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SUMMARY

The pathogenic mechanisms of many diseases are well understood at the molecular level, but there are prev-
alent syndromes associated with pathogenic signaling, such as diabetes and chronic inflammation, where
our understanding is more limited. Here, we report that pathogenic signaling suppresses the mobility of a
spectrum of proteins that play essential roles in cellular functions known to be dysregulated in these chronic
diseases. The reduced protein mobility, which we call proteolethargy, was linked to cysteine residues in the
affected proteins and signaling-related increases in excess reactive oxygen species. Diverse pathogenic
stimuli, including hyperglycemia, dyslipidemia, and inflammation, produce similar reduced protein mobility
phenotypes. We propose that proteolethargy is an overlooked cellular mechanism that may account for
various pathogenic features of diverse chronic diseases.

INTRODUCTION

Diseases associated with chronic or pathogenic signaling are
a leading cause of morbidity and mortality.! For prevalent syn-
dromes such as diabetes and inflammatory disorders, the pa-
thology typically involves a continuous and/or high-level stimulus
but not necessarily a known mutation in a specific gene.””" In
contrast with monogenic diseases, where the causal link be-
tween gene mutation and disease pathology is evident and the
cellular pathways directly impacted are thus defined, in chronic
syndromes, causal gene mutations are uncommon, and diverse
cellular processes such as gene regulation, ribosome biosyn-
thesis, and metabolic activity are dysregulated.®'® Thus, how
to define hypotheses that will inform therapeutic development
on the basis of such a breadth of cellular dysfunction has long
vexed clinicians and research scientists.

The billions of protein molecules produced in cells must
leave their site of synthesis and arrive at cellular locations
where they carry out their specialized functions.'®2° In so doing,

they will transit through a milieu that is densely packed with bio-
molecules.'® 242" Recently, pathogenic signaling in certain
chronic diseases was reported to cause reduced movement of
receptor molecules into functional protein assemblies.?°
These findings led us to consider the possibility that dysregu-
lated signaling might cause a more general defect in protein
mobility in cells and that reduced protein mobility in and of itself
might be a pathogenic mechanism shared across these dis-
eases. Biochemical reactions are often collision limited,®'**?
and reduced rates of protein diffusion would therefore be ex-
pected to reduce functional outputs.

Here, we show that pathogenic signaling reduces the mobility
of key proteins involved in diverse cellular processes and that
this reduction in protein mobility, which we call proteolethargy,
is associated with a dysregulated redox environment that conse-
quently impacts oxidation-sensitive cysteines. Reduced protein
mobility may account for the diversity of dysregulated cellular
processes evident in chronic disease. We discuss a therapeutic
hypothesis that emerges from these findings, which might prove
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Figure 1. Mobility of diverse proteins in cells
(A) Cellular compartments, biological processes,
and proteins examined in this study.

(B and C) Live-cell imaging of HepG2 cells ex-
pressing HaloTag (B) or green fluorescent protein
(GFP)-tagged (C) versions of the indicated proteins.
Dashed lines show outline of nucleus. Scale bars
are indicated.

(D) Representative tracks for movement of indi-
vidual molecules as determined by single-particle
tracking (SPT) of HaloTag versions of the indicated
proteins. Dashed magenta lines represent outline
of the plasma membrane. Dashed blue lines
represent outline of the nucleus. Scale bars are
indicated.

(E) Complementary cumulative distribution func-
tion (CCDF) graphs of apparent diffusion co-
efficients, as determined by SPT, of the indicated
proteins (n = 294, 1,751, 2,591, 2,855, and 5,458
molecules for insulin receptor (IR), MED1, HP1«,
FIB1, and SRSF2, respectively).

(F) Representative images of FRAP of HepG2 cells
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to be applicable in patients with diseases associated with
proteolethargy.

RESULTS

Protein mobility in cells

We set out to develop a theoretical and experimental frame-
work that would allow us to measure the mobility of multiple
proteins with diverse functions in cells subjected to normal
and pathogenic signaling. Single-particle tracking (SPT) and
fluorescence recovery after photobleaching (FRAP) allow for
the measurement of the kinetics of protein mobility in living
cells, and proteins studied with these methods have been re-
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receptor (insulin receptor, IR), a tran-
scriptional co-factor present at actively
transcribed genes (mediator subunit
MED1), a regulator of silent genes in het-
erochromatin (heterochromatin protein HP1a), a component of
the nucleolus involved in ribosome biosynthesis (fibrillarin,
FIB1) and a subunit of the mRNA splicing apparatus (serine
and arginine-rich splicing factor 2, SRSF2) (Figure 1A; STAR
Methods). As a cell model, we chose HepG2 cells as they
provide a well-established model system representative of hu-
man liver cells in healthy and disease states.?®****° To monitor
the mobility of each of these proteins, we engineered HepG2
cells to encode the endogenous protein fused with HaloTag
or monomeric enhanced green fluorescence protein (GFP)
and validated that each fusion protein was produced at normal
levels and migrated to the compartment where it is known to
function (Figures 1B, 1C, and S1).

T|me (sec)
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Figure 2. Protein mobility decreases in a
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We determined the apparent diffusion coefficients of IR,
MED1, HP1q, FIB1, and SRSF2 by SPT, based on the mean-
squared displacement of each individual protein molecule’s
trajectory. For each protein, we measured at least 200 protein
trajectories and plotted the distribution of apparent diffusion co-
efficients (Figures 1D and 1E). As expected, most SPT protein
trajectories for IR were contained within the plasma membrane
and most SPT protein trajectories for MED1, HP1q, FIB1, and
SRSF2 were contained within the nucleus (Figure 1D). The
apparent diffusion coefficients ranged from 0.01 to 28 pm?%/s
(Figure 1E), consistent with diffusion coefficients determined
for other human proteins (Table S1), with SRSF2 having the high-
est average mobility and FIB1 the lowest (Figures 1E and S2A).

We also used FRAP to measure the mobility of proteins in
HepG2 cells engineered to express the endogenous protein
fused to GFP. Specifically, we bleached a selected region in
the cell with a focused laser beam and measured the rate at
which the fluorescence intensity recovered at the photobleached
region. This fluorescence recovery reflects the average mobility

timescale of seconds (Figures 1F and
1G), and the relative mobilities of the pro-
teins were in line with those determined using SPT (Figure S2).
The mobility of all the proteins measured in these studies was

within the range determined previously for other proteins in living
Cells.33—36,42—45

Reduced protein mobility with pathogenic signaling

As an initial test of the hypothesis that protein mobility might be
affected in a chronic disease (Figure 2A), we selected insulin
signaling, since it is dysregulated in prevalent syndromes such
as diabetes, known to be characterized by a range of affected
cellular processes, including dysregulated intracellular signaling,
gene activity, RNA splicing, and ribosome biosynthesis, among
others.”'? In fasting healthy individuals, liver cells are normally
exposed to low concentrations of insulin (~0.1 nM), whereas
after a meal, insulin transiently increases and activates the
insulin signaling pathway.?®“%%" In fasting patients with insulin
resistance, liver cells are subject to continuous high concentra-
tions of insulin (~3 nM), and this chronic high level of insulin no
longer fully activates the signaling response.?®*®*” Thus, normal
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and pathogenic insulin signaling can be modeled in cell culture
by treating liver-derived cells with normal or elevated (patho-
genic) concentrations of insulin for prolonged periods of time
(Figure 2B).?%:8

To test the possibility that pathogenic insulin signaling may
alter protein mobility, we treated HepG2 cells with normal or
pathogenic concentrations of insulin (Figure 2C). SPT analysis
revealed that the mobility of IR, MED1, HP1«, and FIB1 was
reduced in cells that were treated with pathogenic levels of insu-
lin, whereas that of SRSF2 was unaffected (Figures 2D, 2E, and
S2K; Table S2). For example, 50% of IR molecules had an
apparent diffusion coefficient greater or equal to 0.4 um?/s
when cells were treated with normal concentrations of insulin,
and this percentage decreased by ~20% when cells were
treated with pathogenic insulin concentrations (Figures 2D and
2E). FRAP analysis of these proteins indicated a similar effect
on this set of proteins; there was a reduction in the recovery of
all proteins except SRSF2 (Figures 2F and 2G; Table S3). Taken
together, these results suggest that pathogenic insulin signaling
leads to a reduction in the mobility of many proteins in cells.

The proteins studied here have been reported to be associated
with biomolecular condensates,?®*4*°%2 \which are non-
stoichiometric assemblies of proteins that share cellular func-
tions.?>#45%%5 \We thus tested whether suppressed protein
mobility occurs when proteins are resident within the dense phase
of condensates or when they are outside these bodies, using
FRAP with the GFP-tagged proteins. For the proteins that could
be reliably assigned to be within or outside of condensates during
image acquisition (MED1, HP1a, FIB1, and SRSF2), pathogenic
signaling was found to produce a similar reduction in mobility
for MED1, HP1a, and FIB1, while SRSF2 mobility was unaffected
(Figures 2G and S3A; Table S3). Rapid movement of IR conden-
sates prevented reliable assignments. Pathogenic signaling had
little effect on condensate number, size, or partition ratio for these
proteins, except for a slight decrease in condensate number for
IR, as observed previously”® (Figure S3B). Although there are re-
ports that reactive oxygen species (ROS) can influence the prop-
erties of some condensates,*® °® these results suggest that the ef-
fects of pathogenic signaling can produce changes in protein
mobility while having a limited impact on condensate properties
under the conditions studied here.

Oxidative environment affects protein mobility
Given the broad range of proteins whose mobility was affected by
pathogenic insulin signaling, we asked whether changes in cellular
viscosity or in the chemical environment might be responsible for
the observed changes in protein mobility. To test the effect of
pathogenic signaling on cellular viscosity, we monitored the
mobility of GFP (not fused to any other protein) by FRAP, which
is an established method for such studies,®'***®" and the mobility
of HaloTag (not fused to any other protein) by SPT. We detected a
change in cytoplasmic viscosity but no change in nuclear viscosity
(Figures S4A and S4B). These results suggest that altered viscos-
ity could contribute to the mobility phenotype for IR in the plasma
membrane but is unlikely to significantly impact the diverse nu-
clear proteins studied here.

Substantial changes in the chemical environment are known
features of chronic diseases such as insulin resistance due to

210 Cell 788, 207-221, January 9, 2025
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high levels of ROS (Figures 3A and 3B).?®° Here, we hypothe-
size that if an oxidative environment leads to changes in protein
mobility, then treating cells with pathologically relevant concen-
trations of the oxidizing agent H,O, should phenocopy the ef-
fects observed in cells treated with pathogenic insulin signaling
(Figures 3B and 3C). Indeed, FRAP analysis showed that treat-
ment of cells with H,O, caused reduced mobility of IR, MED1,
HP1a, and FIB1 but not of SRSF2 or nuclear GFP (Figures 3D-
3F, S4C, and S4D; Table S3).

If high levels of ROS lead to reductions in protein mobility, then
treatment with the antioxidant N-acetyl cysteine (NAC) should
restore some degree of protein mobility in cells exposed to path-
ogenic levels of insulin. As expected, FRAP revealed that treating
insulin-resistant cells with 1 mM NAC partially rescued the
mobility of IR, MED1, HP1a, and FIB1, but it had little effect on
the mobility of SRSF2 and nuclear GFP (Figures 3G-3l, S4D,
and S4E; Table S3). These results are consistent with the
possibility that elevated levels of ROS cause a decrease in the
mobility of certain proteins and suggest that the change in pro-
tein behavior is caused by an alteration in the oxidative
environment.

Mobility of proteins with exposed cysteines
The sensitivity of proteins to the oxidative environment suggests
that oxidation-sensitive amino acids might influence protein
mobility. When we analyzed amino acid content, we found that
the proteins whose mobility was affected by pathogenic insulin
signaling and H,O, have cysteines with surface-exposed side
chains, whereas this was not the case for the proteins whose
mobility was not affected by these pathogenic factors (Figure 4A;
Table S4). Surface cysteines create the potential for crosslinking
through disulfide bonds, which might reduce the rate of diffusion
by diverse mechanisms, including increasing effective protein
mass, altering protein conformation, promoting binding to immo-
bile proteins, altering interaction with transporters, and
increasing cellular viscosity (Figure 4B).5%%7

To explore how different oxidative states of the cellular environ-
ment might be expected to influence diffusion of proteins with
and without cysteines, we developed a physics-based model
(Figures 4C and S5; see STAR Methods). In this model, proteins
are simulated as spherical particles, half of which have sticky
patches on their surfaces, representing surface-exposed cysteine
residues, and half of which do not have sticky patches. As the
oxidative state of the cellular environment increases, the propen-
sity of interaction between the patches increases, leading to pro-
tein crosslinking and formation of protein dimers and multimers
(Figure S5). Proteins without surface-exposed cysteines remain
in a monomeric state even at higher levels of ROS. As a result,
the average diffusion coefficient of proteins containing surface-
exposed cysteine decreased more than that of proteins lacking
surface-exposed cysteines, owing to dimer and multimer forma-
tion (Figures 4C and S5). The mobility of proteins lacking cysteines
slightly decreased at higher levels of ROS, due to the increase in
effective viscosity caused by the crosslinking of the proteins con-
taining cysteines present in the environment (Figure 4C). This
model predicts that increased ROS-driven intermolecular disulfide
bond formation will reduce protein mobility due to the increased
frequency and lifetime of these bonds. As an initial test of this
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Figure 3. Oxidative environment affects pro-
tein mobility

(A) Increased reactive oxygen species (ROS) in
pathogenic signaling.
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shown as mean + SEM. t test was used for statistical

OMMH,0,  Live cell
5min imaging

7.5mM H,0,  Live cell
5 min Imaging

SRSF2-GFP

Before Bleach Post Before Bleach Post

H,0, Before Bleach Post

s

Before Bleach Post

analysis. * represents p value < 0.05.
(C) Relative GSSG/GSH ratio in cells treated with
different hydrogen peroxide (H,O,) concentrations.

Before Bleach Post

% | o iy lum_ Jume am B
E = Data shown as mean + SEM. H,O, concentration
HANE DEE GEE [ et e e S5 <
= indicated.
= H,0,=0mM (D and G) Schematic representation of cell treat-
F H.0;=7.5mM
e ments.
ron IR-GFP ’ MED1-GFP HP10-GFP FIB1-GFP SRSF2-GFP (E and H) Representative FRAP images for the
go.s . \ P indicated proteins and experimental treatments.
Eo.e /\//N/Vb]i 8 It # Images before (before), immediately following
§0,4 * ¥ - (bleach), and after recovery (post) are shown. Scale
o2 bars are indicated.
0.0 5 % o 620 5 To 20 3o 5 % 5 4 5 (F and I) Quantification of FRAP experiments for the
Time (sec) Time (sec) Time (sec) Time (sec) Time (sec) indicated proteins and experimental conditions. For
(F), 0 and 7.5 mM, n = 10 cells each condition for
G Pathogenic nsuiin _EMEM wash _ suin o each protein. Data shown as mean (0 mM, blue line;
o Tday 30min Smin* Live cellimaging 7.5 mM, red line) + SEM (0 mM, light blue; 7.5 mM,
Pathogenic insulin athogenicnsuln + light red). For (I), (pathogenic, n = 16, 10, 15, 10, and
2days N-acetyl cysteine _ EMEM wash _ Insuin | o cellimaging 20 for IR, MED1, HP1a, FIB1, and SRSF2, respec-
1 day 30 min 5min tively; pathogenic + NAC, n = 16, 10, 15, 20, and 20
for IR, MED1, HP1a, FIB1, and SRSF2, respectively.
H Insulin receptor-GFP MED1-GFP HP10-GFP FIB1-GFP SRSF2-GFP

Before Bleach Post Before Bleach Post Before Bleach Post

Q

g Z dum Tum Tump
I == Pathogenic + N-acetyl cysteine
= Pathogenic
IR-GFP MED1-GFP HP1a-GFP FIB1-GFP

210
£os
i i
5 0.6 i
I
EOA
5 0.2
0.0

Before Bleach Post

Data shown as mean (pathogenic, red line; patho-
genic + NAC, purple line) + SEM (pathogenic, light
red; pathogenic + NAC, light purple). t test was used
for statistical analysis (F and |). For (F), Cohen’s d =
0.7,0.7,1.2, 1.0, and 0.0 for IR, MED1, HP1¢, FIB1,
and SRSF2, respectively. For (I), Cohen’s d = 0.5,
0.8, 0.9, 0.6, and 0.2 for IR, MED1, HP1a, FIB1, and
SRSF2, respectively. ** represents p value < 0.01
and *** represents p value < 0.001.

ns See also Figure S4 and Table S3.

Before Bleach Post

1um

SRSF2-GFP

the modified SRSF2 protein in a high ROS
environment. We engineered HepG2 cells

0 10 20 30 0

Time (sec) T\me (sec) Tlme (sec) T\me (sec)

model, we investigated whether treatment of cells with H,O,
promotes crosslinking of IR proteins, using western blotting
(Figure S6A). These results suggest enhanced formation of inter-
molecular crosslinking through disulfide bond formation and are
consistent with the predictions from the theoretical work.

To further test the model that surface cysteines contribute to
reduced protein mobility in an oxidative environment, we asked
whether treatment with a thiol-protective agents might preserve
protein mobility in a high ROS environment. To prevent cysteine di-
sulfide bond formation, cells were treated with N-ethylmaleimide
(NEM), a compound that forms stable, covalent bonds with the
thiol group in cysteines. FRAP revealed that treating cells with
NEM partially preserved the mobility of IR, MED1, HP1«, and
FIB1, but it had little effect on the mobility of SRSF2 in the high
ROS condition generated by H,O, (Figure 4D).

If surface cysteines contribute to reduced protein mobility, we
might expect that addition of surface cysteines to SRSF2, which
normally lacks these residues, would cause reduced mobility of

® e (sec) ’ to express endogenous SRSF2 fused to a
rigid linker (to ensure surface exposure)
containing multiple cysteine residues
(SRSF2-Cys) or, as a control, the same number of serine resi-
dues (SRSF2-Ser) (Figures 4E and 4F). Treating HepG2 cells
with H,O, or pathogenic insulin concentrations did not affect
the mobility of the SRSF2-Ser protein, but it decreased the
mobility of SRSF2-Cys protein (Figures 4E and 4F). Taken
together, these results indicate that surface-exposed cysteines
can affect protein mobility when cells are exposed to oxidative
stress and pathogenic signaling.

Next, we asked whether there are reports of any of the proteins
studied here having missense mutations resulting in gaining a
cysteine and, if so, whether these might affect protein mobility.
A tyrosine-to-cysteine mutation (Y1361C) was reported in the
IR. This mutation occurs outside of the structured domain and
does not appear to decrease protein stability.°® Modeling indi-
cates that the cysteine gained through this mutation is surface
exposed (Figure S6B). We introduced this mutation into the
IR-GFP fusion protein (IR Y1361C-GFP) in both alleles in
HepG2 cells (Figure 4G). By performing FRAP, we found that
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(I) Quantification of FRAP data for Y1361C mutant IR in cells treated with (n = 15 cells) or without (n = 15 cells) N-acetyl cysteine. Data are plotted as mean + SEM. t test
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was used for statistical analysis (D-I). *** represents p value < 0.001.
See also Figures S5 and S6 and Table S4.

the gain-of-cysteine mutation caused a reduction in IR
protein mobility in HepG2 cells under normal redox conditions
(Figure 4H) and that treating cells expressing IR Y1361C-GFP
with NAC enhanced IR Y1361C protein mobility (Figure 4l).
Mutating the same amino acid to serine had little to no effect on
IR protein mobility (Figure S6C). These results indicate that muta-
tions that add surface cysteines sensitize the IR to physiological
levels of ROS, reducing its mobility under normal redox condi-
tions, and that addition of an antioxidant can enhance this recep-
tor’s mobility. It is possible that the Y1361C mutation confers this
special sensitivity to normal redox conditions because it occurs in
aregion known to interact with other proteins containing surface-
exposed cysteines.®® Gain-of-cysteine mutations are among the
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most pathogenic missense mutations (Figure S6D), and their ef-
fect on protein mobility may not be limited to IR, but it may extend
to other disease-relevant proteins.

Diverse pathogenic factors decrease protein mobility

The pathogenic stimuli that are associated with diverse diseases
are thought to commonly induce oxidative stress.”® We devel-
oped a mobility biosensor assay to investigate relationships be-
tween surface-exposed cysteines and protein mobility under
oxidative conditions and to investigate whether diverse patho-
genic stimuli produce similar mobility phenotypes in liver cells
and in other disease-relevant cell types. We constructed the
protein mobility sensor by adding a rigid linker containing
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Figure 5. Diverse pathogenic factors
decrease protein mobility

(A) Representations of HaloTag fusion protein
(HaloTag-Cys).

(B) Apparent diffusion coefficient of HaloTag-Cys
as determined by SPT in cells treated as indicated
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five cysteine residues to the HaloTag protein (HaloTag-Cys)
(Figure 5A) together with a control biosensor containing five
serine residues (HaloTag-Ser). The HaloTag-Cys biosensor
was appropriately sensitive to pathogenic levels of H,O», as evi-
denced by the mobility of HaloTag-Cys decreasing upon H,O,
treatment in a dose-dependent fashion (Figure 5B). Similarly,
treatment of cells containing the biosensor with pathogenic insu-
lin concentrations led to reduced protein mobility (Figure 5C).
Pathogenic levels of insulin had less of an effect on the mobility
of a control HaloTag-Ser protein (Figure S6E).

Pathogenic stimuli that induce oxidative stress include hyper-
glycemia, high fat, inflammation, genotoxic stress, endotoxin,
and drug toxicity (Figure 5D).”""® These stimuli have been
shown to increase ROS through diverse mechanisms, which
include, but are not limited to, dysregulation of mitochondria, dys-
regulation of redox homeostasis proteins, ER stress, and eNOS
dysregulation.”®”"®° Treating cells with these pathogenic stimuli
led to elevated levels of ROS (Figure 5E), confirming previous re-
sults.?®”"="® These treatments also reduced the mobility of the
HaloTag-Cys protein (Figures 5F, S7A, and S7B). In skeletal mus-
cle cells, another disease-relevant cell type, pathogenic stimuli
also decreased HaloTag-Cys mobility (Figure S7C). Taken
together, these results are consistent with a model in which
diverse pathogenic stimuli known to induce oxidative stress cause
suppressed protein  mobility in multiple disease-relevant
cell types.

(E) ROS quantification in cells treated as indicated.
Data are plotted as mean + SEM. Numbers of cells:
normal glucose (77) vs. high glucose (67); BSA (115)
vs. high fat (171); BSA (150) vs. TNF-a (91); DMSO
(152) vs. etoposide (ETO, 83); control (82) vs. lipo-
polysaccharide (LPS, 78). t test was used for sta-
tistical analysis. * represents p value < 0.05 and ***
represents p value < 0.001.

(F) Apparent diffusion coefficient of HaloTag-Cys as
determined by SPT in cells treated as indicated.
. Numbers of molecules: normal glucose (1,001) vs.
high glucose (582); BSA (126) vs. high fat (101); BSA
(265) vs. TNF-o. (363); DMSO (1,718) vs. ETO (1,804);
control (1,456) vs. LPS (1,327). Cohen’s d = 0.1, 0.2,
0.1, 0.2, and 0.1 for hyperglycemia, dyslipidemia,
inflammation, genotoxic stress, and endotoxin,
respectively. Data are plotted as means + SEM.
Mann-Whitney test was used for statistical analysis. *
represents p value < 0.05 and *** represents p value <
0.001.

See also Figure S7.
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Protein mobility and functional activity

Biochemical reactions are typically collision limited,®'** and
reduced rates of protein diffusion would be expected to reduce
functional outputs (Figure 6A). We produced a mathematical
model and conducted tests in vitro and in cells designed to
confirm that reduced protein mobility confers reduced enzymatic
activity with the IR (Figure 6B). Phosphorylation of substrates by
protein kinases such as the IR (Figure 6C), which would be ex-
pected to be collision limited, should be reduced when protein
mobility is decreased. Mathematical modeling of phosphoryla-
tion of substrates by protein kinases showed that reaction out-
puts are reduced when protein mobility is decreased (Figure 6D).
IR and an IR substrate protein, IRS1, were purified and subjected
to environments that would slow or accelerate the mobility of pro-
teinsin vitro. When the mobility of proteins was reduced in vitro by
increasing glycerol concentration, and thus viscosity, we
observed reduced phosphorylation of IRS1 by IR (Figure 6E).
Agitation of solutions can increase protein mobility and thus the
collision rate of molecules,®" and agitation was found to partially
rescue the reduction in phosphorylation with elevated viscosity
(Figure 6F). These results support the expectation that reduced
protein mobility reduces the kinase activity of IR.

To further probe the relationship between protein mobility and
functional output in cells, we used the BirA/AviTag system, which
was previously shown to exhibit collision-limited activity.®" In this
system, where the biotin ligase BirA biotinylates its substrate
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Figure 6. Protein mobility affects function
(A-C) Cartoons depicting relationship between pro-
tein mobility, functional output, and collision fre-
quency (A), models and assays used to study IRS
phosphorylation (B), and the phosphorylation of IRS1
by a kinase (C).

(D) Second-order rate constant from simulations of
IRS1 phosphorylation as a function of diffusion co-
efficient.

(E) Immunoblot for phosphorylated IRS1 (pIRS1)
and IRS1 (left). IRS1 phosphorylation assay was
performed in solutions containing 5%, 15%, or
30% glycerol. Quantification of relative pIRS1
amount (right) (n = 3 biological replicates). t test
was used for statistical analysis. * represents p
value < 0.05.

(F) Immunoblot for phosphorylated IRS1
(pIRS1) and IRS1 (left). IRS1 phosphorylation
assay was performed in solutions containing 0%
or 15% glycerol with agitation (1,200 rpm) or
without agitation (0 RPM). Quantification of
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(G) Cartoon depicting biotinylation assay.

(H) Cartoon depicting high mobility in normal
conditions and low mobility in pathogenic con-
ditions.

(I) Schematic representation of cell treatments.
(J) Representative tracks for movement of indi-
vidual molecules as determined by SPT of the
indicated proteins (left). Scale bars are indicated.
Apparent diffusion coefficient of the indicated
proteins in cells treated with normal or patho-
genic insulin (right). Numbers of molecules: BirA-
SNAP normal (1,003) vs. pathogenic (865);
AviTag-Halo-Cys normal (1,022) vs. pathogenic
(1,067). Mann-Whitney test was used for statis-
tical analysis. ** represents p value < 0.01 and ***
represents p value < 0.001.

(K) Immunoblot for biotinylated and un-
biotinylated AviTag-Halo-Cys. t test was used
for statistical analysis. * represents p value <
0.05.
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(L) Cartoon depicting function decreases in diseased cells (left). Quantification of relative pIRS1 determined by immunoblotting (t test was used for
statistical analysis, ** represents p value < 0.05), logx(fold change) of gene expression for genes whose promoter is occupied or not occupied by MED1,
and logy(fold change) of expression of protein-coding genes or repetitive elements.

See also Figure S7.

AviTag, fusion of BirA with SNAP-tag (BirA-SNAP) and fusion of
the AviTag to our protein mobility biosensor HaloTag-Cys al-
lowed us to monitor both protein mobility and BirA activity
(Figures 6G and 6H) in HepG2 cells. Under conditions of patho-
genic signaling in cells, the reduction in protein mobility corre-
lated with reduced biotinylation (Figures 61-6K). These results
support the concept that reduced protein mobility leads to
reduced functional activity.

The cellular processes that have been reported to be dysregu-
lated in chronic syndromes include reduced phosphorylation of
substrates, altered gene regulation, and repression of hetero-
chromatic repeats, among others.®'® To confirm that these pro-
cesses are indeed dysregulated in cells under the conditions
studied here, we conducted assays in cells that were treated
with normal and with pathogenic insulin. The results showed ev-
idence of dysregulated features noted previously in chronic syn-
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dromes (Figures 6L and S7D). Phosphorylation of IRS1 was
reduced, genes occupied by the mediator coactivator subunit
MED1 were expressed at lower levels, and there was elevated
expression of heterochromatic repeats. These results are
consistent with a model where reduced protein mobility can
contribute to the diversity of dysregulated processes that are
evident in chronic disease.

DISCUSSION

Pathogenic signaling contributes to prevalent diseases charac-
terized by dysregulation of remarkably diverse cellular pro-
cesses.®'” Consequently, equally diverse pathogenic mecha-
nisms are assumed to cause these phenotypes. However, the
findings on protein mobility in healthy and dysregulated cells
described here suggest an alternative explanation, namely,
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that a common mechanism—suppressed mobility, here referred
to as proteolethargy —contributes to dysregulation of a range of
cellular processes in the setting of diverse pathogenic stimuli.
Proteolethargy, the phenomenon of reduced protein mobility
in the setting of pathogenic stimuli, might be caused by any num-
ber of mechanisms, but several lines of evidence converge on
the effects of excess ROS on protein mobility as a common
mechanism that can impact proteins throughout the cell in
diverse chronic syndromes (Figure 7). Cells exposed to diverse
pathogenic stimuli produce excess ROS through mechanisms
that include dysregulation of mitochondria, dysregulation of
redox homeostasis proteins, ER stress, and eNOS dysregula-
tion, among others (Figure 7A).”>""83 Proteins exposed to
oxidative environments exhibit reduced mobility if they have sur-
face-exposed cysteines or are engineered to have surface cys-
teines. These effects can be remedied in part by treatment of
cells with reducing agents or agents that are thiol protective.
Gain-of-cysteine mutations can cause reduced mobility of the
mutated protein. We estimate that ~50% of human proteins
contain at least one surface-exposed cysteine (see STAR
Methods), so there is potential for half of the proteome to be
directly susceptible to proteolethargy in high ROS environments.
Our experimental and modeling data jointly support a model in
which proteins with surface-exposed cysteines, upon transiting
through a milieu that is densely packed with biomolecules,
have the potential to form transient disulfide crosslinks with other
proteins (Figure 7B). An elevated oxidative environment has the
potential to increase the lifetime of the intermolecular cross-

reduced mobility in high ROS environments due to
their sensitivity to oxidation.

(C) Alterations in plasma membrane and cyto-
plasmic fluidity can also occur in high ROS envi-
ronments.

(D) Mobility is decreased in pathogenic signaling,
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thereby reducing rates of particle collision and
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/ AN\
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links,%%85%5 effectively increasing the hy-

drodynamic radius and thereby
decreasing protein mobility.®* Variations
of this model are possible, where changes
in disulfide bond rates or lifetimes have
additional influences on protein mobility
through improper complex formation,
changing protein conformation, promoting
binding to immobile proteins, disrupting
associations with transport proteins,
or  altering cytoplasmic  viscosity
(Figure 4B).5*° It is also likely that the ef-
fects of elevated oxidative environments
can impact protein mobility more indi-
rectly; for example, changes in plasma membrane fluidity due
to altered lipid oxidation and composition have the potential to
influence protein mobility,®”~°® and changes that affect cytoskel-
eton-associated proteins have been noted to impact cellular
fluidity (Figure 7C).9+%°

Proteolethargy would be expected to adversely impact diverse
functions in cells. In healthy cells, proteins with prominent roles in
diverse cellular processes are highly mobile and thus able to
transit a space equivalent to the diameter of a cell in 2-10 s. In
cells subjected to pathogenic signaling, however, the mobility
of most proteins studied here was reduced by 20%-35%. Since
many biological processes in cells are collision limited, de-
creases in protein mobility are expected to reduce functional out-
puts (Figure 7D).®"%% Supporting this view, we found that
reducing the mobility of IR reduces its rate of phosphorylation
of the IR substrate IRS1 in vitro and in vivo and that a synthetic
system designed to report biotin ligase activity in cells showed
reduced ligase activity when cells were subjected to pathogenic
signaling. The cellular processes that have been reported to be
dysregulated in chronic syndromes such as diabetes and inflam-
matory disorders are diverse and include signaling activity, gene
regulation, heterochromatin repression, and metabolic activ-
ity.2'” These cellular functions were found to be dysregulated
in the cell system studied here. We thus suggest that proteole-
thargy may account for the diversity of dysregulated cellular func-
tions noted for at least some chronic diseases.

Many proteins have been shown to assemble together with
functionally related proteins into biomolecular condensates,

Associated functions
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cellular organelles that are not physically delimited by
membranes.?*284449-55.97.98 \We found that the mobility of pro-
teins was reduced both inside and outside of these compartments.
The mobility of the synthetic proteins such as the protein mobility
biosensor, which does not appear to assemble into condensates,
was reduced by high ROS environments. Our results thus indicate
that proteolethargy can occur across the cell, and it occurs both in-
side and outside of condensate compartments.

There is limited information on the mobility of a range of pro-
teins with diverse functions in human cells and even less infor-
mation on the effects of pathogenic stimuli on protein mobility.
This paucity of knowledge may explain why proteolethargy has
apparently not been described as a pathogenic mechanism in
chronic diseases. Previous studies have investigated the diffu-
sive behaviors of certain transcriptional regulators in mammalian
cells,>**>°%1% and one noted that the mobility of the IR is
reduced in rat hippocampal neurons by low concentrations of tu-
mor necrosis factor alpha and by cholesterol depletion.**

The model described here for proteolethargy in disease has im-
plications for the development of therapeutics for certain chronic
diseases. Restoring protein mobility might be considered among
the therapeutic hypotheses for these chronic diseases. Protein
mobility biosensors, such as the one developed for this study,
may prove to be valuable for high-throughput screening for drugs
that restore normal protein mobility under pathogenic signaling
conditions. Redox homeostasis is regulated by many pathways
and proteins, which counteract transient increases in ROS that
occur normally in diverse cellular processes,”®'?"1%? so it is
possible that therapeutic targeting of these natural pathways
will prove beneficial for treating or preventing proteolethargy.
The rescue of protein mobility with NAC treatment, as described
here, is a proof of principle for this concept.

Limitations of the study

We propose that pathogenic signaling reduces the mobility of a
large fraction of cellular proteins, that reduced protein mobility is
due largely to a dysregulated redox environment that impacts
oxidation-sensitive cysteines, and that this proteolethargy may
account for the diversity of dysregulated cellular processes
that are evident in chronic disease. Pathogenic signaling could
potentially affect ~50% of the proteome, based on estimates
of surface-exposed cysteines in proteins, but a necessarily
limited number of proteins are surveyed in this work. There are
additional oxidation-sensitive amino acids and oxidation-related
mechanisms that may contribute to decreased protein mobility,
which are not studied here. As this work is focusing on the move-
ment of individual molecules at specific timescales and distance
scales, we did not explicitly examine all potential mechanisms
that may affect protein movement. Proteolethargy in the setting
of pathogenic stimuli was observed using cell lines and a defined
set of experimentally tractable treatments, so further studies will
be needed to learn how reduced protein mobility manifests as
disease phenotypes in whole organisms. Diverse endogenous
proteins were studied in cells subjected to pathogenic insulin
signaling, but these proteins were not studied in response to
diverse pathogenic stimuli, where a biosensor was deployed to
report protein mobility. Excess ROS has been implicated in aging
and diseases not studied here, so further studies are necessary
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to learn whether reduced protein mobility is associated with, and
perhaps contributes to, aging and other diseases.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed
to and will be fulfilled by the lead contact, Richard Young (young@wi.mit.edu).

Materials availability
All plasmids and cell lines generated in this study are available upon request.

Data and code availability

Metabolomic datasets generated in this study have been deposited in Metab-
olights: MTBLS9535. RNA-seq datasets generated in this study have been
deposited in GEO: GSE273733. Published MED1 ChIP-seq data (GEO:
GSM2040029) and input (GEO: GSM2864933) were used in this study. The
code for Brownian dynamics simulations of proteins with surface-exposed
cysteines has been deposited in GitHub: https://github.com/younglab/
proteolethargy. All other codes are available to researchers via the corre-
sponding authors.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-insulin receptor (IF) Cell Signaling 23413; RRID: AB_2924796
Anti-MED1 (IF) Abcam ab64965; RRID: AB_1142301
Anti-HP1a. (IF) Abcam ab109028; RRID: AB_10858495
Anti-FIB1 (IF and WB) Abcam ab5821; RRID: AB_2105785
Anti-SRSF2 (IF) Abcam ab11826; RRID: AB_298608
Anti-insulin receptor (WB) Cell Signaling 3025; RRID: AB_2280448
Anti-MED1 (WB) Bethyl A300-793A; RRID: AB_577241
Anti-SRSF2 (WB) Thermo Fisher Scientific PA5-12402; RRID: AB_2184941
Anti-b-actin Sigma-Aldrich A5441; RRID: AB_476744
Anti-H3 Cell Signaling 4499; RRID: AB_10544537

Donkey anti-rabbit IgG
Sheep anti-mouse IgG

Cytiva Life Sciences
Cytiva Life Sciences

NA934-1ML; RRID: AB_772206
NXA931V; RRID: N/A

Anti-HA (WB) Cell Signaling 3724; RRID: AB_1549585
Anti-pIRS1 (WB) Cell Signaling 3070; RRID: AB_2127863
Anti- IRS1 (WB) Cell Signaling 2382; RRID: AB_330333
Anti-IR (WB) Cell Signaling 74118; RRID: AB_2799850
Anti-pIRS1 (IF) Abcam ab4873; RRID: AB_304698
Bacterial and virus strains

NEB® 10-beta Competent E. coli NEB C3019H

(High Efficiency)

Biological samples

HepG2 cells ATCC HB-8065TM

C2C12 cells ATCC CRL-1772

Chemicals, peptides, and recombinant proteins

Insulin Sigma-Aldrich 19278-5ML

H>0, Sigma-Aldrich H1009

N-acetyl cysteine Sigma-Aldrich A9165-25G

Tumor necrosis factor alpha Thermo Fisher Scientific PHC3016

Glucose Sigma-Aldrich G8270
Lipopolysaccharide Sigma-Aldrich L2630

Fatty acid-free BSA Sigma-Aldrich A8806-5G

Etoposide Thermo Scientific Chemicals J63651

Oleic acid Sigma-Aldrich 07501

Palmitic acid Sigma-Aldrich P9767
N-acetyl-p-benzoquinone imine (NAPQI) Sigma-Aldrich A7300-1mg

Doxycycline Sigma-Aldrich D9891-5G

Fetal bovine serum Sigma-Aldrich F4135

Janelia Fluor 585 Gift from the Lavis Lab N/A

Janelia Fluor 549 Promega GA1110

Hygromycin Thermo Fisher Scientific 10687-010

TrypanBlue Invitrogen T10282

BSA (IF) Jackson Immunoresearch Laboratories 001-000-162

Hoechst (IF) Thermo Fischer Scientific 3258
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REAGENT or RESOURCE SOURCE IDENTIFIER
Hoechst (live cell imaging) Thermo Fischer Scientific 33342

PBS Gibco 10010-023
Protease and phosphatase inhibitors Sigma-Aldrich 11873580001 and 4906837001
Acetonitrile Thermo Fischer Scientific A955-4
Methanol Thermo Fischer Scientific A456-4
LC-MS grade water (metabolomics) Thermo Fischer Scientific W6-4
Ammonium Carbonate Sigma-Aldrich 379999-50G
Ammonium Hydroxide Solution Sigma-Aldrich 338818-100mL
Nitric Acid Thermo Fischer Scientific A467-500mL
20 Canonicial Metabolomics Amino Acid Cambridge Isotope Labs MSK-CAA-1
Mix[ 2.5 mM each]

Purified active recombinant human insulin Millipore 14-466
receptor

Purified recombinant IRS1 Abcam ab70538
Glycerol Invitrogen 15514011
Streptavadin, unconjugated Invitrogen 43-430-2
Biotin Millipore B4501
DMSO Sigma-Aldrich D2438
Critical commercial assays

NEBuilder HiFi DNA Assembly Master Mix NEB E2621S
Phusion polymerase Thermo Fisher Scientific F531S
CellROX Deep Red Reagent Thermo Fisher Scientific C10422

Cell Lytic M Sigma-Aldrich C2978

BCA Protein Assay Kit Thermo Fisher Scientific 23250

ECL substrate Millipore WBKL20500
TRIzol™ reagent Thermo Fisher Scientific 15596026
Native Sample Buffer BioRad 1610738
KAPAHyperRiboErase Roche KK8561

Deposited data

Metabolomics data

Metabolights

Metabolights: MTBLS9535

RNA-seq GEO GEO: GSE273733
MED1 ChIP-seq GEO GEO: GSM2040029
Input GEO GEO: GSM2864933
Experimental models: Cell lines

HepG2 cells ATCC HB-8065TM

C2C12 cells ATCC CRL-1772

HepG2 expressing endogenous Dall’Agnese et al.”® N/A

IR tagged with GFP

HepG2 expressing endogenous This work N/A

IR tagged with HaloTag

HepG2 expressing endogenous This work N/A

MED1 tagged with GFP

HepG2 expressing endogenous This work N/A

MED1 tagged with HaloTag

HepG2 expressing endogenous This work N/A

HP1a tagged with GFP

HepG2 expressing endogenous This work N/A

HP1a tagged with HaloTag

HepG2 expressing endogenous This work N/A

FIB1 tagged with GFP

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
HepG2 expressing endogenous This work N/A
FIB1 tagged with HaloTag

HepG2 expressing endogenous This work N/A
SRSF2 tagged with GFP

HepG2 expressing endogenous This work N/A
SRSF2 tagged with HaloTag

HepG2 expressing endogenous This work N/A
SRSF2-Ser tagged with GFP

HepG2 expressing endogenous This work N/A
SRSF2-Cys tagged with GFP

HepG2 expressing GFP This work N/A
HepG2 expressing HaloTag This work N/A
HepG2 expressing endogenous This work N/A
IR-Y1361S tagged with GFP

HepG2 expressing endogenous This work N/A
IR-Y1361C tagged with GFP

HepG2 expressing HaloTag-Cys This work N/A
HepG2 expressing HaloTag-Ser This work N/A
C2C12 expressing HaloTag-Cys This work N/A
HepG2 expressing AviTag-HaloTag-Cys/ This work N/A
BirA-SNAP

Oligonucleotides for genotyping

IR_fwd: GGAGAATGTGCCCCTGGAC IDT/Eton Bioscience N/A
IR_rev: TTGGTAACCAAACGAGTCCACCT IDT/Eton Bioscience N/A
MED1_fwd: CGAGCACCCTTCTCTTCTTG IDT/Eton Bioscience N/A
MED1_rev: GAAGTTGAGAGTCCCCATCG IDT/Eton Bioscience N/A
HP1a _fwd: CAAGGTGAGGAGGAAATCA IDT/Eton Bioscience N/A
HP1o _rev: CACAGGGAAGCAGAAGGAAG IDT/Eton Bioscience N/A
SRSF2_fwd: CAAGTCTCCTGAAGAG IDT/Eton Bioscience N/A
GAAGGA

SRSF2_rev: AAGGGCTGTATCCAAAC IDT/Eton Bioscience N/A
AAAAAC

FIB1_fwd: CCTTTTAATCAGCAAC IDT/Eton Bioscience N/A
CCACTC

FIB1_rev: GTGACCGAGTGAGAATT IDT/Eton Bioscience N/A
TACCC

Recombinant DNA

Repair template DNA to make This work N/A
endogenously HaloTag tagged cell lines

gRNA construct DNA to make Klein et al."® and this work N/A
endogenously tagged cell lines

Repair template DNA to make Klein et al.’®® and this work N/A
endogenously GFP tagged cell lines

Construct to express HaloTag-Cys This work N/A
Construct to express HaloTag-Ser This work N/A
Construct to express AviTag-HaloTag-Cys This work N/A
Construct to express BirA-SNAP This work N/A
Software and algorithms

Prism Version 9.4.0 GraphPad N/A
Fiji/lmaged v2.1.0/153c GraphPad N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FreeStyle v1.3 Thermo Fisher Scientific N/A

TraceFinder v4.1 Thermo Fisher Scientific N/A

ZEN Blue Zeiss Thermo Fisher Scientific N/A

MATLAB vR2021b MathWorks N/A

Cellpose Stringer et al.'* N/A

STAR Dobin et al.’® N/A

TEtranscripts Jin et al.'® N/A

BWA Li and Durbin'®” N/A

MACS2 Zhang et al.’%® N/A

Bedtools Quinlan and Hall'* N/A

Other

ZEISS LSM 980 with Airyscan 2 microscope ZEISS ZEISS LSM 980 with Airyscan

Elyra 7 microscope ZEISS Elyra 7

Nanoimager microscope ONI Nanoimager

Clinvar ClinVar ClinVar: https://ftp.ncbi.nim.nih.gov/pub/
clinvar/vef_GRCh38/archive_2.0/2023/
clinvar_20230903.vcf.gz https://ftp.ncbi.
nim.nih.gov/pub/clinvar/tab_delimited/
variant_summary.txt.gz

Uniprot Swiss-Prot Uniprot ClinVar: https://ftp.uniprot.org/pub/
databases/uniprot/current_release/
knowledgebase/idmapping/by_organism/
HUMAN_9606_idmapping_selected.tab.gz
https://ftp.uniprot.org/pub/databases/
uniprot/current_release/knowledgebase/
idmapping/by_organism/HUMAN_9606_
idmapping.dat.gz

Brownian dynamics simulations This work GitHub: https://github.com/younglab/

of proteins with surface cysteines proteolethargy

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

HepG2 (male) cells were acquired from ATCC (ATCC, HB-8065TM) and cultured in 150 mm cell culture grade dishes with
EMEM media (ATCC, 30-2003) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) without antibiotic
and kept in a humidified incubator at 37°C with 5% CO,. These cells were chosen because they are widely used to study
diverse pathologies and because they can be genetically modified. To passage the cells, 20 ml of room-temperature phosphate
buffered saline solution (Gibco, 10010-023) was added to the dish, aspirated off, then 3 ml of TrypLE Express Enzyme (Life
Technologies, 12604021) was added to help dissociate cells. The dish was then incubated at 37°C with humidity and 5%
CO, for 5 minutes. After 5 minutes, cells were mechanically dissociated by pipetting them up and down 7 times using a
10ml serological pipette fitted with a p200 tip. To quench the TrypLE, 7 ml of EMEM-FBS was added to the dish. 1 ml of
the cell suspension was left on the dish and 20 ml of EMEM-FBS was added on top. HepG2 cells were continuously cultured
in a 150 mm dish and split 1:10 when the cells became confluent. The cells were subcultured on a new plate monthly, seeded
using a 1:2 split.

C2C12 (female) cells were acquired from ATCC (ATCC, CRL-1772) and cultured in 150 mm cell culture grade dishes with DMEM
media (Gibco, 11965-092) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) without antibiotic and kept in a
humidified incubator at 37°C with 5% CO.. These cells were chosen because they are widely used to study diverse pathologies and
because they can be genetically modified. Cells were passaged at 30-50% confluence to prevent differentiation. To passage the
cells, 20 ml of room-temperature phosphate buffered saline solution (Gibco, 10010-023) was added to the dish, aspirated off,
then 3 ml of TrypLE Express Enzyme (Life Technologies, 12604021) was added to help dissociate cells from the dish and one another.
The dish was then incubated at 37°C with humidity and 5% CO, for 5 minutes. After 5 minutes, the cells were dissociated by tapping
the sides of the plate. To quench the TrypLE, the cells were resuspended in 7 ml of DMEM supplemented with 10% FBS, and these
resuspended cells were used to seed a new dish at a 1:20 dilution.
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METHOD DETAILS
Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Constructs and construct generation

For tagging endogenous proteins (IR, MED1, HP1q, FIB1, and SRSF2) with GFP, HaloTag, or GFP-5xSer/Cys, the homology
directed repair (HDR) strategy of CRISPR was adopted. For this strategy, three components are needed: 1) Cas9 protein to cut
the DNA, 2) sgRNA to guide Cas9 to the desired target, and 3) a DNA repair template that contains the desired edit as well as
800 bp of homologous sequence immediately upstream and downstream of the target. The sgRNA sequence and Cas9 coding
sequence for transient expression of both in cells were integrated in the same plasmid (which was refer to as “sgRNA-Cas9
plasmid”), while the repair templates were integrated into a second plasmid.

sgRNA-Cas9 plasmids

20 bp of target sequences were cloned into a plasmid containing sgRNA backbone, a codon-optimized version of Cas9,
and mCherry. The mCherry was used during FACS sorting to select for Cas9-mCherry* cells. Constructs for the generation of
MED1-GFP, HP1a-GFP, SRSF2-GFP, FIB1-GFP, and insulin receptor-GFP (IR-GFP) cell lines were described in previous publica-
tions.?® %% To generate the IR-Y1361C-GFP cell line, the following sgRNA sequences with PAM sequence in parentheses were
used for CRISPR/Cas9 editing:

sgRNA_IR_C-term_1: CACGGTAGGCACTGTTAGGA(AGG)
sgRNA_IR_C-term_2: TAGGCACTGTTAGGAAGGAT(TGG)
sgRNA_IR_C-term_3: CCTCCGTTCATGTGTGTGTAAGG)

The other sgRNA sequences are reported in previous publications.”®'%®

Cloning was performed using NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S) according to manufacturer’s
specifications.
Repair templates for GFP tagging
Approximately 800bp of Homo sapiens genomic DNA sequences flanking the Cas9 cutting sites were cloned into the pUC19 vector
using NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S), with in-frame monomeric enhanced fluorescent protein (GFP)
sequence being inserted together with a flexible 10-animo acid linker sequence (GGSGGGGSGG) to space the fluorophore
and the protein of interest. Constructs for MED1-GFP, HP1a-GFP, SRSF2-GFP, FIB1-GFP, and IR-GFP cell line generations are
described in previous publications.?®'%® For the IR-Y1361C-GFP cell line generation, the homology repair template consists of
INSR exon 22 containing the Y1361C missense mutation in frame with GFP flanked on either side by 800-bp homology
arms amplified from HepG2 genomic DNA using PCR. For SRSF2-GFP-Ser/Cys cell line generation, the SRSF2-GFP repair
template was modified to fuse SRSF2-GFP to a flexible linker followed by either a 5xSer array or a 5xCys array. The 5xSer array
contains 5 serines spaced by a rigid linker (AEAAAKEAAAKA),''° while the 5xCys array contains 5 cysteines spaced by the same
rigid linker."'® These constructs were cloned using NEBuilder HiFi DNA Assembly Master Mix.
Repair templates for HaloTag tagging
Constructs for MED1-HaloTag, HP1a-HaloTag, SRSF2-HaloTag, FIB1-HaloTag, and IR-HaloTag were generated by replacing the
mEGFP with HaloTag in the repair templates using NEBuilder HiFi DNA Assembly Master Mix.

To generate cells for doxycycline-inducible expression of GFP, HaloTag, HaloTag-Ser/Cys, or AviTag-HaloTag-Cys/BirA-SNAP, a
PiggyBac vector®® was used to make the GFP, HaloTag or SNAP-tag containing construct.
PiggyBac vectors for doxycycline-inducible expression of GFP, HaloTag or SNAP
Sequences of SiriusGFP, HaloTag, or SNAP-tag were cloned using NEBuilder HiFi DNA Assembly Master Mix into a doxycycline-
inducible, PiggyBac vector, which was described in our previous publication.”®
PiggyBac vectors for doxycycline-inducible expression of HaloTag-Ser/Cys arrays
Constructs for doxycycline-inducible HaloTag-Ser and HaloTag-Cys were generated by inserting the coding sequence for HaloTag
protein whose C-terminal is fused to a flexible linker (GAPGSAGSAAGGSGA)'"" and to an array containing either 5 serines or 5
cysteines which are separated by a rigid linker (AEAAAKEAAAKA) "% into a PiggyBac vector. Constructs were made using NEBuilder
HiFi DNA Assembly Master Mix.
PiggyBac vectors for doxycycline inducible expression of AviTag-HaloTag-Cys and BirA
Constructs for doxycycline-inducible HaloTag-Ser and HaloTag-Cys were generated by inserting coding sequences for the
constructs into PiggyBac vectors. The AviTag-Halo-Cys construct encodes the coding sequence for HaloTag-Cys construct
described above with the AviTag peptide (GLNDIFEAQKIEWHE) with FLAG and HA tags all separated by flexible linkers (PGGSG)
fused to the N-terminus. The BirA construct encodes a coding sequence for a human codon-optimized version of BirA with a C-ter-
minal flexible linker (GAPGSAGSAAGGSGA) followed by a SNAP-tag and HA-tag. Constructs were made using NEBuilder HiFi DNA
Assembly Master Mix.
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Cell editing

Selection criteria for the studied endogenous proteins

We chose for study a plasma membrane receptor (insulin receptor, IR), a transcriptional cofactor (Mediator subunit MED1), a
regulator of heterochromatin (heterochromatin protein HP1a), a component of the nucleolus (fibrillarin, FIB1) and a subunit of the
mRNA splicing apparatus (serine and arginine-rich splicing factor 2, SRSF2) for multiple reasons. These proteins are well-studied
and important regulators of diverse processes in cells (signaling, gene expression, gene silencing, rRNA biogenesis and splicing,
respectively). The biological processes associated with these proteins have been shown to be dysregulated in prevalent syndromes.
The expression level of these proteins in the liver is similar between healthy donors and patients with type 2 diabetes.''? Previous
studies have shown that the endogenous proteins can be successfully tagged with fluorescent probes.?#4 193111113 \When |abeled
with florescent probes, they retained their ability to concentrate in the proper locations in cells.?®#4 193111113 A|| these proteins have
been reported to assemble into condensate compartments together with other biomolecules with shared functions,28:44:49:53.113
Endogenously tagged cell line generation

The IR-GFP cell line used here was generated in our previous study.”® A CRISPR/Cas9 system is used to generate genetically
modified HepG2 cell lines as previously performed.?® 1 x 10° cells were transfected with 1.5 ng sgRNA-Cas9 plasmid and 1.5 pg
of homology repair template using Lipofectamine 3000 (Invitrogen, L3000). 24 hours post-transfection, transfection media was
replaced with fresh cell culture media (EMEM-FBS). To enrich for transfected cells, cells were sorted 72 hours after transfection
based on the expression of mCherry fluorescent protein encoded from the sgRNA-Cas9 plasmid. mCherry positive cells were
expanded for 1.5 to 2 weeks before a second sorting for the expression of GFP or HaloTag. To sort based on HaloTag expression,
cells were cultured for 15 minutes with Janelia Fluor 585 (a gift of the Lavis Laboratory) prior to sorting. Cells were then expanded
and the cell lines were validated by Western blot, PCR genotyping using Phusion polymerase (Thermo Fisher Scientific, F531S)
and imaging experiments.

To generate the clonal cell line used in Figures 4H and 4l, after the second sort, single cells were plated into individual wells of a
96-well plate. The single cells were cultured for 1-1.5 months in conditioned media. To make conditioned media, HepG2 cells were
first cultured in fresh media (EMEM-FBS) for 3 days and this media was subsequently harvested. Conditioned media was then made
by mixing the harvested media 1:1 with fresh media and filter-sterilizing prior to use.

Genotyping PCR was performed according to the manufacturer’s specifications, using the following primers:

IR_fwd: GGAGAATGTGCCCCTGGAC

IR_rev: TTGGTAACCAAACGAGTCCACCT
Doxycycline inducible expression cell line generation
A PiggyBac transposon system (Systems Biosciences) was used for stable integration. 1 x 10° wildtype HepG2 cells were platedin a
6-well plate and simultaneously transfected with 0.5 pg of the PiggyBac expression vector and 0.2 pg of a plasmid encoding
PiggyBac transposase (gift of Jaenisch lab) using Lipofectamine 3000 (Invitrogen, L3000). 24 hours post-transfection, transfection
media was replaced with fresh media, EMEM with 10% FBS. 72 hours post-transfection, the cells were treated with media containing
150 pg/mL hygromycin (Thermo Fisher Scientific, 10687-010) (for cells edited to express HaloTag-Cys, HaloTag-Ser, and AvTag-
Halo-Cys) or 2 pg/mL puromycin (Millipore, P4512-1MLX10) (for cells edited to express BirA-SNAP). Selection media was refreshed
every 3 days and un-transfected cells were also treated with hygromycin as a positive control, confirming the efficiency of selection.
Typically, 7-10 days were required for the hygromycin to kill all the non-transfected HepG2 cells. For cells with doxycycline-inducible
co-expression of AviTag-Halo-Cys and BirA-SNAP, additional sorting was applied to get cells with low expression of both proteins
and minimized cell-to-cell expression variability when performing doxycycline induction: cells were treated with 10 ng/mL doxycy-
cline overnight, followed by co-staining with 50 nM of Halo-JF549 and 50 nM SNAP-JF646 for 20 minutes and proceeding to FACS
sorting.

Cell viability

Cell viability was measured by mixing 1:1 TrypanBlue (Invitrogen, T10282) with single cell suspension, then 10 ul of the TrypanBlue/
cell mixture was loaded into Countess cell counting chamber slides (Invitrogen, 100078809) and viability was measured using the
Countess 3 FL (Invitrogen). All samples were prepared in biological triplicate.

Cell treatments for HepG2

Insulin treatment

The cell plating and insulin treatment regime used in this study is the same as the one previously published.?® Cells were seeded at a
density of 32,000 cells/cm? onto 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C). Starting the day after plating,
cells were serum-starved for two days by washing the plates twice with EMEM media without FBS (EMEM) and maintaining the cells
in EMEM for 48 hours. Then cells were treated with EMEM supplemented with 0.125% fatty acid-free BSA (Sigma-Aldrich, A8806-5G)
(“EMEM-BSA”) that contained either 1) 0.1 nM insulin (Sigma-Aldrich, 19278-5ML) or 2) 3nM insulin, which are the concentrations of
insulin in the portal vein of healthy and insulin resistant patients.*® The media was refreshed twice per day (every ~12 hours) for
3 days. This treatment regime produced either a baseline “normal” signaling state or a “pathogenic” elevated signaling state.?®
To ensure that the protein mobility was due to the cellular state and not due to differences in the concentration of insulin, insulin
wash-outs were performed. Insulin wash-outs were performed by extensively washing cells with EMEM: the cells were washed
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six times each with 2mL of EMEM, including three quick washes, two 5 min washes, and a 15 min wash at 37 °C. Cells were then
acutely treated with 3 nM insulin for 5 minutes in EMEM-BSA at 37 °C with 5% CO, in a humidified incubator and then subjected
to the desired assay.

H>0, treatment

For experiments in Figures 3E, 3F, S4C, and S4D, cells were seeded at a density of 32,000 cells/cm?, serum-starved for two days as
described above. Then cells were treated with EMEM-BSA containing 0.1 nM insulin for three days refreshing the media containing
insulin twice per day (every ~12 hours). Following a quick wash in EMEM, cells were treated with 0 mM or 7.5 mM H,O, (Sigma-
Aldrich, H1009) in EMEM for 5 minutes. This treatment regime was selected because it lead to a similar degree of oxidative stress
as pathogenic insulin (see Figures 3B and 3C and “metabolomics for quantification of GSSG and GSH ratio” below) and minimizes
potential indirect effects of extended H,O, treatment. Cells were then subjected to the desired assay. For the H,O, titration exper-
iment in Figure 5, cells were seeded at a density of 100,000 cells/cm?, serum-starved for two days, followed by treating with
0, 1, 3, 8, or 20 mM H,0, in EMEM for 5 minutes before proceeding to imaging. For Figure S6A, cells were plated at a density of
56,000 cells/cm?. When cells reached 80-90% confluency, cells were washed with EMEM once for 30 minutes before treating the
cells with 0, 0.1, 1 or 20 mM H,0, for 5-10 minutes. Cells were then collected for western blot. For Figure S7D, cells were cultured
in EMEM for 2 days and in EMEM BSA containing 0.1nM insulin for 2 days. Following washes with EMEM as described above, cells
were treated with 20mM H,O, for 30 minutes and then stimulated with 3nM insulin in EMEM-BSA for 5 minutes at 37 °C with 5% CO,
in a humidified incubator. Cells were then processed for immunofluorescence.

N-acetyl cysteine (NAC) treatment

Cells were seeded at a density of 32,000 cells/cm?, serum-starved for two days as described above. Following serum starvation, the
cells were treated with 1) EMEM-BSA containing 3 nM insulin for two days and then with 2) EMEM-BSA containing 3 nM insulin and
1 mM NAC (Sigma-Aldrich, A9165-25G) for one day, refreshing the media twice per day (every ~12 hours). We treated the cells with
1mM NAC for 24 hours, because it is reported as a clinically relevant concentration’'* and treating HepG2 cells with 1mM NAC for
24 hours partially restores insulin signaling.”® Insulin washouts and final stimulation was performed as described above. For NAC
treatments of cells expressing IR-Y1361C mutant protein, cells were seeded at a density of 32,000 cells/cm? in 35mm glass-bottom
dishes, serum-starved for 16 hours and treated with EMEM-BSA containing 0.1 nM insulin and 1 mM NAC for two days refreshing the
media twice per day (every ~12 hours). Insulin washouts and final stimulation was performed as described above and cells were then
subjected to the desired assay.

NEM with H>0, treatment

Cells were seeded at a density of 55,000 cells/cm? in 35 mm glass-bottom imaging dishes (Mattek, P35G-1.5-20-C) and the following
day were washed once with EMEM and then serum-starved in 2 ml of EMEM for 24 hours as described above. 100 mM N-ethyl mal-
eimide (NEM) (Thermo Fisher Scientific, 156100500) stock solution was freshly prepared in sterile water prior to experiments. A final
concentration of 0 or 10 uM NEM in EMEM was added to cells and incubated at 37°C, 5% CO, for 10 minutes, then the cells were
treated with H,O, (Sigma-Aldrich, H1009) to a final concentration of 7.5 mM and imaged immediately. Imaging did not proceed longer
than 10 minutes to limit secondary effects from extended hydrogen peroxide treatment.

High glucose treatment

Cells were seeded at a density of 100,000 cells/cm?, and then serum-starved for 16 hours. Cells were then cultured in media con-
taining high glucose concentrations (EMEM supplemented with 33 mM of glucose, Sigma-Aldrich, G8270) or in media containing
physiological concentrations of glucose (EMEM supplemented with 33 mM of mannitol, Sigma-Aldrich, M1902) for 12 hours.
EMEM media provides physiological concentrations of glucose, and mannitol is used to ensure cells are under similar osmolarity con-
ditions as the high glucose condition. Cells were then subjected to the desired assay.

High fat treatment

Cells were seeded at a density of 32,000 cells/cm?, and then serum-starved for two days as described above. Cells were then
cultured for two days with either EMEM supplemented with fatty acids and BSA (EMEM-HF) or with EMEM-BSA as a control. For
EMEM-HF, a 50x stock solution is first made by supplementing EMEM with the following components to the indicated concentra-
tions: 6.25% fatty acid-free BSA (Sigma-Aldrich, A8806-5G), 2.25 mM oleic acid (Sigma-Aldrich, O7501), and 1.5 mM palmitic
acid (Sigma-Aldrich, P9767). This mixture was then incubated at 37°C for 1 hour with constant shaking in a thermomixer. The stock
solution was then diluted 1:50 for use in experiments resulting in a final concentration of 0.125% BSA, 45 mM oleic acid and 30 mM
palmitic acid for cell treatments. Media was refreshed twice a day (every ~12 hours). Cells were then subjected to the desired assay.
Tumor necrosis factor alpha (TNF«) treatments

Cells were seeded at a density of 32,000 cells/cm?, and then serum-starved for two days as described above. Cells were then treated
with EMEM-BSA media with/without 10 ng/ml Human TNF-o Recombinant Protein (Thermo Fisher Scientific, PHC3016) for two days,
refreshing the media twice per day (every ~12 hours). The cells were then subjected to the desired assay.

Etoposide treatment

Cells were seeded at a density of 100,000 cells/cm? for etoposide treatment and 10,000 cells/cm? for DMSO control. The differences
in seeding densities were required to ensure both sets of cells eventually reached similar levels of confluency, as etoposide blocks
cell proliferation. Cells were treated with EMEM-FBS media containing 1) 1.5 uM etoposide (Thermo Scientific Chemicals, J63651,
reconstituted in DMSO) or 2) the same volume of DMSO (Sigma-Aldrich, D2438) as a DMSO control. After 3 days, cells were treated
again with 1.5uM etoposide or DMSO for 3 more days. Cells were then subjected to the desired assay.
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Lipopolysaccharide (LPS) treatment

Cells were seeded at a density of 100,000 cells/cm?, and then serum-starved for 16 hours. Cells were then cultured in EMEM con-
taining 1 pg/ml of LPS (Sigma-Aldrich, L2630) for 24 hours. Cells were then subjected to the desired assay.
N-acetyl-p-benzoquinone imine (NAPQI) treatment

Cells were seeded at a density of 32,000 cells/cm?, and then serum-starved for 2 days. Cells were then treated with EMEM media
containing 150 mM NAPQI (Sigma-Aldrich, A7300-1mg) in DMSO or with EMEM media containing DMSO as a control for 15 minutes.
Cells were then subjected to the desired assay.

BirA/Avi Assay

Cells were treated with the insulin treatment described above. For each treatment with insulin besides the acute stimulation, 1 ng/ml
doxycycline was added. 10 uM biotin (Millipore, B4501) was added to the acute insulin treatment and cells were incubated at 37°C
5% CO, for 5 minutes and subjected to the desired assay.

Cell treatments for C2C12

Insulin treatment

Cells were seeded at a density of 100,000 cells/cm? onto 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C) for im-
aging. Starting the day after plating, cells were serum-starved for two days by washing the plates twice with DMEM media without
FBS (DMEM) and maintaining the cells in DMEM for 48 hours. Then cells were treated with DMEM supplemented with 0.125% fatty
acid-free BSA (Sigma-Aldrich, A8806-5G) (“DMEM-BSA”) that contained either 1) 0.1 nM insulin (Sigma-Aldrich, 19278-5ML) or 2)
3nM insulin. The media containing insulin was refreshed twice per day (every ~12 hours) for two days. This treatment regime pro-
duced either a baseline “normal” signaling state or a “pathogenic” elevated signaling state.”® Right before imaging, insulin wash-
outs were performed as follows: in total six washes with 2mL of DMEM each, including three quick washes, two 5 min washes,
and a 15 min wash at 37 °C. Cells were then acutely treated with 3 nM insulin for 5 minutes in DMEM-BSA at 37 °C with 5% CO2
in a humidified incubator and then subjected to the desired assay.

High glucose treatment

Cells were seeded at a density of 100,000 cells/cm?, and then serum-starved for 16 hours. Cells were then cultured in media con-
taining high glucose concentrations (DMEM supplemented with 33 mM of glucose, Sigma-Aldrich, G8270) or in media containing
physiological concentrations of glucose (DMEM supplemented with 33mM of mannitol, Sigma-Aldrich, M1902) for 12 hours.
DMEM media provides physiological concentrations of glucose, and mannitol is used to ensure cells are under similar osmolarity
conditions as the high glucose condition. Cells were then subjected to the desired assay.

High fat treatment

Cells were seeded at a density of 100,000 cells/cm?. After one day, cells were then cultured for one day with either DMEM-FBS sup-
plemented with 200 uM palmitic acid (Sigma-Aldrich, P9767) (DMEM-HF) or with DMEM-FBS supplemented with 200 uM BSA as a
control. For DMEM-HF, a 50x stock solution was first made by supplementing DMEM with the following components to the indicated
concentrations: 6.25% fatty acid-free BSA (Sigma-Aldrich, A8806-5G) and 10 uM palmitic acid (Sigma-Aldrich, P9767). This mixture
was then incubated at 37°C for 1 hour with constant shaking in a thermomixer. The stock solution was then diluted 1:50 for use in
experiments resulting in a final concentration of 0.125% BSA, 200 uM palmitic acid for cell treatments. Cells were then subjected
to the desired assay.

Tumor necrosis factor alpha (TNF o) treatment

Cells were seeded at a density of 100,000 cells/cm?, and then serum-starved for two days as described above. Cells were then
treated with DMEM-BSA media with/without 10 ng/ml Human TNF-o Recombinant Protein (Thermo Fisher Scientific, PHC3016)
for two days, refreshing the media twice per day (every ~12 hours). The cells were then subjected to the desired assay.
Etoposide treatment

Cells were seeded at a density of 100,000 cells/cm? for etoposide treatment and 1,000 cells/cm? for DMSO control. The differences in
seeding densities were required to ensure both sets of cells eventually reached similar levels of confluency, as etoposide blocks cell
proliferation. Cells were treated with DMEM-FBS media containing 1) 1.5 uM etoposide (Thermo Scientific Chemicals, J63651, re-
constituted as 10mM in DMSO) or 2) the same volume of DMSO (Sigma-Aldrich, D2438) as a DMSO control. After 3 days, cells
were treated again with 1.5uM etoposide or DMSO control for 3 more days. Cells were then subjected to the desired assay.
Lipopolysaccharide (LPS) treatment

Cells were seeded at a density of 100,000 cells/cm?, and then serum-starved for 16 hours. Cells were then cultured in DMEM con-
taining 1 pg/ml of LPS (Sigma-Aldrich, L2630) for 24 hours. Cells were then subjected to the desired assay.
N-acetyl-p-benzoquinone imine (NAPQI) treatment

Cells were seeded at a density of 100,000 cells/cm?, and then serum-starved for 2 days. Cells were then treated with DMEM media
containing 150 uM NAPQI (Sigma-Aldrich, A7300-1mg) in DMSO or DMSO as a control for 15 minutes. Cells were then subjected to
the desired assay.
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Live-cell imaging experiments: general setup

General imaging conditions

Cells were plated on 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C). For imaging doxycycline inducible proteins,
0.1 ng/ml of doxycycline was added to the media 8-12 hours prior to imaging. Cells were imaged for no longer than 10 minutes inside
an incubation chamber supplemented with warmed (37°C) humidified air and with 5% CO.,. For exogenous GFP or HaloTag visual-
ization, the cells were also stained with 1:20,000 of Hoechst 33342 (Thermo Scientific, 62249) for 10 minutes to stain the nuclei before
imaging.

Live-cell super-resolution microscopy

ZEISS LSM 980 with Airyscan 2 was used to acquire the super-resolution images of GFP-/HaloTag-tagged proteins. Cells were
imaged with a ZEISS incubation system that stably maintained the samples at 37°C with 5% CO, and humidified air. A 63X objective
with oil immersion was used. For GFP-tagged proteins, 488 nm laser was used for excitation. For Halo-tagged proteins, cells were
first incubated with media containing 100 nM Janelia Fluor 549 (Halo-JF549, Promega, GA1110) for 15 minutes. The cells were then
washed with fresh media and then cultured at 37°C with 5% CO, for 10 minutes before imaging with 561 nm laser excitation and the
mCherry filter for emission. Due to the various expression levels of different proteins, the laser power was adjusted for each protein,
such that the brightest pixels remained below the saturated levels of the detection range (maximum brightness = 255 for 8-bit im-
ages). Following raw image acquisition, Airyscan super-resolution processing was performed via ZEN Blue.

Fluorescence recovery after photobleaching (FRAP)

ZEISS LSM 980 with 63X objective, oil immersion was used to perform FRAP experiments on GFP-tagged proteins in live cells. The
acquisition mode, laser power, time interval between frames, total number of frames, and other FRAP-specific settings were custom-
ized for each protein of interest (POIl) such that each experiment would satisfy four criteria: (1) have sufficient signal, (2) have sufficient
duration to capture recovery, (3) have sufficient temporal resolution, (4) endure minimal photobleaching throughout the time course.
Detailed configurations for different protein targets are summarized in Table S5. For each single FRAP acquisition course, several
frames were first recorded to establish pre-bleach levels of signal, followed by photobleaching with 100% laser power of a 2um-
by-2um square region. For insulin receptor, this square region contained a portion of the plasma membrane. For MED1, HP1a,
and SRSF2, this square region contained an area of the relevant punctate high signal (a condensate). For FIB1, this square region
overlapped, but did not completely cover the nucleolus. For GFP, this square region was either randomly sampled within the nucleus
or randomly sampled within the cytoplasm. The number of bleaching cycles is reported in Table S5. After photobleaching, fluores-
cence recovery was recorded over time. Raw image series were processed via ZEN Blue (2D Airyscan processing), followed by drift
correction using a cross-correlation algorithm. Averaged intensity measurements from an unbleached region were further used to
correct for the photobleaching occurring during the image acquisition.

Statistical analysis was performed with the Statistics and Machine Learning Toolbox of MATLAB. A two-tailed student’s t-test was

used to generate p-values comparing timepoints at the later end of recovery curves, at which point recovery intensities had stabilized.
The number of timepoints (n) for each comparison was ~6-13% of the total number of timepoints collected in the recovery curve (the
number of time points considered is specified in Table S5). All FRAP experiments were performed twice using a total of 4 biologically
independent samples. Each dish was imaged for no more than ten minutes to minimize secondary effects of extended treatment.
Single particle tracking (SPT)
ZEISS Elyra 7 with 63X objective, oil immersion was used to perform SPT experiments on Halo-tagged for all proteins, except AviTag-
Halo-Cys and BirA-SNAP, in live cells. ONI Nanoimager with 100X objective, oil immersion was used to perform SPT experiments for
AviTag-Halo-Cys and BirA-SNAP in live cells. Cells were co-stained with two Halo dyes: one used for tracking individual molecules of
a protein and the other for visualizing the bulk distribution of the protein. After staining, cells were washed by incubating with fresh
media without dyes for at least 10 minutes. HILO illumination was used during the tracking. The detailed sample preparations and
configurations of SPT for different proteins are summarized in Table S5. For the tracking of AviTag-Halo-Cys and BirA-SNAP, cells
were first incubated with media containing 0.1 nM Janelia Fluor 549-Halo and 0.1 nM Janelia Fluor 646-SNAP (a generous gift from
Luke Lavis Lab at Janelia Farm Research Campus) for 20 minutes and molecules were tracked at 100 Hz acquisition rate with 35%
laser power. There are four major steps in the SPT analysis to obtain single molecule trajectories: pixelwise peak detection, subpixel
localization of the peaks, reconnection of the peaks (to construct trajectories) and validation of trajectories. For the first three steps,
point spread functions (PSFs) from single molecules were detected, subpixel-localized, and reconnected with custom code in
MATLAB based on the published multiple-target tracing (MTT) tool."'® During the pixelwise peak detection step, for each
pixel, two hypotheses Hy and H4 were compared based on a generalized likelihood ratio test, where Hy defines the non-presence
of particles and H, the presence of a particle at the center of the pixel. Valid peaks were identified with a constant false alarm
rate (=1.5x10°®). Additional peaks were identified with a B-spline wavelet filter.''® The subpixel localization of the peaks was per-
formed by maximizing the likelihood of the PSF to match the local intensity distribution of a 7x7 pixel area using Gauss-Newton
regression. The reconnection of the peaks to construct trajectories was performed based on the multiple-target reconnection as
described in MTT,""® with the prior maximum diffusion coefficients, the disappearance probability for blinking and maximum number
of disappearance frames summarized in Table S5. A set of reconnected peaks comprises a trajectory. Validation of trajectories for
those occurring in the relevant biological compartments was performed using bulk distribution or nuclear stain as a reference. For
insulin receptors, the plasma membranes were manually selected by drawing polygons via MATLAB; for other proteins of interest,
nuclei or nucleoli regions were labeled by a deep learning based algorithm Cellpose.'**
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Live-cell imaging experiments: analysis and additional validation
Inferring mobility from FRAP courses
With FRAP, we investigated protein mobility in cell models of disease at the length and time scales of 1-2 microns and (tens of) sec-
onds, with the additional question of whether protein mobility was altered both inside and outside of condensates. For the proteins
that could be reliably assigned to be within or outside of condensates during image acquisition (MED1, HP1«, FIB1 and SRSF2), a
square region containing both the condensate(s) and the surrounding dilute phase was imaged, allowing separate FRAP analyses
both inside and outside of the condensates. The areas inside the condensates (condensed region) and outside the condensates
(dilute regions) were differentiated by custom code in MATLAB by fitting the cumulative distribution of pixel-wise intensities of
each FRAP region to a two-step function, with the first step identifying the low-intensity pixels in the nucleus (the dilute region)
and the second step by identifying the high-intensity pixels with enriched fluorescent signal in the nucleus (the condensed region).
For FRAP outside the condensates, the dilute region was selected for analysis, and for FRAP inside the condensates, the condensed
phase was selected for analysis. For insulin receptor (IR), due to the rapid movement of IR condensates, we could not perform reliable
assignments of the condensate-occupied pixels throughout a FRAP acquisition course. Instead, the fluorescence signal analysis
was limited to the plasma membrane (where most signals are located), which was manually selected in ZEN Blue. For GFP alone,
the pixels inside the entire 2um-by-2um photobleached region were selected for fluorescence signal analysis as GFP alone does
not form condensates. For each frame of each FRAP course, the average intensity of selected pixels was calculated. The average
intensities from different frames were further normalized through the following linear transformation: the averaged intensity of pre-
photobleaching frames was set to 1, while the intensity right after photobleaching was set to 0. This resulted in a FRAP curve for
each independent photobleaching experiment. A single average FRAP curve from all replicate samples was obtained by plotting
the mean normalized pixel intensity and SEM for each timepoint. To evaluate the difference of protein mobility between any two con-
ditions, the maximum extent of recovery at the end of the recorded time window was compared. For this comparison, a two-tailed
student’s t-test was used to calculate statistical significance. Data points used for the comparison were chosen by selecting time
points where signal recovery was approaching an apparent plateau (listed in Table S5) and aggregating those signal intensities.
Statistical analysis was performed with the Statistics and Machine Learning Toolbox of MATLAB. A two-tailed student’s t-test was
used to generate p-values comparing timepoints at the later end of recovery curves, at which point recovery intensities had stabilized.
The number of timepoints (n) for each comparison was ~6-13% of the total number of timepoints collected in the recovery curve (the
number of time points considered is specified in Table S5). All FRAP experiments were performed twice using a total of 4 biologically
independent samples. Each dish was imaged for no more than ten minutes to minimize secondary effects of extended treatment.
Inferring mobility from 2D SPT trajectories
We investigated protein mobility in cell models of disease at the length and time scales of (sub)micron and (sub)second, and focused
on the question of whether apparent diffusion rates are reduced under pathogenic conditions. We used a wide-field microscope to
measure planar (XY) movement at a desired, feasible length/time scale. The use of 2D projections to measure apparent diffusion
coefficient (D) has been a widely used approach,''”~'?° given the assumption that the molecules diffuse isotropically along the
three-dimensional axes X, Y and Z. This assumption is supported by the observation that a similar apparent diffusion coefficient
was observed when Sox2-a nuclear protein-was tracked in 3D (D=2.5um?/s'?") and 2D projection in XY (D=2.8um?/s''®). To
provide a scalar measurement of the molecular movement we infer from a given SPT trajectory, we calculate an apparent diffusion
coefficient for each trajectory. This value D is derived from the relationship between the mean square displacement (MSD) versus
timelag (7). Only trajectories with at least 5 reconnected peaks were selected. For trajectories with more than 20 reconnected peaks,
only the first 20 peaks were used for estimating the D. A linear regression between MSD and timelag with an additional zero-order
term (localization error due to limited spatial resolution) was used to fit the apparent diffusion coefficient in two dimensions:
MSD(r) = 4Dr+¢?. At this point, we obtained the fitted D for each trajectory, which was a reliable estimation only if 1) the D was
above the effective magnitude caused by localization error, and 2) the fitting noise was relatively low. To filter for reliable D above
the localization uncertainty, molecules with D>0.01 um?/s for endogenous proteins and D>0.1 um?/s for exogenous HaloTag
were selected for the analysis (drop-off rate = 10-30%), To filter for reliable D with low fitting noise, molecules whose fitting residual
was below the MSD of one-frame timelag were selected for the analysis (drop-off rate = 5%-10%). These two filters were sequen-
tially applied to obtain the final well-fitted trajectories. Mann-Whitney test was used to evaluate the statistical significance between
the diffusion coefficients in different conditions. For HepG2 cells, all SPT experiments were performed in 4 biologically independent
samples, for C2C12 cells, all SPT experiments were performed in 2 biologically independent samples. In this work, we are using
mobility to describe the transit of individual molecules or ensembles of molecules through space over a given unit time. Such move-
ment is likely to be the net effect of diverse forces within the cell. In this work, the duration of tracking mostly ranges from 0.02s-0.1s,
with a temporal resolution of 4ms-10ms, and spatial resolution of 30nm-80nm.
Evaluation of the comparability between FRAP and SPT - general setup
There are two biophysical parameters inferred from both FRAP and SPT that can be used to address how comparable the values
generated by these two methods are: (1) fraction of immobile molecules; (2) apparent diffusion coefficient of mobile molecules.
For (1), we used five endogenously tagged proteins (IR, MED1, HP1«, FIB1, and SRSF2) which are known to have a “bound state”
and thus a putative immobile fraction of molecules; For (2), we used exogenously expressed GFP vs HaloTag with the assumption
that these proteins demonstrate homogeneous apparent diffusion coefficients throughout the nucleoplasm.
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Evaluation via the fraction of immobile molecules

We used SpotOn''® to evaluate the fraction of immobile molecules by SPT, which requires two hyperparameters: 1) the total number
of diffusivity states and 2) the axial detection range. An estimate of the total number of diffusivity states is achieved by identifying the
minimum number of Gaussian functions needed to sufficiently fit the logD distribution of individual molecules (Figure S2A)."?° The
fitting residual was plotted as a function of the number of Gaussian functions (N) tested to perform the fitting, and the minimum num-
ber of Gaussian functions needed was the inflection point of the residual-N relation. We found MED1 can be well fitted by 2 states,
and other targets are well fitted by three states. An estimate of the axial detection range is achieved by examining a z-stack scan of
fixed cells with sparsely labeled PAJF549 molecules to establish a limit of expectations for focal depth within which a single molecule
can be consecutively tracked. We concluded that the focal depth (dz) peaked at ~900nm for our specific setup (Figure S2B). These
values were used in SpotOn to estimate of the fraction of immobile molecules by SPT (Figure S2C).

For FRAP datasets, we fitted the normalized recovery curve to the following equation:

I(t) = f~(1 - 2*”7),

Where 1 — f would be the immobile fraction. The fraction of immobile molecules estimated via two methods are indeed comparable
(Figure S2C): FIB1 shows the highest immobile fraction among the five proteins tested; IR, HP1a, and SRSF2 showed relatively lower
immobile fractions in both SPT and FRAP. The immobile fractions estimated by FRAP were slightly lower compared to those
estimated by SPT. Given that SPT can capture stable immobile events, and transient immobile events in a timescale as short as
~102 s, while FRAP is only sensitive to intermediate/long-term immobile events in a timescale of ~10" s, this could explain why
the immobile fractions estimated by FRAP are consistently lower.

Evaluation via the apparent diffusion coefficient of mobile molecules

The HaloTag tagged with a JF646 molecule (~34kDa in total) and GFP (~27kDa) have comparable protein size; we thus expect that
the intrinsic diffusion coefficients of these two proteins should be similar. For SPT, we estimated the apparent diffusion coefficient of
HaloTag by calculating the average apparent diffusion coefficient of mobile molecules. For FRAP, we estimated the apparent
diffusion coefficient of GFP by matching the experimental FRAP data to a theoretical model of the diffusion process within a
photobleached area. We modeled the theoretical diffusion process of a photobleached region (/ X /) as the following partial derivative
equation (PDE) problem:

2 2
au_D(au o‘u

i 6)(—2+W>70<X<I’O<y<l’t>o’

ul_o =0,ul_,=0,0<y</t>0,
UJy:O = 07 UJy:/ :0,0SXSI,tZO,

Ul-o =1 - ¢(x,y),0<x<10<y<I

In this PDE problem, u(x,y,t) is the normalized density of photobleached molecules of a certain pixel (x,y) at certain time t.
X,y = 0or/ are boundaries. ¢(x,y) is the normalized pixelwise intensity (i.e., normalized density of intact molecules) right after
photobleach (t = 0), thus 1 — ¢ is the density of photobleached molecules at t = 0 (the total normalized intact molecules plus
photobleached molecules always equals 1 within each pixel). In the spirit of separation of variables, one general analytical so-
lution that satisfied the boundary conditions was derived as:

hd 2 2
ux,y,t) = nmz;Anm x sinnTﬁx x singy x exp{ - [(nTﬂ) + (g) }Dt},
Where the coefficients of different modes were computed as:
!
Amm = %// (1 = o(x,y)) xsinnTTrx x sin#ydxdy.
0

The D is determined when the 2-norm residual of the u(x, y, t) throughout the whole FRAP process between the experimental mea-
surement and the theoretical prediction are minimized. The calculations were done by custom MATLAB code. The diffusion coeffi-
cient of HaloTag estimated from SPT is 5.3+0.2 um?/s, and the diffusion coefficient of GFP estimated from FRAP is ~6 um?/s
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(Figure S2D). Given that the relation between the molecular weight (M) and diffusion coefficient is D ~ M~%33122 the diffusion coef-
ficient of a “weighted GFP” (~34kDa) estimated from FRAP would have been ~5.5 nm?/s. Therefore, the apparent diffusion coeffi-
cient estimated via two methods are comparable indeed.

Estimation of the localization uncertainty

To experimentally derive a lower bound for apparent diffusion constants that indicate molecules that are moving, we examined a fixed
sample of cells with sparsely labeled HaloTag-PAJF549 molecules. As these molecules are fixed, diffusion constants derived would
theoretically represent “no movement”. The distribution of apparent diffusion coefficient fitted from individual molecules in fixed
sample centered around D~0.01 pm?/s (Figure S2E), and this pseudo diffusivity is due to the localization uncertainty of single mol-
ecules at each frame. Therefore, we used 0.01 um?/s as the lower bound cutoff when filtering for truly mobile molecules for endog-
enous protein targets based on the limitation of the localization uncertainty. As for exogenously expressed HaloTag alone, because
most molecules are diffusive, we can apply a higher cutoff (D>0.1 um?/s) to select mobile molecules in order to eliminate any false
positive mobile molecules without increasing the chance of false negative elimination (Figure S2F).

Validation of reconnecting during trajectory reconstruction

There are two main sources of error when reconstructing a trajectory from localizations: too stringent prior maximum allowed diffu-
sion coefficient (Dimax), OF too great of localization density (Figures S2G-S2I). If Do« is smaller than the typical diffusivity of the protein
of interest, it will result in an early stop of reconnecting peaks of signal of the same molecule (Figure S2G), and the estimated apparent
diffusion coefficient will hit a ceiling set by D,ax (the estimated apparent diffusion coefficient is artificially low). To prevent this issue,
the D,.x Wwe chose when reconnecting sequential peaks (Table S5) is much larger than the apparent diffusion coefficients estimated
from the final trajectories. It should be noted that for all Dy, the tracking process will still stop at some point, mainly due to either the
photobleach of the dye molecule, or the molecule moving out of the focus (Figure S2H). If the localization density per frame is too
great, there will be an increased likelihood that the trajectories of two different molecules form an “ambiguous connection”. In
this situation, we expect to see an increase in the average number of jumps (connection between two consecutive peaks) per tra-
jectory (Figure S2I). To determine a threshold density that would minimize ambiguous connections in our experiments, we generated
IR-HaloTag SPT data with different peak density per frame, followed by reconnecting the peaks with the prior D=6 pm?/s. We
found that the average number of jumps per trajectory starts to increase with peak density when the peak density is above
0.01 um?/frame, and we ensured peak densities of our experiments were always below this threshold density (Figure S2J). Therefore,
we concluded that the prior D,2x chosen for reconnecting is large enough to capture consecutive jumps for the same molecule, and
the peak densities of our actual experiments are low enough to avoid significant “ambiguous connection” given the prior Dyax.
Estimation of the false positive identifications of trajectories in SPT

The sources of false positive identifications of proteins in SPT include pixel noise, auto-fluorescence, and non-specific dye staining
(restricted to PAJF549). The control experiments are summarized in Table S6. The overall rate of false positive identification of tra-
jectories is either ~5% (for JF646 staining) and ~12% (for PAJF549 staining) at maximum. Therefore, we concluded that the SPT
dataset of the actual experiments are dominated by trajectories from real proteins of interest.

Diffusion coefficient comparisons based on bulk population or cell-based analysis of single particle trajectories
Diffusion coefficients were calculated as described above for each trajectory in the bulk population of the trajectories. Trajectories
were then grouped by cell. Diffusion coefficients were calculated as described above for each trajectory within a single cell, and the
median diffusion coefficient was selected for cell-based analysis. This process was repeated for each set of trajectories per cell. Re-
sults using the diffusion coefficients for the bulk population were compared to results using median diffusion coefficients from a cell-
level analysis to see if cell-level analysis would alter the interpretation of our results. Our results are consistent using both approaches
(Figure S2K).

Quantification of condensate properties

Three condensate properties were evaluated in both normal and pathogenic conditions: (1) number of condensates per cell in the
focal plane, (2) condensate size in diameter, and (3) the partition ratio, which can be defined as the relative enrichment of the intensity
inside the condensate versus outside the condensate. Live-cell super-resolution images taken by ZEISS LSM 980 with Airyscan
2 were used for such quantifications of GFP-tagged proteins.

The first step is to identify/segment puncta. We implemented two approaches to identify/segment puncta depending on the size,
morphology, and distribution of the protein condensates. Insulin receptor (IR), MED1 and FIB1 have relatively small condensates (less
than ten pixels in diameter), with a round shape and compact distribution, thus the Laplacian of Gaussian (LoG) Blob Detection
(sigma = 200nm, 500nm, and 450nm for IR, MED1 and FIB1, respectively) was applied to the images (MATLAB code source: Jason
Klebes, 2024. LoG Blob, GitHub), and puncta were identified with the quality filter set to 0.2. Additional intensity filters and partition
ratio filters were applied to call puncta, such that there was high agreement between auto-identified puncta and puncta called by a
trained eye. HP10 and SRSF2 have varying condensate sizes (ranging from several pixels to more than ten pixels in diameter), with an
ellipse or irregular shape and dispersed distribution, thus the images were background-subtracted with a median filter (filter size =
2um), followed by feature segmentation with Cellpose'®*—an Al-based segmentation tool—with the “cytoplasm” model (feature
dimension to be recognized = 1um) to obtain the punctum features.

The second step is to quantify the three condensate properties of the identified puncta. To quantify the number of puncta in each
cell, the regions where puncta could be detected per cell were defined based on the GFP signal and the detected puncta in each cell
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were counted. To measure the condensate size, the full-width half-maximum was used as an estimator of IR, MED1 and FIB1 punc-
tum diameters. To measure the condensate size of HP1a and SRSF2, the area of each punctum feature segmented by Cellpose was
covered to an effective diameter with the formula: d = 2*(area/n)*®. To quantify the partition ratio,'** the intensity inside the puncta
was divided by the intensity of the local dilute phase. The intensity of the local dilute phase for the plasma membrane was used for IR,
and the intensity of the local dilute phase of the nucleoplasm was used for the rest of the proteins.

Western Blotting
Protein preparation
HepG2 cells were treated according to the specified treatment protocol, then the media was aspirated off and cells were washed
once with ice-cold PBS (Gibco, 10010-023) on ice. The PBS was then removed and Cell Lytic M (Sigma-Aldrich, C2978) supple-
mented with protease and phosphatase inhibitors (Sigma-Aldrich, 11873580001 and 4906837001) was added to each well to lyse
the cells. The cells were scraped with a plastic cell scraper, and the lysates were transferred to a 1.5 ml eppendorf tube and allowed
to rotate on a rotator for 15 minutes at 4°C. For proteins that required sheering of DNA to be accurately measured by Western blot
(MED1, HP1a, FIB1, SRSF2), the lysates were sonicated in 1.5 ml Eppendorf tubes on ice water (15 seconds on, 20 seconds off, 30%
amplitude, for 3 cycles, Fisher Scientific, FB120 Model CL-18) and then centrifuged at 12,000 x g for 15 minutes. The supernatant was
transferred to a fresh 1.5 ml tube and the protein concentration was quantified using a BCA Protein Assay Kit (Life Technologies,
23250) according to the manufacturer’s instructions.
Preparations of western blot samples
For samples prepared in Figures 6E, 6F, S1, and S6A (blot with DTT, right side), dithiothreitol (DTT) and XT Sample Buffer 4x (BioRad,
1610791) were added to the purified proteins in reaction buffer or protein lysates to final concentrations of 100mM and 1x, respec-
tively and boiled at 95°C for 5 minutes. For western blot in non-reducing conditions, DTT was not added. For samples in Figure 6K,
2-mercaptoethanol and Native Sample Buffer (BioRad, 1610738) were added to the protein lysate to final concentrations of 2.5% and
1x, respectively, boiled for 5 minutes at 95°C and allowed to cool completely before addition of streptavidin (Invitrogen, 43-430-2) to a
final concentration of 10uM to cause a shift in molecular weight of proteins that were biotinylated by BirA.
Running western blot samples
5-35 g of proteins were separated on 10% or 4-12% Criterion™ XT Bis-Tris Protein Gel (BioRad, 3450112, 3450125) in XT MOPS
running buffer (Bio-Rad Laboratories, 1610788) at 100 V. Proteins were transferred to a 0.45-um PVDF membrane (Millipore,
IPVHO00010) in ice-cold transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol) at 300 mA for 2 hours at 4 °C. Membranes
were blocked in either 5% nonfat milk (LabScientific, M0842) dissolved in TBST (2% Tris-HCI pH 8.0, 1.3% 5 M NaCl, 0.05% Tween
20) or 5% BSA (VWR, 102643-516) in TBST for 1 hours at room temperature. Membranes were then incubated overnight at 4°C with
primary antibodies (list below) diluted in 5% nonfat milk in TBST or 5% BSA in TBST. Membranes were then washed three times in
TBST for 5 minutes at room temperature and then incubated with donkey anti-rabbit IgG (Cytiva Life Sciences, NA934-1ML, 1:10,000
dilution) or sheep anti-mouse IgG (Cytiva Life Sciences, NXA931V, 1:10,000 dilution) diluted in 5% nonfat milk in TBST for 1 hours at
room temperature. Membranes were washed three times for 10 minutes in TBST. Membranes were developed with ECL substrate
(Millipore, WBKL20500) and imaged using a CCD camera (BIO RAD, 1708265). The “analyze gel” tool on Fiji/Imaged v2.1.0/153c was
used to quantify immunoblot signal. A two-tailed student’s t-test was used to generate p-values. Statistical analysis was performed
using Prism Version 9.4.0 (GraphPad, La Jolla, CA).

Primary antibodies for Western blotting:

Anti-insulin receptor (Cell Signaling, 3025, dilution 1:1000)
Anti-MED1 (Bethyl, A300-793A, dilution 1:1000)
Anti-HP1a (Abcam, ab109028, dilution 1:1000)

Anti-FIB1 (Abcam, ab5821, dilution 1:1000)

Anti-SRSF2 (Thermo Fisher, PA5-12402, dilution 1:1000)
Anti-b-actin (Sigma-Aldrich, A5441, dilution 1:10,000)
Anti-H3 (Cell Signaling, 4499, dilution 1:1000)

Anti-HA (Cell Signaling, 3724, dilution 1:1000)
Anti-pIRS1 (Cell Signaling, 3070, dilution 1:1000)
Anti-IRS1 (Cell Signaling, 2382, dilution 1:1000)

Anti-IRa (Cell Signaling, 74118, dilution 1:1000)

Immunofluorescence

Wildtype HepG2 cells were fixed with 4% paraformaldehyde in PBS for 10 minutes at room temperature (RT), washed three times
with PBS for 5 minutes at RT, permeabilized with 0.5% TX100 for 10 minutes at RT, washed with PBS for 5 minutes at RT, blocked
with 4% BSA (Jackson Immunoresearch Laboratories - 001-000-162) in PBS for 1 hour at RT. Cells were incubated with primary an-
tibodies diluted 1:500 in 4% BSA in PBS overnight at 4°C. Cells were washed three times with PBS for 5 minutes at RT and incubated
with secondary antibodies Goat anti-Rabbit IgG Alexa Fluor 488 (Life Technologies, A11008) or 555 (Life Technologies, A21428)
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diluted 1:500 in 4% BSA in PBS for 1 hour at RT. Cells were then washed in PBS three times for 5 minutes. Nuclei were stained with
Hoechst (Thermo Fischer Scientific, 3258) diluted 1:5000 in PBS for 5 minutes at RT and excess Hoechst was removed by washing
cells 3 times for 5 minutes with PBS. Cells were stored at 4°C in PBS and imaged using the ZEISS LSM 980 with Airyscan detector
using 63x objective. Raw image series were processed via ZEN Blue (2D Airyscan processing). Images were converted in JPEG
format using Fiji/lmagedJ v2.1.0/153c.

Primary antibodies for immunofluorescence:

Anti-insulin receptor (Cell Signaling, 23413)
Anti-MED1 (Abcam, ab64965)

Anti-HP1a (Abcam, ab109028)

Anti-FIB1 (Abcam, ab582)

Anti-SRSF2 (Abcam, ab11826)

Anti-pIRS1 (Abcam, ab4873)

Fiji/Imaged v2.1.0/153c was used to quantify pIRS1 fluorescence intensity. Since IRS1 gets phosphorylated in the cytoplasm, with
the rectangle selection tool, a rectangle was drawn in cytoplasmic regions. The average fluorescence intensity in the rectangle (= in
the cytoplasm) was determined using the measure tool on Fiji/lmaged v2.1.0/153c. The background was then subtracted by a
threshold determined by measuring the background intensity in a rectangular region outside of the cells.

Metabolomics for quantification of GSSG and GSH ratio
All solvents, including water, were purchased from Fisher and were Optima LC/MS grade.

HepG2 cells were treated according to the specified treatment protocol in 6-well culture plates, then the media was removed, and
cells were washed twice with ice-cold PBS (Gibco, 10010-023) on ice. The PBS was then removed and 500 pl of ice-cold 80% meth-
anol (Thermo Fisher Scientific, A456-4)/ 20% LC-MS grade water (Thermo Fisher Scientific, W6-4) solution with isotope-labeled
amino acid mass-spec internal standards (Cambridge Isotope Labs, MSK-CAA-1) was added to each well on dry ice. The plate
was chilled at -80°C for a minimum of 15 minutes, then the cells were scraped for 30 seconds with a plastic cell scraper (Corning,
3008). The methanol-cell mixture was transferred to a 1.5 ml eppendorf tube (Eppendorf, 0223641). The well was washed again
with 300 pl of the ice-cold methanol solution to extract most of the remaining cells from the well, which was added to the same
1.5 ml eppendorf tube. The mixture was vortexed on high for 10 minutes at 4°C, then centrifuged on a table top centrifuge on
max speed for 10 minutes at 4°C. 600 pl of supernatant were removed from the tube and transferred to a fresh tube on dry ice.
The supernatant was dried for 5 hours at 4°C using a speed vac (Labconco 7310020), then resuspended in 1/10'" of the volume
of the original supernatant in LC-MS grade water on ice. The resuspended metabolites were vortexed on high for 10 minutes at
4°C, then centrifuged on a table top centrifuge on max speed for 10 minutes at 4°C. The supernatant containing the endogenous
metabolites and internal standards were transferred to LC-MS vials and liquid chromatography and mass spec was carried out
by the Whitehead Institute Metabolomics Core.

Metabolite profiling was conducted on a QExactive bench top orbitrap mass spectrometer equipped with an lon Max source and a
HESI Il probe, which was coupled to a Dionex UltiMate 3000 HPLC system (Thermo Fisher Scientific, San Jose, CA). External mass
calibration was performed using the standard calibration mixture every 7 days and an additional custom mass calibration was per-
formed weekly alongside standard mass calibrations to calibrate the lower end of the spectrum (m/z 70-1050 positive mode and m/z
60-900 negative mode) using the standard calibration mixtures spiked with glycine (positive mode) and aspartate (negative mode).
Typically, samples were reconstituted in 50 uL water and 2 uL were injected onto a SeQuant® ZIC®-pHILIC 150 x 2.1 mm analytical
column equipped with a 2.1 x 20 mm guard column (both 5 mm particle size; Millipore-Sigma). Buffer A was 20 mM ammonium car-
bonate, 0.1% ammonium hydroxide; Buffer B was acetonitrile (Thermo Fisher Scientific, A955-4). The column oven and autosampler
tray were held at 25°C and 4°C, respectively. The chromatographic gradient was run at a flow rate of 0.150 mL/min as follows: 0-
20 min: linear gradient from 80-20% B; 20-20.5 min: linear gradient form 20-80% B; 20.5-28 min: hold at 80% B. The mass spec-
trometer was operated in full-scan, polarity-switching mode, with the spray voltage set to 3.0 kV, the heated capillary held at
275°C, and the HESI probe held at 350-C. The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units, and
the sweep gas flow was set to 1 unit. MS data acquisition was performed in a range of m/z = 70-1000, with the resolution set at
70,000, the AGC target at 1x106, and the maximum injection time at 20 msec. Relative quantitation of polar metabolites was per-
formed with TraceFinder™ 4.1 (Thermo Fisher Scientific) using a 5 ppm mass tolerance and referencing an in-house library of chem-
ical standards. Data were filtered according to predetermined QC metrics: CV of pools <25%; R of linear dilution series <0.975.

Metabolomics Analysis for quantification of GSSG and GSH ratio

FreeStyle (Thermo Scientific, Version 1.3) was used to check quality, mass shift, and retention time drift for each metabolite. The MS2
spectra for each metabolite was also verified in FreeStyle. TraceFinder (Thermo Fisher Scientific, Version 4.1) was used to call metab-
olite peaks and determine raw peak areas. The peak detection defaults were as follows - Mass tolerance: 5 ppm, Retention time win-
dow: 30 sec, lon Ratio Window type: relative +/- 20%, lon coelution (min) 0.100, Detection algorithm: ICIS (Area noise factor: 5, Peak
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noise factor: 10, Baseline window: 40, Noise method: repetitive, Min peak width: 3, Multiplet resolution: 10, Area tail extension: 5).
Each peak was manually verified to have the correct shape, retention time, and m/z.

Peak area ratios were determined by normalizing the raw peak area for each metabolite by the raw peak area of the appropriate
internal standard.

During the mass spec run, a pooled sample made from pooling 5 ul of each sample was run 4-6 times as technical replicates to
measure the reliability of detection for each metabolite—a coefficient of variation < 0.30 was used as a cutoff for metabolites to be
measured reliably. Similarly, a dilution series of the pool was also run to determine whether each metabolite was in the linear range of
detection—A correlation coefficient R < 0.95 was used as a cutoff.

Two-tailed student’s t-test with Welch'’s correction was used to generate p-values. Statistical analysis was performed using Prism
Version 9.4.0 (GraphPad, La Jolla, CA).

Identification of surface-exposed cysteines of individual proteins

Surface-exposed cysteines were identified for specific, individual proteins based on two criteria: 1) the cysteine residue is located
within an intrinsically disordered region (IDR) of the protein,'?* as determined by the Predictors of Natural Disordered Regions
(PONDR) VSL2 algorithm, or 2) the solvent-accessible area of the cysteine exceeds 20 A2, '?° as measured by STRIDE.'?°

Variant annotation

Variants and their genomic coordinates (hg38) were obtained from ClinVar: https://ftp.ncbi.nim.nih.gov/pub/clinvar/vef GRCh38/
archive_2.0/2023/clinvar_20230903.vcf.gz and ClinVar: https://ftp.ncbi.nim.nih.gov/pub/clinvar/tab_delimited/variant_summary.
txt.gz). Only germline missense variants were considered. We only considered variants with at least one clinical significance anno-
tation as Pathogenic or Benign. The number of missense variants considered in ClinVar is 52,188.

When needed, variants were annotated with impact on protein sequence and other measures of computationally predicted path-
ogenicity (SIFT, PolyPhen, CADD etc) using Ensembl VEP 110. Gene-level and 1kb-window constraint metrics were obtained from
gnomAD v4 and v3, respectively.

For all downstream analyses, variants were counted as protein variants—i.e., DNA variants resulting in the same protein-coding
alteration, regardless of their similarity or differences at the DNA level, were counted as the same variant. Variants were mapped
to gene, then mapped to proteins using mapping from Uniprot Swiss-Prot: https://ftp.uniprot.org/pub/databases/uniprot/current_
release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping_selected.tab.gz, https://ftp.uniprot.org/pub/databases/
uniprot/current_release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping.dat.gz, using the gene’s HGNC ID to
Uniprot-KB Accession ID of the canonical isoform.

Physics-based model for how cellular environment influences diffusion of proteins with and without cysteines
Estimation of the average number of surface-exposed cysteine per protein and the concentration of surface-exposed
cysteine

We used iCysMod'?” to estimate the number of proteins with surface-exposed cysteines and the average number of surface-
exposed cysteines per protein across the whole proteome. There are 18,350 proteins in the proteome, among which we tried two
commonly used relative solvent accessibility (RSA) cutoffs to evaluate the cysteine surface exposure. With RSA > 40, the estimated
number of proteins with at least one surface-exposed cysteine is 10,333 (56.3% of total proteins) with an estimated average number
of surface-exposed cysteines of 2.8. With RSA > 50, the estimated number of proteins with at least one surface-exposed cysteine is
6,754 (36.8% of total proteins) with an estimated number of surface-exposed cysteines of 1.9. The mean estimated number of pro-
teins with at least one surface-exposed cysteine using these two cutoffs is 8,544 (46.6% of total proteins, rounded to 50%) with an
estimated number of surface-exposed cysteines of 2.35, rounded to 2. The total number of protein molecules per cubic micronin the
cellis 2-4 million, "2 which yields 3.3-6.6 mM of proteins. Even though some measured values of cellular protein concentration can be
3times lower, '?® the protein concentration should still be at least on the order of 1 mM. Given that around 50% of the proteins have at
least one surface cysteine, among which each protein has 2 surface cysteines on average, the final surface cysteine concentration
should be at least 1IMM*50%*2 = 1TmM.

Simulations of proteins with surface-exposed cysteines

Brownian dynamics simulations of proteins with surface cysteines (available at GitHub: https://github.com/younglab/proteolethargy)
were performed by adapting the polychrom software package (https://doi.org/10.5281/zenodo.3579473), a thin wrapper around
OpenMM."2° We model proteins as self-avoiding, spherical particles of diameter rep, = 1.2 which interact through a repulsive poten-
tial, U(rj) = Uo{1 +(ry)"®[(r;)® — 1]} [Eq1], where r;; = - \/6/7 and Uy = 50 kgT represent a finite energy barrier to allow particle
overlaps when r; <0.6r, (Figure S5A). Based on our estimates, the average number of surface-exposed cysteines on proteins
that have surface-exposed cysteines is two (see “estimation of the average number of surface cysteine per protein and the concen-
tration of surface cysteine”). Thus, simulated protein spheres are bonded to two surface “cysteines” via the harmonic potential
0.5k(rj — 0.5)2, where k is chosen such that the average extension of the bond is 0.01 when the bond energy is equal to kg T. A har-
monic angle potential of the form 0.5«(6 — 1800)2 with k = 30kg T enforces that the two cysteines are on opposite sides of the protein
sphere. Cysteines on separate proteins can form intermolecular disulfide bridges, which are modeled via a short-ranged attractive
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potential of the same form as Equation 1 (Figure S5B). In this case, Uy = — Eax is the depth of the attractive potential and r; =
Si 6/7, where the cysteine-cysteine attraction radius is set to ra = 0.2. These parameters were chosen to minimize many-to-

Tattr

one bonding of cysteines, i.e. such that proteins with only 1 surface cysteine predominantly form dimers instead of higher order multi-
mers (Figures S5C and S5D). We simulate 1000 proteins with periodic boundary conditions in a cube whose side length is chosen
such that the proteins occupy 30% of the cube volume. Consistent with estimates of the fraction of proteins with surface-exposed
cysteines in the cell (see “estimation of the average number of surface cysteine per protein and the concentration of surface
cysteine”), 50% of the simulated proteins have two surface cysteines which can form disulfide bonds according to the value of
E.nr, and the surface patches of the other 50% do not participate in disulfide bonding. As seen in Figure 4C, the proteins without
surface-exposed cysteines diffuse more slowly at high E_attr since they are diffusing through a mesh of crosslinked proteins. How-
ever, this mobility reduction is far less pronounced than that of the proteins with surface exposed cysteines, which form dimers and
multimers at high E _attr (Figure S5E).

For each value of E,y,, the diffusion coefficient is quantified as the slope of the protein’s mean squared displacement over time. We
normalize the diffusion coefficient to the mean of all data points for E, < 11.25kgT and fit the resulting data to a decreasing S-curve
ofthe form D(Eayy) = min+ (1.0 — min) [e~*(Eatr —Fo) /(14ek(Ear —Fo) Y]%(solid line in Figure S5F). For each simulation, we also calcu-
late the fraction of cysteines that participate in intermolecular disulfide bonding, i.e. the fraction of sticky patches which are within ra
of a neighboring patch (Figure S5G). This data is fit to an increasing S-curve of the form f(Eay,) = [1/(1+e~ ¥Ear ~Eo)]? o obtain the
solid line in Figure S5G. The fraction of bonded cysteines can be mapped to the oxidative state of a cell as measured by the ratio of
oxidized to reduced glutathione (GSSG/GSH) using a chemical reaction model (see “chemical reaction model for coupling protein-
protein disulfide bonding to redox state” section). For a given value of Eayr, we use f(Eas-) to compute the fraction of bonded cys-
teines as obtained from the simulations. Figure S5H then allows us to read off the corresponding value of GSSG/GSH. Thus, we relate
E.qr to the oxidative state of the cell. This in turn allows us to graph the diffusion coefficient as a function of the oxidative state in
Figure 4C, where the solid lines represent the fit relationships in Figures S5F-S5H and points show raw simulation data.
Simulation hyperparameter tuning and validation
Since disulfide bonding is modeled via a pairwise attractive potential between surface-exposed cysteines, it is possible for one
cysteine to attract more than one binding partner on neighboring proteins. Such many-to-one bonding events can be minimized
by tuning the following simulation hyperparameters: the protein-protein repulsion radius, rrp, the protein-protein repulsion energy
Erep (Figure S5A), the cysteine-cysteine attraction radius, rau (Figure S5B), and the spring constant k for the harmonic bonds con-
necting each protein to each of the cysteines on its surface.

For a given set of parameters (faur,rrep,Erep ,k), We calculate the equilibrium cysteine-cysteine distance d3* and bond extension x3*
that minimizes the energy of a trimer of proteins with just one surface cysteine, Eimer(d, X) = 3Uatr (d) + 3Urep (d + V3 (0.5 +x))+ 3/
2kx? (Figure S5C). Analogously, we compute the values of d>* and x,* that minimize the energy of a dimer, Egime(d,x) = U (d) +
Urep(d +2(0.5 +x)) +kx?.

We then choose a parameter set where Ejyimer(ds*, X3*) > 0> Egimer (d2”, X2*) for all values of Eq € [0,30] kg T. From this approach,
we identified that the choice of ray = 0.2,rep = 1.2, Erep = 50kg T,k = 2k,3T/(0.01)2 ensured that trimers are always less energeti-
cally favorable than dimers. In Figure S5D, we confirm that using these parameters, proteins with one surface cysteine only form di-
mers even at high values of Eg,.

Chemical reaction model for coupling protein-protein disulfide bonding to redox state

To investigate the coupling between cellular redox and the propensity for proteins with surface exposed cysteines to form disulfide
bonds, we developed a minimal chemical reaction model. In this model, we assume the level of oxidative stress is represented by a
fixed concentration of hydrogen peroxide [H»O2], which is the predominant reactive oxygen species (ROS) in the cell."*° We also as-
sume that glutathione is the primary species responsible for regulating ROS, given that it is the most abundant non-protein antiox-
idant in the cell.”®' Glutathione (GSH) and proteins with surface exposed thiol groups (PSH) are oxidized in the presence of H,0, and
can form disulfide bridges via the following set of reactions:

GSH + Hy0,“3 GSOH + H,0
PSH + Hy0, % PSOH + H,0
GSOH + GSH'$ GSSG + H,0

GSOH + PSH'$PSSG + H,0
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PSOH + GSH'$PSSG + H,0

PSOH + PSH'$ PSSP + H,0

The second-order rate constant of the oxidation of the thiol of a glutathione is k,, = 0.42 M 's71"%2 and the rate constant for the

oxidation of the thiol of a protein is k., = 2.3 M™'s™ (based on the oxidation of Cys-34 in BSA)."** GSOH and PSOH are highly reactive
intermediate products which then undergo a much faster disulfide bridging process (kss >> kon, kon') With another thiol.'>* We set
kss =50 kon'. We assume that proteins can form disulfide bonds with other proteins (PSSP) or with glutathione (PSSG) at equal rates.

Intramolecular disulfide bonds of proteins are removed by a thiol group interchange reaction with GSH.'** We reason that removal
of intermolecular disulfide bonds could be achieved by a similar mechanism:

Kex

PSSP + GSH— PSSG + PSH

Kex

PSSG + GSH— GSSG + PSH

GSSG + PSH" 5 PSSG + GSH

Kex

PSSG + PSH— PSSP + GSH

where we take kex= 0.15 M's™ (estimated from the disulfide interchange between GSSG and 2-Mercaptoethanol at pH=7)."%°

Ultimately, GSSG is reduced by NADPH,
GSSG™%"'2 GSH,

while the total concentration of glutathione'*® and surface-exposed protein cysteines (see “estimation of the average number of sur-
face cysteine per protein and the concentration of surface cysteine”) are conserved at 1mM:

Giot = [GSH] + [GSOH] + [PSSG] +2[GSSG] = 1mM

Pe: = [PSH] +[PSOH] + [PSSG] +2[PSSP] = 1mM.

We simulate the ordinary differential equations (see “ODEs of the chemical reaction model for coupling protein-protein disulfide
bonding to redox state”) associated with the above chemical reactions for the dynamics of [GSOH], [PSOH], [GSSG], [PSSG],
and [PSSP] using MATLAB with ode45. The rate of glutathione reduction knappn = 2.72x 108 s is chosen such that when the
steady state [GSSGJ/[GSH] ratio is 0.01 (physiological redox ratio'®”), [H20,] is 10nM (physiological hydrogen peroxide
concentration'®?),

We then determine the fraction of surface-exposed cysteines that participate in protein-protein disulfide bonding, 2[PSSP]/ Piot, as
a function of the steady state ratio [GSSG]/[GSH] (Figure S5H). Note that even at high ROS, this fraction is capped at 0.62 since sur-
face-exposed cysteines are equally likely to bind to a thiol on a neighboring protein or the thiol of glutathione. Our protein simulations
do not include glutathione. Thus, the fraction of bonded cysteines as computed from simulations, which can go up to 1.0 (Figure S5G),
corresponds to the fraction of cysteines participating in inter-protein disulfide bridges in our chemical reaction model. To map Es to
GSSG/GSH, we only consider simulation data for which the fraction of bonded cysteines is less than 0.62.

ODEs of the chemical reaction model for coupling protein-protein disulfide bonding to redox state

d|GSOH|

— = knlGSH|[Hz05] — kss[GSHI[GSOH] — kss[PSH)GSOH|
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d[PSOH]

— = Kin[PSH][H;0;] — kss[GSH]IPSOH] — kss[PSH][PSOH]

d[GSSG]

gt = Kes|GSH][GSOH] + kex[PSSGIGSH] — kex|GSSGIIPSH] — kinaoen[GSSG]

d|PSSG]

—— = Kss[PSH)[GSOH| + kss|GSH] PSOH) + kex|PSSP)[GSH) + kex GSSGI[PSH] — kex[PSSGI(GSH] — kex[PSSG]IPSH

d|PSSP]

—7— = kss[PSH][PSOH| + kex(PSSG][PSH] — kex[PSSP][GSH]

[GSH] = G — [GSOH] — [PSSG] — 2|GSSG]

[PSH] = Py — [PSOH] — [PSSG] — 2[PSSP]
where [GSH] = Gyt and [PSH] = Py at t = 0. [H20;] is a constant value for each simulation ranging from 10 — 3 uM to 10 uM.

ROS stain and imaging

Following cell treatment, media was removed and cells were incubated with 5 mM CellROX Deep Red Reagent (Thermo Fisher Sci-
entific, C10422) diluted in EMEM for 30 minutes. Cells were then fixed with 4% paraformaldehyde in PBS (BTC Beantown Chemical,
140770-10x10ML) for 10 minutes. Cells were washed with PBS three times and imaged using the RPI Spinning disk confocal micro-
scope, 60x objective. ROS signal intensity was measured using the “measure tool” on Fiji/lmaged v2.1.0/153c. A two-tailed student’s
t-test was used to generate p-values. Statistical analysis was performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA). AllROS
imaging experiments were performed twice using 2-4 biologically independent samples.

Modeling of the diffusion-limited tyrosine kinase receptor phosphorylation

For a generic reaction A + B— C* at the molecular level, two basic steps are needed to accomplish this reaction: (i) molecules A and B
need to “find” each other, and (ii) they transform into an activated complex C*. The first basic step is called “collision” and the second
basic step is called “activation”. Accordingly, there are two fundamental rate constants that defines the overall reaction rate: the
diffusion limited rate constant kp describes the rate of collision through the diffusion process, and the inherent reaction constant
k- describes the rate of activation. While k; is determined by the intrinsic chemical property, kp:=4m(Da +Dg)B largely depends
on the diffusion coefficients of molecule A and B, which are D4 and Dg, respectively. g is the characteristic length-scale,
defined below.

The exact relation between the overall reaction rate and the two fundamental rate constants is'*®:

Kok,

k =
k.+kp exp (@)

ksT

In this equation, Rag is the center-to-center distance when spherical molecules A and B touch, U(r) is the potential between mol-
ecules A and B when spaced by a center-to-center distancer, kg T has the dimension of energy as the product of Boltzmann constant
and temperature.

We then use the receptor tyrosine kinase phosphorylation reaction in the collision-limited realm as an example to quantify the rela-
tion between protein mobility (D) and protein functional activity (k) in cell:

k(D) = 87Dgk,
k. +87Dg exp (

Here we have assumed equal diffusion coefficients (D) and protein sizes (R) for substrate and enzyme for simplicity. To draw the k-D
relation, additional parameters/functions need to be determined, including R, U(r), ksT, 8, and k.

® The radius of receptor tyrosine kinases is estimated to be R=3 nm.
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e For U(r), we adapted a 10-5 Lennard-Jones potential in the colloid-type spherical model to describe the interactions between
substrate and enzyme: U(r) = 45((%)10 - (%)5>, and common value of & = 4.0 kJ/mol was used.'*’ Lennard-Jones parame-
ters ¢ were obtained from the protein radius: ¢:=25¢R = 5.35 nm.

® kgT is set to the value that represents 37°C: kgT = 2.5 kd/mol.

® (isacharacteristic length-scale definedas =" = j;:s dr-exp (U(r) /ksT)/r?, which is computed as 7.60 nm in this case (note
that HAB =2F)’).

® To estimate the inherent reaction constant k;, the apparent receptor tyrosine phosphorylation rate of EGFR in vitro is adopted:
k =5.5%10" M's™"."° Therefore, the k, can be reversely solved in a dilute solution scenario (i.e., exp <%> =1) as:

1
e ()
k 87Dy B

To back-calculate k., we also need an estimation of the in vitro diffusion coefficient of receptor tyrosine kinases. The diffusion co-
efficient of insulin receptor measured in our paper in live cells (Deen ~1 nm?/s) is adopted given the comparable molecular weights
among insulin receptor, IRS1, and EGFR. It is also known that the diffusion coefficient in vitro is around 3 times higher than in cell, '
thus the effective diffusion coefficient of EGFR in the referred in vitro work ' *® is estimated to be Dyitro ~3 um2/s. Hence, k, = 6.5% 107
Ms,

With those parameters/functions in hand, k-D relation is generated as plotted in Figure 6D.

In vitro IRS1 phosphorylation

Purified active recombinant human insulin receptor (IR) (Millipore, 14-466) and purified recombinant insulin responsive substrate
1 (IRS1) (Abcam, ab70538) were incubated in freshly prepared reaction buffer consisting of 50 mM Tris pH 7.5, 0.1 mM EGTA,
0.1 mM NazgVOy,, 0.1 mM 2-mercaptoethanol, 10 mM MnCl, and 0.01 mg/ml bovine serum albumin with the indicated concentrations
of glycerol (Invitrogen, 15514011) for 5 minutes at 30°C immediately after the addition of 50 uM ATP in 5 mM magnesium acetate. All
samples were prepared with 75 ng of IR and 240 ng of IRS1. These amounts and ratios were chosen because they fell within the linear
range of IRS1 phosphorylation by IR and they provided equivalent moles of IR and IRS1. For samples that were agitated, tubes were
subjected to orbital mixing at 1200 rpm using a Thermomixer (Eppendorf, ThermoMixer C, EP5382000023) during the entire incuba-
tion. After 5 minutes, reactions were immediately quenched with dithiothreitol (DTT) and XT Sample Buffer 4x (BioRad, 1610791) to a
final concentration of 100mM and 1x, respectively and incubated at 95°C for 5 minutes, then ran on Western blot or frozen at -80°C
until subjected to western blot.

RNA-seq

Cells were treated with normal or pathogenic insulin concentrations for three days and washed with EMEM as described above
and cultured in EMEM solo for 4 hours. RNA was then purified using TRIzoI™ reagent (Thermo Fisher Scientific, 15596026) following
manufacturer’s instructions. RNA-seq libraries were prepared using KAPAHyperRiboErase (Roche, KK8561) and were sequenced on
lllumina NovaSeq 6000, generating at least 200 million paired-ended 150-bp reads per sample. Reads were mapped to the human
genome GRCh38 using STAR aligner'®® (v2.7.1a), allowing up to 100 multiple alignments and up to 200 loci anchors (-outFilterMul-
timapNmax 100 —winAnchorMultimapNmax 200). Differential expression analysis of genes and transposable elements comparing
triplicates of samples treated with normal or pathogenic concentrations of insulin was performed using TEtranscripts'%® (v2.2.3).
The list of protein coding genes was downloaded from ENSEMBL BioMart (http://www.ensembl.org/biomart/martview/
6e82036bfd2b9ca0c5044d2c7449824d).

ChlP-seq

Published MED1 ChIP-seq data (GEO: GSM2040029) and input (GEO: GSM2864933) were used in this study. ChlP-seq bioinformat-
ics analysis was performed on the Whitehead High-Performance Computing Facility using the nf-core ChiP-seq pipeline v1.2.1112
with Nextflow v20.04.1. Quality control of fastq files was performed with FastQC v0.11.9. Trim Galore! v0.6.4_dev was used to trim
low-quality reads. Alignment was performed against the hg19 genome assembly using BWA v0.7.17-r1188."°" Peak calling was per-
formed using MACS2'°® v2.2.7.1 with q value of 0.01. For the identification of genes whose promoter (transcription start site, TSS, +/-
1kb) were occupied by MED1, the same hg38 gene list used for the RNA-seq analysis was used. The coordinates of the promoters
were converted from hg38 to hg19 using LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Bedtools'%® v2.29.2 was used to
measure the distance between MED1 peaks and gene promoters (bedtools closest -d). A gene was considered occupied by
MED1 the distance between MED1 peak and the promoter was 0. The changes in gene expression measured by RNA-seq were
matched to each MED1-occupied and non-occupied gene using the VLOOKUP tool in Excel v16.78.3.

lllustrations

PyMOL142 was used for protein illustrations in Figures 4A, 6A, 7B, and S6B. PDB ID: IR 6PXV, MED1 7EMF, HP1a 3I3C, FIB1 7SE7,
SRSF2 2LEC. Cartoon illustrations were created with BioRender.com. Figures were generated using Adobe lllustrator v27.0.1.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses for FRAP were performed using the Statistics and Machine Learning Toolbox of MATLAB R2021b or R2024a (The
MathWorks, Inc., Natick, MA). All other statistical analyses were performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA). All
statistical tests used, the exact value of n, and what n represents can all be found in the figure legends. All data are reported as mean +
SEM or mean + SEM. For Figures 2E, 5B, 5C, 5F, 6J, S2K, S4B, S6E, S7B, and S7C, a two-tailed Mann-Whitney U test was applied.
For Figures 2G, 3F, 3I, 4D-4F, 4H, 4l, 5E, S3A, S4A, S4C-S4E, and S6C, an unpaired two-tailed student’s t-test was applied. For
Figures 3B, 6E, 6K, 6L, S1TA-S1E, and S7D, an unpaired two-tailed student’s t-test with Welch’s correction was applied. All statistical
results were done without randomization or stratification. The notation for statistical significance is as follows: * represents p < 0.05, **
represents p < 0.01 and *** represents p < 0.001.
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Figure S1. Cell line validation, related to Figure 1

(A) Strategy to endogenously tag IR with HaloTag (left). Immunoblot for IR and beta actin (B-actin, middle). Quantification of relative IR amount as compared with
beta actin (right). Data are plotted as mean + SEM (n = 3 biological replicates in each condition).

(B) Strategy to endogenously tag MED1 with GFP or HaloTag (left). Immunoblot for MED1 and beta actin (B-actin, middle). Quantification of relative MED1
amounts as compared with beta actin (right). Data are plotted as mean + SEM (n = 2 to 3 biological replicates in each condition).

(C) Same as (B), but for HP1a (n = 3 biological replicates in each condition). * represents p value < 0.05.

(D) Same as (B), but for FIB1.

(E) Same as (B), but for SRSF2.

(F) Viability of WT cells or cells expressing endogenous IR, MED1, HP1«, FIB1, and SRSF2 tagged with HaloTag. Data are plotted as mean + SEM (n = 3 biological
replicates in each condition).

(G) Immunofluorescence images of IR, MED1, HP1a, FIB1, and SRSF2 (green) in WT HepG2 cells. Dashed blue lines represent nuclear outline. Scale bars are indicated.
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Figure S2. Additional characterization of SPT and FRAP analyses, related to Figures 1 and 2
(A) logD distribution of individual molecules (histogram) fitted to either two or three Gaussian functions (colored curves indicate individual Gaussian functions, and
the black curve in each graph is the sum of individual Gaussian functions).
(B) Distribution of the continuous axial detectable range of a single molecule. The distribution peaked at ~900 nm.
(C) Immobile fraction of endogenous proteins estimated from SPT dataset vs. FRAP dataset. Data are plotted as mean + SEM.
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(D) Plot of the residual of experimentally observed and theoretical models of FRAP recovery as a function of different diffusion coefficient D used for the model.
The best-fitted diffusion coefficient of GFP (27 kDa) is indicated by a dashed blue line. The apparent diffusion coefficients of a HaloTag-JF646 (~34 kDa), based
on SPT, are indicated as mean (dashed green line) and SEM (light green). The apparent diffusion coefficient of a HaloTag-JF646 (~34 kDa) inferred from the
relationship between FRAP-estimated diffusion of a protein of known molecular weight, GFP (27 kDa), is indicated by a dashed magenta line.

(E) The logD distribution of individual HaloTag-alone molecules in fixed sample (histogram). The solid black line represents the best-fitted single Gaussian
function.

(F) The logD distribution of individual HaloTag-alone molecules in live sample (histogram). The solid black line represents the best-fitted single Gaussian function.
(G) Graphical illustration of a premature stop during localization reconnection caused by assuming a too small maximumly allowed prior apparent diffusion
coefficient (Dinax) (left) vs. a successful reconnection because of assuming a large enough D,y (right).

(H) Graphical illustration of two reasons why the tracking of a protein may stop even if the next localization is within the two-dimensional range defined by Dy :
(i) photobleach of the dye molecule tagged to the protein and (ji) the protein moving out of focus.

(I) Graphical illustration of why the localization reconnection may continue by mistakenly joining the trajectories of two proteins together. In this case, the number
of jumps per “trajectory” will go beyond normal.

(J) Average number of jumps per trajectory at different localization density. Beyond certain localization density threshold (vertical line at ~0.01 per um? per frame),
the number of jumps per “trajectory” will start to increase due to the reason shown in (l), which is associated with significant chance of ambiguous connection.
The localization density range of the actual experiments for IR-HaloTag SPT is marked as the horizontal boxplot, which is safely below the threshold that will cause
significant ambiguous connection.

(K) Diffusion coefficient comparisons based on trajectory-level (left) or cell-level analysis (right) for IR, MED1, HP1a, FIB1, and SRSF2. Apparent diffusion co-
efficients for normal (blue) and pathogenic (red) conditions are shown. For trajectory-level analysis, each dot represents the value for individual trajectories; the
median value is indicated by the black rectangle, while the error bars identify the 95% confidence interval of the median. For cell-level analysis, each dot rep-
resents the median value of the trajectories assigned to a single cell; the median value of the set of cell-level values is indicated by the black rectangle, while
the error bars identify the 95% confidence interval of the median. IR: by trajectory, normal n = 1,169 trajectories, pathogenic n = 1,323 trajectories; by cell, normal
n =37 cells, pathogenic n = 35 cells. MED1: by trajectory, normal n = 5,719 trajectories, pathogenic n = 2,227 trajectories; by cell, normal n =214 cells, pathogenic
n =110 cells. HP1a: by trajectory, normal n = 4,568 trajectories, pathogenic n = 3,598 trajectories; by cell, normal n = 180 cells, pathogenic n =219 cells. FIB1: by
trajectory: normal n = 2,855 trajectories, pathogenic n = 205 trajectories; by cell, normal n = 205 cells, pathogenic n = 162 cells. SRSF2: by trajectory: normal
n = 3,399 trajectories, pathogenic n = 2,872 trajectories; by cell: normal n = 142 cells, pathogenic n = 162 cells. Mann-Whitney test was used for statistical
analysis.
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Figure S3. The effect of pathogenic signaling on protein mobility outside of condensates and on condensate properties, related to Figure 2
(A) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of condensate assemblies in cells that were treated with normal
signaling (normal) or pathogenic signaling (pathogenic). Number of cells: MED1 normal n = 10, pathogenic n = 10; HP1a normal n = 15, pathogenic n = 15;
FIB1 normal n = 24, pathogenic n = 24; SRSF2 normal n = 14, pathogenic n = 14. t test was used for statistical analysis. * represents p value < 0.05 and ***
represents p value < 0.001.

(B) Number, size, and partition ratio of IR, MED1, HP1«, FIB1, and SRSF2 condensates in cells that were treated with normal signaling (normal) or pathogenic
signaling (pathogenic). Number of condensates: IR normal n = 22, pathogenic n = 24; MED1 normal n = 135, pathogenic n = 127; HP1a. normal n = 44, pathogenic
n = 56; FIB1 normal n = 150, pathogenic n = 214; SRSF2 normal n = 58, pathogenic n = 53. Condensate size, number of condensates: IR normal n = 3,846,
pathogenic n = 3,548; MED1 normal n = 3,522, pathogenic n = 3,426; HP1a. normal n = 1,499, pathogenic n = 1,558; FIB1 normal n = 541, pathogenic n = 660;
SRSF2 normal n = 954, pathogenic n = 699. Partition ratio, number of condensates: IR normal n = 3,846, pathogenic n = 3,548; MED1 normal n = 3,522,
pathogenic n = 3,426; HP1a normal n = 1,499, pathogenic n = 1,558; FIB1 normal n = 541, pathogenic n = 660; SRSF2 normal n = 954, pathogenic n = 699.
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Figure S4. The effect of oxidative environments on protein mobility, related to Figures 2 and 3

(A) Quantification of FRAP data for nuclear (left) and cytoplasmic (right) GFP in HepG2 cells that were treated with normal signaling (normal) or pathogenic
signaling (pathogenic). Nuclear GFP, number of cells: normal n = 16, pathogenic n = 17; cytoplasmic GFP: n = 15 for each condition. Data are plotted as mean
(dark blue and dark red lines) + SEM (light blue and light red regions). p values are reported in the figure.

(B) CCDF graphs of apparent diffusion coefficients as determined by SPT for nuclear (left) and cytoplasmic (right) HaloTag in HepG2 cells that were treated with
normal signaling (normal) or pathogenic signaling (pathogenic). Nuclear HaloTag, number of molecules: normal n = 771, pathogenic n = 937; cytoplasmic
HaloTag: normal n = 1,279, pathogenic n = 625. t test was used for statistical analysis. p values are reported in the figure.

(C) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of condensates in HepG2 cells that were treated with 0 mM H,O, or 7.5 mM
H>0,.0 MM H,0,n =11, 20, 15, and 14 cells for MED1, HP1a, FIB1, and SRSF2, respectively. 7.5 mM H,O, n = 11, 20, 15, and 14 cells for MED1, HP1a, FIB1, and

SRSF2, respectively. *

represents p value < 0.05 and *** represents p value < 0.001.

(legend continued on next page)
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(D) Quantification of FRAP data for nuclear and cytoplasmic GFP in HepG2 cells that were treated with 0 mM H,0O, or 7.5 mM H,0 (n = 7 cells per condition for
nuclear FRAP and n = 10 cells per condition for cytoplasmic FRAP). Data are plotted as mean (dark pink and dark blue lines) + SEM (light pink and light
blue regions). Quantification of FRAP data for nuclear GFP in HepG2 cells previously treated with pathogenic signaling with (pathogenic + N-acetyl cysteine
[NAC], n = 17 cells) or without (pathogenic, n = 11 cells) NAC (left). Quantification of FRAP data for cytoplasmic GFP in HepG2 cells previously treated with
pathogenic signaling with (pathogenic + NAC, n = 10 cells) or without (pathogenic, n = 10 cells) NAC (left). “** represents p value < 0.001.

(E) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of condensates in n HepG2 cells previously treated with pathogenic signaling
with or without NAC. Without NAC n = 11, 20, 37, and 15 cells for MED1, HP1«, FIB1, and SRSF2, respectively. With NAC n =11, 20, 28, and 15 for MED1, HP1«,
FIB1, and SRSF2, respectively. Data are plotted as mean (dark purple and dark red lines) + SEM (light purple and light red regions). t test was used for statistical
analysis. * represents p value < 0.05 and *** represents p value < 0.001.
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Figure S5. Modeling protein diffusion with increasing ROS, related to Figure 4
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(A) Repulsive potential between protein spheres as a function of the inter-protein distance normalized to the protein diameter rqp.

(B) Attractive potential between sticky patches (surface cysteines) as a function of the inter-patch distance normalized to the patch-patch attraction radius ;.
The depth of the attractive potential, E,y,, controls the propensity for intermolecular disulfide bonding.

(C) Cartoon depicting minimum energy configurations of a trimer of proteins with a single surface cysteine, which represents an undesirable many-to-one bonding
event, and a dimer, which represents a one-to-one bonding event. These configurations are determined by the equilibrium patch-patch distance d and protein-
cysteine bond extension x, which minimize the energy of the trimer or dimer. Simulation parameters are chosen such that trimers are energetically less favorable

than dimers.

(D) Diffusion coefficient and cluster size distributions from simulations of 1,000 proteins with one surface-exposed cysteine as a function of E,, normalized to the
mean of the first five data points. At E,« = 0 kgT, all proteins are in a monomeric state, but at E,y = 30 kgT, nearly all proteins form dimers. Notably none form
trimers, demonstrating that the choice of simulation hyperparameters minimizes many-to-one bonding.

(E) Fraction of simulated proteins that form a multimer of size m for simulations at three different values of E,,, which correspond to three different GSSG/GSH

ratios highlighted in (H).

(F) Normalized diffusion coefficient from simulations of a mixture of proteins with (red) and without (gray) surface-exposed sticky patches (cysteines) as a function

of the patch-patch attraction energy E ;.

(G) Fraction of surface cysteines that participate in intermolecular bonding as a function of E.,, as calculated from protein dynamics simulations.

(legend continued on next page)
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(H) Fraction of surface cysteines that participate in protein-protein disulfide bonding as a function of the steady-state ratio of oxidized (GSSG) to reduced (GSH)
glutathione, as calculated from a chemical reaction model. Representative GSSG/GSH ratios are highlighted with dashed lines and circles (yellow, orange,
and red).
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Figure S6. Cysteines in protein mobility, related to Figure 4

(A) Immunoblot for IR (left). Cells were treated with indicated concentrations of H,O, prior to protein isolation and western blotting in reducing (+DTT) or non-
reducing (—DTT) conditions. Quantification of relative IR crosslink amount as compared with IRa subunit (right).

(B) Renderings of dimers of WT or dimers of Y1361C IR. Cartoon design was based on both the previously published structure of IR (PDB: 6PXV) and the
AlphaFold structure of the unresolved region of IR. Tyrosines are represented as blue, and cysteines are represented in red.

(C) Cartoon depicting WT (IR WT) and mutant IR (IR Y1361C and IR Y1361S; left). Quantification of FRAP data for WT (IR WT, n = 15 cells) and mutant IR
(IRY1361C, n=16cells; IRY1361S, n = 15 cells; right). These experiments were performed on the same day, and as a result, the IR WT FRAP curves are the same.
Data are plotted as mean (dark black, dark red, and dark blue lines) + SEM (light black, light red, and light blue regions). t test was used for statistical analysis. *
represents p value < 0.05.

(D) Measurement of the pathogenicity of all 20 gain-of-amino acid mutations as determined by the ratio of the number of pathogenic mutations to the number of
benign mutations for a specific amino acid throughout the proteome.

(E) Apparent diffusion coefficient for HaloTag-Ser5 and HaloTag-Cys5 in cells treated with normal or pathogenic insulin. HaloTag-Ser5 normal n = 710 molecules,
HaloTag-Ser5 pathogenic n = 747 molecules; HaloTag-Cys5 normal n = 1,239 molecules, HaloTag-Cys5 pathogenic n = 569 molecules. Mann-Whitney test was
used for statistical analysis. ** represents p value < 0.01 and *** represents p value < 0.001.
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Figure S7. Pathogenic stimuli decrease protein mobility and function, related to Figures 5 and 6

(A) Cartoon depicting drug toxicity.

(B) Apparent diffusion coefficient, as determined by SPT, of the protein mobility biosensor expressed in HepG2 cells treated with (N-acetyl-p-benzoquinone imine
[NAPQI], n = 408 protein molecules) and without (DMSO, n = 4,921 protein molecules) NAPQI. NAPQI is a toxic intermediate in the breakdown of acetaminophen
and is one of the main causes of acetaminophen-induced liver injury. Data are plotted as mean + SEM. Mann-Whitney was used for statistical analysis. ***
represents p value < 0.001.

(C) Apparent diffusion coefficient, as determined by SPT, of the protein mobility biosensor expressed in C2C12 skeletal muscle cells treated with the stimuli
reported in the figure. Data are plotted as mean + SEM. Mann-Whitney test was used for statistical analysis. Numbers of molecules: normal insulin (327) vs.
pathogenic insulin (510); normal glucose (706) vs. high glucose (673); BSA (42,133) vs. high fat (38,486); BSA (294) vs. TNF-o (291); DMSO (186) vs. ETO (91);
control (1,015) vs. LPS (777); control (75) vs. NAPQI (156). p values are reported in the figure.

(D) Quantification of phosphorylated IRS1 (pIRS1) levels by immunofluorescence in HepG2 cells treated with normal insulin (normal, 48 cytoplasmic regions),
pathogenic insulin (pathogenic, 48 cytoplasmic regions) or normal insulin and H,O, (normal + H2O,, 39 cytoplasmic regions). Results are represented as mean +
SEM. t test was used for statistical analysis. *** represents p value < 0.001.
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