network services are specified as service chains, obtained by the concatenation of
network functions which are dependent computational tasks to be executed in the
NFV infrastructure such as servers distributed over the network. In Osmotic Com-
puting system, an application is divided into microservices and are deployed over
an edge/cloud server infrastructure. When users send requests, an orchestrator han-
dles those requests processing in several of the microservices taking into account
the dependencies between the microservices. Cyber-physical systems also involve
performing dependent coordinated tasks in multiple subsystems.

OrDS has been studied heavily in multiprocessors [23, 15] where execution time
is the only metric of interest. However, those studies focused on empirical studies
and they do not extend to distributed multiprocessors as they do not consider la-
tency. Poudel et al. [24] studied for the first time the OrDS problem in a distributed
multiprocessor. However, they considered the data-flow model where transactions



are immobile but the objects are mobile. Since the data-flow model is direct oppo-
site of the control-flow model, the contributions in [24] do not apply to the control-
flow model.

Contributions. In this paper, we design a set of scheduling algorithms to solve
the OrDS problem in the control-flow model and establish complementary results
compared to [24]. We consider synchronous communication model [25, 26] where
time is divided into discrete steps. Notice that the algorithms we present correctly
schedule transactions even when there is no synchronous communication, but the
synchronous model helps to establish bounds on performance. We optimize two
performance metrics: (i) execution time — the total time to execute and commit all
the transactions, and (ii) communication cost — the total distance messages travel
to access shared objects. A transaction’s execution finishes as soon as it commits.
The presented algorithms determine the time step when each transaction executes
and commits. We measure the efficiency using a widely-studied notion of compet-
itiveness — the ratio of total time (communication cost) for a designed algorithm
to the minimum time (communication cost) achievable by an optimal scheduling
algorithm.
Specifically, we have the following six contributions:

1. We provide an impossibility result showing that the optimal execution time
and optimal communication cost can not be achieved simultaneously.

2. For the offline version, we provide two algorithms, one with optimal execu-
tion time and another with 2-competitive on communication cost.

3. For the partial dynamic version with the knowledge of transactions and their
priorities (meaning that all transactions arrive in the beginning) but not the
shared objects, we provide an O(log” n)—competitive algorithm for both exe-
cution time and communication cost.

4. For the fully dynamic version with transactions arriving over time (and hence
a transaction may not know how many other transactions are currently in the
system and their priorties), we provide an O(D)—competitive algorithm for
both execution time and communication cost, where D is the diameter of the
graph G.

5. We implement and rigorously evaluate the designed algorithms through
micro-benchmarks and complex STAMP benchmarks on random, grid and
small-world graphs, which validate the efficiency of the designed algorithms.

6. We compare the results of designed algorithms for the control-flow model
against the algorithms for data-flow model [24] and analyze them.

Techniques. For the offline version with complete knowledge of transactions, their
priorities, and the shared objects they access, we provide two algorithms, one is
optimal in terms of execution time and the other algorithm is 2-competitive in terms



of communication cost. The optimal time algorithm uses the shortest path to access
required objects. Each transaction sends access requests to all the required objects
in parallel following the shortest paths in G. The 2-competitive communication
cost algorithm uses that minimum Steiner tree to access the required objects. Each
transaction sends (combined) access requests through a minimum Steiner tree that
connects the graph nodes containing the required objects.

In the partial dynamic version (with the knowledge of transactions and their
priorities but not the shared objects), the proposed algorithm exploits the con-
cept of distributed directory protocols [27, 28]. Particularly, the directory protocol
technique based on the hierarchical partitioning of the graph into clusters is used.
This technique guarantees that the object access cost for a transaction is within an
O(log? n) factor from the cost of minimum Steiner tree for that transaction. The
directory protocol technique is then extended to the dynamic version guaranteeing
O(D)-competitiveness without knowing transactions and their priorities a priori.
This bound is interesting since the hierarchical partitioning technique used in the
partial dynamic version is shown to only provide O(D log” n)-competitive bound
for the fully dynamic version. The observation is that a transactions knows about
the existence of another dependent transaction only after its request reaches the root
node of the directory. Therefore, the dynamic algorithm uses the directory protocol
running on a spanning tree.

Related Work. Gonzalez-Mesa et al. [23] introduced the OrDS problem for mul-
tiprocessors and Saad et al. [15] presented three improved algorithms and eval-
uated them through empirical studies. Transaction scheduling with no predefined
ordering is widely-studied in multiprocessors providing provable upper and lower
bounds, and impossibility results [29, 30, 31, 32, 33], besides several other schedul-
ing algorithms that were only evaluated experimentally [34]. The multiprocessor
ideas are not suitable for distributed multiprocessors as they do not deal with a cru-
cial metric, communication cost. The mostly closely related work to ours is Poudel
et al. [24] where they studied the OrDpS problem in the data-flow model (transac-
tions are immobile but objects move to the nodes where transactions are executing).
We consider the control-flow model [14] which is the direct opposite of the data-
flow model (objects are immobile and transactions send requests to objects) and the
solutions in the data-flow model do not apply to the control-flow model.

Many previous studies on transaction scheduling in distributed multiprocessors,
e.g., [35, 36, 37, 25, 26, 28, 38], considered the data-flow model. The papers
[27, 28, 39] focused on the data-flow model with the objective of minimizing com-
munication cost. Kim and Ravindran [40] provided communication cost bounds
for special workloads and problem instances with multiple shared objects. Exe-
cution time minimization is considered by Zhang et al. [39]. Busch et al. [36]



considered minimizing both execution time and communication cost. Busch et al.
[37] considered special topologies (e.g., grid, line, clique, star, hypercube, butter-
fly, and cluster) and provided offline algorithms minimizing execution time and
communication cost. Poudel and Sharma [41] provided an evaluation framework
for executing transactions in distributed multiprocessors. Later, Busch et al. [26]
provided dynamic (online) algorithms for minimizing execution time and commu-
nication cost. However, all these works have no predefined ordering requirement.

Some papers considered the hybrid model that combines data-flow with control-
flow. Hendler et al. [42] studied a lease based hybrid DTM which dynamically
determines whether to migrate transactions to the nodes that own the leases or to
demand the acquisition of these leases by the node that originated the transaction.
Palmieri et al. [43] presented a comparative study of data-flow versus control-flow
models. Recently, Busch et al. [44] provided a set of offline algorithms for transac-
tional memory on trees using hybrid model known as the dual-flow model, which
combines the data-flow and control-flow models by sometimes moving transactions
to object nodes and sometimes moving objects to transaction nodes. They provided
optimal algorithm when considering a single shared object and k—factor away when
considering multiple objects where k is the maximum number of objects accessed
by a transaction.

Some other papers considered transaction scheduling with no priority ordering
requirement in distributed multiprocessors through replication and multi-versioning
[45, 11, 46]. We do not consider replication and multi-versioning. In fact, we
assume that there is only one copy of the object for both read and write.

Paper Organization. We describe model and preliminaries in Section 2. In Sec-
tion 3, we establish the impossibility result. In Sections 4, 5 and 6, we provide our
algorithms for offline, partial dynamic, and dynamic versions of the OrRpS problem,
respectively. Experimental results are discussed in Section 7 in which we also com-
pare our results with the data-flow model and analyze them. Finally, we conclude
in Section 8 with a short discussion.

2. Model and Preliminaries

Graph. We consider a distributed network G = (V, E, w) of n nodes (representing
processing nodes) V = {vy,v,,...,v,}, edges (representing communication links
between nodes) E C VXV, and edge weight functionw : E — Z*. ApathpinGisa
sequence of nodes (with respective edges between adjacent nodes) with length(p) =
2eep W(e). We assume that G is connected and dist(u, v) denotes the shortest path
length between two nodes u,v € G. The diameter D := max,, g dist(u, v), the
maximum shortest path distance between two nodes u,v € G. The communication
links are bidirectional — messages can be sent in both directions. Both the nodes

6



and links are non-faulty and the links deliver messages in FIFO order. There is no
bandwidth restriction on the edges, i.e., the messages can be of any size and any
number of messages can traverse an edge at any time. The k-neighborhood of a
node u € G is the set of nodes which are at distance < k from u.

Transactions. Let S = {§,S5,,...,5,} denote the w shared objects residing on
nodes of G. Each object has some value which can be read/written. The node of
G where an object §; is currently positioned is called the owner of S ;, denoted as
owner(S;). A transaction T'(v;, age;) is an atomic block of code mapped at node v;
which requires a set of objects S(T'(v;, age;)) € S and has priority age;. To simplify
the analysis, we assume that each object has a single copy (for both read/write). We
assume that each node runs a single thread and issues transactions sequentially.

Communication Model. We consider the synchronous communication model
where time is divided into discrete steps such that at each time step a node receives
messages, performs a local computation, and then transmits messages to adjacent
nodes [37, 25, 26]. For an edge e = (u,v) € E, it takes w(e) time steps to transfer a
message msg from u to v (and vice-versa); the communication cost contributed by
msg is w(e). Moreover, we assume that a node can merge or unmerge the messages
that are directed to or originated from multiple nodes. If a transaction 7'(v;, age;)
contains multiple objects in S(T'(v;, age;)), then T (v;, age;) merges multiple access
requests to (all or part of) those objects and sends it along the common path. The in-
termediate node at which the common path branches to reach the destination node,
it unmerges the message and sends individual object access requests to the respec-
tive nodes. Inversely, the reply messages are merged at those intermediate nodes
and sent to the origin node.

Control-flow Model. In the control-flow model, objects are static and transactions
move from one node to another to access the objects. Control-flow allows transac-
tions to send control requests, in a manner similar to remote procedure calls (RPCs),
to the nodes where the required objects are located [14, 47].

Let S| be an object required by a transaction 7T'(v;, age;). Let owner(S) be
the owner node of §;. We define objAccess(S1) as the control request sent
by T'(v;,age;) to owner(S) for accessing object S;. If there is no conflict on
the request, then T'(v;, age;) performs access operation (read or write) on S; and
owner(S ) replies a grant message back to v;. Here, the grant message refers that
the request for accessing S| has been successful. If there is a conflict on the request
for accessing S, and T'(v;, age;) cannot perform the requested access operation,
then owner(S ) replies a deny message back to v;. The deny message refers that the
request for accessing S| has not been successful. If v; receives grant message for
each of the control requests sent for 7'(v;, age;), then T'(v;,age;) commits. Other-



wise, T (v;, age;) aborts.

In our algorithms, we model control requests in two ways:

i. Solo Control Request: In solo control request, transaction T'(v;, age;) sends
individual control request ob jAccess(S ;) for each object S ; € S(T'(v;, age;)).
There will be total |S (T (v;, age;))| number of solo control requests per trans-
action T'(v;, age;). For each objAccess(S ;), v; receives either a grant or deny
message. Transaction 7'(v;, age;) commits only if it receives grant messages
for all the objAccess(S ;) requests where §; € S(T(v;,age;)). We use solo
control requests for accessing the objects in parallel.

ii. Group Control Request: If a transaction sends a single control re-
quest for accessing two or more than two objects, then we define it as
a group control request. In a group control request, if the requested ob-
jects are at different nodes, those are accessed in a recursive order. Let
S(T(vi,age;)) = {S1,52,...,5} be the set of required objects for T;
and {owner(S ), owner(S,),...,owner(S;)} be the order of nodes for ac-
cessing the objects. Then T'(v;, age;) first sends the group control request
objAccess(S (T (v;,age;))) to owner(S 1) where it accesses object S. If the
access operation on S| is successful, owner(S ;) forwards the control request
to owner(S,), otherwise it replies a deny message back to v;. The process
continues similarly in the recursive order of the nodes until either any node
replies a deny message or the ob jAccess(S (T (v;,age;))) reaches owner(Sy).
Finally, at owner(S), when T'(v;, age;) successfully accesses Sy, it replies
back the grant message to v;. As soon as v; receives the grant message for
objAccess(S (T (v;,age;))), T(v;, age;) commits. Otherwise if v; receives any
deny for ob jAccess(S (T (v;, age;))), T(v;, age;) aborts. We use group control
request for accessing the required objects recursively.

Throughout this paper, we use the terms control request and access request

interchangeably.

Transaction Execution and Conflicts. Let a transaction 7' (v;, age;) be located at
node v; and S(T'(v;, age;)) C S be the set of objects that T'(v;, age;) is going to read
or write. Node v; then sends object access request (READ or WRITE) on behalf
of T(v;, age;) to the owner node owner(S ;) of each object S ; € S(T'(v;, age;)). For
an access request received for S ; from T'(v;, age;), owner(S ;) handles that request
by allowing T'(v;,age;) to read or write (update) S ; and replies a grant message
back to v;. If owner(S ;) receives two access requests for object S ; at the same
time and at least one of them is a write request, conflict is said to be occurred
between transactions accessing S ;. owner(S ;) handles such type of simultaneous
access requests by denying at least one request. In case owner(S ;) denies the access
request, it replies a deny message back to node v;.



Performance Metrics. We consider two performance metrics fundamental to any
distributed system, namely execution time and communication cost. Let & be an
execution schedule following an algorithm A.

Definition 1 (Execution Time). For a set of transactions T, the total time for & is
the time elapsed until the last transaction finishes its execution in &. The execution
time of algorithm A is the maximum time over all possible executions for T .

Definition 2 (Communication Cost). For a set of transactions T, the communica-
tion cost of & is the sum of the distances messages travel during & The communi-
cation cost of A is the maximum cost over all possible executions for T .

The OrbpS Problem. Each transaction 7'(v;, age;) is assigned age, age;, before it is
activated, and the age signifies the transaction commit order under dependencies.
Following [23, 24, 15], parameter age is (1) unique — no two transactions can have
the same age, (ii) non-modifiable — it never changes once assigned, and (iii) ex-
ternally determined — it does not depend on transaction execution. We assume the
existence of a module that handles how to determine and assign unique age for each
transaction.

For a transaction T(v;,age;), let S(T(v;,age;)) := read(S(T(v;,age;))) U
write(S(T (v, age;))) where read(S(T (v;, age;))) and write(S(T (v;, age;))) represent
the set of objects that need to be read and written by 7T'(v;, age;), respectively. We
say T (v, age;) is dependent on T (v;,age;),age; < age;, if (write(S(T (v;, age;))) N
read(S(T(v;,age;))) # 0)V (read(S(T (v;, age;))) Nwrite(S(T (v;, age;))) # 0). That
means, at least an object read/write by T'(v;, age;) is being written by T'(v;, age;).
If T(v;,age;) is dependent on T'(v;,age;), then T(v;,age;) can commit only after
T (v, age;) commits. Formally, the OrpS problem is defined as follows:

Definition 3 (The OrbS problem). Given a set of transactions T =
{T(vi,agey), T(vy,agey),...}, possibly arriving over time, mapped (arbitrar-
ily) to the nodes of G, commit dependent transactions in 7T in the increasing order
of age in the control-flow model.

3. Impossibility Result

We show that it is impossible to simultaneously minimize execution time and
communication cost in the control-flow model of distributed transactional memory.
Minimizing the execution time results an increase in the communication cost and
vice-versa. Busch et al. [25] have shown that it is impossible to simultaneously



minimize execution time and communication cost in the data-flow model of dis-
tributed transactional memory. In this paper, we show that this result is also true for
the control-flow distributed transactional memory.

Let us start with an example. Consider a star graph G as shown in Figure 1
with eight rays going out from the center node. Let there be three nodes on each
ray (except the center node). Additionally, let the end nodes of consecutive rays
are connected. Suppose there are six objects a, b, c,d, e, and f positioned on six
consecutive end nodes, and a transaction 7' is mapped at the center node and it
requests all six objects. All edges have unit weight.

d
®

Figure 1: (i) Transaction T accessing objects in parallel through blue colored paths, (ii) 7' accessing
objects sequentially again through blue colored paths.

Each object is 3 units away from the node where transaction 7 is located. Thus,
in the control-flow model, when T sends solo control requests for accessing the ob-
jects in parallel, they can be reached in 3 steps. In next 3 steps, 7' gets reply (grant)
messages from all the object nodes, and in one additional step, it can execute and
commit. This gives optimal execution time of 7 steps. However, total communica-
tion cost becomes 36 (3 units to reach request to each object and 3 units to receive
reply back from each object).

Alternatively, let T accesses all the objects in a sequential order of a, b, c,d, e
and f. That means, T sends a group control request for accessing the objects first to
a and then to b, ¢, d, e, f in order. Note here that while processing the group control
request at the corresponding node, if the requested object can not be accessed, it
replies a deny message back to T, otherwise forwards the control request to the
next node in order after accessing the object. Finally, when the request reaches f,
the node replies a grant message back to the node containing 7 after successfully
accessing f. Following the shortest path, the reply (grant) message traverses the
ray connecting f and 7. Then, the total communication cost becomes 11, which is
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optimal. But, on the other hand, it takes total 11 time steps to access and receive
the reply messages from all the objects. Thus, the total execution time becomes
11 + 1 = 12, which is sub-optimal.

Figure 1 (i) illustrates the scenario of minimum execution time with an increase
in the total communication cost and Figure 1 (i1) illustrates the scenario of minimum
communication cost with an increase in the total execution time.

We prove the following theorem:

Theorem 1. There are transaction scheduling instances for which execution time
and communication cost cannot be minimized simultaneously in the control-flow
model.

Proof. Let 7 = {T(vi,age)),T(v,,age,),...,T(v,,age,)} be the set of trans-
actions and § = {§,5,,...,5,} be the set of shared objects accessed by the
transactions. Both objects and transactions are arbitrarily positioned at the nodes
V = {vi,va,...,v,} of graph G. To finish the execution of all the transactions in
7 in the minimum possible time, let all of them start at time ¢ = 0 and access the
required objects in parallel following the shortest path in G. Then, the minimum
execution time becomes,

Exec,;, = max { max 2 - dist(v;, owner(S ;)) + 1}.
T(vi,agei)eT |\ S ;€S(T(v1,age1))

And the total communication cost becomes,

Comm = Z Z 2 - dist(v;, owner(S ;)) ¢ .
T(vi,agei)eT \ S ;€S(T(vi,ager))

However, this communication cost is not the minimum possible. Let us see
an instance of the schedule that provides minimum communication cost. For each
transaction in 7'(v;,age;) € 7, let the required objects are accessed in a sequence
of the shortest route to visit all of them. This becomes equivalent to the traveling
salesman problem (TSP) [48] where the transaction node represents the initial posi-
tion of the salesman and the nodes of required objects represent the cities where the
salesman needs to visit with the minimum cost and finally return to the initial posi-
tion. Using the minimum cost approximation algorithms [49] for TSP, for example
Christofides’ algorithm [50] that provides 3/2—approximation, all the transactions
can be executed with the minimum communication cost. Nevertheless, the execu-
tion time of each transaction in this case becomes the total length of the route to
visit the nodes of the required objects. That means, if Exec is the total execution
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time for executing all the transactions in 7, then,

Exec > max { max 2 - dist(v;, owner(S j)) + 1} > Exec .
T(vi,age)eT | S ;j€S(T(vi,ager))

Hence, minimizing the execution time, the communication cost increases and
vice-versa. The theorem follows. OJ

4. Offline Algorithms

In this section, we study the offline version of the OrpS problem. Note that in
the offline version, the system has complete knowledge of transactions, their prior-
ities, and the shared objects they access a priori. We present two algorithms, one
called OrrExEc that achieves optimal execution time and another called OrFrComm
that is 2-competitive in communication cost.

4.1. Execution Time Algorithm: OrrEXEC

OrrExEc accesses required objects for each transaction in parallel. All transac-
tions in 7 are initiated at time step ¢ = 0. Therefore, at r = 0, all the transactions in
7 send solo control requests to access the required objects to the respective owner
nodes following the shortest paths. Each owner node then replies grant message for
every request (after performing the read/write operation) respecting the age order
and dependency of the transactions at corresponding owner node.

For transaction T'(v;, age;) at node v;, let S(T'(v;,age;)) € S be the set of ob-
jects it needs. T'(v;, age;) sends corresponding access requests to owner(S ;) of each
object S; € S(T'(v;, age;)) following the shortest path from v; to owner(S ;). After
the access request reaches owner(S ;), owner(S ;) sends grant message back to v; as
soon as T'(v;, age;) is able to read/write that object respecting the age order. Specif-
ically, there can be two cases: (i) There is no T'(v, agex), ager < age;, in 7~ which
also wants to access S ;, then owner(S ;) immediately sends grant message back to
v; (ii) There is another transaction 7' (v, agey), agei < age;, in 7 that conflicts with
T (v;, age;) while accessing S ;, then owner(S ;) sends grant message to vy first and
to v; in the next time step. When v; receives grant messages from all owner(S ;),
T (v;, age;) finishes its execution and commits.

Let tf" be the time step at which owner(S ;) of object S ; € S(T (v;, age;)) replies
grant message back to node v; corresponding to the request sent by T(v;, age;).
Then,

S S .
t’ = max{tp;ev(T(vi’agei)) + 1, dist(v;, owner(S ;))},

where ti;'ev(T(w’agel.)) is the time step at which owner(S ;) replies to the dependent

transaction of T'(v;, age;) that is immediately previous to 7'(v;, age;) in the age order.
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For the lowest aged transaction 7'(vy, age),
tfj = dist(v;, owner(S ))).

Let CT; be the time step at which transaction 7'(v;, age;) € 7 commits. Then,

o1, = VT reaamagey + 1 188 < CTprevragen)
l t+1, otherwise.

where CT e (v,ager 18 the time at which the transaction dependent to 7'(v;, age;)
that is immediately previous to T'(v;, age;) in the age order commits and

Si
t = max (¢, +dist(v;, owner(S )))).
S ;€S8(T (vi,age;))

For the lowest aged transaction 7'(vy, age;),

CT, = max 2 - dist(vy, owner(S ;)) + 1.
S ;€S(T (v1,age1))

Theorem 2. OrrEXEc achieves optimal execution time.

Proof. The execution time depends on two factors. First, how long does a transac-
tion take to access required objects and second, when does each transaction com-
mit? In OrrEXEc, each transaction accesses required objects using the shortest path
in G which is thus optimal. Now, we need to show that each transaction commits
at the earliest possible time. First, let there is no conflict between any transactions
in 7. Then all the transactions can access required objects in parallel and as soon
as each transaction receives grant messages from the owner nodes of each required
object, it can commit. The total execution time becomes

max { max 2 - dist(v;, owner(S j)) + 1}

T(vi,age)eT | S j€S(T(v1,ager))

which is optimal. Now, let there are conflicts between transactions while ac-
cessing objects. Let 7 = {T(v,age;),T(v,,age,),...,T(v,,age,)} be the set of
transactions. Let a dependency graph H = (Vjy, Ey) holds the dependency be-
tween the conflicting transactions where the nodes Vi represent transactions in 7~
and the directed edges Ey represent dependencies between the transactions. The
edge (T'(vi,age;),T(vj,age;)) € Ey, where age; < age;j, represents a dependency
between T'(v;,age;) and T(v;,age;) such that T(v;,age;) can commit only after
T(vi,age;) commits. The OrDS problem requires the dependent transactions to
commit in their age order. The diameter Dy of H provides the longest chain of
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dependent transactions and the total execution time of any optimal algorithm will
be the time required by all the transactions that belong to Dy to commit. During
the execution of OrrExEc, for each transaction T'(v;, age;), if there is no any de-
pendent transaction in H or all the dependent transactions in H have already been
committed, then 7T'(v;, age;) can commit as soon as it receives grant messages from
the owner nodes of all required objects. Note that, both object access requests and
grant messages are sent through the shortest paths in G. When the highest age
transaction that belongs to Dy of H commits, OrrExkc finishes. Hence, the total
execution time is optimal. U

Theorem 3. OrrEXEc is k-competitive in communication cost, where k is the max-
imum number of shared objects accessed by a transaction in T .

Proof. Let G be a graph with n > k nodes and 7 = {T' (v, age,), T (v, age,), . ..,
T(v,,age,)} be the set of transactions, each accessing at most k shared objects.
Then, using OFrExEc, communication cost incurred by a transaction 7'(v;, age;) is

Comm;=2- > dist(vi,owner(S ) <2-k-n=0k-n).
S ;€S(T(vi,age;))

On the other hand, using any optimal communication cost algorithm in the
control-flow model, the transaction can access the required objects in a sequential
order. Then, the optimal communication cost becomes

Commygp =2 c- max dist(v;, owner(S ;)) = O(n),
S ;€S(T(vi,age;))
: Comm; __ O(k-n) _
where ¢ < k is a constant. Hence, T = 0(k). OJ
ommyg O(n)

4.2. Communication Cost Algorithm: OrrComm

In OrrComm, we convert the execution of each transaction to a Minimum Steiner
Tree (MST) [51, 52]. Steiner trees have been extensively studied in the context of
weighted graphs [53]. Given a graph G = (V,E) and a subset P C V, a Steiner
tree spans through P. The Steiner tree problem in our case is to find a Steiner
tree that connects all the vertices of P with the minimum possible total weight.
Computing MST is known to be NP-Hard. We follow the algorithm of Takahashi
and Matsuyama [54] which provides 2(1 — 1/|P|)—approximation for MST. The
algorithm of [54] constructs a Steiner tree as follows:

e Start from a participant node in P.

e Find the next participant that is closest to the current tree.

e Join the closest participant to the closest node of the tree.
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e Repeat until all nodes in P are connected.

Now, we discuss how MST is constructed for each transaction in 7. Let
S(T(v;,age;)) C S be the set of objects required by a transaction T'(v;, age;) € 7 .
Let P; C V contains node v; and the owner node of each object S ; € S(T'(v;, age;))
(i.e., P := (Vs ,es(r(ageyowner(S ;)) U v;). Now, the problem is to find a MST that
connects the nodes in P; which is constructed by following the algorithm of [54]
and is denoted as MST;. Then, T(v;,age;) sends object access requests in MST;.
The total message cost incurred by transaction 7'(v;, age;) is 2.|MS T;|. That means,
messages visit each edge of MS T; exactly twice, one for sending access request and
the other for receiving reply (grant or deny) message from each owner node.

Instead of sending requests individually to access the objects in S (7'(v;, age;)),
T(v;,age;) sends them collectively in MST;. Each neighboring node recursively
sends the request to the next neighbor in MST; until the request reaches all the
owner nodes of the required objects. To be specific, if v,,v, € MST; be any two
owner nodes of objects which share a common path from v; up to some intermedi-
ate node vy, then the requests to v, and v, from v; are sent collectively up to v, as a
single message. The request is then divided into two at v and they are forwarded
separately towards v, and v,. When all the access requests reach respective owner
nodes, the reply messages are collected in the opposite direction. Here, each in-
termediate node which had initially sent access requests to the neighboring nodes
later collects the reply messages from those neighboring nodes and returns them
collectively to the ancestor node. When v; receives reply messages from all the
neighboring nodes in MST;, T(v;,age;) commits (provided that all the reply mes-
sages are grant messages).

The OrrComm algorithm works as follows. It produces a conflict-free execution
schedule. At time step ¢t = 0, each transaction 7T'(v;,age;) sends access requests
to required objects following its corresponding MST;. When the access request
reaches owner(S ;), owner(S ;) sends grant message back to v; as soon as T (v;, age;)
is able to read/write that object respecting the age order of the dependent transac-
tions. Let distys7,(v;, v;) represents the distance between nodes v; and v; following
the shortest path in MST;. Then, for each T(v;,age;) € T, owner(S ;) of each
S ; € S(T(vi,age;)) replies grant message to v; at time step:

Sj _ J
f;" = max{r

rev(Tagen) T 1, distys7,(vi, owner(S ;))},

where tf)iev(T(v;,age,-)) is the time step at which owner(S ;) replies to the dependent

transaction of 7'(v;, age;) that is immediately previous to 7'(v;, age;) in the age order.
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The commit time step C7; for each T'(v;, age;) is:

CT: = CTprev(T(v,-,age,-)) + 1’ lf t; < CTprev(T(v,-,age,—))

l t+1, otherwise.

where CT ,ovT(viace 18 the time at which the transaction dependent to 7' (v;, age;)
prev(T (vi,age;)) p g

that is immediately previous to T'(v;, age;) in the age order commits and

S; ,
t = S ESI(’I;(aX ))(tl. "+ distys7,(vi, owner(S {))).
j vi,age;

Theorem 4. OrrComm is 2-competitive in communication cost.

Proof. Let MST; be the minimum cost Steiner tree constructed for transaction
T(v;,age;) in OFFComMm. Let distys7,(vy, vy) be the shortest path distance between
vy and vy, in MST;. If dist(v,, v,) be the shortest path distance in G, then we have:
distysr,(vy,vy) < 2 - dist(vy, vy). Since OrrCommM follows the shortest paths in re-
spective MSTSs for accessing required objects, the communication cost Cr, age,) Of
executing each transaction 7'(v;, age;) € T is:

T(vi,age;)
CT(vi,age,-) =2- Copr e ’
where CZ[(,f’“ge") is the cost of any optimal communication algorithm for executing

T (v;,age;) that accesses required objects following the shortest paths in G. If C,,,
and C,,, be the total communication costs of OFFComm and any optimal algorithm,

respectively, such that Copr = Y7y, agener COT;;"’“ge"), then,
T (vi,age;)
Ctotal = Z CT(vi,agei) = Z 2- Cup(‘t} w=2. Copt-

T (vi,age;)eT T (vi,agei)eT

O

Theorem 5. OrrComM is r-competitive in execution time, where r is the maximum
stretch of MST computed for each transaction in 7 which is given by:

distysr(vi, owner(S ;)
r= max max "
T(viage)eT | S €S(T(viagen)  dist(v;, owner(S ;))

Proof. OrrExec provides optimal execution time by accessing the required object
by a transaction 7'(v;, age;) through the shortest path in G. In OrrComwm, objects are
accessed by T'(v;,age;) using the shortest path in MST; built on G for T'(v;, age;).
If dist(v;, v;) and distyg7,(v;, v;) are the shortest path distances between two nodes
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distyst; (Vi,vj))

vi,vj in G and MST;, respectively, then the stretch of MST; (i.e., r = T

p iV
provides the competitiveness for T'(v;, age;) for the time required to access any ob-
ject at v;. While executing all the transactions,

distysr(vi, owner(S ;)
max max _
T(viage)eT | S ;€S(T(viage) — dist(v;, owner(S ;))

provides the necessary competitiveness. 0

5. Partial Dynamic Algorithm

Here we study the partial dynamic version of the OrpS problem, where a priori
knowledge on transactions and their priorities is available, but not the shared objects
they access and their locations. All transactions arrive at time ¢ = 0. Thus, the
following two tasks are additional to the offline version:

1. Find the owner nodes of all the shared objects that a transaction requests.

ii. Find the node where the next transaction in the commit order is located and
the path to reach that node.

We present an efficient algorithm ParTDYN using the well-studied distributed
directory protocol technique [35, 55, 27, 56, 28]. We compute two distributed
queues, the first helps transactions accessing required objects and the second helps
sending commit messages to the next dependent transaction in age order. The first
is called distributed object queue where object access tours are constructed for
each transaction. The second is called distributed transaction queue that satisfies
the commit order of transactions. Each transaction sends commit message to the
next transaction in order following the path in its respective transaction tour in the
distributed transaction queue. We use the hierarchy-of-clusters-based overlay tree
(O7) (discussed next) for the computation of both queues.

Overlay Tree O7 Construction. The well-known approaches for O7 construction
are based on either a spanning tree or a hierarchy of clusters on G. The spanning
tree was used in directory protocols [55, 35] and the hierarchy of clusters was used
in directory protocols [27, 28, 38].

Both approaches work, however, hierarchy-of-clusters-based overlay trees are
more suitable to control communication costs (and hence the execution time) com-
pared to the spanning-tree-based overlay trees. Therefore, in the following, we
discuss the construction of hierarchy-of-clusters-based overlay tree O7 . In a high
level, divide the graph G into a hierarchy of clusters with H; = [log D] + 1 layers
such that the clusters sizes grow exponentially (i.e., 2¢,0 < € < H,). A cluster is a
subset of nodes, and its diameter is the maximum distance between any two nodes.
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The diameter of each cluster at layer £, where 0 < £ < Hj, is no more than f(¢), for
some function f, and each node participates in no more than g(¢) clusters at layer
¢, for some other function g. Moreover, for each node u in G, there is a cluster at
layer ¢ such that the (2° — 1)-neighborhood of u is contained in that cluster.

There are known algorithms, such as a hierarchical sparse cover of G, that give
a cluster hierarchy Z of H; layers with f({) = O({logn) and g({) = O(logn).
This construction was used in the directory protocol, SpIRAL, by Sharma et al. [28],
where additionally, each layer ¢ is decomposed into H, = O(log n) sub-layers of
clusters, such that a node participates in all the sub-layers of a layer but in a different
cluster within each sub-layer, i.e., at each layer ¢ a node u participates in g(£) =
O(log n) clusters. Suppose a node in each cluster is designated as the leader of the
cluster. Connecting the leaders of the clusters in the subsequent levels gives O7 .

An upward path p(u) for each node u € G is built by visiting leader nodes in
all the clusters that u belongs to starting from layer O (the bottom layer in Z) up
to layer H, (the top layer in Z). Within each layer, H, sub-layers are visited by
p(u) according to the order of their sub-layer labels. The upward path p(u) visits
two subsequent leaders using shortest paths in G between them. Lets say two paths
intersect if they have a common node. Using this definition, two upward paths
intersect at layer i if they visit the same leader at layer i. The lemmas below are
satisfied in the construction of [28].

Lemma 1. The upward paths p(u) and p(v) of any two nodes u,v € G intersect at
layer min{H,, [log(dist(u, v))] + 1}.

Lemma 2. For any upward path p(u) for any node u € G from the bottom layer
upto layer € (and any sub-layer in layer €), length(p(u)) < O(2¢ log® n).

Computing Distributed Transaction Queue. We denote the distributed trans-
action queue by DT Queue(7). To construct DT Queue(7), each transaction
T(vi,age;) sends a findT (T (v;,age;)) message in its upward path p(v;) in O7T .
The findT (T (v;,age;)) message contains information about the required objects
by T(v;,age;) and moves upward until it meets the similar messages sent by
it’s previous and next conflicting transactions in age order. When two mes-
sages findT (T (v;,age;)) and findT (T (v;,age;)) meet at some node vy, it can eas-
ily be found that whether T'(v;,age;) and T(v;,age;) conflict with each other or
not by looking at the information of required objects for each of them. When
such meetings happen for all findT (prev(T (v, age;)), findT(T(v;, age;)), and
findT (next(T (v;, age;))), 1 <i < n, the computation of DT Queue(7") is completed.

The upward paths p(v;) and p(v;) for the two consecutive dependent transactions
T(v;,age;) and T (v}, age;) intersect at some node vy at some layer / > 0. Transaction
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objAccess((Sg(T(v; 3)))

Figure 2: Illustration of computation of distributed object queue for transaction 7'(vs,3) requir-
ing objects (a,b,c). T(v3,3) sends objAccess(Sg(T (v3,3))) message in its upward path to clus-
ter C;; which recursively sends it to C,;. C; contains the owner node of object a (i.e., v4),
thus sends objAccess(a) message to v4. Then, after removing a from Sg(7(v3,3)), C, sends
objAccess(S g(T(v3,3))) message to cluster C3. C3 sends the message downward until the requests
reach nodes vs and vg. Later, all three nodes vy, vs, and v reply grant messages which are combined
at clusters C; 3 and C,;, and finally reach node vs. Then T'(v3,3) commits. The edges traversed by
the messages are highlighted in red.

T (v;, age;) sends a commit message to T'(v;, age;) by first sending it upward in p(v;)
up to v and then sending the message downward in p(v;) from v, up to node v;.
The following theorem follows from the hierarchy of clusters based O7 .

Theorem 6. If d is the shortest path distance between nodes v;,v; € G, then the
distance between v;,v; following the upward paths p(v;) and p(v;) in OT is O(d -
log? n).

Computing Distributed Object Queues. Distributed object queue for each trans-
action T'(v;,age;) € 7 is denoted as DOQueue(T (v;,age;)). DOQueue(T (v;, age;))
contains object tour(s) to access the object(s) requested by T'(v;, age;).

DOQueue(T (v;,age;)) is constructed as follows. Let Sg(T(v;,age;))) C
S(T(v;, age;)) be the set of objects required by 7'(v;, age;) that are not present on
vi. T(v;,age;) sends objAccess(Sgr(T(v;, age;))) message in its upward path p(v;).
Let at some level [ > 0, objAccess(Sg(T(v;, age;))) reaches a cluster with node v;
that contains an object S ; € Sg(T(v;, age;)). Then the leader of the cluster (say v;)
forwards ob jAccess(S ;) to the node v; downward in the path p(v;). The leader also
removes object S ; from Sg(T (v, age;)) and forwards objAccess(Sg(T (v;, age;)))
message upward in the path p(v;) if Sg(T (v;, age;)) is not empty. This process con-
tinues until Sg(T(v;, age;)) becomes empty and by that time, the computation of
DOQueue(T (v;,age;)) is completed.

Later, during the execution of T(v;,age;), when the object access request
objAccess(S ;) reaches the owner node of S ;, owner(S ;), T (v;, age;) performs read
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or write operation on § ;. After the read or write operation is completed, v; replies a
grant message back following the previous path in the opposite direction (i.e., up-
ward from v; to the leader node v; in p(v;)). Each leader node when receives reply
messages from the owner nodes of objects, combines them into a single message
and sends it back downward in the path p(v;) to node v;. The leader node waits to
combine the reply message until it receives reply messages from all the paths that
it has sent previously the access requests. Figure 2 illustrates this idea.

Algorithm PartDYN. ParTDYN starts with computing distributed object queues
DOQueue(T (v;,age;)) for each transaction T(v;,age;) € 7 and distributed trans-
action queue DT Queue(7T ). DOQueue(T (v;, age;)) contains object tours to access
all the required objects in S(T'(v;, age;)).

All the transactions that do not depend on any lower aged transactions start ex-
ecution at time ¢ = 0. T(vy,age;) starts at t = 0 and sends object access requests
recursively following object tours in DOQueue(T (vy, age;)). Then, for each object
S; € S(T(vi,agey)), objAccess(S ;) reaches the owner node owner(S ;). T(vy,age;)
performs read or write operation on all § ; and a grant message from each owner(S ;)
is replied back following the object tours in the backward direction. 7T'(vy,age;)
commits after it receives grant messages from all the owner nodes of required ob-
jects (possibly in combined form). Let 7'(v{,age;) commits at time step ¢#; > 0.
T (vi,agey) sends commit message commit(T (vy,age;)) to the next conflicting trans-
action in age order next(T (vy,age,)) = T (v, agey),age, > age;, by following up-
ward paths in DT Queue(7). When T (v, age;) receives commit messages from all
the dependent transactions, 7'(vi, age;) executes and commits at time step #; > £
and sends commit(T (vy, age;)) message to next(T (v, age;)). The process continues
until the highest aged transaction 7T'(v;, age,) commits at some time step .

Theorem 7. PARTDYN is O(log” n)-competitive in both execution time and commu-
nication cost.

Proof. The OrDS problem requires all the dependent transactions to commit in
their age orders. So, if ST C 7 be the set of transactions containing the longest
chain of dependent transactions in 7, the optimal total execution time for executing
all the transactions in 7" is

Lopt =

( max  dist (v,-, owner(S j))).
S ;€S(T (vi,agei)
T(vi,age)eST

In PArTDYN, each transaction T(v;, age;) sends commit message to the next con-
flicting transaction in the age order next(T (v;, age;) to maintain the predefined com-

mit order. We have from Theorem 6 that the distance between any two nodes in
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the hierarchy of clusters based O7 increases by O(log” n) factor. In PARTDYN, each
transaction 7'(v;, age;) uses DOQueue(T (v;, age;)) constructed using the hierarchy
of clusters based O7 for accessing required objects. Then, the distance from v;
to the owner node owner(S ;) of each object S; € S(T(v;, age;)) also increases by
O(log” n) factor. Moreover, when T'(v;, age;) successfully accesses all the required
objects, it commits and sends the commit message to the next conflicting trans-
action in the age order T'(v;,age;). To send the commit message, T(v;, age;) uses
DT Queue(7") and hence, again from Theorem 6, the distance between v; and v; in-
creases by O(log2 n) factor. Let distparr(v;, v;) represents the distance between any
two nodes v; and v; in PARTDYN. Then,

distparr (v, v;) = dist(v;, v;) - O(log” n)
Let tparr be the total execution time in PARTDYN, which becomes

IpART = E ( max diStpART(V,', owner(S ]))
S ;€S8(T (vi,age:))
T(vi,age)eST

+ distparr(vi, owner(next(T (v;, age;)))))

= Z ( max  dist(v;, owner(S ;))
T(vi,age;)eST § j€ST (vi.age)

+ dist(v;, owner(next(T (v;, age;))))) - 0(10g2 n)

< ( max  dist(v;, owner(S ))))
§ ;€S(T (vi,agei)
T(vi.,age)eST

-k - O(log” n)
< topr-O(log” n).

Any optimal communication cost algorithm communicates between nodes by
using the shortest paths in G. Since PARTDYN uses hierarchy of cluster based O7,
the distance between any two nodes increases by O(log” n) factor. Thus, the cost
of sending object requests and receiving grant messages increases by O(log” n).
In addition to this, each T'(v;, age;) sends commit(T (v;,age;)) to the next conflict-
ing transaction in the age order. Which increases the communication cost by
O(k.log’n) = O(log’n). That means, in total, communication increases by the
factor of O(log2 n). [

6. Fully Dynamic Algorithm

Here, we study OrDS with no a priori knowledge on transactions, their priorities,
and the locations of the shared objects they access. Additionally, transactions arrive
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at different nodes of G arbitrarily over time. Once a transaction arrives at some
node v;, it knows the priority (i.e., age) of that transaction and the objects needed
by it. Note that the age parameter of a transaction is unique in the dynamic case as
well and is defined when the transaction is assigned to a node. We can assume the
existence of a module that provides a unique age for each transaction issued. For
an illustration, suppose a distributed system containing a centralized server which
accepts job requests from end users continuously over time. The server assigns the
received job requests to different processing nodes by defining the priority of the
job. We present an algorithm Dyn that achieves O(D) competitive ratio in both ex-
ecution time and communication cost. Algorithm Dy~n works on top of a spanning-
tree-based overlay tree, denoted as OTsr. The tree-based overlay is used to control
the costs since the requests may reach to the root of the overlay in the worst-case
and the cluster based overlays incur more cost than the tree based overlays/. Let
Vroor DE the Toot node of OF gr. For any node v, the upward path p(v) in O7 g7 is
the path obtained by connecting the parent nodes in S 7 from node v up to the root
Vioor- DYN €xecutes in two phases:

e Phase 1 — Object Advertisement in which each node of graph G is adver-

tised with the locations of all the objects.
e Phase 2 - Transaction Execution in which transactions are executed and
committed according to age order.

Phase 1 — Object Advertisement. The object advertisement phase makes each
node of G know the locations of all the shared objects. Later, when a transaction
at node v; needs some object S ;, v; can forward object access request to the owner
node of that object. The ownership of each object is advertised in the form of a hash
map where each key-value pair represents (ob jID, nodel D), where objID is the ID
of an object located at node v € V and nodelD is the ID of v.

Execution starts from leaf nodes of O7 s7. Each leaf node v, sends a hash map
(objlD,nodelD). If v; contains no object, v; sends an empty hash map. Also,
if v; contains more than one object, it sends a hash map with multiple key-value
pairs. When a parent node v, receives hash maps from all its child nodes, v,;
merges those into a single hash map and appends new key-val pair(s) if it contains
any object(s). The updated hash map is then sent upward to the next parent node
Vp2. Vp2 again merges all hash maps into a single one after receiving from all the
child nodes. This process is repeated until the current node is the root v,,,;. When
Vroor T€CEIVES hash maps from all of its child nodes, it merges them into a single
hash map and replies back the updated hash map to all the child nodes recursively.
This phase ends when all the leaf nodes receive updated hash map containing all
(objID, nodel D) pairs.

Lemma 3. Phase 1 finishes in O(D) time steps.
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Proof. Since O7 g7 is based on minimum spanning tree, the height of O7 g7 is
O(D) where D is the diameter of graph G. The execution of Phase 1 starts from
leaf nodes of O7 sr. Each leaf node sends corresponding hash maps to their parent
nodes with the information of objects located at it. Parent nodes merge the hash
maps received from all the child nodes and send them upward to the respective
parent nodes. Following this process, the root node v,,,, of O7 g7 receives all the
hash maps sent from leaf nodes in O(D) time steps. Now, v,,,; merges all the hash
maps received from all its child nodes and sends the merged hash map downward
up to the leaf nodes, which also takes O(D) time steps. Phase 1 ends after all the
leaf nodes receive the merged hash map from v,,,,. Thus, in total, Phase 1 finishes
in 2 - O(D) = O(D) time steps. O

Lemma 4. The communication cost in Phase 1 is O(n).

Proof. There are total n nodes and n — 1 edges in O7 s7. Each node sends one
message (i.e., hash map) to the parent node in upward direction (except v,,,,) and
one message to the child nodes in downward direction (except leaf nodes). That
means, there are exactly two messages that traverse each edge of O7 gr. Thus, the
total communication cost becomes 2(n — 1), i.e., O(n). [

Phase 2 - Transaction Execution. Let H be the height of O7 37, H <
D. As soon as transaction T(v;,age;) is initiated, it sends an arrival message
Torriva(T (v, age;), t;) to v, following the upward path p(v;), where ¢; is the time
step at which T'(v;, age;) arrives at node v; and age; is unique to the transaction
T (v, age;) which shows the priority order of the 7'(v;, age;). Let 7,(v,.,:) be a list
maintained by v,,,, which contains the information of pending transactions at time
step ¢ sorted by arrival time. The arrival message T,,,i,a(T(v;, age;), t;) sent from
node v; reaches v,,,, in < H time steps. Thus, when v,,,, receives a transaction ar-
rival message T,ia(T (v;, age;), t;) at some time step ¢, > t;, it includes T'(v;, age;)
in 7(Vyoo) at time step £, = 1; + H.

Let T'(vy, age.) € T:(v,00r) be the lowest age transaction in 7 (V) at time z. v,
sends startExec(T (v,, age,)) message to node v, to execute T (v,, age,). T (v,,age;)
sends object access requests to the owner nodes of S(T'(v,, age,)). When T'(v,, age,)
successfully accesses all the required objects in S(T'(v,,age,)), it commits and
sends a commit message to v,,,,. Then, v,,, removes T (v, age,) from 7;(v,,,) and
schedules next conflicting transaction in the age order to execute. Note that, v,
can schedule multiple transactions together which are not dependent on any lower
aged transactions or receive commit messages from all the dependent transactions
during the execution. Phase 2 finishes when all the transactions in 7~ commit.

Lemma 5. In Phase 2, each transaction finishes its execution in O(D) time steps.
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Proof. Let transaction T'(v;, age;) € 7 starts execution at time step ;. T'(v;, age;)
sends access requests to the owner nodes of the objects in S(7'(v;, age;)) which takes
at most D time steps to reach them. When the request reaches the respective owner
node of the object, T'(v;, age;) accesses that object and the owner node replies back
a grant message to the node v;. The grant message takes at most another D time
steps to reach node v;. So, at time step #; < t; +2D, T(v;, age;) successfully accesses
all the required objects and receives grant messages from each owner node of the
required objects. Then, T'(v;, age;) commits at time step " < #; + 2D + 1 and sends
commit message commit(T (v;, age;) t0 V,,0;. commit(T (v;, age;) reaches v,,,, at time
step £ < t; + 3D + 1. vy, now removes T'(v;, age;) from 7(v,,,;) and schedules
next transaction which was dependent on 7T'(v;, age;) to execute. Therefore, each
transaction in Phase 2 finishes its execution in O(3D + 1) = O(D) time steps. 0

Lemma 6. The communication cost for each transaction in Phase 2 is O(D)-
competitive.

Proof. The communication cost for executing a transaction 7'(v;, age;) in Phase
2 of Dyn consists of the traversal of four types of messages: Ty iva(T(vi, age;), t;)
(from node v; to v,,,), startExec(T (v;,age;)) (from v,,, to v;), objAccess(x) (re-
quest and response messages to and from the owner nodes of all the required objects
of T'(v;,age;)), and commit(T (v;, age;)) (from v; to v,,,). The communication cost
incurred due to T',,i,a(T (v;, age;), t;), startExec(T (v;, age;)) and commit(T (v;, age;))
is at most 3D. Moreover, since the distance between any two nodes in a mini-
mum spanning tree may increase by at most O(D) factor compared to the shortest
path distance between them, the communication cost due to 0b jAccess(x) message
traversal may also increase by at most O(D) factor compared to that in optimal case.
That means, if ¢ be the communication cost due to ob jAccess(*) message traversal
in optimal algorithm, then the total communication cost for transaction 7'(v;, age;)
becomes at most (¢ - D + 3D). Let C; ppr and C; 41 be the communication costs for
executing transaction 7' (v;, age;) in optimal and Dyn, respectively, then,

Ci,ALG = Ci,OPT : O(D)

Combining Lemmas 3-6, we have,

Theorem 8. DyN is O(D)-competitive in both execution time and communication
cost.

Proof. Dyn executes in two phases, Phase 1 and Phase 2, sequentially. Phase 1
finishes in O(D) time steps. In Phase 2, each transaction in 7 spends O(D) time

24



steps to execute and commit. So, for all n transactions in 7, it takes O(n - D) time
steps to execute and commit. In total, both Phase 1 and Phase 2 of Dy~ end in
O(D) + O(n - D) = O(n - D) time steps. Since, transactions need to follow the age
order to commit, any optimal algorithm requires at least O(n) time steps to execute
and commit. Hence, Dyn is O(D)-competitive in execution time. The same analysis
works to show O(D)-competitive in communication cost. O

7. Evaluation

We have implemented all four proposed algorithms (OrrExec, OrrComm, PART-
Dyn, and DyN) and evaluated them using a set of micro and complex STAMP bench-
marks. We compared the results against that of the data-flow model in [24]. The ex-
periments were performed on an Intel Core 17-7700K processor with 32 GB RAM.
We wrote our own discrete-event simulator representing a distributed network. Both
micro and complex (STAMP) benchmarks donot have already defined transaction
priorities (i.e., ages). We defined our own parameter setting in the implementation
to assign the age of the transactions. To be specific, we assigned a random unique
number between 0 to the total number of transactions for each transaction in each
benchmark and the transaction with lower age number has higher priority. The
experiments were run preserving the dependency order of the transactions. That
means, the conflicting (i.e., dependent) transactions were executed in the increas-
ing order of age whereas non-conflicting (i.e., non-dependent) transactions were
executed in parallel without waiting for lower aged transactions to commit. We
simulated three different communication graphs, namely random, small-world, and
grid.

To build a random graph, we used the Erd6s-Rényi model [57] and generated
random graphs of different sizes. Particularly, we used the G(n, p) variant of the
Erdds-Rényi model [57] where a graph G is constructed connecting nodes randomly
such that each edge is included in G with probability 0 < p < 1, independent from
every other edge. The graphs we used in the experiments were generated by setting
p = 0.01. In case where the model generates a disconnected graph, we made it
connected by adding a disconnected node to the longest connected component and
attached smaller connected components to longer ones.

For small-world graphs, we used Watts—Strogatz model presented in [58] to
build graphs where most nodes are not connected by an edge but they can still
be reached in a few hops through other neighboring nodes. We used p = 0.03
as the probability to rewire an existing edge. We followed the requirement
n > k> In(n) > 1 to select k edges for n nodes. Specifically, we used 15 edges for
64 nodes, 17 for 128, 20 for 256, and 28 for 512, respectively. In case the generated
graph was disconnected, we ran the model until a connected graph is built.
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Diameter
Graph type Number of nodes (Weighted)l (Unweighted)

16 22 3

32 21 4

64 55 9

random 128 109 20
256 69 12

512 38 8

16 7 2

32 9 3

64 11 4

small-world 128 14 4
256 16 5

512 13 5

16 27 6

36 42 10

. 64 49 14
grid 144 79 22
256 107 30
529 148 44

Table 1: Graph sizes and their diameters for ordered scheduling experimentation

Grid graphs are two-dimensional grids where corner nodes are connected to two
neighbors each, the remaining boundary nodes are connected to three neighbors
each, and inner nodes are connected to four neighbors each.

The graphs and their respective diameters are shown in Table 1. For random
and small-world graphs, total number of nodes varied from 16 to 512, and for grid
graphs, from 16 to 529. The total number of shared objects, transactions, and the
transaction sizes vary based on specific applications in each benchmark. The results
presented are the average of 10 runs. Figures 3-8 contain results for three different
graphs we considered. Top row in each figure is for random graphs, middle row is
for small-world graphs, and finally the third row is for grid graphs.

In the experiments, execution time is measured as the number of time steps.
Communication cost is measured as the total distance traversed by the transactions
to access objects and send commit notifications in the respective communication
graphs. Latency is defined as the distance between two nodes in the network. That
means, if two nodes v, and v, are directly connected by an edge between them, we
assume that it takes dist(v, v,) time step to reach from v, to v, (or vice-versa) and
the communication cost to send a message between them is also dist(vy, v;).

Results on micro-benchmarks: We experimented the algorithms against three
micro-benchmarks bank, linked list, and skip list. Figures 3—-5 show their results

26



in random, small-world and grid graphs, respectively.

Results on STAMP benchmarks: We experimented the algorithms against in-
truder, genome, and vacation from STAMP [59] benchmarks. Figures 6-8 show
their results in random, small-world and grid graphs, respectively.

7.1. Results Discussion

For all graph topologies, OFrEXEc has the lowest execution time (optimal) in all
benchmarks. The execution time for OFrComm is higher than OrrExec. Similarly,
in all the benchmarks, OrrFComM has the minimum communication cost, which is
within a factor of 2 from optimal. The experimental results also show that the ex-
ecution time of ParRTDYN is always within O(log” 1) factor compared to OFFEXEC.
Moreover, the execution time in DyN is always within O(D) factor. The commu-
nication cost results follow the same pattern and are substantially better than the
theoretical bounds of PARTDY~N and Dyn. We can also see that Dyn has less execu-
tion time and less communication cost than PARTDyYN in all the benchmarks. This is
because of D < log” n in the experiment.

7.2. Comparison between Data-flow and Control-flow Models

We compared the results obtained for OrDS in the data-flow model in [24] with
the results for the control-flow model obtained here. In the data-flow model, for
the offline setting with complete knowledge of transactions, their priorities, and the
shared objects they need, [24] presents an offline algorithm (Orr-OpT) that is op-
timal in terms of both execution time and communication cost. However, for the
same setting in the control-flow model, we have two different algorithms, OrFrExEc
and OrrComm, the first is optimal in execution time and the second is optimal in
communication cost. We have shown that, in the control-flow model, it is impossi-
ble to have an algorithm that achieves simultaneously optimal execution time and
communication cost (Theorem 1).

In the offline setting, with partial knowledge (i.e., transactions and their priori-
ties are known beforehand, but the shared objects and their locations are not known
until runtime), we have presented O(log” n)-competitive algorithms for both execu-
tion time and communication cost. In the dynamic setting where transactions arrive
arbitrarily over time, we have presented O(D)-competitive algorithms for both met-
rics.

In spite of having the same competitive bounds, the execution time (and commu-
nication cost) incurred in the data-flow [24] and control-flow models are different.
The execution time achieved by a transaction in Orr-OpT while running in the data-
flow model is different than the execution time for the same transaction in OFrEXEC
while running in the control-flow model. This applies to both execution time and
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communication cost in all three settings. Thus, it is interesting to see how the two
metrics differ in the two models with the experimental results.

Figures 3—8 show the comparison of the data-flow and control-flow models in
terms of execution time and communication cost in random, small-world, and grid
graphs, respectively. They provide the comparison results for offline, dynamic, and
partial dynamic algorithms in both models. The results show that the control-flow
model incurs more execution time as well as communication cost than the data-flow
model. To be specific, the control-flow model has as much as 2x more execution
time and communication cost than the data-flow model. In the data-flow model,
when a transaction needs to access an object, the object directly moves to the node
where the transaction is located. But, in the control-flow model, the transaction
sends an object access request to the owner node of the object and when the access
request is successful, a grant message is sent to the transaction. That means, in
the data-flow model, there is a one-way traversal to access an object whereas, in
the control-flow model, there is a two-way traversal to access each object. Thus,
the control-flow model has as much as 2X more execution time and communication
cost than the data-flow model.

In general, control-flow achieves worse performance than data-flow. But this is
not always the case. For scheduling lightweight transactions (with minimum read-
write sets), data-flow model seems less expensive. But, if the application is data-
intensive then the movements of data become costly, so the control-flow model will
be more efficient for achieving lower communication cost. This can be seen in the
results for the benchmarks genome and intruder (Figures 6 and 7) where we can
see data-flow incurs higher communication cost. This is due to transactions in these
benchmarks requiring a lot of read-write sets. Hence, the selection of the execution
model depends on the requirement and the nature of the actual application.

8. Concluding Remarks

In this paper, we have studied the ordered scheduling problem of committing
transactions according to their predefined priorities in the control-flow distributed
transactional memory, minimizing execution time and communication cost. The
control-flow model is important because in many applications, the movement of
data is costly due to its size and security purposes. We have provided a range of
algorithms considering this problem in the offline and dynamic settings. Our results
are (1) optimal in the offline setting with complete knowledge to (ii) poly-log com-
petitive in the offline setting with partial knowledge to (iii) diameter competitive
in the dynamic online setting. We also presented the comparative results for the
algorithms in the data-flow and control-flow models. As a future work, it will be
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interesting to deploy the algorithms in real distributed system(s) and measure the
wall clock results.
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