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SUMMARY

The pathogenic mechanisms of many diseases are well understood at the molecular level, but there are prev-

alent syndromes associated with pathogenic signaling, such as diabetes and chronic inflammation, where

our understanding is more limited. Here, we report that pathogenic signaling suppresses the mobility of a

spectrum of proteins that play essential roles in cellular functions known to be dysregulated in these chronic

diseases. The reduced protein mobility, which we call proteolethargy, was linked to cysteine residues in the

affected proteins and signaling-related increases in excess reactive oxygen species. Diverse pathogenic

stimuli, including hyperglycemia, dyslipidemia, and inflammation, produce similar reduced protein mobility

phenotypes. We propose that proteolethargy is an overlooked cellular mechanism that may account for

various pathogenic features of diverse chronic diseases.

INTRODUCTION

Diseases associated with chronic or pathogenic signaling are

a leading cause of morbidity and mortality.1 For prevalent syn-

dromes such as diabetes and inflammatory disorders, the pa-

thology typically involves a continuous and/or high-level stimulus

but not necessarily a known mutation in a specific gene.2–7 In

contrast with monogenic diseases, where the causal link be-

tween gene mutation and disease pathology is evident and the

cellular pathways directly impacted are thus defined, in chronic

syndromes, causal gene mutations are uncommon, and diverse

cellular processes such as gene regulation, ribosome biosyn-

thesis, and metabolic activity are dysregulated.8–18 Thus, how

to define hypotheses that will inform therapeutic development

on the basis of such a breadth of cellular dysfunction has long

vexed clinicians and research scientists.

The billions of protein molecules produced in cells must

leave their site of synthesis and arrive at cellular locations

where they carry out their specialized functions.19–26 In so doing,

they will transit through a milieu that is densely packed with bio-

molecules.19–24,27 Recently, pathogenic signaling in certain

chronic diseases was reported to cause reduced movement of

receptor molecules into functional protein assemblies.28–30

These findings led us to consider the possibility that dysregu-

lated signaling might cause a more general defect in protein

mobility in cells and that reduced protein mobility in and of itself

might be a pathogenic mechanism shared across these dis-

eases. Biochemical reactions are often collision limited,31,32

and reduced rates of protein diffusion would therefore be ex-

pected to reduce functional outputs.

Here, we show that pathogenic signaling reduces the mobility

of key proteins involved in diverse cellular processes and that

this reduction in protein mobility, which we call proteolethargy,

is associated with a dysregulated redox environment that conse-

quently impacts oxidation-sensitive cysteines. Reduced protein

mobility may account for the diversity of dysregulated cellular

processes evident in chronic disease. We discuss a therapeutic

hypothesis that emerges from these findings, which might prove
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to be applicable in patients with diseases associated with

proteolethargy.

RESULTS

Protein mobility in cells

We set out to develop a theoretical and experimental frame-

work that would allow us to measure the mobility of multiple

proteins with diverse functions in cells subjected to normal

and pathogenic signaling. Single-particle tracking (SPT) and

fluorescence recovery after photobleaching (FRAP) allow for

the measurement of the kinetics of protein mobility in living

cells, and proteins studied with these methods have been re-
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Figure 1. Mobility of diverse proteins in cells

(A) Cellular compartments, biological processes,

and proteins examined in this study.

(B and C) Live-cell imaging of HepG2 cells ex-

pressing HaloTag (B) or green fluorescent protein

(GFP)-tagged (C) versions of the indicated proteins.

Dashed lines show outline of nucleus. Scale bars

are indicated.

(D) Representative tracks for movement of indi-

vidual molecules as determined by single-particle

tracking (SPT) of HaloTag versions of the indicated

proteins. Dashed magenta lines represent outline

of the plasma membrane. Dashed blue lines

represent outline of the nucleus. Scale bars are

indicated.

(E) Complementary cumulative distribution func-

tion (CCDF) graphs of apparent diffusion co-

efficients, as determined by SPT, of the indicated

proteins (n = 294, 1,751, 2,591, 2,855, and 5,458

molecules for insulin receptor (IR), MED1, HP1a,

FIB1, and SRSF2, respectively).

(F) Representative images of FRAP of HepG2 cells

expressing GFP-tagged versions of the indicated

proteins. Images before (before), immediately

following (bleach), and after recovery (post) are

shown. Scale bars are indicated.

(G) Quantification of FRAP experiments of the

indicated proteins (n = 10, 11, 15, 15, and 15 cells

for IR, MED1, HP1a, FIB1, and SRSF2, respec-

tively). Data shown as mean (blue line) ± standard

error of the mean (SEM) (light blue).

See also Figures S1 and S2 and Table S1.

ported to have average apparent

diffusion coefficients that vary between

0.01 and 30 mm2/s.25,26,33–37 This varia-

tion is thought to reflect that protein

mobility is influenced by diverse factors,

ranging from protein size to interaction

with various biomolecules.33 For our

study, we selected proteins whose

functions are key to cellular processes

known to be dysregulated in prevalent

syndromes8–18: a plasma membrane

receptor (insulin receptor, IR), a tran-

scriptional co-factor present at actively

transcribed genes (mediator subunit

MED1), a regulator of silent genes in het-

erochromatin (heterochromatin protein HP1a), a component of

the nucleolus involved in ribosome biosynthesis (fibrillarin,

FIB1) and a subunit of the mRNA splicing apparatus (serine

and arginine-rich splicing factor 2, SRSF2) (Figure 1A; STAR

Methods). As a cell model, we chose HepG2 cells as they

provide a well-established model system representative of hu-

man liver cells in healthy and disease states.28,38–40 To monitor

the mobility of each of these proteins, we engineered HepG2

cells to encode the endogenous protein fused with HaloTag

or monomeric enhanced green fluorescence protein (GFP)

and validated that each fusion protein was produced at normal

levels and migrated to the compartment where it is known to

function (Figures 1B, 1C, and S1).
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We determined the apparent diffusion coefficients of IR,

MED1, HP1a, FIB1, and SRSF2 by SPT, based on the mean-

squared displacement of each individual protein molecule’s

trajectory. For each protein, we measured at least 200 protein

trajectories and plotted the distribution of apparent diffusion co-

efficients (Figures 1D and 1E). As expected, most SPT protein

trajectories for IR were contained within the plasma membrane

and most SPT protein trajectories for MED1, HP1a, FIB1, and

SRSF2 were contained within the nucleus (Figure 1D). The

apparent diffusion coefficients ranged from 0.01 to 28 mm2/s

(Figure 1E), consistent with diffusion coefficients determined

for other human proteins (Table S1), with SRSF2 having the high-

est average mobility and FIB1 the lowest (Figures 1E and S2A).

We also used FRAP to measure the mobility of proteins in

HepG2 cells engineered to express the endogenous protein

fused to GFP. Specifically, we bleached a selected region in

the cell with a focused laser beam and measured the rate at

which the fluorescence intensity recovered at the photobleached

region. This fluorescence recovery reflects the average mobility
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Figure 2. Protein mobility decreases in a

model of pathogenic signaling

(A and B) Model for protein mobility in pathogenic

signaling; individual molecules move at fast or slow

speeds (A), depending on exposure to normal or

pathogenic signaling (B).

(C) Schematic representation of cell treatments.

(D) Representative individual protein tracks as

determined by SPT for the indicated proteins and

experimental treatments. Scale bars are indicated.

(E) CCDF graphs of apparent diffusion coefficients,

as determined by SPT, for the indicated proteins

and experimental treatments (normal, n = 357,

5,719, 5,199, 153, and 3,399 molecules for IR,

MED1, HP1a, FIB1, and SRSF2, respectively;

pathogenic, n = 154, 2,227, 3,529, 146, and 2,872

molecules for IR MED1, HP1a, FIB1, and SRSF2,

respectively). Mann-Whitney test was used for

statistical analysis. p values are reported in the

figure.

(F) Representative FRAP images for the indicated

proteins and experimental treatments. Images

before (before), immediately following (bleach), and

after recovery (post) are shown. Scale bars are

indicated.

(G) Quantification of FRAP experiments for the

indicated proteins and experimental conditions

(normal and pathogenic, n = 16, 10, 14, 10, and 20

cells each condition for IR, MED1, HP1a, FIB1, and

SRSF2, respectively). Data shown asmean (normal,

blue line; pathogenic, red line) ± SEM (normal, light

blue; pathogenic, light red). t test was used for

statistical analysis. Cohen’s d = 0.9, 0.4, 1.2, 0.9,

and 0.0 for IR, MED1, HP1a, FIB1, and SRSF2,

respectively. * represents p value < 0.05 and ***

represents p value < 0.001.

See also Figures S2, S3, and S4 and Tables S2

and S3.

of the bulk population of fluorescent pro-

teins.41 For all proteins under study, the

fluorescence intensity recovered on a

timescale of seconds (Figures 1F and

1G), and the relative mobilities of the pro-

teins were in line with those determined using SPT (Figure S2).

The mobility of all the proteins measured in these studies was

within the range determined previously for other proteins in living

cells.33–36,42–45

Reduced protein mobility with pathogenic signaling

As an initial test of the hypothesis that protein mobility might be

affected in a chronic disease (Figure 2A), we selected insulin

signaling, since it is dysregulated in prevalent syndromes such

as diabetes, known to be characterized by a range of affected

cellular processes, including dysregulated intracellular signaling,

gene activity, RNA splicing, and ribosome biosynthesis, among

others.5–12 In fasting healthy individuals, liver cells are normally

exposed to low concentrations of insulin (�0.1 nM), whereas

after a meal, insulin transiently increases and activates the

insulin signaling pathway.28,46,47 In fasting patients with insulin

resistance, liver cells are subject to continuous high concentra-

tions of insulin (�3 nM), and this chronic high level of insulin no

longer fully activates the signaling response.28,46,47 Thus, normal
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and pathogenic insulin signaling can be modeled in cell culture

by treating liver-derived cells with normal or elevated (patho-

genic) concentrations of insulin for prolonged periods of time

(Figure 2B).28,48

To test the possibility that pathogenic insulin signaling may

alter protein mobility, we treated HepG2 cells with normal or

pathogenic concentrations of insulin (Figure 2C). SPT analysis

revealed that the mobility of IR, MED1, HP1a, and FIB1 was

reduced in cells that were treated with pathogenic levels of insu-

lin, whereas that of SRSF2 was unaffected (Figures 2D, 2E, and

S2K; Table S2). For example, 50% of IR molecules had an

apparent diffusion coefficient greater or equal to 0.4 mm2/s

when cells were treated with normal concentrations of insulin,

and this percentage decreased by �20% when cells were

treated with pathogenic insulin concentrations (Figures 2D and

2E). FRAP analysis of these proteins indicated a similar effect

on this set of proteins; there was a reduction in the recovery of

all proteins except SRSF2 (Figures 2F and 2G; Table S3). Taken

together, these results suggest that pathogenic insulin signaling

leads to a reduction in the mobility of many proteins in cells.

The proteins studied here have been reported to be associated

with biomolecular condensates,28,44,49–52 which are non-

stoichiometric assemblies of proteins that share cellular func-

tions.25,44,53–55 We thus tested whether suppressed protein

mobility occurswhen proteins are resident within the dense phase

of condensates or when they are outside these bodies, using

FRAP with the GFP-tagged proteins. For the proteins that could

be reliably assigned to be within or outside of condensates during

image acquisition (MED1, HP1a, FIB1, and SRSF2), pathogenic

signaling was found to produce a similar reduction in mobility

for MED1, HP1a, and FIB1, while SRSF2 mobility was unaffected

(Figures 2G and S3A; Table S3). Rapid movement of IR conden-

sates prevented reliable assignments. Pathogenic signaling had

little effect on condensate number, size, or partition ratio for these

proteins, except for a slight decrease in condensate number for

IR, as observed previously28 (Figure S3B). Although there are re-

ports that reactive oxygen species (ROS) can influence the prop-

erties of somecondensates,56–58 these results suggest that the ef-

fects of pathogenic signaling can produce changes in protein

mobility while having a limited impact on condensate properties

under the conditions studied here.

Oxidative environment affects protein mobility

Given the broad range of proteins whosemobility was affected by

pathogenic insulin signaling,we askedwhether changes in cellular

viscosity or in the chemical environment might be responsible for

the observed changes in protein mobility. To test the effect of

pathogenic signaling on cellular viscosity, we monitored the

mobility of GFP (not fused to any other protein) by FRAP, which

is an establishedmethod for such studies,31,59–61 and the mobility

of HaloTag (not fused to any other protein) by SPT.We detected a

change in cytoplasmic viscosity but no change in nuclear viscosity

(Figures S4A and S4B). These results suggest that altered viscos-

ity could contribute to the mobility phenotype for IR in the plasma

membrane but is unlikely to significantly impact the diverse nu-

clear proteins studied here.

Substantial changes in the chemical environment are known

features of chronic diseases such as insulin resistance due to

high levels of ROS (Figures 3A and 3B).28,62 Here, we hypothe-

size that if an oxidative environment leads to changes in protein

mobility, then treating cells with pathologically relevant concen-

trations of the oxidizing agent H2O2 should phenocopy the ef-

fects observed in cells treated with pathogenic insulin signaling

(Figures 3B and 3C). Indeed, FRAP analysis showed that treat-

ment of cells with H2O2 caused reduced mobility of IR, MED1,

HP1a, and FIB1 but not of SRSF2 or nuclear GFP (Figures 3D–

3F, S4C, and S4D; Table S3).

If high levels of ROS lead to reductions in protein mobility, then

treatment with the antioxidant N-acetyl cysteine (NAC) should

restore some degree of protein mobility in cells exposed to path-

ogenic levels of insulin. As expected, FRAP revealed that treating

insulin-resistant cells with 1 mM NAC partially rescued the

mobility of IR, MED1, HP1a, and FIB1, but it had little effect on

the mobility of SRSF2 and nuclear GFP (Figures 3G–3I, S4D,

and S4E; Table S3). These results are consistent with the

possibility that elevated levels of ROS cause a decrease in the

mobility of certain proteins and suggest that the change in pro-

tein behavior is caused by an alteration in the oxidative

environment.

Mobility of proteins with exposed cysteines

The sensitivity of proteins to the oxidative environment suggests

that oxidation-sensitive amino acids might influence protein

mobility. When we analyzed amino acid content, we found that

the proteins whose mobility was affected by pathogenic insulin

signaling and H2O2 have cysteines with surface-exposed side

chains, whereas this was not the case for the proteins whose

mobility was not affected by these pathogenic factors (Figure 4A;

Table S4). Surface cysteines create the potential for crosslinking

through disulfide bonds, which might reduce the rate of diffusion

by diverse mechanisms, including increasing effective protein

mass, altering protein conformation, promoting binding to immo-

bile proteins, altering interaction with transporters, and

increasing cellular viscosity (Figure 4B).63–67

To explore how different oxidative states of the cellular environ-

ment might be expected to influence diffusion of proteins with

and without cysteines, we developed a physics-based model

(Figures 4C and S5; see STAR Methods). In this model, proteins

are simulated as spherical particles, half of which have sticky

patches on their surfaces, representing surface-exposed cysteine

residues, and half of which do not have sticky patches. As the

oxidative state of the cellular environment increases, the propen-

sity of interaction between the patches increases, leading to pro-

tein crosslinking and formation of protein dimers and multimers

(Figure S5). Proteins without surface-exposed cysteines remain

in a monomeric state even at higher levels of ROS. As a result,

the average diffusion coefficient of proteins containing surface-

exposed cysteine decreased more than that of proteins lacking

surface-exposed cysteines, owing to dimer and multimer forma-

tion (Figures 4C andS5). Themobility of proteins lacking cysteines

slightly decreased at higher levels of ROS, due to the increase in

effective viscosity caused by the crosslinking of the proteins con-

taining cysteines present in the environment (Figure 4C). This

model predicts that increasedROS-driven intermolecular disulfide

bond formation will reduce protein mobility due to the increased

frequency and lifetime of these bonds. As an initial test of this
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model, we investigated whether treatment of cells with H2O2

promotes crosslinking of IR proteins, using western blotting

(Figure S6A). These results suggest enhanced formation of inter-

molecular crosslinking through disulfide bond formation and are

consistent with the predictions from the theoretical work.

To further test the model that surface cysteines contribute to

reduced protein mobility in an oxidative environment, we asked

whether treatment with a thiol-protective agents might preserve

proteinmobility in ahighROSenvironment. Toprevent cysteinedi-

sulfide bond formation, cells were treated with N-ethylmaleimide

(NEM), a compound that forms stable, covalent bonds with the

thiol group in cysteines. FRAP revealed that treating cells with

NEM partially preserved the mobility of IR, MED1, HP1a, and

FIB1, but it had little effect on the mobility of SRSF2 in the high

ROS condition generated by H2O2 (Figure 4D).

If surface cysteines contribute to reduced protein mobility, we

might expect that addition of surface cysteines to SRSF2, which

normally lacks these residues, would cause reduced mobility of

A D
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CB Figure 3. Oxidative environment affects pro-

tein mobility

(A) Increased reactive oxygen species (ROS) in

pathogenic signaling.

(B) Relative ratio of oxidized to reduced glutathione

(GSSG/GSH) in cells treated as indicated. Data

shown asmean ±SEM. t test was used for statistical

analysis. * represents p value < 0.05.

(C) Relative GSSG/GSH ratio in cells treated with

different hydrogen peroxide (H2O2) concentrations.

Data shown as mean ± SEM. H2O2 concentration

expected to phenocopy pathogenic signaling is

indicated.

(D and G) Schematic representation of cell treat-

ments.

(E and H) Representative FRAP images for the

indicated proteins and experimental treatments.

Images before (before), immediately following

(bleach), and after recovery (post) are shown. Scale

bars are indicated.

(F and I) Quantification of FRAP experiments for the

indicated proteins and experimental conditions. For

(F), 0 and 7.5 mM, n = 10 cells each condition for

each protein. Data shown as mean (0 mM, blue line;

7.5 mM, red line) ± SEM (0 mM, light blue; 7.5 mM,

light red). For (I), (pathogenic, n = 16, 10, 15, 10, and

20 for IR, MED1, HP1a, FIB1, and SRSF2, respec-

tively; pathogenic + NAC, n = 16, 10, 15, 20, and 20

for IR, MED1, HP1a, FIB1, and SRSF2, respectively.

Data shown as mean (pathogenic, red line; patho-

genic + NAC, purple line) ± SEM (pathogenic, light

red; pathogenic + NAC, light purple). t test was used

for statistical analysis (F and I). For (F), Cohen’s d =

0.7, 0.7, 1.2, 1.0, and 0.0 for IR, MED1, HP1a, FIB1,

and SRSF2, respectively. For (I), Cohen’s d = 0.5,

0.8, 0.9, 0.6, and 0.2 for IR, MED1, HP1a, FIB1, and

SRSF2, respectively. ** represents p value < 0.01

and *** represents p value < 0.001.

See also Figure S4 and Table S3.

the modified SRSF2 protein in a high ROS

environment. We engineered HepG2 cells

to express endogenous SRSF2 fused to a

rigid linker (to ensure surface exposure)

containing multiple cysteine residues

(SRSF2-Cys) or, as a control, the same number of serine resi-

dues (SRSF2-Ser) (Figures 4E and 4F). Treating HepG2 cells

with H2O2 or pathogenic insulin concentrations did not affect

the mobility of the SRSF2-Ser protein, but it decreased the

mobility of SRSF2-Cys protein (Figures 4E and 4F). Taken

together, these results indicate that surface-exposed cysteines

can affect protein mobility when cells are exposed to oxidative

stress and pathogenic signaling.

Next, we askedwhether there are reports of any of the proteins

studied here having missense mutations resulting in gaining a

cysteine and, if so, whether these might affect protein mobility.

A tyrosine-to-cysteine mutation (Y1361C) was reported in the

IR. This mutation occurs outside of the structured domain and

does not appear to decrease protein stability.68 Modeling indi-

cates that the cysteine gained through this mutation is surface

exposed (Figure S6B). We introduced this mutation into the

IR-GFP fusion protein (IR Y1361C-GFP) in both alleles in

HepG2 cells (Figure 4G). By performing FRAP, we found that
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the gain-of-cysteine mutation caused a reduction in IR

protein mobility in HepG2 cells under normal redox conditions

(Figure 4H) and that treating cells expressing IR Y1361C-GFP

with NAC enhanced IR Y1361C protein mobility (Figure 4I).

Mutating the same amino acid to serine had little to no effect on

IR proteinmobility (Figure S6C). These results indicate thatmuta-

tions that add surface cysteines sensitize the IR to physiological

levels of ROS, reducing its mobility under normal redox condi-

tions, and that addition of an antioxidant can enhance this recep-

tor’s mobility. It is possible that the Y1361Cmutation confers this

special sensitivity to normal redoxconditionsbecause it occurs in

a region known to interact with other proteins containing surface-

exposed cysteines.69Gain-of-cysteine mutations are among the

most pathogenic missense mutations (Figure S6D), and their ef-

fect on proteinmobilitymay not be limited to IR, but it may extend

to other disease-relevant proteins.

Diverse pathogenic factors decrease protein mobility

The pathogenic stimuli that are associated with diverse diseases

are thought to commonly induce oxidative stress.70 We devel-

oped a mobility biosensor assay to investigate relationships be-

tween surface-exposed cysteines and protein mobility under

oxidative conditions and to investigate whether diverse patho-

genic stimuli produce similar mobility phenotypes in liver cells

and in other disease-relevant cell types. We constructed the

protein mobility sensor by adding a rigid linker containing
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Figure 4. Surface-exposed cysteines sensi-

tize proteins to oxidation-driven decrease in

protein mobility

(A) Rendering of the crystal structure of indicated

proteins showing cysteines in red.

(B) Diverse models for decreased protein mobility,

including change in effective protein mass, protein

conformation, interaction with immobile protein,

interaction with a protein that facilitates transport,

and cellular viscosity increasing resistance to move-

ment.

(C) Predicted normalized diffusion coefficient

from simulations of a mixture of proteins with

(red) and without (gray) surface-exposed cyste-

ines as a function of the ratio of oxidized (GSSG)

to reduced (GSH) glutathione. The diffusion co-

efficient was normalized to the mean of all

simulated data points for GSSG/GSH < 10�3 (see

STAR Methods).

(D) Quantification of FRAP data for insulin receptor

(7.5 mM H2O2, n = 16 cells; 7.5 mM H2O2 +

N-ethylmaleimide [NEM],n=16cells),MED1 (7.5mM

H2O2, n = 29 cells; 7.5mMH2O2 +NEM, n = 15 cells),

HP1a (7.5 mM H2O2, n = 14 cells; 7.5 mM H2O2 +

NEM, n = 13 cells), FIB1 (7.5 mM H2O2, n = 24 cells;

7.5 mM H2O2 + NEM, n = 24 cells), and SRSF2

(7.5 mM H2O2, n = 12 cells; 7.5 mM H2O2 + NEM,

n=12cells) inHepG2cells treatedwith0or7.5mMof

H2O2 after pre-treatment with 10 mM NEM. Data are

plotted asmeans± SEM. ** represents p value < 0.01

and *** represents p value < 0.001.

(E and F) Top: representation of SRSF2 fusion pro-

teins with an added serine- or cysteine-containing

rigid linker. Bottom: quantification of FRAP data for

SRSF2 fusion proteins in cells treated with the indi-

cated experimental conditions (SRSF2-Ser, 0 mM

H2O2, n = 13 cells, 7.5 mMH2O2, n = 12, normal, n =

10 cells, pathogenic, n = 10 cells; SRSF2-Cys, 0 mM

H2O2, n = 13 cells, 7.5 mMH2O2, n = 13, normal, n =

10 cells, pathogenic, n= 10cells). Data are plotted as

mean ± SEM. ** represents p value < 0.01 and ***

represents p value < 0.001.

(G) Representation of wild-type (WT) and mutant IR

fusion proteins.

(H) Quantification of FRAP data forWT (IRWT, n = 15

cells) or Y1361Cmutant IR (IR Y1361C, n = 15 cells).

Data are plotted as mean ± SEM. *** represents p

value < 0.001.

(I) Quantification of FRAPdata for Y1361Cmutant IR in cells treatedwith (n= 15cells) orwithout (n= 15cells) N-acetyl cysteine. Data are plotted asmean±SEM. t test

was used for statistical analysis (D–I). *** represents p value < 0.001.

See also Figures S5 and S6 and Table S4.
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five cysteine residues to the HaloTag protein (HaloTag-Cys)

(Figure 5A) together with a control biosensor containing five

serine residues (HaloTag-Ser). The HaloTag-Cys biosensor

was appropriately sensitive to pathogenic levels of H2O2, as evi-

denced by the mobility of HaloTag-Cys decreasing upon H2O2

treatment in a dose-dependent fashion (Figure 5B). Similarly,

treatment of cells containing the biosensor with pathogenic insu-

lin concentrations led to reduced protein mobility (Figure 5C).

Pathogenic levels of insulin had less of an effect on the mobility

of a control HaloTag-Ser protein (Figure S6E).

Pathogenic stimuli that induce oxidative stress include hyper-

glycemia, high fat, inflammation, genotoxic stress, endotoxin,

and drug toxicity (Figure 5D).71–76 These stimuli have been

shown to increase ROS through diverse mechanisms, which

include, but are not limited to, dysregulation of mitochondria, dys-

regulation of redox homeostasis proteins, ER stress, and eNOS

dysregulation.75,77–83 Treating cells with these pathogenic stimuli

led to elevated levels of ROS (Figure 5E), confirming previous re-

sults.28,71–75 These treatments also reduced the mobility of the

HaloTag-Cys protein (Figures 5F, S7A, and S7B). In skeletal mus-

cle cells, another disease-relevant cell type, pathogenic stimuli

also decreased HaloTag-Cys mobility (Figure S7C). Taken

together, these results are consistent with a model in which

diverse pathogenic stimuli known to induceoxidative stress cause

suppressed protein mobility in multiple disease-relevant

cell types.

Protein mobility and functional activity

Biochemical reactions are typically collision limited,31,32 and

reduced rates of protein diffusion would be expected to reduce

functional outputs (Figure 6A). We produced a mathematical

model and conducted tests in vitro and in cells designed to

confirm that reduced proteinmobility confers reduced enzymatic

activity with the IR (Figure 6B). Phosphorylation of substrates by

protein kinases such as the IR (Figure 6C), which would be ex-

pected to be collision limited, should be reduced when protein

mobility is decreased. Mathematical modeling of phosphoryla-

tion of substrates by protein kinases showed that reaction out-

puts are reduced when protein mobility is decreased (Figure 6D).

IR and an IR substrate protein, IRS1, were purified and subjected

to environments thatwould slowor accelerate themobility of pro-

teins in vitro.When themobility of proteinswas reduced in vitroby

increasing glycerol concentration, and thus viscosity, we

observed reduced phosphorylation of IRS1 by IR (Figure 6E).

Agitation of solutions can increase protein mobility and thus the

collision rate of molecules,84 and agitation was found to partially

rescue the reduction in phosphorylation with elevated viscosity

(Figure 6F). These results support the expectation that reduced

protein mobility reduces the kinase activity of IR.

To further probe the relationship between protein mobility and

functional output in cells, we used the BirA/AviTag system,which

was previously shown to exhibit collision-limited activity.31 In this

system, where the biotin ligase BirA biotinylates its substrate

A

D

E

F

CB Figure 5. Diverse pathogenic factors

decrease protein mobility

(A) Representations of HaloTag fusion protein

(HaloTag-Cys).

(B) Apparent diffusion coefficient of HaloTag-Cys

as determined by SPT in cells treated as indicated

(n = 245, 316, 428, 560, and 305 molecules for 0, 1,

3, 8, and 20 mM H2O2, respectively).

(C) Apparent diffusion coefficient of HaloTag-Cys

as determined by SPT in cells treated as indicated

(n = 446 and 173 molecules for normal and patho-

genic, respectively). Data are plotted as means ±

SEM. Mann-Whitney test was used for statistical

analysis. *** represents p value < 0.001.

(D) Cartoon depicting pathogenic stimuli.

(E) ROS quantification in cells treated as indicated.

Data are plotted as mean ± SEM. Numbers of cells:

normal glucose (77) vs. high glucose (67); BSA (115)

vs. high fat (171); BSA (150) vs. TNF-a (91); DMSO

(152) vs. etoposide (ETO, 83); control (82) vs. lipo-

polysaccharide (LPS, 78). t test was used for sta-

tistical analysis. * represents p value < 0.05 and ***

represents p value < 0.001.

(F) Apparent diffusion coefficient of HaloTag-Cys as

determined by SPT in cells treated as indicated.

Numbers of molecules: normal glucose (1,001) vs.

high glucose (582); BSA (126) vs. high fat (101); BSA

(265) vs. TNF-a (363); DMSO (1,718) vs. ETO (1,804);

control (1,456) vs. LPS (1,327). Cohen’s d = 0.1, 0.2,

0.1, 0.2, and 0.1 for hyperglycemia, dyslipidemia,

inflammation, genotoxic stress, and endotoxin,

respectively. Data are plotted as means ± SEM.

Mann-Whitney testwas used for statistical analysis. *

representsp value < 0.05 and *** representsp value <

0.001.

See also Figure S7.
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AviTag, fusion of BirA with SNAP-tag (BirA-SNAP) and fusion of

the AviTag to our protein mobility biosensor HaloTag-Cys al-

lowed us to monitor both protein mobility and BirA activity

(Figures 6G and 6H) in HepG2 cells. Under conditions of patho-

genic signaling in cells, the reduction in protein mobility corre-

lated with reduced biotinylation (Figures 6I–6K). These results

support the concept that reduced protein mobility leads to

reduced functional activity.

The cellular processes that have been reported to be dysregu-

lated in chronic syndromes include reduced phosphorylation of

substrates, altered gene regulation, and repression of hetero-

chromatic repeats, among others.8–18 To confirm that these pro-

cesses are indeed dysregulated in cells under the conditions

studied here, we conducted assays in cells that were treated

with normal and with pathogenic insulin. The results showed ev-

idence of dysregulated features noted previously in chronic syn-

dromes (Figures 6L and S7D). Phosphorylation of IRS1 was

reduced, genes occupied by the mediator coactivator subunit

MED1 were expressed at lower levels, and there was elevated

expression of heterochromatic repeats. These results are

consistent with a model where reduced protein mobility can

contribute to the diversity of dysregulated processes that are

evident in chronic disease.

DISCUSSION

Pathogenic signaling contributes to prevalent diseases charac-

terized by dysregulation of remarkably diverse cellular pro-

cesses.8–17 Consequently, equally diverse pathogenic mecha-

nisms are assumed to cause these phenotypes. However, the

findings on protein mobility in healthy and dysregulated cells

described here suggest an alternative explanation, namely,

A

D E F

G I

J K

L

H

CB
Figure 6. Protein mobility affects function

(A–C) Cartoons depicting relationship between pro-

tein mobility, functional output, and collision fre-

quency (A), models and assays used to study IRS

phosphorylation (B), and the phosphorylation of IRS1

by a kinase (C).

(D) Second-order rate constant from simulations of

IRS1 phosphorylation as a function of diffusion co-

efficient.

(E) Immunoblot for phosphorylated IRS1 (pIRS1)

and IRS1 (left). IRS1 phosphorylation assay was

performed in solutions containing 5%, 15%, or

30% glycerol. Quantification of relative pIRS1

amount (right) (n = 3 biological replicates). t test

was used for statistical analysis. * represents p

value < 0.05.

(F) Immunoblot for phosphorylated IRS1

(pIRS1) and IRS1 (left). IRS1 phosphorylation

assay was performed in solutions containing 0%

or 15% glycerol with agitation (1,200 rpm) or

without agitation (0 RPM). Quantification of

relative pIRS1 amount (right) (n = 2 biological

replicates).

(G) Cartoon depicting biotinylation assay.

(H) Cartoon depicting high mobility in normal

conditions and low mobility in pathogenic con-

ditions.

(I) Schematic representation of cell treatments.

(J) Representative tracks for movement of indi-

vidual molecules as determined by SPT of the

indicated proteins (left). Scale bars are indicated.

Apparent diffusion coefficient of the indicated

proteins in cells treated with normal or patho-

genic insulin (right). Numbers of molecules: BirA-

SNAP normal (1,003) vs. pathogenic (865);

AviTag-Halo-Cys normal (1,022) vs. pathogenic

(1,067). Mann-Whitney test was used for statis-

tical analysis. ** represents p value < 0.01 and ***

represents p value < 0.001.

(K) Immunoblot for biotinylated and un-

biotinylated AviTag-Halo-Cys. t test was used

for statistical analysis. * represents p value <

0.05.

(L) Cartoon depicting function decreases in diseased cells (left). Quantification of relative pIRS1 determined by immunoblotting (t test was used for

statistical analysis, ** represents p value < 0.05), log2(fold change) of gene expression for genes whose promoter is occupied or not occupied by MED1,

and log2(fold change) of expression of protein-coding genes or repetitive elements.

See also Figure S7.
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that a common mechanism—suppressed mobility, here referred

to as proteolethargy—contributes to dysregulation of a range of

cellular processes in the setting of diverse pathogenic stimuli.

Proteolethargy, the phenomenon of reduced protein mobility

in the setting of pathogenic stimuli, might be caused by any num-

ber of mechanisms, but several lines of evidence converge on

the effects of excess ROS on protein mobility as a common

mechanism that can impact proteins throughout the cell in

diverse chronic syndromes (Figure 7). Cells exposed to diverse

pathogenic stimuli produce excess ROS through mechanisms

that include dysregulation of mitochondria, dysregulation of

redox homeostasis proteins, ER stress, and eNOS dysregula-

tion, among others (Figure 7A).75,77–83 Proteins exposed to

oxidative environments exhibit reduced mobility if they have sur-

face-exposed cysteines or are engineered to have surface cys-

teines. These effects can be remedied in part by treatment of

cells with reducing agents or agents that are thiol protective.

Gain-of-cysteine mutations can cause reduced mobility of the

mutated protein. We estimate that �50% of human proteins

contain at least one surface-exposed cysteine (see STAR

Methods), so there is potential for half of the proteome to be

directly susceptible to proteolethargy in high ROS environments.

Our experimental andmodeling data jointly support a model in

which proteins with surface-exposed cysteines, upon transiting

through a milieu that is densely packed with biomolecules,

have the potential to form transient disulfide crosslinks with other

proteins (Figure 7B). An elevated oxidative environment has the

potential to increase the lifetime of the intermolecular cross-

A

D

CB

Figure 7. Proteolethargy is a pathogenic

mechanism in chronic disease

(A) Diverse pathogenic factors lead to oxidative

stress via multiple cellular pathways and mecha-

nisms.

(B) Proteins with surface-exposed cysteines suffer

reduced mobility in high ROS environments due to

their sensitivity to oxidation.

(C) Alterations in plasma membrane and cyto-

plasmic fluidity can also occur in high ROS envi-

ronments.

(D) Mobility is decreased in pathogenic signaling,

thereby reducing rates of particle collision and

leading to reduced functional output for diverse

cellular processes.

links,63,85,86 effectively increasing the hy-

drodynamic radius and thereby

decreasing protein mobility.64 Variations

of this model are possible, where changes

in disulfide bond rates or lifetimes have

additional influences on protein mobility

through improper complex formation,

changing protein conformation, promoting

binding to immobile proteins, disrupting

associations with transport proteins,

or altering cytoplasmic viscosity

(Figure 4B).63–67 It is also likely that the ef-

fects of elevated oxidative environments

can impact protein mobility more indi-

rectly; for example, changes in plasma membrane fluidity due

to altered lipid oxidation and composition have the potential to

influence protein mobility,87–93 and changes that affect cytoskel-

eton-associated proteins have been noted to impact cellular

fluidity (Figure 7C).94,95

Proteolethargywould be expected to adversely impact diverse

functions in cells. In healthy cells, proteinswith prominent roles in

diverse cellular processes are highly mobile and thus able to

transit a space equivalent to the diameter of a cell in 2–10 s. In

cells subjected to pathogenic signaling, however, the mobility

of most proteins studied here was reduced by 20%–35%. Since

many biological processes in cells are collision limited, de-

creases in proteinmobility are expected to reduce functional out-

puts (Figure 7D).31,32,96 Supporting this view, we found that

reducing the mobility of IR reduces its rate of phosphorylation

of the IR substrate IRS1 in vitro and in vivo and that a synthetic

system designed to report biotin ligase activity in cells showed

reduced ligase activity when cells were subjected to pathogenic

signaling. The cellular processes that have been reported to be

dysregulated in chronic syndromes such as diabetes and inflam-

matory disorders are diverse and include signaling activity, gene

regulation, heterochromatin repression, and metabolic activ-

ity.8–17 These cellular functions were found to be dysregulated

in the cell system studied here. We thus suggest that proteole-

thargymayaccount for thediversity of dysregulated cellular func-

tions noted for at least some chronic diseases.

Many proteins have been shown to assemble together with

functionally related proteins into biomolecular condensates,
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cellular organelles that are not physically delimited by

membranes.25,28,44,49–55,97,98 We found that the mobility of pro-

teinswas reducedboth insideandoutsideof thesecompartments.

The mobility of the synthetic proteins such as the protein mobility

biosensor, which does not appear to assemble into condensates,

was reduced by high ROS environments. Our results thus indicate

thatproteolethargycanoccur across thecell, and it occursboth in-

side and outside of condensate compartments.

There is limited information on the mobility of a range of pro-

teins with diverse functions in human cells and even less infor-

mation on the effects of pathogenic stimuli on protein mobility.

This paucity of knowledge may explain why proteolethargy has

apparently not been described as a pathogenic mechanism in

chronic diseases. Previous studies have investigated the diffu-

sive behaviors of certain transcriptional regulators in mammalian

cells,24,35,99,100 and one noted that the mobility of the IR is

reduced in rat hippocampal neurons by low concentrations of tu-

mor necrosis factor alpha and by cholesterol depletion.34

Themodel describedhere for proteolethargy indiseasehas im-

plications for the development of therapeutics for certain chronic

diseases. Restoring protein mobility might be considered among

the therapeutic hypotheses for these chronic diseases. Protein

mobility biosensors, such as the one developed for this study,

may prove to be valuable for high-throughput screening for drugs

that restore normal protein mobility under pathogenic signaling

conditions. Redox homeostasis is regulated by many pathways

and proteins, which counteract transient increases in ROS that

occur normally in diverse cellular processes,70,101,102 so it is

possible that therapeutic targeting of these natural pathways

will prove beneficial for treating or preventing proteolethargy.

The rescue of protein mobility with NAC treatment, as described

here, is a proof of principle for this concept.

Limitations of the study

We propose that pathogenic signaling reduces the mobility of a

large fraction of cellular proteins, that reduced protein mobility is

due largely to a dysregulated redox environment that impacts

oxidation-sensitive cysteines, and that this proteolethargy may

account for the diversity of dysregulated cellular processes

that are evident in chronic disease. Pathogenic signaling could

potentially affect �50% of the proteome, based on estimates

of surface-exposed cysteines in proteins, but a necessarily

limited number of proteins are surveyed in this work. There are

additional oxidation-sensitive amino acids and oxidation-related

mechanisms that may contribute to decreased protein mobility,

which are not studied here. As this work is focusing on themove-

ment of individual molecules at specific timescales and distance

scales, we did not explicitly examine all potential mechanisms

that may affect protein movement. Proteolethargy in the setting

of pathogenic stimuli was observed using cell lines and a defined

set of experimentally tractable treatments, so further studies will

be needed to learn how reduced protein mobility manifests as

disease phenotypes in whole organisms. Diverse endogenous

proteins were studied in cells subjected to pathogenic insulin

signaling, but these proteins were not studied in response to

diverse pathogenic stimuli, where a biosensor was deployed to

report proteinmobility. Excess ROS has been implicated in aging

and diseases not studied here, so further studies are necessary

to learn whether reduced protein mobility is associated with, and

perhaps contributes to, aging and other diseases.
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(2024). Evidence for widespread cytoplasmic structuring into mesoscale

condensates. Nat. Cell Biol. 26, 346–352. https://doi.org/10.1038/

s41556-024-01363-5.

99. Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio,

C., Heckert, A., Banala, S., Lavis, L., Darzacq, X., and Tjian, R. (2018). Im-

aging dynamic and selective low-complexity domain interactions that

control gene transcription. Science 361, eaar2555. https://doi.org/10.

1126/science.aar2555.

100. Cho, W.K., Jayanth, N., English, B.P., Inoue, T., Andrews, J.O., Conway,

W., Grimm, J.B., Spille, J.H., Lavis, L.D., Lionnet, T., and Cisse, I.I. (2016).

RNA Polymerase II cluster dynamics predict mRNA output in living cells.

eLife 5, e13617. https://doi.org/10.7554/eLife.13617.

101. Ray, P.D., Huang, B.W., and Tsuji, Y. (2012). Reactive oxygen species

(ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal.

24, 981–990. https://doi.org/10.1016/j.cellsig.2012.01.008.

102. Schieber, M., and Chandel, N.S. (2014). ROS function in redox signaling

and oxidative stress. Curr. Biol. 24, R453–R462. https://doi.org/10.1016/

j.cub.2014.03.034.

103. Klein, I.A., Boija, A., Afeyan, L.K., Hawken, S.W., Fan, M., Dall’Agnese,

A., Oksuz, O., Henninger, J.E., Shrinivas, K., Sabari, B.R., et al. (2020).

Partitioning of cancer therapeutics in nuclear condensates. Science

368, 1386–1392. https://doi.org/10.1126/science.aaz4427.

104. Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021). Cell-

pose: a generalist algorithm for cellular segmentation. Nat. Methods

18, 100–106. https://doi.org/10.1038/s41592-020-01018-x.

105. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S.,

Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast uni-

versal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.

1093/bioinformatics/bts635.

106. Jin, Y., Tam, O.H., Paniagua, E., and Hammell, M. (2015). TEtranscripts: a

package for including transposable elements in differential expression

analysis of RNA-seq datasets. Bioinformatics 31, 3593–3599. https://

doi.org/10.1093/bioinformatics/btv422.

107. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.

org/10.1093/bioinformatics/btp324.

108. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein,

B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008).

Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

https://doi.org/10.1186/gb-2008-9-9-r137.

109. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities

for comparing genomic features. Bioinformatics 26, 841–842. https://

doi.org/10.1093/bioinformatics/btq033.

110. Chen, X., Zaro, J.L., and Shen, W.C. (2013). Fusion protein linkers: prop-

erty, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369.

https://doi.org/10.1016/j.addr.2012.09.039.

111. Li, C.H., Coffey, E.L., Dall’Agnese, A., Hannett, N.M., Tang, X., Hen-

ninger, J.E., Platt, J.M., Oksuz, O., Zamudio, A.V., Afeyan, L.K., et al.

(2020). MeCP2 links heterochromatin condensates and neurodevelop-

mental disease. Nature 586, 440–444. https://doi.org/10.1038/s41586-

020-2574-4.

112. Li, L., Pan, Z., and Yang, X. (2019). Key genes and co-expression network

analysis in the livers of type 2 diabetes patients. J. Diabetes Investig. 10,

951–962. https://doi.org/10.1111/jdi.12998.

113. Guo, Y.E., Manteiga, J.C., Henninger, J.E., Sabari, B.R., Dall’Agnese, A.,

Hannett, N.M., Spille, J.H., Afeyan, L.K., Zamudio, A.V., Shrinivas, K.,

et al. (2019). Pol II phosphorylation regulates a switch between transcrip-

tional and splicing condensates. Nature 572, 543–548. https://doi.org/

10.1038/s41586-019-1464-0.

114. Radtke, K.K., Coles, L.D., Mishra, U., Orchard, P.J., Holmay, M., and

Cloyd, J.C. (2012). Interaction of N-acetylcysteine and cysteine in human

plasma. J. Pharm. Sci. 101, 4653–4659. https://doi.org/10.1002/

jps.23325.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-insulin receptor (IF) Cell Signaling 23413; RRID: AB_2924796

Anti-MED1 (IF) Abcam ab64965; RRID: AB_1142301

Anti-HP1a (IF) Abcam ab109028; RRID: AB_10858495

Anti-FIB1 (IF and WB) Abcam ab5821; RRID: AB_2105785

Anti-SRSF2 (IF) Abcam ab11826; RRID: AB_298608

Anti-insulin receptor (WB) Cell Signaling 3025; RRID: AB_2280448

Anti-MED1 (WB) Bethyl A300-793A; RRID: AB_577241

Anti-SRSF2 (WB) Thermo Fisher Scientific PA5-12402; RRID: AB_2184941

Anti-b-actin Sigma-Aldrich A5441; RRID: AB_476744

Anti-H3 Cell Signaling 4499; RRID: AB_10544537

Donkey anti-rabbit IgG Cytiva Life Sciences NA934-1ML; RRID: AB_772206

Sheep anti-mouse IgG Cytiva Life Sciences NXA931V; RRID: N/A

Anti-HA (WB) Cell Signaling 3724; RRID: AB_1549585

Anti-pIRS1 (WB) Cell Signaling 3070; RRID: AB_2127863

Anti- IRS1 (WB) Cell Signaling 2382; RRID: AB_330333

Anti-IR (WB) Cell Signaling 74118; RRID: AB_2799850

Anti-pIRS1 (IF) Abcam ab4873; RRID: AB_304698

Bacterial and virus strains

NEB� 10-beta Competent E. coli

(High Efficiency)

NEB C3019H

Biological samples

HepG2 cells ATCC HB-8065TM

C2C12 cells ATCC CRL-1772

Chemicals, peptides, and recombinant proteins

Insulin Sigma-Aldrich I9278-5ML

H2O2 Sigma-Aldrich H1009

N-acetyl cysteine Sigma-Aldrich A9165-25G

Tumor necrosis factor alpha Thermo Fisher Scientific PHC3016

Glucose Sigma-Aldrich G8270

Lipopolysaccharide Sigma-Aldrich L2630

Fatty acid-free BSA Sigma-Aldrich A8806-5G

Etoposide Thermo Scientific Chemicals J63651

Oleic acid Sigma-Aldrich O7501

Palmitic acid Sigma-Aldrich P9767

N-acetyl-p-benzoquinone imine (NAPQI) Sigma-Aldrich A7300-1mg

Doxycycline Sigma-Aldrich D9891-5G

Fetal bovine serum Sigma-Aldrich F4135

Janelia Fluor 585 Gift from the Lavis Lab N/A

Janelia Fluor 549 Promega GA1110

Hygromycin Thermo Fisher Scientific 10687-010

TrypanBlue Invitrogen T10282

BSA (IF) Jackson Immunoresearch Laboratories 001-000-162

Hoechst (IF) Thermo Fischer Scientific 3258
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Hoechst (live cell imaging) Thermo Fischer Scientific 33342

PBS Gibco 10010-023

Protease and phosphatase inhibitors Sigma-Aldrich 11873580001 and 4906837001

Acetonitrile Thermo Fischer Scientific A955-4

Methanol Thermo Fischer Scientific A456-4

LC-MS grade water (metabolomics) Thermo Fischer Scientific W6-4

Ammonium Carbonate Sigma-Aldrich 379999-50G

Ammonium Hydroxide Solution Sigma-Aldrich 338818-100mL

Nitric Acid Thermo Fischer Scientific A467-500mL

20 Canonicial Metabolomics Amino Acid

Mix[ 2.5 mM each]

Cambridge Isotope Labs MSK-CAA-1

Purified active recombinant human insulin

receptor

Millipore 14-466

Purified recombinant IRS1 Abcam ab70538

Glycerol Invitrogen 15514011

Streptavadin, unconjugated Invitrogen 43-430-2

Biotin Millipore B4501

DMSO Sigma-Aldrich D2438

Critical commercial assays

NEBuilder HiFi DNA Assembly Master Mix NEB E2621S

Phusion polymerase Thermo Fisher Scientific F531S

CellROX Deep Red Reagent Thermo Fisher Scientific C10422

Cell Lytic M Sigma-Aldrich C2978

BCA Protein Assay Kit Thermo Fisher Scientific 23250

ECL substrate Millipore WBKL20500

TRIzol� reagent Thermo Fisher Scientific 15596026

Native Sample Buffer BioRad 1610738

KAPAHyperRiboErase Roche KK8561

Deposited data

Metabolomics data Metabolights Metabolights: MTBLS9535

RNA-seq GEO GEO: GSE273733

MED1 ChIP-seq GEO GEO: GSM2040029

Input GEO GEO: GSM2864933

Experimental models: Cell lines

HepG2 cells ATCC HB-8065TM

C2C12 cells ATCC CRL-1772

HepG2 expressing endogenous

IR tagged with GFP

Dall’Agnese et al.28 N/A

HepG2 expressing endogenous

IR tagged with HaloTag

This work N/A

HepG2 expressing endogenous

MED1 tagged with GFP

This work N/A

HepG2 expressing endogenous

MED1 tagged with HaloTag

This work N/A

HepG2 expressing endogenous

HP1a tagged with GFP

This work N/A

HepG2 expressing endogenous

HP1a tagged with HaloTag

This work N/A

HepG2 expressing endogenous

FIB1 tagged with GFP

This work N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HepG2 expressing endogenous

FIB1 tagged with HaloTag

This work N/A

HepG2 expressing endogenous

SRSF2 tagged with GFP

This work N/A

HepG2 expressing endogenous

SRSF2 tagged with HaloTag

This work N/A

HepG2 expressing endogenous

SRSF2-Ser tagged with GFP

This work N/A

HepG2 expressing endogenous

SRSF2-Cys tagged with GFP

This work N/A

HepG2 expressing GFP This work N/A

HepG2 expressing HaloTag This work N/A

HepG2 expressing endogenous

IR-Y1361S tagged with GFP

This work N/A

HepG2 expressing endogenous

IR-Y1361C tagged with GFP

This work N/A

HepG2 expressing HaloTag-Cys This work N/A

HepG2 expressing HaloTag-Ser This work N/A

C2C12 expressing HaloTag-Cys This work N/A

HepG2 expressing AviTag-HaloTag-Cys/

BirA-SNAP

This work N/A

Oligonucleotides for genotyping

IR_fwd: GGAGAATGTGCCCCTGGAC IDT/Eton Bioscience N/A

IR_rev: TTGGTAACCAAACGAGTCCACCT IDT/Eton Bioscience N/A

MED1_fwd: CGAGCACCCTTCTCTTCTTG IDT/Eton Bioscience N/A

MED1_rev: GAAGTTGAGAGTCCCCATCG IDT/Eton Bioscience N/A

HP1a _fwd: CAAGGTGAGGAGGAAATCA IDT/Eton Bioscience N/A

HP1a _rev: CACAGGGAAGCAGAAGGAAG IDT/Eton Bioscience N/A

SRSF2_fwd: CAAGTCTCCTGAAGAG

GAAGGA

IDT/Eton Bioscience N/A

SRSF2_rev: AAGGGCTGTATCCAAAC

AAAAAC

IDT/Eton Bioscience N/A

FIB1_fwd: CCTTTTAATCAGCAAC

CCACTC

IDT/Eton Bioscience N/A

FIB1_rev: GTGACCGAGTGAGAATT

TACCC

IDT/Eton Bioscience N/A

Recombinant DNA

Repair template DNA to make

endogenously HaloTag tagged cell lines

This work N/A

gRNA construct DNA to make

endogenously tagged cell lines

Klein et al.103 and this work N/A

Repair template DNA to make

endogenously GFP tagged cell lines

Klein et al.103 and this work N/A

Construct to express HaloTag-Cys This work N/A

Construct to express HaloTag-Ser This work N/A

Construct to express AviTag-HaloTag-Cys This work N/A

Construct to express BirA-SNAP This work N/A

Software and algorithms

Prism Version 9.4.0 GraphPad N/A

Fiji/ImageJ v2.1.0/153c GraphPad N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

HepG2 (male) cells were acquired from ATCC (ATCC, HB-8065TM) and cultured in 150 mm cell culture grade dishes with

EMEM media (ATCC, 30-2003) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) without antibiotic

and kept in a humidified incubator at 37�C with 5% CO2. These cells were chosen because they are widely used to study

diverse pathologies and because they can be genetically modified. To passage the cells, 20 ml of room-temperature phosphate

buffered saline solution (Gibco, 10010-023) was added to the dish, aspirated off, then 3 ml of TrypLE Express Enzyme (Life

Technologies, 12604021) was added to help dissociate cells. The dish was then incubated at 37�C with humidity and 5%

CO2 for 5 minutes. After 5 minutes, cells were mechanically dissociated by pipetting them up and down 7 times using a

10ml serological pipette fitted with a p200 tip. To quench the TrypLE, 7 ml of EMEM-FBS was added to the dish. 1 ml of

the cell suspension was left on the dish and 20 ml of EMEM-FBS was added on top. HepG2 cells were continuously cultured

in a 150 mm dish and split 1:10 when the cells became confluent. The cells were subcultured on a new plate monthly, seeded

using a 1:2 split.

C2C12 (female) cells were acquired from ATCC (ATCC, CRL-1772) and cultured in 150 mm cell culture grade dishes with DMEM

media (Gibco, 11965-092) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) without antibiotic and kept in a

humidified incubator at 37�C with 5% CO2. These cells were chosen because they are widely used to study diverse pathologies and

because they can be genetically modified. Cells were passaged at 30-50% confluence to prevent differentiation. To passage the

cells, 20 ml of room-temperature phosphate buffered saline solution (Gibco, 10010-023) was added to the dish, aspirated off,

then 3ml of TrypLE Express Enzyme (Life Technologies, 12604021) was added to help dissociate cells from the dish and one another.

The dish was then incubated at 37�Cwith humidity and 5%CO2 for 5 minutes. After 5 minutes, the cells were dissociated by tapping

the sides of the plate. To quench the TrypLE, the cells were resuspended in 7 ml of DMEM supplemented with 10% FBS, and these

resuspended cells were used to seed a new dish at a 1:20 dilution.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FreeStyle v1.3 Thermo Fisher Scientific N/A

TraceFinder v4.1 Thermo Fisher Scientific N/A

ZEN Blue Zeiss Thermo Fisher Scientific N/A

MATLAB vR2021b MathWorks N/A

Cellpose Stringer et al.104 N/A

STAR Dobin et al.105 N/A

TEtranscripts Jin et al.106 N/A

BWA Li and Durbin107 N/A

MACS2 Zhang et al.108 N/A

Bedtools Quinlan and Hall109 N/A

Other

ZEISS LSM 980with Airyscan 2microscope ZEISS ZEISS LSM 980 with Airyscan

Elyra 7 microscope ZEISS Elyra 7

Nanoimager microscope ONI Nanoimager

ClinVar ClinVar ClinVar: https://ftp.ncbi.nlm.nih.gov/pub/

clinvar/vcf_GRCh38/archive_2.0/2023/

clinvar_20230903.vcf.gz https://ftp.ncbi.

nlm.nih.gov/pub/clinvar/tab_delimited/

variant_summary.txt.gz

Uniprot Swiss-Prot Uniprot ClinVar: https://ftp.uniprot.org/pub/

databases/uniprot/current_release/

knowledgebase/idmapping/by_organism/

HUMAN_9606_idmapping_selected.tab.gz

https://ftp.uniprot.org/pub/databases/

uniprot/current_release/knowledgebase/

idmapping/by_organism/HUMAN_9606_

idmapping.dat.gz

Brownian dynamics simulations

of proteins with surface cysteines

This work GitHub: https://github.com/younglab/

proteolethargy
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METHOD DETAILS

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Constructs and construct generation

For tagging endogenous proteins (IR, MED1, HP1a, FIB1, and SRSF2) with GFP, HaloTag, or GFP-5xSer/Cys, the homology

directed repair (HDR) strategy of CRISPR was adopted. For this strategy, three components are needed: 1) Cas9 protein to cut

the DNA, 2) sgRNA to guide Cas9 to the desired target, and 3) a DNA repair template that contains the desired edit as well as

800 bp of homologous sequence immediately upstream and downstream of the target. The sgRNA sequence and Cas9 coding

sequence for transient expression of both in cells were integrated in the same plasmid (which was refer to as ‘‘sgRNA-Cas9

plasmid’’), while the repair templates were integrated into a second plasmid.

sgRNA-Cas9 plasmids

20 bp of target sequences were cloned into a plasmid containing sgRNA backbone, a codon-optimized version of Cas9,

and mCherry. The mCherry was used during FACS sorting to select for Cas9-mCherry+ cells. Constructs for the generation of

MED1-GFP, HP1a-GFP, SRSF2-GFP, FIB1-GFP, and insulin receptor-GFP (IR-GFP) cell lines were described in previous publica-

tions.28,103 To generate the IR-Y1361C-GFP cell line, the following sgRNA sequences with PAM sequence in parentheses were

used for CRISPR/Cas9 editing:

sgRNA_IR_C-term_1: CACGGTAGGCACTGTTAGGA(AGG)

sgRNA_IR_C-term_2: TAGGCACTGTTAGGAAGGAT(TGG)

sgRNA_IR_C-term_3: CCTCCGTTCATGTGTGTGTA(AGG)

The other sgRNA sequences are reported in previous publications.28,103

Cloning was performed using NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S) according to manufacturer’s

specifications.

Repair templates for GFP tagging

Approximately 800bp of Homo sapiens genomic DNA sequences flanking the Cas9 cutting sites were cloned into the pUC19 vector

using NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S), with in-frame monomeric enhanced fluorescent protein (GFP)

sequence being inserted together with a flexible 10-animo acid linker sequence (GGSGGGGSGG) to space the fluorophore

and the protein of interest. Constructs for MED1-GFP, HP1a-GFP, SRSF2-GFP, FIB1-GFP, and IR-GFP cell line generations are

described in previous publications.28,103 For the IR-Y1361C-GFP cell line generation, the homology repair template consists of

INSR exon 22 containing the Y1361C missense mutation in frame with GFP flanked on either side by 800-bp homology

arms amplified from HepG2 genomic DNA using PCR. For SRSF2-GFP-Ser/Cys cell line generation, the SRSF2-GFP repair

template was modified to fuse SRSF2-GFP to a flexible linker followed by either a 5xSer array or a 5xCys array. The 5xSer array

contains 5 serines spaced by a rigid linker (AEAAAKEAAAKA),110 while the 5xCys array contains 5 cysteines spaced by the same

rigid linker.110 These constructs were cloned using NEBuilder HiFi DNA Assembly Master Mix.

Repair templates for HaloTag tagging

Constructs for MED1-HaloTag, HP1a-HaloTag, SRSF2-HaloTag, FIB1-HaloTag, and IR-HaloTag were generated by replacing the

mEGFP with HaloTag in the repair templates using NEBuilder HiFi DNA Assembly Master Mix.

To generate cells for doxycycline-inducible expression of GFP, HaloTag, HaloTag-Ser/Cys, or AviTag-HaloTag-Cys/BirA-SNAP, a

PiggyBac vector28 was used to make the GFP, HaloTag or SNAP-tag containing construct.

PiggyBac vectors for doxycycline-inducible expression of GFP, HaloTag or SNAP

Sequences of SiriusGFP, HaloTag, or SNAP-tag were cloned using NEBuilder HiFi DNA Assembly Master Mix into a doxycycline-

inducible, PiggyBac vector, which was described in our previous publication.28

PiggyBac vectors for doxycycline-inducible expression of HaloTag-Ser/Cys arrays

Constructs for doxycycline-inducible HaloTag-Ser and HaloTag-Cys were generated by inserting the coding sequence for HaloTag

protein whose C-terminal is fused to a flexible linker (GAPGSAGSAAGGSGA)111 and to an array containing either 5 serines or 5

cysteines which are separated by a rigid linker (AEAAAKEAAAKA)110 into a PiggyBac vector. Constructs were made using NEBuilder

HiFi DNA Assembly Master Mix.

PiggyBac vectors for doxycycline inducible expression of AviTag-HaloTag-Cys and BirA

Constructs for doxycycline-inducible HaloTag-Ser and HaloTag-Cys were generated by inserting coding sequences for the

constructs into PiggyBac vectors. The AviTag-Halo-Cys construct encodes the coding sequence for HaloTag-Cys construct

described above with the AviTag peptide (GLNDIFEAQKIEWHE) with FLAG and HA tags all separated by flexible linkers (PGGSG)

fused to the N-terminus. The BirA construct encodes a coding sequence for a human codon-optimized version of BirA with a C-ter-

minal flexible linker (GAPGSAGSAAGGSGA) followed by a SNAP-tag and HA-tag. Constructs were made using NEBuilder HiFi DNA

Assembly Master Mix.
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Cell editing

Selection criteria for the studied endogenous proteins

We chose for study a plasma membrane receptor (insulin receptor, IR), a transcriptional cofactor (Mediator subunit MED1), a

regulator of heterochromatin (heterochromatin protein HP1a), a component of the nucleolus (fibrillarin, FIB1) and a subunit of the

mRNA splicing apparatus (serine and arginine-rich splicing factor 2, SRSF2) for multiple reasons. These proteins are well-studied

and important regulators of diverse processes in cells (signaling, gene expression, gene silencing, rRNA biogenesis and splicing,

respectively). The biological processes associated with these proteins have been shown to be dysregulated in prevalent syndromes.

The expression level of these proteins in the liver is similar between healthy donors and patients with type 2 diabetes.112 Previous

studies have shown that the endogenous proteins can be successfully tagged with fluorescent probes.28,44,103,111,113 When labeled

with florescent probes, they retained their ability to concentrate in the proper locations in cells.28,44,103,111,113 All these proteins have

been reported to assemble into condensate compartments together with other biomolecules with shared functions.28,44,49,53,113

Endogenously tagged cell line generation

The IR-GFP cell line used here was generated in our previous study.28 A CRISPR/Cas9 system is used to generate genetically

modified HepG2 cell lines as previously performed.28 1 3 106 cells were transfected with 1.5 mg sgRNA-Cas9 plasmid and 1.5 mg

of homology repair template using Lipofectamine 3000 (Invitrogen, L3000). 24 hours post-transfection, transfection media was

replaced with fresh cell culture media (EMEM-FBS). To enrich for transfected cells, cells were sorted 72 hours after transfection

based on the expression of mCherry fluorescent protein encoded from the sgRNA-Cas9 plasmid. mCherry positive cells were

expanded for 1.5 to 2 weeks before a second sorting for the expression of GFP or HaloTag. To sort based on HaloTag expression,

cells were cultured for 15 minutes with Janelia Fluor 585 (a gift of the Lavis Laboratory) prior to sorting. Cells were then expanded

and the cell lines were validated by Western blot, PCR genotyping using Phusion polymerase (Thermo Fisher Scientific, F531S)

and imaging experiments.

To generate the clonal cell line used in Figures 4H and 4I, after the second sort, single cells were plated into individual wells of a

96-well plate. The single cells were cultured for 1–1.5 months in conditioned media. To make conditioned media, HepG2 cells were

first cultured in fresh media (EMEM-FBS) for 3 days and this media was subsequently harvested. Conditioned media was then made

by mixing the harvested media 1:1 with fresh media and filter-sterilizing prior to use.

Genotyping PCR was performed according to the manufacturer’s specifications, using the following primers:

IR_fwd: GGAGAATGTGCCCCTGGAC

IR_rev: TTGGTAACCAAACGAGTCCACCT

Doxycycline inducible expression cell line generation

APiggyBac transposon system (Systems Biosciences) was used for stable integration. 13 106wildtype HepG2 cells were plated in a

6-well plate and simultaneously transfected with 0.5 mg of the PiggyBac expression vector and 0.2 mg of a plasmid encoding

PiggyBac transposase (gift of Jaenisch lab) using Lipofectamine 3000 (Invitrogen, L3000). 24 hours post-transfection, transfection

media was replaced with freshmedia, EMEMwith 10%FBS. 72 hours post-transfection, the cells were treated withmedia containing

150 mg/mL hygromycin (Thermo Fisher Scientific, 10687-010) (for cells edited to express HaloTag-Cys, HaloTag-Ser, and AvTag-

Halo-Cys) or 2 mg/mL puromycin (Millipore, P4512-1MLX10) (for cells edited to express BirA-SNAP). Selection media was refreshed

every 3 days and un-transfected cells were also treated with hygromycin as a positive control, confirming the efficiency of selection.

Typically, 7-10 days were required for the hygromycin to kill all the non-transfected HepG2 cells. For cells with doxycycline-inducible

co-expression of AviTag-Halo-Cys and BirA-SNAP, additional sorting was applied to get cells with low expression of both proteins

and minimized cell-to-cell expression variability when performing doxycycline induction: cells were treated with 10 ng/mL doxycy-

cline overnight, followed by co-staining with 50 nM of Halo-JF549 and 50 nM SNAP-JF646 for 20 minutes and proceeding to FACS

sorting.

Cell viability

Cell viability was measured by mixing 1:1 TrypanBlue (Invitrogen, T10282) with single cell suspension, then 10 ml of the TrypanBlue/

cell mixture was loaded into Countess cell counting chamber slides (Invitrogen, 100078809) and viability was measured using the

Countess 3 FL (Invitrogen). All samples were prepared in biological triplicate.

Cell treatments for HepG2

Insulin treatment

The cell plating and insulin treatment regime used in this study is the same as the one previously published.28 Cells were seeded at a

density of 32,000 cells/cm2 onto 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C). Starting the day after plating,

cells were serum-starved for two days by washing the plates twice with EMEMmedia without FBS (EMEM) and maintaining the cells

in EMEM for 48 hours. Then cells were treatedwith EMEMsupplementedwith 0.125% fatty acid-free BSA (Sigma-Aldrich, A8806-5G)

(‘‘EMEM-BSA’’) that contained either 1) 0.1 nM insulin (Sigma-Aldrich, I9278-5ML) or 2) 3nM insulin, which are the concentrations of

insulin in the portal vein of healthy and insulin resistant patients.46 The media was refreshed twice per day (every �12 hours) for

3 days. This treatment regime produced either a baseline ‘‘normal’’ signaling state or a ‘‘pathogenic’’ elevated signaling state.28

To ensure that the protein mobility was due to the cellular state and not due to differences in the concentration of insulin, insulin

wash-outs were performed. Insulin wash-outs were performed by extensively washing cells with EMEM: the cells were washed
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six times each with 2mL of EMEM, including three quick washes, two 5 min washes, and a 15 min wash at 37 �C. Cells were then

acutely treated with 3 nM insulin for 5 minutes in EMEM-BSA at 37 �C with 5% CO2 in a humidified incubator and then subjected

to the desired assay.

H2O2 treatment

For experiments in Figures 3E, 3F, S4C, and S4D, cells were seeded at a density of 32,000 cells/cm2, serum-starved for two days as

described above. Then cells were treated with EMEM-BSA containing 0.1 nM insulin for three days refreshing the media containing

insulin twice per day (every �12 hours). Following a quick wash in EMEM, cells were treated with 0 mM or 7.5 mM H2O2 (Sigma-

Aldrich, H1009) in EMEM for 5 minutes. This treatment regime was selected because it lead to a similar degree of oxidative stress

as pathogenic insulin (see Figures 3B and 3C and ‘‘metabolomics for quantification of GSSG and GSH ratio’’ below) and minimizes

potential indirect effects of extended H2O2 treatment. Cells were then subjected to the desired assay. For the H2O2 titration exper-

iment in Figure 5, cells were seeded at a density of 100,000 cells/cm2, serum-starved for two days, followed by treating with

0, 1, 3, 8, or 20 mM H2O2 in EMEM for 5 minutes before proceeding to imaging. For Figure S6A, cells were plated at a density of

56,000 cells/cm2. When cells reached 80-90% confluency, cells were washed with EMEM once for 30 minutes before treating the

cells with 0, 0.1, 1 or 20 mM H2O2 for 5-10 minutes. Cells were then collected for western blot. For Figure S7D, cells were cultured

in EMEM for 2 days and in EMEM BSA containing 0.1nM insulin for 2 days. Following washes with EMEM as described above, cells

were treated with 20mMH2O2 for 30 minutes and then stimulated with 3nM insulin in EMEM-BSA for 5 minutes at 37 �Cwith 5%CO2

in a humidified incubator. Cells were then processed for immunofluorescence.

N-acetyl cysteine (NAC) treatment

Cells were seeded at a density of 32,000 cells/cm2, serum-starved for two days as described above. Following serum starvation, the

cells were treated with 1) EMEM-BSA containing 3 nM insulin for two days and then with 2) EMEM-BSA containing 3 nM insulin and

1 mM NAC (Sigma-Aldrich, A9165-25G) for one day, refreshing the media twice per day (every �12 hours). We treated the cells with

1mM NAC for 24 hours, because it is reported as a clinically relevant concentration114 and treating HepG2 cells with 1mM NAC for

24 hours partially restores insulin signaling.28 Insulin washouts and final stimulation was performed as described above. For NAC

treatments of cells expressing IR-Y1361C mutant protein, cells were seeded at a density of 32,000 cells/cm2 in 35mm glass-bottom

dishes, serum-starved for 16 hours and treated with EMEM-BSA containing 0.1 nM insulin and 1mMNAC for two days refreshing the

media twice per day (every�12 hours). Insulin washouts and final stimulation was performed as described above and cells were then

subjected to the desired assay.

NEM with H2O2 treatment

Cells were seeded at a density of 55,000 cells/cm2 in 35mmglass-bottom imaging dishes (Mattek, P35G-1.5-20-C) and the following

day were washed once with EMEM and then serum-starved in 2 ml of EMEM for 24 hours as described above. 100 mM N-ethyl mal-

eimide (NEM) (Thermo Fisher Scientific, 156100500) stock solution was freshly prepared in sterile water prior to experiments. A final

concentration of 0 or 10 mM NEM in EMEM was added to cells and incubated at 37�C, 5% CO2 for 10 minutes, then the cells were

treatedwith H2O2 (Sigma-Aldrich, H1009) to a final concentration of 7.5mMand imaged immediately. Imaging did not proceed longer

than 10 minutes to limit secondary effects from extended hydrogen peroxide treatment.

High glucose treatment

Cells were seeded at a density of 100,000 cells/cm2, and then serum-starved for 16 hours. Cells were then cultured in media con-

taining high glucose concentrations (EMEM supplemented with 33 mM of glucose, Sigma-Aldrich, G8270) or in media containing

physiological concentrations of glucose (EMEM supplemented with 33 mM of mannitol, Sigma-Aldrich, M1902) for 12 hours.

EMEMmedia provides physiological concentrations of glucose, andmannitol is used to ensure cells are under similar osmolarity con-

ditions as the high glucose condition. Cells were then subjected to the desired assay.

High fat treatment

Cells were seeded at a density of 32,000 cells/cm2, and then serum-starved for two days as described above. Cells were then

cultured for two days with either EMEM supplemented with fatty acids and BSA (EMEM-HF) or with EMEM-BSA as a control. For

EMEM-HF, a 50x stock solution is first made by supplementing EMEM with the following components to the indicated concentra-

tions: 6.25% fatty acid-free BSA (Sigma-Aldrich, A8806-5G), 2.25 mM oleic acid (Sigma-Aldrich, O7501), and 1.5 mM palmitic

acid (Sigma-Aldrich, P9767). This mixture was then incubated at 37�C for 1 hour with constant shaking in a thermomixer. The stock

solution was then diluted 1:50 for use in experiments resulting in a final concentration of 0.125% BSA, 45 mM oleic acid and 30 mM

palmitic acid for cell treatments. Media was refreshed twice a day (every�12 hours). Cells were then subjected to the desired assay.

Tumor necrosis factor alpha (TNFa) treatments

Cells were seeded at a density of 32,000 cells/cm2, and then serum-starved for two days as described above. Cells were then treated

with EMEM-BSAmedia with/without 10 ng/ml Human TNF-aRecombinant Protein (Thermo Fisher Scientific, PHC3016) for two days,

refreshing the media twice per day (every �12 hours). The cells were then subjected to the desired assay.

Etoposide treatment

Cells were seeded at a density of 100,000 cells/cm2 for etoposide treatment and 10,000 cells/cm2 for DMSO control. The differences

in seeding densities were required to ensure both sets of cells eventually reached similar levels of confluency, as etoposide blocks

cell proliferation. Cells were treated with EMEM-FBS media containing 1) 1.5 mM etoposide (Thermo Scientific Chemicals, J63651,

reconstituted in DMSO) or 2) the same volume of DMSO (Sigma-Aldrich, D2438) as a DMSO control. After 3 days, cells were treated

again with 1.5mM etoposide or DMSO for 3 more days. Cells were then subjected to the desired assay.
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Lipopolysaccharide (LPS) treatment

Cells were seeded at a density of 100,000 cells/cm2, and then serum-starved for 16 hours. Cells were then cultured in EMEM con-

taining 1 mg/ml of LPS (Sigma-Aldrich, L2630) for 24 hours. Cells were then subjected to the desired assay.

N-acetyl-p-benzoquinone imine (NAPQI) treatment

Cells were seeded at a density of 32,000 cells/cm2, and then serum-starved for 2 days. Cells were then treated with EMEM media

containing 150mMNAPQI (Sigma-Aldrich, A7300-1mg) in DMSO or with EMEMmedia containing DMSO as a control for 15minutes.

Cells were then subjected to the desired assay.

BirA/Avi Assay

Cells were treated with the insulin treatment described above. For each treatment with insulin besides the acute stimulation, 1 ng/ml

doxycycline was added. 10 mM biotin (Millipore, B4501) was added to the acute insulin treatment and cells were incubated at 37�C
5% CO2 for 5 minutes and subjected to the desired assay.

Cell treatments for C2C12

Insulin treatment

Cells were seeded at a density of 100,000 cells/cm2 onto 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C) for im-

aging. Starting the day after plating, cells were serum-starved for two days by washing the plates twice with DMEM media without

FBS (DMEM) and maintaining the cells in DMEM for 48 hours. Then cells were treated with DMEM supplemented with 0.125% fatty

acid-free BSA (Sigma-Aldrich, A8806-5G) (‘‘DMEM-BSA’’) that contained either 1) 0.1 nM insulin (Sigma-Aldrich, I9278-5ML) or 2)

3nM insulin. The media containing insulin was refreshed twice per day (every �12 hours) for two days. This treatment regime pro-

duced either a baseline ‘‘normal’’ signaling state or a ‘‘pathogenic’’ elevated signaling state.28 Right before imaging, insulin wash-

outs were performed as follows: in total six washes with 2mL of DMEM each, including three quick washes, two 5 min washes,

and a 15 min wash at 37 �C. Cells were then acutely treated with 3 nM insulin for 5 minutes in DMEM-BSA at 37 �C with 5% CO2

in a humidified incubator and then subjected to the desired assay.

High glucose treatment

Cells were seeded at a density of 100,000 cells/cm2, and then serum-starved for 16 hours. Cells were then cultured in media con-

taining high glucose concentrations (DMEM supplemented with 33 mM of glucose, Sigma-Aldrich, G8270) or in media containing

physiological concentrations of glucose (DMEM supplemented with 33mM of mannitol, Sigma-Aldrich, M1902) for 12 hours.

DMEM media provides physiological concentrations of glucose, and mannitol is used to ensure cells are under similar osmolarity

conditions as the high glucose condition. Cells were then subjected to the desired assay.

High fat treatment

Cells were seeded at a density of 100,000 cells/cm2. After one day, cells were then cultured for one day with either DMEM-FBS sup-

plemented with 200 mM palmitic acid (Sigma-Aldrich, P9767) (DMEM-HF) or with DMEM-FBS supplemented with 200 mM BSA as a

control. For DMEM-HF, a 50x stock solution was first made by supplementing DMEMwith the following components to the indicated

concentrations: 6.25% fatty acid-free BSA (Sigma-Aldrich, A8806-5G) and 10 mM palmitic acid (Sigma-Aldrich, P9767). This mixture

was then incubated at 37�C for 1 hour with constant shaking in a thermomixer. The stock solution was then diluted 1:50 for use in

experiments resulting in a final concentration of 0.125% BSA, 200 mM palmitic acid for cell treatments. Cells were then subjected

to the desired assay.

Tumor necrosis factor alpha (TNFa) treatment

Cells were seeded at a density of 100,000 cells/cm2, and then serum-starved for two days as described above. Cells were then

treated with DMEM-BSA media with/without 10 ng/ml Human TNF-a Recombinant Protein (Thermo Fisher Scientific, PHC3016)

for two days, refreshing the media twice per day (every �12 hours). The cells were then subjected to the desired assay.

Etoposide treatment

Cells were seeded at a density of 100,000 cells/cm2 for etoposide treatment and 1,000 cells/cm2 for DMSO control. The differences in

seeding densities were required to ensure both sets of cells eventually reached similar levels of confluency, as etoposide blocks cell

proliferation. Cells were treated with DMEM-FBS media containing 1) 1.5 mM etoposide (Thermo Scientific Chemicals, J63651, re-

constituted as 10mM in DMSO) or 2) the same volume of DMSO (Sigma-Aldrich, D2438) as a DMSO control. After 3 days, cells

were treated again with 1.5mM etoposide or DMSO control for 3 more days. Cells were then subjected to the desired assay.

Lipopolysaccharide (LPS) treatment

Cells were seeded at a density of 100,000 cells/cm2, and then serum-starved for 16 hours. Cells were then cultured in DMEM con-

taining 1 mg/ml of LPS (Sigma-Aldrich, L2630) for 24 hours. Cells were then subjected to the desired assay.

N-acetyl-p-benzoquinone imine (NAPQI) treatment

Cells were seeded at a density of 100,000 cells/cm2, and then serum-starved for 2 days. Cells were then treated with DMEM media

containing 150 mMNAPQI (Sigma-Aldrich, A7300-1mg) in DMSO or DMSO as a control for 15 minutes. Cells were then subjected to

the desired assay.
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Live-cell imaging experiments: general setup

General imaging conditions

Cells were plated on 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C). For imaging doxycycline inducible proteins,

0.1 mg/ml of doxycycline was added to the media 8-12 hours prior to imaging. Cells were imaged for no longer than 10minutes inside

an incubation chamber supplemented with warmed (37�C) humidified air and with 5% CO2. For exogenous GFP or HaloTag visual-

ization, the cells were also stained with 1:20,000 of Hoechst 33342 (Thermo Scientific, 62249) for 10minutes to stain the nuclei before

imaging.

Live-cell super-resolution microscopy

ZEISS LSM 980 with Airyscan 2 was used to acquire the super-resolution images of GFP-/HaloTag-tagged proteins. Cells were

imaged with a ZEISS incubation system that stably maintained the samples at 37�Cwith 5%CO2 and humidified air. A 63X objective

with oil immersion was used. For GFP-tagged proteins, 488 nm laser was used for excitation. For Halo-tagged proteins, cells were

first incubated with media containing 100 nM Janelia Fluor 549 (Halo-JF549, Promega, GA1110) for 15 minutes. The cells were then

washed with fresh media and then cultured at 37�C with 5% CO2 for 10 minutes before imaging with 561 nm laser excitation and the

mCherry filter for emission. Due to the various expression levels of different proteins, the laser power was adjusted for each protein,

such that the brightest pixels remained below the saturated levels of the detection range (maximum brightness = 255 for 8-bit im-

ages). Following raw image acquisition, Airyscan super-resolution processing was performed via ZEN Blue.

Fluorescence recovery after photobleaching (FRAP)

ZEISS LSM 980 with 63X objective, oil immersion was used to perform FRAP experiments on GFP-tagged proteins in live cells. The

acquisition mode, laser power, time interval between frames, total number of frames, and other FRAP-specific settings were custom-

ized for each protein of interest (POI) such that each experiment would satisfy four criteria: (1) have sufficient signal, (2) have sufficient

duration to capture recovery, (3) have sufficient temporal resolution, (4) endure minimal photobleaching throughout the time course.

Detailed configurations for different protein targets are summarized in Table S5. For each single FRAP acquisition course, several

frames were first recorded to establish pre-bleach levels of signal, followed by photobleaching with 100% laser power of a 2mm-

by-2mm square region. For insulin receptor, this square region contained a portion of the plasma membrane. For MED1, HP1a,

and SRSF2, this square region contained an area of the relevant punctate high signal (a condensate). For FIB1, this square region

overlapped, but did not completely cover the nucleolus. For GFP, this square region was either randomly sampled within the nucleus

or randomly sampled within the cytoplasm. The number of bleaching cycles is reported in Table S5. After photobleaching, fluores-

cence recovery was recorded over time. Raw image series were processed via ZEN Blue (2D Airyscan processing), followed by drift

correction using a cross-correlation algorithm. Averaged intensity measurements from an unbleached region were further used to

correct for the photobleaching occurring during the image acquisition.

Statistical analysis was performed with the Statistics and Machine Learning Toolbox of MATLAB. A two-tailed student’s t-test was

used to generate p-values comparing timepoints at the later end of recovery curves, at which point recovery intensities had stabilized.

The number of timepoints (n) for each comparison was�6-13% of the total number of timepoints collected in the recovery curve (the

number of time points considered is specified in Table S5). All FRAP experiments were performed twice using a total of 4 biologically

independent samples. Each dish was imaged for no more than ten minutes to minimize secondary effects of extended treatment.

Single particle tracking (SPT)

ZEISS Elyra 7with 63X objective, oil immersion was used to perform SPT experiments onHalo-tagged for all proteins, except AviTag-

Halo-Cys and BirA-SNAP, in live cells. ONI Nanoimager with 100X objective, oil immersion was used to perform SPT experiments for

AviTag-Halo-Cys and BirA-SNAP in live cells. Cells were co-stained with two Halo dyes: one used for tracking individual molecules of

a protein and the other for visualizing the bulk distribution of the protein. After staining, cells were washed by incubating with fresh

media without dyes for at least 10 minutes. HILO illumination was used during the tracking. The detailed sample preparations and

configurations of SPT for different proteins are summarized in Table S5. For the tracking of AviTag-Halo-Cys and BirA-SNAP, cells

were first incubated with media containing 0.1 nM Janelia Fluor 549-Halo and 0.1 nM Janelia Fluor 646-SNAP (a generous gift from

Luke Lavis Lab at Janelia Farm Research Campus) for 20 minutes and molecules were tracked at 100 Hz acquisition rate with 35%

laser power. There are four major steps in the SPT analysis to obtain single molecule trajectories: pixelwise peak detection, subpixel

localization of the peaks, reconnection of the peaks (to construct trajectories) and validation of trajectories. For the first three steps,

point spread functions (PSFs) from single molecules were detected, subpixel-localized, and reconnected with custom code in

MATLAB based on the published multiple-target tracing (MTT) tool.115 During the pixelwise peak detection step, for each

pixel, two hypotheses H0 and H1 were compared based on a generalized likelihood ratio test, where H0 defines the non-presence

of particles and H1 the presence of a particle at the center of the pixel. Valid peaks were identified with a constant false alarm

rate (z1.5310-6). Additional peaks were identified with a B-spline wavelet filter.116 The subpixel localization of the peaks was per-

formed by maximizing the likelihood of the PSF to match the local intensity distribution of a 7x7 pixel area using Gauss-Newton

regression. The reconnection of the peaks to construct trajectories was performed based on the multiple-target reconnection as

described in MTT,115with the prior maximum diffusion coefficients, the disappearance probability for blinking andmaximum number

of disappearance frames summarized in Table S5. A set of reconnected peaks comprises a trajectory. Validation of trajectories for

those occurring in the relevant biological compartments was performed using bulk distribution or nuclear stain as a reference. For

insulin receptors, the plasma membranes were manually selected by drawing polygons via MATLAB; for other proteins of interest,

nuclei or nucleoli regions were labeled by a deep learning based algorithm Cellpose.104
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Live-cell imaging experiments: analysis and additional validation

Inferring mobility from FRAP courses

With FRAP, we investigated protein mobility in cell models of disease at the length and time scales of 1-2 microns and (tens of) sec-

onds, with the additional question of whether protein mobility was altered both inside and outside of condensates. For the proteins

that could be reliably assigned to be within or outside of condensates during image acquisition (MED1, HP1a, FIB1 and SRSF2), a

square region containing both the condensate(s) and the surrounding dilute phase was imaged, allowing separate FRAP analyses

both inside and outside of the condensates. The areas inside the condensates (condensed region) and outside the condensates

(dilute regions) were differentiated by custom code in MATLAB by fitting the cumulative distribution of pixel-wise intensities of

each FRAP region to a two-step function, with the first step identifying the low-intensity pixels in the nucleus (the dilute region)

and the second step by identifying the high-intensity pixels with enriched fluorescent signal in the nucleus (the condensed region).

For FRAP outside the condensates, the dilute region was selected for analysis, and for FRAP inside the condensates, the condensed

phasewas selected for analysis. For insulin receptor (IR), due to the rapidmovement of IR condensates, we could not perform reliable

assignments of the condensate-occupied pixels throughout a FRAP acquisition course. Instead, the fluorescence signal analysis

was limited to the plasma membrane (where most signals are located), which was manually selected in ZEN Blue. For GFP alone,

the pixels inside the entire 2mm-by-2mm photobleached region were selected for fluorescence signal analysis as GFP alone does

not form condensates. For each frame of each FRAP course, the average intensity of selected pixels was calculated. The average

intensities from different frames were further normalized through the following linear transformation: the averaged intensity of pre-

photobleaching frames was set to 1, while the intensity right after photobleaching was set to 0. This resulted in a FRAP curve for

each independent photobleaching experiment. A single average FRAP curve from all replicate samples was obtained by plotting

the mean normalized pixel intensity and SEM for each timepoint. To evaluate the difference of protein mobility between any two con-

ditions, the maximum extent of recovery at the end of the recorded time window was compared. For this comparison, a two-tailed

student’s t-test was used to calculate statistical significance. Data points used for the comparison were chosen by selecting time

points where signal recovery was approaching an apparent plateau (listed in Table S5) and aggregating those signal intensities.

Statistical analysis was performed with the Statistics andMachine Learning Toolbox of MATLAB. A two-tailed student’s t-test was

used to generate p-values comparing timepoints at the later end of recovery curves, at which point recovery intensities had stabilized.

The number of timepoints (n) for each comparison was�6-13% of the total number of timepoints collected in the recovery curve (the

number of time points considered is specified in Table S5). All FRAP experiments were performed twice using a total of 4 biologically

independent samples. Each dish was imaged for no more than ten minutes to minimize secondary effects of extended treatment.

Inferring mobility from 2D SPT trajectories

We investigated protein mobility in cell models of disease at the length and time scales of (sub)micron and (sub)second, and focused

on the question of whether apparent diffusion rates are reduced under pathogenic conditions. We used a wide-field microscope to

measure planar (XY) movement at a desired, feasible length/time scale. The use of 2D projections to measure apparent diffusion

coefficient (D) has been a widely used approach,117–120 given the assumption that the molecules diffuse isotropically along the

three-dimensional axes X, Y and Z. This assumption is supported by the observation that a similar apparent diffusion coefficient

was observed when Sox2–a nuclear protein–was tracked in 3D (Dz2.5mm2/s121) and 2D projection in XY (Dz2.8mm2/s118). To

provide a scalar measurement of the molecular movement we infer from a given SPT trajectory, we calculate an apparent diffusion

coefficient for each trajectory. This value D is derived from the relationship between the mean square displacement (MSD) versus

timelag (t). Only trajectories with at least 5 reconnected peaks were selected. For trajectories with more than 20 reconnected peaks,

only the first 20 peaks were used for estimating the D. A linear regression between MSD and timelag with an additional zero-order

term (localization error due to limited spatial resolution) was used to fit the apparent diffusion coefficient in two dimensions:

MSDðtÞ = 4Dt + s2. At this point, we obtained the fitted D for each trajectory, which was a reliable estimation only if 1) the D was

above the effective magnitude caused by localization error, and 2) the fitting noise was relatively low. To filter for reliable D above

the localization uncertainty, molecules with DR0.01 mm2/s for endogenous proteins and DR0.1 mm2/s for exogenous HaloTag

were selected for the analysis (drop-off ratex 10-30%), To filter for reliable D with low fitting noise, molecules whose fitting residual

was below the MSD of one-frame timelag were selected for the analysis (drop-off rate x 5%-10%). These two filters were sequen-

tially applied to obtain the final well-fitted trajectories. Mann-Whitney test was used to evaluate the statistical significance between

the diffusion coefficients in different conditions. For HepG2 cells, all SPT experiments were performed in 4 biologically independent

samples, for C2C12 cells, all SPT experiments were performed in 2 biologically independent samples. In this work, we are using

mobility to describe the transit of individual molecules or ensembles of molecules through space over a given unit time. Such move-

ment is likely to be the net effect of diverse forces within the cell. In this work, the duration of tracking mostly ranges from 0.02s-0.1s,

with a temporal resolution of 4ms-10ms, and spatial resolution of 30nm-80nm.

Evaluation of the comparability between FRAP and SPT – general setup

There are two biophysical parameters inferred from both FRAP and SPT that can be used to address how comparable the values

generated by these two methods are: (1) fraction of immobile molecules; (2) apparent diffusion coefficient of mobile molecules.

For (1), we used five endogenously tagged proteins (IR, MED1, HP1a, FIB1, and SRSF2) which are known to have a ‘‘bound state’’

and thus a putative immobile fraction of molecules; For (2), we used exogenously expressed GFP vs HaloTag with the assumption

that these proteins demonstrate homogeneous apparent diffusion coefficients throughout the nucleoplasm.
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Evaluation via the fraction of immobile molecules

We used SpotOn118 to evaluate the fraction of immobile molecules by SPT, which requires two hyperparameters: 1) the total number

of diffusivity states and 2) the axial detection range. An estimate of the total number of diffusivity states is achieved by identifying the

minimum number of Gaussian functions needed to sufficiently fit the logD distribution of individual molecules (Figure S2A).120 The

fitting residual was plotted as a function of the number of Gaussian functions (N) tested to perform the fitting, and the minimum num-

ber of Gaussian functions needed was the inflection point of the residual-N relation. We found MED1 can be well fitted by 2 states,

and other targets are well fitted by three states. An estimate of the axial detection range is achieved by examining a z-stack scan of

fixed cells with sparsely labeled PAJF549molecules to establish a limit of expectations for focal depth within which a single molecule

can be consecutively tracked. We concluded that the focal depth (dz) peaked at �900nm for our specific setup (Figure S2B). These

values were used in SpotOn to estimate of the fraction of immobile molecules by SPT (Figure S2C).

For FRAP datasets, we fitted the normalized recovery curve to the following equation:

IðtÞ = f$
�

1 � 2� t=t
�

;

Where 1 � f would be the immobile fraction. The fraction of immobile molecules estimated via two methods are indeed comparable

(Figure S2C): FIB1 shows the highest immobile fraction among the five proteins tested; IR, HP1a, and SRSF2 showed relatively lower

immobile fractions in both SPT and FRAP. The immobile fractions estimated by FRAP were slightly lower compared to those

estimated by SPT. Given that SPT can capture stable immobile events, and transient immobile events in a timescale as short as

�10-2 s, while FRAP is only sensitive to intermediate/long-term immobile events in a timescale of �101 s, this could explain why

the immobile fractions estimated by FRAP are consistently lower.

Evaluation via the apparent diffusion coefficient of mobile molecules

The HaloTag tagged with a JF646 molecule (�34kDa in total) and GFP (�27kDa) have comparable protein size; we thus expect that

the intrinsic diffusion coefficients of these two proteins should be similar. For SPT, we estimated the apparent diffusion coefficient of

HaloTag by calculating the average apparent diffusion coefficient of mobile molecules. For FRAP, we estimated the apparent

diffusion coefficient of GFP by matching the experimental FRAP data to a theoretical model of the diffusion process within a

photobleached area. Wemodeled the theoretical diffusion process of a photobleached region (l3 l) as the following partial derivative

equation (PDE) problem:

vu

vt
= D

�

v
2u

vx2
+

v
2u

vy2

�

;0< x < l;0 < y < l; t > 0;

uRx = 0 = 0; uRx = l = 0; 0% y% l; tR0;

uRy = 0 = 0; uRy = l = 0; 0% x% l; tR0;

uRt = 0 = 1 � fðx; yÞ;0% x% l;0% y% l:

In this PDE problem, uðx; y; tÞ is the normalized density of photobleached molecules of a certain pixel ðx; yÞ at certain time t.

x; y = 0 or l are boundaries. fðx; yÞ is the normalized pixelwise intensity (i.e., normalized density of intact molecules) right after

photobleach (t = 0), thus 1 � f is the density of photobleached molecules at t = 0 (the total normalized intact molecules plus

photobleached molecules always equals 1 within each pixel). In the spirit of separation of variables, one general analytical so-

lution that satisfied the boundary conditions was derived as:

uðx; y; tÞ =

X

N

n;m = 1

Anm 3 sin
np

l
x 3 sin

mp

l
y 3 exp

�

�
�

�np

l

�2

+

�mp

l

�2
�

Dt

	

;

Where the coefficients of different modes were computed as:

Anm =

4

l2

ZZ l

0

ð1 � fðx; yÞÞ3 sin
np

l
x3 sin

mp

l
ydxdy:

TheD is determined when the 2-norm residual of the uðx; y; tÞ throughout the whole FRAP process between the experimental mea-

surement and the theoretical prediction are minimized. The calculations were done by custom MATLAB code. The diffusion coeffi-

cient of HaloTag estimated from SPT is 5.3±0.2 mm2/s, and the diffusion coefficient of GFP estimated from FRAP is �6 mm2/s
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(Figure S2D). Given that the relation between the molecular weight (M) and diffusion coefficient is D � M�0.33,122 the diffusion coef-

ficient of a ‘‘weighted GFP’’ (�34kDa) estimated from FRAP would have been �5.5 mm2/s. Therefore, the apparent diffusion coeffi-

cient estimated via two methods are comparable indeed.

Estimation of the localization uncertainty

To experimentally derive a lower bound for apparent diffusion constants that indicatemolecules that aremoving, we examined a fixed

sample of cells with sparsely labeled HaloTag-PAJF549 molecules. As these molecules are fixed, diffusion constants derived would

theoretically represent ‘‘no movement’’. The distribution of apparent diffusion coefficient fitted from individual molecules in fixed

sample centered around D�0.01 mm2/s (Figure S2E), and this pseudo diffusivity is due to the localization uncertainty of single mol-

ecules at each frame. Therefore, we used 0.01 mm2/s as the lower bound cutoff when filtering for truly mobile molecules for endog-

enous protein targets based on the limitation of the localization uncertainty. As for exogenously expressed HaloTag alone, because

most molecules are diffusive, we can apply a higher cutoff (D>0.1 mm2/s) to select mobile molecules in order to eliminate any false

positive mobile molecules without increasing the chance of false negative elimination (Figure S2F).

Validation of reconnecting during trajectory reconstruction

There are two main sources of error when reconstructing a trajectory from localizations: too stringent prior maximum allowed diffu-

sion coefficient (Dmax), or too great of localization density (Figures S2G–S2I). IfDmax is smaller than the typical diffusivity of the protein

of interest, it will result in an early stop of reconnecting peaks of signal of the samemolecule (Figure S2G), and the estimated apparent

diffusion coefficient will hit a ceiling set by Dmax (the estimated apparent diffusion coefficient is artificially low). To prevent this issue,

the Dmax we chose when reconnecting sequential peaks (Table S5) is much larger than the apparent diffusion coefficients estimated

from the final trajectories. It should be noted that for allDmax, the tracking process will still stop at some point, mainly due to either the

photobleach of the dye molecule, or the molecule moving out of the focus (Figure S2H). If the localization density per frame is too

great, there will be an increased likelihood that the trajectories of two different molecules form an ‘‘ambiguous connection’’. In

this situation, we expect to see an increase in the average number of jumps (connection between two consecutive peaks) per tra-

jectory (Figure S2I). To determine a threshold density that would minimize ambiguous connections in our experiments, we generated

IR-HaloTag SPT data with different peak density per frame, followed by reconnecting the peaks with the prior Dmax=6 mm2/s. We

found that the average number of jumps per trajectory starts to increase with peak density when the peak density is above

0.01 mm2/frame, andwe ensured peak densities of our experiments were always below this threshold density (Figure S2J). Therefore,

we concluded that the prior Dmax chosen for reconnecting is large enough to capture consecutive jumps for the same molecule, and

the peak densities of our actual experiments are low enough to avoid significant ‘‘ambiguous connection’’ given the prior Dmax.

Estimation of the false positive identifications of trajectories in SPT

The sources of false positive identifications of proteins in SPT include pixel noise, auto-fluorescence, and non-specific dye staining

(restricted to PAJF549). The control experiments are summarized in Table S6. The overall rate of false positive identification of tra-

jectories is either �5% (for JF646 staining) and �12% (for PAJF549 staining) at maximum. Therefore, we concluded that the SPT

dataset of the actual experiments are dominated by trajectories from real proteins of interest.

Diffusion coefficient comparisons based on bulk population or cell-based analysis of single particle trajectories

Diffusion coefficients were calculated as described above for each trajectory in the bulk population of the trajectories. Trajectories

were then grouped by cell. Diffusion coefficients were calculated as described above for each trajectory within a single cell, and the

median diffusion coefficient was selected for cell-based analysis. This process was repeated for each set of trajectories per cell. Re-

sults using the diffusion coefficients for the bulk population were compared to results using median diffusion coefficients from a cell-

level analysis to see if cell-level analysis would alter the interpretation of our results. Our results are consistent using both approaches

(Figure S2K).

Quantification of condensate properties

Three condensate properties were evaluated in both normal and pathogenic conditions: (1) number of condensates per cell in the

focal plane, (2) condensate size in diameter, and (3) the partition ratio, which can be defined as the relative enrichment of the intensity

inside the condensate versus outside the condensate. Live-cell super-resolution images taken by ZEISS LSM 980 with Airyscan

2 were used for such quantifications of GFP-tagged proteins.

The first step is to identify/segment puncta. We implemented two approaches to identify/segment puncta depending on the size,

morphology, and distribution of the protein condensates. Insulin receptor (IR), MED1 and FIB1 have relatively small condensates (less

than ten pixels in diameter), with a round shape and compact distribution, thus the Laplacian of Gaussian (LoG) Blob Detection

(sigma = 200nm, 500nm, and 450nm for IR, MED1 and FIB1, respectively) was applied to the images (MATLAB code source: Jason

Klebes, 2024. LoG Blob, GitHub), and puncta were identified with the quality filter set to 0.2. Additional intensity filters and partition

ratio filters were applied to call puncta, such that there was high agreement between auto-identified puncta and puncta called by a

trained eye. HP1a and SRSF2 have varying condensate sizes (ranging from several pixels tomore than ten pixels in diameter), with an

ellipse or irregular shape and dispersed distribution, thus the images were background-subtracted with a median filter (filter size =

2mm), followed by feature segmentation with Cellpose104—an AI-based segmentation tool—with the ‘‘cytoplasm’’ model (feature

dimension to be recognized = 1mm) to obtain the punctum features.

The second step is to quantify the three condensate properties of the identified puncta. To quantify the number of puncta in each

cell, the regions where puncta could be detected per cell were defined based on the GFP signal and the detected puncta in each cell
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were counted. To measure the condensate size, the full-width half-maximum was used as an estimator of IR, MED1 and FIB1 punc-

tum diameters. To measure the condensate size of HP1a and SRSF2, the area of each punctum feature segmented by Cellpose was

covered to an effective diameter with the formula: d = 2*(area/p)0.5. To quantify the partition ratio,123 the intensity inside the puncta

was divided by the intensity of the local dilute phase. The intensity of the local dilute phase for the plasmamembrane was used for IR,

and the intensity of the local dilute phase of the nucleoplasm was used for the rest of the proteins.

Western Blotting

Protein preparation

HepG2 cells were treated according to the specified treatment protocol, then the media was aspirated off and cells were washed

once with ice-cold PBS (Gibco, 10010-023) on ice. The PBS was then removed and Cell Lytic M (Sigma-Aldrich, C2978) supple-

mented with protease and phosphatase inhibitors (Sigma-Aldrich, 11873580001 and 4906837001) was added to each well to lyse

the cells. The cells were scraped with a plastic cell scraper, and the lysates were transferred to a 1.5 ml eppendorf tube and allowed

to rotate on a rotator for 15 minutes at 4�C. For proteins that required sheering of DNA to be accurately measured by Western blot

(MED1, HP1a, FIB1, SRSF2), the lysates were sonicated in 1.5ml Eppendorf tubes on ice water (15 seconds on, 20 seconds off, 30%

amplitude, for 3 cycles, Fisher Scientific, FB120Model CL-18) and then centrifuged at 12,000 x g for 15minutes. The supernatant was

transferred to a fresh 1.5 ml tube and the protein concentration was quantified using a BCA Protein Assay Kit (Life Technologies,

23250) according to the manufacturer’s instructions.

Preparations of western blot samples

For samples prepared in Figures 6E, 6F, S1, and S6A (blot with DTT, right side), dithiothreitol (DTT) and XT Sample Buffer 4x (BioRad,

1610791) were added to the purified proteins in reaction buffer or protein lysates to final concentrations of 100mM and 1x, respec-

tively and boiled at 95�C for 5 minutes. For western blot in non-reducing conditions, DTT was not added. For samples in Figure 6K,

2-mercaptoethanol andNative Sample Buffer (BioRad, 1610738) were added to the protein lysate to final concentrations of 2.5%and

1x, respectively, boiled for 5minutes at 95�Cand allowed to cool completely before addition of streptavidin (Invitrogen, 43-430-2) to a

final concentration of 10mM to cause a shift in molecular weight of proteins that were biotinylated by BirA.

Running western blot samples

5-35 mg of proteins were separated on 10% or 4-12% Criterion� XT Bis-Tris Protein Gel (BioRad, 3450112, 3450125) in XT MOPS

running buffer (Bio-Rad Laboratories, 1610788) at 100 V. Proteins were transferred to a 0.45-mm PVDF membrane (Millipore,

IPVH00010) in ice-cold transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol) at 300 mA for 2 hours at 4 �C. Membranes

were blocked in either 5% nonfat milk (LabScientific, M0842) dissolved in TBST (2% Tris-HCl pH 8.0, 1.3% 5 M NaCl, 0.05% Tween

20) or 5% BSA (VWR, 102643-516) in TBST for 1 hours at room temperature. Membranes were then incubated overnight at 4�C with

primary antibodies (list below) diluted in 5% nonfat milk in TBST or 5% BSA in TBST. Membranes were then washed three times in

TBST for 5 minutes at room temperature and then incubated with donkey anti-rabbit IgG (Cytiva Life Sciences, NA934-1ML, 1:10,000

dilution) or sheep anti-mouse IgG (Cytiva Life Sciences, NXA931V, 1:10,000 dilution) diluted in 5% nonfat milk in TBST for 1 hours at

room temperature. Membranes were washed three times for 10 minutes in TBST. Membranes were developed with ECL substrate

(Millipore, WBKL20500) and imaged using a CCD camera (BIO RAD, 1708265). The ‘‘analyze gel’’ tool on Fiji/ImageJ v2.1.0/153c was

used to quantify immunoblot signal. A two-tailed student’s t-test was used to generate p-values. Statistical analysis was performed

using Prism Version 9.4.0 (GraphPad, La Jolla, CA).

Primary antibodies for Western blotting:

Anti-insulin receptor (Cell Signaling, 3025, dilution 1:1000)

Anti-MED1 (Bethyl, A300-793A, dilution 1:1000)

Anti-HP1a (Abcam, ab109028, dilution 1:1000)

Anti-FIB1 (Abcam, ab5821, dilution 1:1000)

Anti-SRSF2 (Thermo Fisher, PA5-12402, dilution 1:1000)

Anti-b-actin (Sigma-Aldrich, A5441, dilution 1:10,000)

Anti-H3 (Cell Signaling, 4499, dilution 1:1000)

Anti-HA (Cell Signaling, 3724, dilution 1:1000)

Anti-pIRS1 (Cell Signaling, 3070, dilution 1:1000)

Anti-IRS1 (Cell Signaling, 2382, dilution 1:1000)

Anti-IRa (Cell Signaling, 74118, dilution 1:1000)

Immunofluorescence

Wildtype HepG2 cells were fixed with 4% paraformaldehyde in PBS for 10 minutes at room temperature (RT), washed three times

with PBS for 5 minutes at RT, permeabilized with 0.5% TX100 for 10 minutes at RT, washed with PBS for 5 minutes at RT, blocked

with 4% BSA (Jackson Immunoresearch Laboratories - 001-000-162) in PBS for 1 hour at RT. Cells were incubated with primary an-

tibodies diluted 1:500 in 4%BSA in PBS overnight at 4�C. Cells were washed three times with PBS for 5 minutes at RT and incubated

with secondary antibodies Goat anti-Rabbit IgG Alexa Fluor 488 (Life Technologies, A11008) or 555 (Life Technologies, A21428)
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diluted 1:500 in 4% BSA in PBS for 1 hour at RT. Cells were then washed in PBS three times for 5 minutes. Nuclei were stained with

Hoechst (Thermo Fischer Scientific, 3258) diluted 1:5000 in PBS for 5 minutes at RT and excess Hoechst was removed by washing

cells 3 times for 5 minutes with PBS. Cells were stored at 4�C in PBS and imaged using the ZEISS LSM 980 with Airyscan detector

using 63x objective. Raw image series were processed via ZEN Blue (2D Airyscan processing). Images were converted in JPEG

format using Fiji/ImageJ v2.1.0/153c.

Primary antibodies for immunofluorescence:

Anti-insulin receptor (Cell Signaling, 23413)

Anti-MED1 (Abcam, ab64965)

Anti-HP1a (Abcam, ab109028)

Anti-FIB1 (Abcam, ab582)

Anti-SRSF2 (Abcam, ab11826)

Anti-pIRS1 (Abcam, ab4873)

Fiji/ImageJ v2.1.0/153c was used to quantify pIRS1 fluorescence intensity. Since IRS1 gets phosphorylated in the cytoplasm, with

the rectangle selection tool, a rectangle was drawn in cytoplasmic regions. The average fluorescence intensity in the rectangle (= in

the cytoplasm) was determined using the measure tool on Fiji/ImageJ v2.1.0/153c. The background was then subtracted by a

threshold determined by measuring the background intensity in a rectangular region outside of the cells.

Metabolomics for quantification of GSSG and GSH ratio

All solvents, including water, were purchased from Fisher and were Optima LC/MS grade.

HepG2 cells were treated according to the specified treatment protocol in 6-well culture plates, then the media was removed, and

cells were washed twice with ice-cold PBS (Gibco, 10010-023) on ice. The PBS was then removed and 500 ml of ice-cold 80%meth-

anol (Thermo Fisher Scientific, A456-4)/ 20% LC-MS grade water (Thermo Fisher Scientific, W6-4) solution with isotope-labeled

amino acid mass-spec internal standards (Cambridge Isotope Labs, MSK-CAA-1) was added to each well on dry ice. The plate

was chilled at -80�C for a minimum of 15 minutes, then the cells were scraped for 30 seconds with a plastic cell scraper (Corning,

3008). The methanol-cell mixture was transferred to a 1.5 ml eppendorf tube (Eppendorf, 0223641). The well was washed again

with 300 ml of the ice-cold methanol solution to extract most of the remaining cells from the well, which was added to the same

1.5 ml eppendorf tube. The mixture was vortexed on high for 10 minutes at 4�C, then centrifuged on a table top centrifuge on

max speed for 10 minutes at 4�C. 600 ml of supernatant were removed from the tube and transferred to a fresh tube on dry ice.

The supernatant was dried for 5 hours at 4�C using a speed vac (Labconco 7310020), then resuspended in 1/10th of the volume

of the original supernatant in LC-MS grade water on ice. The resuspended metabolites were vortexed on high for 10 minutes at

4�C, then centrifuged on a table top centrifuge on max speed for 10 minutes at 4�C. The supernatant containing the endogenous

metabolites and internal standards were transferred to LC-MS vials and liquid chromatography and mass spec was carried out

by the Whitehead Institute Metabolomics Core.

Metabolite profiling was conducted on a QExactive bench top orbitrap mass spectrometer equipped with an IonMax source and a

HESI II probe, which was coupled to a Dionex UltiMate 3000 HPLC system (Thermo Fisher Scientific, San Jose, CA). External mass

calibration was performed using the standard calibration mixture every 7 days and an additional custom mass calibration was per-

formed weekly alongside standard mass calibrations to calibrate the lower end of the spectrum (m/z 70-1050 positive mode and m/z

60-900 negative mode) using the standard calibration mixtures spiked with glycine (positive mode) and aspartate (negative mode).

Typically, samples were reconstituted in 50 uL water and 2 uL were injected onto a SeQuant� ZIC�-pHILIC 150 x 2.1 mm analytical

column equipped with a 2.1 x 20 mm guard column (both 5 mm particle size; Millipore-Sigma). Buffer A was 20 mM ammonium car-

bonate, 0.1% ammonium hydroxide; Buffer B was acetonitrile (Thermo Fisher Scientific, A955-4). The column oven and autosampler

tray were held at 25�C and 4�C, respectively. The chromatographic gradient was run at a flow rate of 0.150 mL/min as follows: 0-

20 min: linear gradient from 80-20% B; 20-20.5 min: linear gradient form 20-80% B; 20.5-28 min: hold at 80% B. The mass spec-

trometer was operated in full-scan, polarity-switching mode, with the spray voltage set to 3.0 kV, the heated capillary held at

275�C, and the HESI probe held at 350+C. The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units, and

the sweep gas flow was set to 1 unit. MS data acquisition was performed in a range of m/z = 70-1000, with the resolution set at

70,000, the AGC target at 1x106, and the maximum injection time at 20 msec. Relative quantitation of polar metabolites was per-

formed with TraceFinder� 4.1 (Thermo Fisher Scientific) using a 5 ppmmass tolerance and referencing an in-house library of chem-

ical standards. Data were filtered according to predetermined QC metrics: CV of pools <25%; R of linear dilution series <0.975.

Metabolomics Analysis for quantification of GSSG and GSH ratio

FreeStyle (Thermo Scientific, Version 1.3) was used to check quality, mass shift, and retention time drift for eachmetabolite. TheMS2

spectra for eachmetabolite was also verified in FreeStyle. TraceFinder (Thermo Fisher Scientific, Version 4.1) was used to call metab-

olite peaks and determine raw peak areas. The peak detection defaults were as follows - Mass tolerance: 5 ppm, Retention time win-

dow: 30 sec, Ion Ratio Window type: relative +/- 20%, Ion coelution (min) 0.100, Detection algorithm: ICIS (Area noise factor: 5, Peak
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noise factor: 10, Baseline window: 40, Noise method: repetitive, Min peak width: 3, Multiplet resolution: 10, Area tail extension: 5).

Each peak was manually verified to have the correct shape, retention time, and m/z.

Peak area ratios were determined by normalizing the raw peak area for each metabolite by the raw peak area of the appropriate

internal standard.

During the mass spec run, a pooled sample made from pooling 5 ml of each sample was run 4-6 times as technical replicates to

measure the reliability of detection for each metabolite—a coefficient of variation < 0.30 was used as a cutoff for metabolites to be

measured reliably. Similarly, a dilution series of the pool was also run to determine whether eachmetabolite was in the linear range of

detection—A correlation coefficient R < 0.95 was used as a cutoff.

Two-tailed student’s t-test with Welch’s correction was used to generate p-values. Statistical analysis was performed using Prism

Version 9.4.0 (GraphPad, La Jolla, CA).

Identification of surface-exposed cysteines of individual proteins

Surface-exposed cysteines were identified for specific, individual proteins based on two criteria: 1) the cysteine residue is located

within an intrinsically disordered region (IDR) of the protein,124 as determined by the Predictors of Natural Disordered Regions

(PONDR) VSL2 algorithm, or 2) the solvent-accessible area of the cysteine exceeds 20 Å2,125 as measured by STRIDE.126

Variant annotation

Variants and their genomic coordinates (hg38) were obtained from ClinVar: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/

archive_2.0/2023/clinvar_20230903.vcf.gz and ClinVar: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.

txt.gz). Only germline missense variants were considered. We only considered variants with at least one clinical significance anno-

tation as Pathogenic or Benign. The number of missense variants considered in ClinVar is 52,188.

When needed, variants were annotated with impact on protein sequence and other measures of computationally predicted path-

ogenicity (SIFT, PolyPhen, CADD etc) using Ensembl VEP 110. Gene-level and 1kb-window constraint metrics were obtained from

gnomAD v4 and v3, respectively.

For all downstream analyses, variants were counted as protein variants—i.e., DNA variants resulting in the same protein-coding

alteration, regardless of their similarity or differences at the DNA level, were counted as the same variant. Variants were mapped

to gene, then mapped to proteins using mapping from Uniprot Swiss-Prot: https://ftp.uniprot.org/pub/databases/uniprot/current_

release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping_selected.tab.gz, https://ftp.uniprot.org/pub/databases/

uniprot/current_release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping.dat.gz, using the gene’s HGNC ID to

Uniprot-KB Accession ID of the canonical isoform.

Physics-based model for how cellular environment influences diffusion of proteins with and without cysteines

Estimation of the average number of surface-exposed cysteine per protein and the concentration of surface-exposed

cysteine

We used iCysMod127 to estimate the number of proteins with surface-exposed cysteines and the average number of surface-

exposed cysteines per protein across the whole proteome. There are 18,350 proteins in the proteome, among which we tried two

commonly used relative solvent accessibility (RSA) cutoffs to evaluate the cysteine surface exposure. With RSA > 40, the estimated

number of proteins with at least one surface-exposed cysteine is 10,333 (56.3% of total proteins) with an estimated average number

of surface-exposed cysteines of 2.8. With RSA > 50, the estimated number of proteins with at least one surface-exposed cysteine is

6,754 (36.8% of total proteins) with an estimated number of surface-exposed cysteines of 1.9. The mean estimated number of pro-

teins with at least one surface-exposed cysteine using these two cutoffs is 8,544 (46.6% of total proteins, rounded to 50%) with an

estimated number of surface-exposed cysteines of 2.35, rounded to 2. The total number of protein molecules per cubic micron in the

cell is 2-4million,128which yields 3.3-6.6mMof proteins. Even though somemeasured values of cellular protein concentration can be

3 times lower,128 the protein concentration should still be at least on the order of 1mM. Given that around 50%of the proteins have at

least one surface cysteine, among which each protein has 2 surface cysteines on average, the final surface cysteine concentration

should be at least 1mM*50%*2 = 1mM.

Simulations of proteins with surface-exposed cysteines

Brownian dynamics simulations of proteins with surface cysteines (available at GitHub: https://github.com/younglab/proteolethargy)

were performed by adapting the polychrom software package (https://doi.org/10.5281/zenodo.3579473), a thin wrapper around

OpenMM.129 Wemodel proteins as self-avoiding, spherical particles of diameter rrep = 1:2 which interact through a repulsive poten-

tial, UðrijÞ = U0f1 + ð~rijÞ12½ð~rijÞ2 � 1�g [Eq1], where ~rij =
rij
rrep

ffiffiffiffiffiffiffiffi

6=7
p

and U0 = 50 kBT represent a finite energy barrier to allow particle

overlaps when rij < 0:6rrep (Figure S5A). Based on our estimates, the average number of surface-exposed cysteines on proteins

that have surface-exposed cysteines is two (see ‘‘estimation of the average number of surface cysteine per protein and the concen-

tration of surface cysteine’’). Thus, simulated protein spheres are bonded to two surface ‘‘cysteines’’ via the harmonic potential

0:5kðrij � 0:5Þ2, where k is chosen such that the average extension of the bond is 0.01 when the bond energy is equal to kBT. A har-

monic angle potential of the form 0:5kðq � 180�Þ2 with k = 30kBT enforces that the two cysteines are on opposite sides of the protein

sphere. Cysteines on separate proteins can form intermolecular disulfide bridges, which are modeled via a short-ranged attractive
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potential of the same form as Equation 1 (Figure S5B). In this case, U0 = � Eattr is the depth of the attractive potential and ~rij =
rij
rattr

ffiffiffiffiffiffiffiffi

6=7
p

; where the cysteine-cysteine attraction radius is set to rattr = 0:2: These parameters were chosen to minimize many-to-

one bonding of cysteines, i.e. such that proteins with only 1 surface cysteine predominantly form dimers instead of higher order multi-

mers (Figures S5C and S5D). We simulate 1000 proteins with periodic boundary conditions in a cube whose side length is chosen

such that the proteins occupy 30% of the cube volume. Consistent with estimates of the fraction of proteins with surface-exposed

cysteines in the cell (see ‘‘estimation of the average number of surface cysteine per protein and the concentration of surface

cysteine’’), 50% of the simulated proteins have two surface cysteines which can form disulfide bonds according to the value of

Eattr , and the surface patches of the other 50% do not participate in disulfide bonding. As seen in Figure 4C, the proteins without

surface-exposed cysteines diffuse more slowly at high E attr since they are diffusing through a mesh of crosslinked proteins. How-

ever, this mobility reduction is far less pronounced than that of the proteins with surface exposed cysteines, which form dimers and

multimers at high E attr (Figure S5E).

For each value of Eattr , the diffusion coefficient is quantified as the slope of the protein’s mean squared displacement over time.We

normalize the diffusion coefficient to the mean of all data points for Eattr %11:25kBT and fit the resulting data to a decreasing S-curve

of the formDðEattrÞ = min+ ð1:0 � minÞ ½e� kðEattr �E0Þ =ð1+e� kðEattr �E0Þ Þ�a(solid line in Figure S5F). For each simulation, we also calcu-

late the fraction of cysteines that participate in intermolecular disulfide bonding, i.e. the fraction of sticky patches which are within rattr

of a neighboring patch (Figure S5G). This data is fit to an increasing S-curve of the form fðEattrÞ = ½1=ð1+e� kðEattr �E0Þ�a to obtain the

solid line in Figure S5G. The fraction of bonded cysteines can be mapped to the oxidative state of a cell as measured by the ratio of

oxidized to reduced glutathione (GSSG/GSH) using a chemical reaction model (see ‘‘chemical reaction model for coupling protein-

protein disulfide bonding to redox state’’ section). For a given value of Eattr , we use fðEattrÞ to compute the fraction of bonded cys-

teines as obtained from the simulations. Figure S5H then allows us to read off the corresponding value of GSSG/GSH. Thus, we relate

Eattr to the oxidative state of the cell. This in turn allows us to graph the diffusion coefficient as a function of the oxidative state in

Figure 4C, where the solid lines represent the fit relationships in Figures S5F–S5H and points show raw simulation data.

Simulation hyperparameter tuning and validation

Since disulfide bonding is modeled via a pairwise attractive potential between surface-exposed cysteines, it is possible for one

cysteine to attract more than one binding partner on neighboring proteins. Such many-to-one bonding events can be minimized

by tuning the following simulation hyperparameters: the protein-protein repulsion radius, rrep, the protein-protein repulsion energy

Erep (Figure S5A), the cysteine-cysteine attraction radius, rattr (Figure S5B), and the spring constant k for the harmonic bonds con-

necting each protein to each of the cysteines on its surface.

For a given set of parameters (rattr ;rrep;Erep ;k), we calculate the equilibrium cysteine-cysteine distance d3
� and bond extension x3

�

that minimizes the energy of a trimer of proteins with just one surface cysteine, Etrimerðd; xÞ = 3UattrðdÞ+ 3Urepðd +

ffiffiffi

3
p

ð0:5 + xÞÞ+ 3=

2kx2 (Figure S5C). Analogously, we compute the values of d2
� and x2

� that minimize the energy of a dimer, Edimerðd;xÞ = UattrðdÞ+
Urepðd + 2ð0:5 + xÞÞ+ kx2:
We then choose a parameter set where Etrimerðd3

�; x3�Þ> 0>Edimerðd2
�; x2�Þ for all values of Eattr ˛ ½0;30� kBT. From this approach,

we identified that the choice of rattr = 0:2; rrep = 1:2;Erep = 50kBT ; k = 2kBT=ð0:01Þ2 ensured that trimers are always less energeti-

cally favorable than dimers. In Figure S5D, we confirm that using these parameters, proteins with one surface cysteine only form di-

mers even at high values of Eattr .

Chemical reaction model for coupling protein-protein disulfide bonding to redox state

To investigate the coupling between cellular redox and the propensity for proteins with surface exposed cysteines to form disulfide

bonds, we developed a minimal chemical reaction model. In this model, we assume the level of oxidative stress is represented by a

fixed concentration of hydrogen peroxide ½H2O2�, which is the predominant reactive oxygen species (ROS) in the cell.130We also as-

sume that glutathione is the primary species responsible for regulating ROS, given that it is the most abundant non-protein antiox-

idant in the cell.131Glutathione (GSH) and proteins with surface exposed thiol groups (PSH) are oxidized in the presence ofH2O2 and

can form disulfide bridges via the following set of reactions:

GSH + H2O2/
kon

GSOH+H2O

PSH + H2O2/
k0on

PSOH+H2O

GSOH + GSH/
kSS

GSSG+H2O

GSOH + PSH/
kSS

PSSG+H2O
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PSOH + GSH/
kSS

PSSG+H2O

PSOH + PSH/
kSS

PSSP+H2O

The second-order rate constant of the oxidation of the thiol of a glutathione is kon = 0.42 M-1s-1132 and the rate constant for the

oxidation of the thiol of a protein is kon
0 = 2.3M-1s-1 (based on the oxidation of Cys-34 in BSA).132GSOH and PSOH are highly reactive

intermediate products which then undergo a much faster disulfide bridging process (kSS [ kon; kon
0) with another thiol.133 We set

kSS = 50 kon
0. We assume that proteins can form disulfide bonds with other proteins (PSSP) or with glutathione (PSSG) at equal rates.

Intramolecular disulfide bonds of proteins are removed by a thiol group interchange reaction with GSH.134We reason that removal

of intermolecular disulfide bonds could be achieved by a similar mechanism:

PSSP + GSH/
kex

PSSG+PSH

PSSG + GSH/
kex

GSSG+PSH

GSSG + PSH/
kex

PSSG+GSH

PSSG + PSH/
kex

PSSP+GSH

where we take kexz 0.15 M-1s-1 (estimated from the disulfide interchange between GSSG and 2-Mercaptoethanol at pH=7).135

Ultimately, GSSG is reduced by NADPH,

GSSG /
kNADPH

2 GSH;

while the total concentration of glutathione136 and surface-exposed protein cysteines (see ‘‘estimation of the average number of sur-

face cysteine per protein and the concentration of surface cysteine’’) are conserved at 1mM:

Gtot = ½GSH�+ ½GSOH�+ ½PSSG�+ 2½GSSG� = 1mM

Ptot = ½PSH�+ ½PSOH�+ ½PSSG�+ 2½PSSP� = 1mM:

We simulate the ordinary differential equations (see ‘‘ODEs of the chemical reaction model for coupling protein-protein disulfide

bonding to redox state’’) associated with the above chemical reactions for the dynamics of [GSOH], [PSOH], [GSSG], [PSSG],

and [PSSP] using MATLAB with ode45. The rate of glutathione reduction kNADPH = 2:72310� 6 s-1 is chosen such that when the

steady state [GSSG]/[GSH] ratio is 0.01 (physiological redox ratio137), ½H2O2� is 10nM (physiological hydrogen peroxide

concentration130).

We then determine the fraction of surface-exposed cysteines that participate in protein-protein disulfide bonding, 2½PSSP�=Ptot, as

a function of the steady state ratio [GSSG]/[GSH] (Figure S5H). Note that even at high ROS, this fraction is capped at 0.62 since sur-

face-exposed cysteines are equally likely to bind to a thiol on a neighboring protein or the thiol of glutathione. Our protein simulations

do not include glutathione. Thus, the fraction of bonded cysteines as computed from simulations, which can go up to 1.0 (Figure S5G),

corresponds to the fraction of cysteines participating in inter-protein disulfide bridges in our chemical reaction model. To map Eattr to

GSSG/GSH, we only consider simulation data for which the fraction of bonded cysteines is less than 0.62.

ODEs of the chemical reaction model for coupling protein-protein disulfide bonding to redox state

d½GSOH�
dt

= kon½GSH�½H2O2� � kSS½GSH�½GSOH� � kSS½PSH�½GSOH�

ll

e17 Cell 188, 207–221.e1–e20, January 9, 2025

Article



d½PSOH�
dt

= k0on½PSH�½H2O2� � kSS½GSH�½PSOH� � kSS½PSH�½PSOH�

d½GSSG�
dt

= kSS½GSH�½GSOH�+ kex½PSSG�½GSH� � kex½GSSG�½PSH� � kNADPH½GSSG�

d½PSSG�
dt

= kSS½PSH�½GSOH�+ kSS½GSH�½PSOH�+ kex½PSSP�½GSH�+ kex½GSSG�½PSH� � kex½PSSG�½GSH� � kex½PSSG�½PSH�

d½PSSP�
dt

= kSS½PSH�½PSOH�+ kex½PSSG�½PSH� � kex½PSSP�½GSH�

½GSH� = Gtot � ½GSOH� � ½PSSG� � 2½GSSG�

½PSH� = Ptot � ½PSOH� � ½PSSG� � 2½PSSP�

where ½GSH� = Gtot and ½PSH� = Ptot at t = 0. ½H2O2� is a constant value for each simulation ranging from 10 � 3 uM to 10 uM.

ROS stain and imaging

Following cell treatment, media was removed and cells were incubated with 5 mM CellROX Deep Red Reagent (Thermo Fisher Sci-

entific, C10422) diluted in EMEM for 30 minutes. Cells were then fixed with 4% paraformaldehyde in PBS (BTC Beantown Chemical,

140770-10x10ML) for 10 minutes. Cells were washed with PBS three times and imaged using the RPI Spinning disk confocal micro-

scope, 60x objective. ROS signal intensity wasmeasured using the ‘‘measure tool’’ on Fiji/ImageJ v2.1.0/153c. A two-tailed student’s

t-test was used to generate p-values. Statistical analysis was performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA). All ROS

imaging experiments were performed twice using 2-4 biologically independent samples.

Modeling of the diffusion-limited tyrosine kinase receptor phosphorylation

For a generic reactionA+B/C� at themolecular level, two basic steps are needed to accomplish this reaction: (i) molecules A and B

need to ‘‘find’’ each other, and (ii) they transform into an activated complexC�. The first basic step is called ‘‘collision’’ and the second

basic step is called ‘‘activation’’. Accordingly, there are two fundamental rate constants that defines the overall reaction rate: the

diffusion limited rate constant kD describes the rate of collision through the diffusion process, and the inherent reaction constant

kr describes the rate of activation. While kr is determined by the intrinsic chemical property, kDd4pðDA +DBÞb largely depends

on the diffusion coefficients of molecule A and B, which are DA and DB, respectively. b is the characteristic length-scale,

defined below.

The exact relation between the overall reaction rate and the two fundamental rate constants is138:

k =

kDkr

kr+kD exp

�

UðRABÞ
kBT

�

In this equation, RAB is the center-to-center distance when spherical molecules A and B touch, U(r) is the potential between mol-

ecules A and Bwhen spaced by a center-to-center distance r, kBT has the dimension of energy as the product of Boltzmann constant

and temperature.

We then use the receptor tyrosine kinase phosphorylation reaction in the collision-limited realm as an example to quantify the rela-

tion between protein mobility (D) and protein functional activity (k) in cell:

kðDÞ =

8pDbkr

kr+8pDb exp

�

Uð2RÞ
kBT

�

Herewe have assumed equal diffusion coefficients (D) and protein sizes (R) for substrate and enzyme for simplicity. To draw the k-D

relation, additional parameters/functions need to be determined, including R, UðrÞ, kBT, b, and kr .

d The radius of receptor tyrosine kinases is estimated to be R=3 nm.
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d For UðrÞ, we adapted a 10-5 Lennard-Jones potential in the colloid-type spherical model to describe the interactions between

substrate and enzyme: UðrÞ = 4ε
�

�

s
r

�10 �
�

s
r

�5
�

, and common value of ε = 4.0 kJ/mol was used.139 Lennard-Jones parame-

ters s were obtained from the protein radius: sd25=6R = 5.35 nm.

d kBT is set to the value that represents 37�C: kBT = 2.5 kJ/mol.

d b is a characteristic length-scale defined as b� 1
=

R

N

RAB
dr$exp ðUðrÞ =kBTÞ=r2, which is computed as 7.60 nm in this case (note

that RAB =2R).

d To estimate the inherent reaction constant kr , the apparent receptor tyrosine phosphorylation rate of EGFR in vitro is adopted:

k = 5.53107 M-1s-1.140 Therefore, the kr can be reversely solved in a dilute solution scenario (i.e., exp
�

UðRABÞ
kBT

�

z1) as:

kr =

�

1

k
� 1

8pDvitro b

�� 1

To back-calculate kr , we also need an estimation of the in vitro diffusion coefficient of receptor tyrosine kinases. The diffusion co-

efficient of insulin receptor measured in our paper in live cells (Dcell �1 mm2/s) is adopted given the comparable molecular weights

among insulin receptor, IRS1, and EGFR. It is also known that the diffusion coefficient in vitro is around 3 times higher than in cell,141

thus the effective diffusion coefficient of EGFR in the referred in vitrowork140 is estimated to beDvitro�3 mm2/s. Hence, kr = 6:53 107

M-1s-1.

With those parameters/functions in hand, k-D relation is generated as plotted in Figure 6D.

In vitro IRS1 phosphorylation

Purified active recombinant human insulin receptor (IR) (Millipore, 14-466) and purified recombinant insulin responsive substrate

1 (IRS1) (Abcam, ab70538) were incubated in freshly prepared reaction buffer consisting of 50 mM Tris pH 7.5, 0.1 mM EGTA,

0.1 mMNa3VO4, 0.1 mM 2-mercaptoethanol, 10 mMMnCl2 and 0.01mg/ml bovine serum albumin with the indicated concentrations

of glycerol (Invitrogen, 15514011) for 5 minutes at 30�C immediately after the addition of 50 mMATP in 5 mMmagnesium acetate. All

samples were prepared with 75 ng of IR and 240 ng of IRS1. These amounts and ratios were chosen because they fell within the linear

range of IRS1 phosphorylation by IR and they provided equivalent moles of IR and IRS1. For samples that were agitated, tubes were

subjected to orbital mixing at 1200 rpm using a Thermomixer (Eppendorf, ThermoMixer C, EP5382000023) during the entire incuba-

tion. After 5 minutes, reactions were immediately quenched with dithiothreitol (DTT) and XT Sample Buffer 4x (BioRad, 1610791) to a

final concentration of 100mM and 1x, respectively and incubated at 95�C for 5 minutes, then ran on Western blot or frozen at -80�C
until subjected to western blot.

RNA-seq

Cells were treated with normal or pathogenic insulin concentrations for three days and washed with EMEM as described above

and cultured in EMEM solo for 4 hours. RNA was then purified using TRIzol� reagent (Thermo Fisher Scientific, 15596026) following

manufacturer’s instructions. RNA-seq libraries were prepared using KAPAHyperRiboErase (Roche, KK8561) andwere sequenced on

Illumina NovaSeq 6000, generating at least 200 million paired-ended 150-bp reads per sample. Reads were mapped to the human

genome GRCh38 using STAR aligner105 (v2.7.1a), allowing up to 100 multiple alignments and up to 200 loci anchors (–outFilterMul-

timapNmax 100 –winAnchorMultimapNmax 200). Differential expression analysis of genes and transposable elements comparing

triplicates of samples treated with normal or pathogenic concentrations of insulin was performed using TEtranscripts106 (v2.2.3).

The list of protein coding genes was downloaded from ENSEMBL BioMart (http://www.ensembl.org/biomart/martview/

6e82036bfd2b9ca0c5044d2c7449824d).

ChIP-seq

PublishedMED1 ChIP-seq data (GEO: GSM2040029) and input (GEO: GSM2864933) were used in this study. ChIP-seq bioinformat-

ics analysis was performed on the Whitehead High-Performance Computing Facility using the nf-core ChIP-seq pipeline v1.2.1112

with Nextflow v20.04.1. Quality control of fastq files was performed with FastQC v0.11.9. Trim Galore! v0.6.4_dev was used to trim

low-quality reads. Alignment was performed against the hg19 genome assembly using BWA v0.7.17-r1188.107 Peak calling was per-

formed usingMACS2108 v2.2.7.1 with q value of 0.01. For the identification of genes whose promoter (transcription start site, TSS, +/-

1kb) were occupied by MED1, the same hg38 gene list used for the RNA-seq analysis was used. The coordinates of the promoters

were converted from hg38 to hg19 using LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Bedtools109 v2.29.2 was used to

measure the distance between MED1 peaks and gene promoters (bedtools closest -d). A gene was considered occupied by

MED1 the distance between MED1 peak and the promoter was 0. The changes in gene expression measured by RNA-seq were

matched to each MED1-occupied and non-occupied gene using the VLOOKUP tool in Excel v16.78.3.

Illustrations

PyMOL142 was used for protein illustrations in Figures 4A, 6A, 7B, and S6B. PDB ID: IR 6PXV, MED1 7EMF, HP1a 3I3C, FIB1 7SE7,

SRSF2 2LEC. Cartoon illustrations were created with BioRender.com. Figures were generated using Adobe Illustrator v27.0.1.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses for FRAPwere performed using the Statistics andMachine Learning Toolbox of MATLAB R2021b or R2024a (The

MathWorks, Inc., Natick, MA). All other statistical analyses were performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA). All

statistical tests used, the exact value of n, andwhat n represents can all be found in the figure legends. All data are reported asmean±

SEM or mean + SEM. For Figures 2E, 5B, 5C, 5F, 6J, S2K, S4B, S6E, S7B, and S7C, a two-tailed Mann-Whitney U test was applied.

For Figures 2G, 3F, 3I, 4D–4F, 4H, 4I, 5E, S3A, S4A, S4C–S4E, and S6C, an unpaired two-tailed student’s t-test was applied. For

Figures 3B, 6E, 6K, 6L, S1A–S1E, and S7D, an unpaired two-tailed student’s t-test withWelch’s correction was applied. All statistical

results were donewithout randomization or stratification. The notation for statistical significance is as follows: * represents p < 0.05, **

represents p < 0.01 and *** represents p < 0.001.
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Supplemental figures

Figure S1. Cell line validation, related to Figure 1

(A) Strategy to endogenously tag IR with HaloTag (left). Immunoblot for IR and beta actin (b-actin, middle). Quantification of relative IR amount as compared with

beta actin (right). Data are plotted as mean ± SEM (n = 3 biological replicates in each condition).

(B) Strategy to endogenously tag MED1 with GFP or HaloTag (left). Immunoblot for MED1 and beta actin (b-actin, middle). Quantification of relative MED1

amounts as compared with beta actin (right). Data are plotted as mean ± SEM (n = 2 to 3 biological replicates in each condition).

(C) Same as (B), but for HP1a (n = 3 biological replicates in each condition). * represents p value < 0.05.

(D) Same as (B), but for FIB1.

(E) Same as (B), but for SRSF2.

(F) Viability of WT cells or cells expressing endogenous IR, MED1, HP1a, FIB1, and SRSF2 tagged with HaloTag. Data are plotted asmean ± SEM (n = 3 biological

replicates in each condition).

(G) Immunofluorescence imagesof IR,MED1,HP1a, FIB1,andSRSF2 (green) inWTHepG2cells.Dashedblue lines representnuclearoutline.Scalebarsare indicated.
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Figure S2. Additional characterization of SPT and FRAP analyses, related to Figures 1 and 2

(A) logD distribution of individual molecules (histogram) fitted to either two or three Gaussian functions (colored curves indicate individual Gaussian functions, and

the black curve in each graph is the sum of individual Gaussian functions).

(B) Distribution of the continuous axial detectable range of a single molecule. The distribution peaked at �900 nm.

(C) Immobile fraction of endogenous proteins estimated from SPT dataset vs. FRAP dataset. Data are plotted as mean + SEM.

(legend continued on next page)
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(D) Plot of the residual of experimentally observed and theoretical models of FRAP recovery as a function of different diffusion coefficient D used for the model.

The best-fitted diffusion coefficient of GFP (27 kDa) is indicated by a dashed blue line. The apparent diffusion coefficients of a HaloTag-JF646 (�34 kDa), based

on SPT, are indicated as mean (dashed green line) and SEM (light green). The apparent diffusion coefficient of a HaloTag-JF646 (�34 kDa) inferred from the

relationship between FRAP-estimated diffusion of a protein of known molecular weight, GFP (27 kDa), is indicated by a dashed magenta line.

(E) The logD distribution of individual HaloTag-alone molecules in fixed sample (histogram). The solid black line represents the best-fitted single Gaussian

function.

(F) The logD distribution of individual HaloTag-alonemolecules in live sample (histogram). The solid black line represents the best-fitted single Gaussian function.

(G) Graphical illustration of a premature stop during localization reconnection caused by assuming a too small maximumly allowed prior apparent diffusion

coefficient (Dmax) (left) vs. a successful reconnection because of assuming a large enough Dmax (right).

(H) Graphical illustration of two reasons why the tracking of a protein may stop even if the next localization is within the two-dimensional range defined by Dmax:

(i) photobleach of the dye molecule tagged to the protein and (ii) the protein moving out of focus.

(I) Graphical illustration of why the localization reconnection may continue by mistakenly joining the trajectories of two proteins together. In this case, the number

of jumps per ‘‘trajectory’’ will go beyond normal.

(J) Average number of jumps per trajectory at different localization density. Beyond certain localization density threshold (vertical line at�0.01 per mm2 per frame),

the number of jumps per ‘‘trajectory’’ will start to increase due to the reason shown in (I), which is associated with significant chance of ambiguous connection.

The localization density range of the actual experiments for IR-HaloTag SPT ismarked as the horizontal boxplot, which is safely below the threshold that will cause

significant ambiguous connection.

(K) Diffusion coefficient comparisons based on trajectory-level (left) or cell-level analysis (right) for IR, MED1, HP1a, FIB1, and SRSF2. Apparent diffusion co-

efficients for normal (blue) and pathogenic (red) conditions are shown. For trajectory-level analysis, each dot represents the value for individual trajectories; the

median value is indicated by the black rectangle, while the error bars identify the 95% confidence interval of the median. For cell-level analysis, each dot rep-

resents the median value of the trajectories assigned to a single cell; the median value of the set of cell-level values is indicated by the black rectangle, while

the error bars identify the 95% confidence interval of the median. IR: by trajectory, normal n = 1,169 trajectories, pathogenic n = 1,323 trajectories; by cell, normal

n = 37 cells, pathogenic n = 35 cells. MED1: by trajectory, normal n = 5,719 trajectories, pathogenic n = 2,227 trajectories; by cell, normal n = 214 cells, pathogenic

n = 110 cells. HP1a: by trajectory, normal n = 4,568 trajectories, pathogenic n = 3,598 trajectories; by cell, normal n = 180 cells, pathogenic n = 219 cells. FIB1: by

trajectory: normal n = 2,855 trajectories, pathogenic n = 205 trajectories; by cell, normal n = 205 cells, pathogenic n = 162 cells. SRSF2: by trajectory: normal

n = 3,399 trajectories, pathogenic n = 2,872 trajectories; by cell: normal n = 142 cells, pathogenic n = 162 cells. Mann-Whitney test was used for statistical

analysis.
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Figure S3. The effect of pathogenic signaling on protein mobility outside of condensates and on condensate properties, related to Figure 2

(A) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of condensate assemblies in cells that were treated with normal

signaling (normal) or pathogenic signaling (pathogenic). Number of cells: MED1 normal n = 10, pathogenic n = 10; HP1a normal n = 15, pathogenic n = 15;

FIB1 normal n = 24, pathogenic n = 24; SRSF2 normal n = 14, pathogenic n = 14. t test was used for statistical analysis. * represents p value < 0.05 and ***

represents p value < 0.001.

(B) Number, size, and partition ratio of IR, MED1, HP1a, FIB1, and SRSF2 condensates in cells that were treated with normal signaling (normal) or pathogenic

signaling (pathogenic). Number of condensates: IR normal n = 22, pathogenic n = 24; MED1 normal n = 135, pathogenic n = 127; HP1a normal n = 44, pathogenic

n = 56; FIB1 normal n = 150, pathogenic n = 214; SRSF2 normal n = 58, pathogenic n = 53. Condensate size, number of condensates: IR normal n = 3,846,

pathogenic n = 3,548; MED1 normal n = 3,522, pathogenic n = 3,426; HP1a normal n = 1,499, pathogenic n = 1,558; FIB1 normal n = 541, pathogenic n = 660;

SRSF2 normal n = 954, pathogenic n = 699. Partition ratio, number of condensates: IR normal n = 3,846, pathogenic n = 3,548; MED1 normal n = 3,522,

pathogenic n = 3,426; HP1a normal n = 1,499, pathogenic n = 1,558; FIB1 normal n = 541, pathogenic n = 660; SRSF2 normal n = 954, pathogenic n = 699.
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Figure S4. The effect of oxidative environments on protein mobility, related to Figures 2 and 3

(A) Quantification of FRAP data for nuclear (left) and cytoplasmic (right) GFP in HepG2 cells that were treated with normal signaling (normal) or pathogenic

signaling (pathogenic). Nuclear GFP, number of cells: normal n = 16, pathogenic n = 17; cytoplasmic GFP: n = 15 for each condition. Data are plotted as mean

(dark blue and dark red lines) ± SEM (light blue and light red regions). p values are reported in the figure.

(B) CCDF graphs of apparent diffusion coefficients as determined by SPT for nuclear (left) and cytoplasmic (right) HaloTag in HepG2 cells that were treated with

normal signaling (normal) or pathogenic signaling (pathogenic). Nuclear HaloTag, number of molecules: normal n = 771, pathogenic n = 937; cytoplasmic

HaloTag: normal n = 1,279, pathogenic n = 625. t test was used for statistical analysis. p values are reported in the figure.

(C) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of condensates in HepG2 cells that were treated with 0 mM H2O2 or 7.5 mM

H2O2. 0mMH2O2 n= 11, 20, 15, and 14 cells forMED1, HP1a, FIB1, and SRSF2, respectively. 7.5mMH2O2 n = 11, 20, 15, and 14 cells forMED1, HP1a, FIB1, and

SRSF2, respectively. * represents p value < 0.05 and *** represents p value < 0.001.

(legend continued on next page)
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(D) Quantification of FRAP data for nuclear and cytoplasmic GFP in HepG2 cells that were treated with 0 mM H2O2 or 7.5 mM H2O2 (n = 7 cells per condition for

nuclear FRAP and n = 10 cells per condition for cytoplasmic FRAP). Data are plotted as mean (dark pink and dark blue lines) ± SEM (light pink and light

blue regions). Quantification of FRAP data for nuclear GFP in HepG2 cells previously treated with pathogenic signaling with (pathogenic + N-acetyl cysteine

[NAC], n = 17 cells) or without (pathogenic, n = 11 cells) NAC (left). Quantification of FRAP data for cytoplasmic GFP in HepG2 cells previously treated with

pathogenic signaling with (pathogenic + NAC, n = 10 cells) or without (pathogenic, n = 10 cells) NAC (left). *** represents p value < 0.001.

(E) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of condensates in n HepG2 cells previously treated with pathogenic signaling

with or without NAC. Without NAC n = 11, 20, 37, and 15 cells for MED1, HP1a, FIB1, and SRSF2, respectively. With NAC n =11, 20, 28, and 15 for MED1, HP1a,

FIB1, and SRSF2, respectively. Data are plotted as mean (dark purple and dark red lines) ± SEM (light purple and light red regions). t test was used for statistical

analysis. * represents p value < 0.05 and *** represents p value < 0.001.
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Figure S5. Modeling protein diffusion with increasing ROS, related to Figure 4

(A) Repulsive potential between protein spheres as a function of the inter-protein distance normalized to the protein diameter rrep.

(B) Attractive potential between sticky patches (surface cysteines) as a function of the inter-patch distance normalized to the patch-patch attraction radius rattr.

The depth of the attractive potential, Eattr, controls the propensity for intermolecular disulfide bonding.

(C) Cartoon depictingminimum energy configurations of a trimer of proteins with a single surface cysteine, which represents an undesirable many-to-one bonding

event, and a dimer, which represents a one-to-one bonding event. These configurations are determined by the equilibrium patch-patch distance d and protein-

cysteine bond extension x, which minimize the energy of the trimer or dimer. Simulation parameters are chosen such that trimers are energetically less favorable

than dimers.

(D) Diffusion coefficient and cluster size distributions from simulations of 1,000 proteins with one surface-exposed cysteine as a function of Eattr, normalized to the

mean of the first five data points. At Eattr = 0 kBT, all proteins are in a monomeric state, but at Eattr = 30 kBT, nearly all proteins form dimers. Notably none form

trimers, demonstrating that the choice of simulation hyperparameters minimizes many-to-one bonding.

(E) Fraction of simulated proteins that form a multimer of size m for simulations at three different values of Eattr, which correspond to three different GSSG/GSH

ratios highlighted in (H).

(F) Normalized diffusion coefficient from simulations of amixture of proteins with (red) and without (gray) surface-exposed sticky patches (cysteines) as a function

of the patch-patch attraction energy Eattr.

(G) Fraction of surface cysteines that participate in intermolecular bonding as a function of Eattr, as calculated from protein dynamics simulations.

(legend continued on next page)
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(H) Fraction of surface cysteines that participate in protein-protein disulfide bonding as a function of the steady-state ratio of oxidized (GSSG) to reduced (GSH)

glutathione, as calculated from a chemical reaction model. Representative GSSG/GSH ratios are highlighted with dashed lines and circles (yellow, orange,

and red).
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Figure S6. Cysteines in protein mobility, related to Figure 4

(A) Immunoblot for IR (left). Cells were treated with indicated concentrations of H2O2 prior to protein isolation and western blotting in reducing (+DTT) or non-

reducing (�DTT) conditions. Quantification of relative IR crosslink amount as compared with IRa subunit (right).

(B) Renderings of dimers of WT or dimers of Y1361C IR. Cartoon design was based on both the previously published structure of IR (PDB: 6PXV) and the

AlphaFold structure of the unresolved region of IR. Tyrosines are represented as blue, and cysteines are represented in red.

(C) Cartoon depicting WT (IR WT) and mutant IR (IR Y1361C and IR Y1361S; left). Quantification of FRAP data for WT (IR WT, n = 15 cells) and mutant IR

(IR Y1361C, n= 16 cells; IR Y1361S, n= 15 cells; right). These experimentswere performed on the same day, and as a result, the IRWT FRAP curves are the same.

Data are plotted as mean (dark black, dark red, and dark blue lines) ± SEM (light black, light red, and light blue regions). t test was used for statistical analysis. *

represents p value < 0.05.

(D) Measurement of the pathogenicity of all 20 gain-of-amino acid mutations as determined by the ratio of the number of pathogenic mutations to the number of

benign mutations for a specific amino acid throughout the proteome.

(E) Apparent diffusion coefficient for HaloTag-Ser5 and HaloTag-Cys5 in cells treated with normal or pathogenic insulin. HaloTag-Ser5 normal n = 710molecules,

HaloTag-Ser5 pathogenic n = 747 molecules; HaloTag-Cys5 normal n = 1,239 molecules, HaloTag-Cys5 pathogenic n = 569 molecules. Mann-Whitney test was

used for statistical analysis. ** represents p value < 0.01 and *** represents p value < 0.001.
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Figure S7. Pathogenic stimuli decrease protein mobility and function, related to Figures 5 and 6

(A) Cartoon depicting drug toxicity.

(B) Apparent diffusion coefficient, as determined by SPT, of the protein mobility biosensor expressed in HepG2 cells treatedwith (N-acetyl-p-benzoquinone imine

[NAPQI], n = 408 protein molecules) and without (DMSO, n = 4,921 protein molecules) NAPQI. NAPQI is a toxic intermediate in the breakdown of acetaminophen

and is one of the main causes of acetaminophen-induced liver injury. Data are plotted as mean ± SEM. Mann-Whitney was used for statistical analysis. ***

represents p value < 0.001.

(C) Apparent diffusion coefficient, as determined by SPT, of the protein mobility biosensor expressed in C2C12 skeletal muscle cells treated with the stimuli

reported in the figure. Data are plotted as mean + SEM. Mann-Whitney test was used for statistical analysis. Numbers of molecules: normal insulin (327) vs.

pathogenic insulin (510); normal glucose (706) vs. high glucose (673); BSA (42,133) vs. high fat (38,486); BSA (294) vs. TNF-a (291); DMSO (186) vs. ETO (91);

control (1,015) vs. LPS (777); control (75) vs. NAPQI (156). p values are reported in the figure.

(D) Quantification of phosphorylated IRS1 (pIRS1) levels by immunofluorescence in HepG2 cells treated with normal insulin (normal, 48 cytoplasmic regions),

pathogenic insulin (pathogenic, 48 cytoplasmic regions) or normal insulin and H2O2 (normal + H2O2, 39 cytoplasmic regions). Results are represented as mean +

SEM. t test was used for statistical analysis. *** represents p value < 0.001.
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