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ABSTRACT. Quantum Relative Entropy (QRE) programming is a recently popular and
challenging class of convex optimization problems with significant applications in quantum
computing and quantum information theory. We are interested in modern interior point
(IP) methods based on optimal self-concordant barriers for the QRE cone. A range of
theoretical and numerical challenges associated with such barrier functions and the QRE
cones have hindered the scalability of IP methods. To address these challenges, we propose
a series of numerical and linear algebraic techniques and heuristics aimed at enhancing the
efficiency of gradient and Hessian computations for the self-concordant barrier function,
solving linear systems, and performing matrix-vector products. We also introduce and
deliberate about some interesting concepts related to QRE such as symmetric quantum
relative entropy (SQRE). We design a two-phase method for performing facial reduction
that can significantly improve the performance of QRE programming. Our new techniques
have been implemented in the latest version (DDS 2.2) of the software package DDS. In
addition to handling QRE constraints, DDS accepts any combination of several other conic
and non-conic convex constraints. Our comprehensive numerical experiments encompass
several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation
matrix problem, 2) using DDS 2.2 for combining QRE constraints with various other
constraint types, and 3) calculating the key rate for quantum key distribution (QKD)
channels and presenting results for several QKD protocols.
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1. INTRODUCTION

In this manuscript, we propose and evaluate various techniques to efficiently solve
convex optimization problems involving the quantum relative entropy (QRE) cone using
interior-point methods. Optimization over problems involving the QRE cone has several
applications in quantum computing. These applications include calculating the key rate
of quantum key distribution (QKD) channels (J40} [49]) or calculating the quantum rate-
distortion function ([I0,20]). QKD is a commercialized secure communication method that
distributes a secret key between two honest parties in the presence of an eavesdropper. The
rate-distortion function is a fundamental concept in information theory that quantifies the
minimum achievable compression rate for transmitting a source signal within a specified
distortion or reconstruction error bound ([8]). The quantum relative entropy function
is the matrix extension of vector relative entropy or Kullback-Leibler (KL) divergence
([33, B, [46], 19} 6]) of two vectors which is defined as KL : R" @ R" — R U {+00}:

Yo win(z;) — zn(y;), =,y € R, supp(x) C supp(y),

+0o0 0. W.

(1) KL(z,y) =

where supp(z) := {i : z; # 0} denotes the support of x. KL divergence, mostly used to
measure the difference of two probability distributions, is an important function in sta-
tistics, information theory, optimization, and machine learning. KL divergence is widely
used in machine learning for tasks like information retrieval, clustering, generative mod-
eling, and variational autoencoders (|11} 17]). KL divergence is also used for convergence
proof in classic and quantum zero-sum games by [9, [5]. To define the quantum version of
the KL divergence, we need the definition of the matrix extension of a univariate function.
Consider a function f: R — RU{+o0} and let X € H" (H" is the set of n-by-n Hermitian
matrices with complex entries) with a spectral decomposition X = UDiag(Ay, ..., A\,)U¥,
where Diag returns a diagonal matrix with the given entries on its diagonal and U* is the
conjugate transpose of a unitary matrix U. We define the matriz extension F of f as
F(X) :=UDiag(f(A),---, f(A,))U*. Then, we define the trace of this extension function
as

Tr(UDiag(f(A1), ..., f(A)U) if f(N\) € R, Vi,

—+00 0.W.

(2) Tr(F(X)) ==

For the special case of f(x) = xIn(z), we use the convention that f(0) := 0, so in this special

case, Tr(F'(X)) has a real value for every positive semidefinite matrix. For two matrices
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X,Y € H%, the quantity Tr(X1In(Y")) is real if the intersection of the null space of Y and
the range of X is the zero vector (equivalently, range of X is contained in the range of Y).
Then, we can define the quantum relative entropy function gre : H* @ H* — RU {400} as
Tr(XIn(X) — XIn(Y)) if X,Y € H? and range(X) Nnull(Y') = {0},

+00 0.W.

qgre(X,Y) =

The QRE cone is defined as the epigraph of the ¢re function:
QRE" :={(t,X,Y) e ROH} ®H} : gre(X,Y) < t}.

QRE programming concerns with optimization problems over the intersection of one or
more QRE cones with an affine subspace and potentially many other simpler convex sets.
One approach to solve QRE programming is approximating it with other tractable opti-
mization classes such as semidefinite programming (SDP) ([14} 2]). These SDP approxi-
mations are expensive and do not scale well; therefore, work only for small size problems.
We are interested in using modern interior-point (IP) algorithms for convex optimization
based on the theory of self-concordant (s.c.) functions and barriers ([36]). The intriguing
theoretical properties exhibited by the s.c. barriers for symmetric cones [37, 38], along with
their extensive practical applications, have positioned the primary research emphasis of IP
algorithms on symmetric cones. After decades of successful implementation of interior-
point algorithms for optimization over symmetric cones (see, for instance, [43] [42] 35 27]),
there have been several recent efforts to create efficient codes for handling other convex
sets with available computationally efficient self-concordant (s.c.) barriers. The available
modern IP codes for solving convex optimization problems (beyond symmetric cones) us-
ing s.c. barriers are: a MATLAB-based software package Alfonso ([39]), a software package
Hypatia in the Julia language ([7]), and a MATLAB-based software package DDS ([27]).
DDS has some major differences from the other two, including: 1) accepting both conic and
non-conic constraints, 2) utilizing the Legendre-Fenchel conjugate of the s.c. barriers when
available, and 3) using conservative strategies for the implementation of each iteration, and

strict stopping criteria (for improved robustness, see [31]).

[36] presented a theoretical s.c. function (universal barrier) for any closed convex set,
which is very costly to compute in general. To apply modern IP methods to optimization
problems involving the QRE cone or any other convex set, a computationally efficient s.c.
barrier in needed, where its gradient and Hessian can be calculated in a reasonable time.

DDS has been using the following barrier function since 2019 for solving problems involving
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quantum relative entropy constraints ® : R @ H" @ H" — R U {+o0}:

—In(t — gre(X,Y)) — Indet(X) — Indet(Y), if X,Y € H}_,

(3) ®(t, X,Y) :=

+00 0.W.
which was recently proved to be self-concordant by Fawzi and Saunderson ([12]). The first
available code for QRE programming was CVXQUAD ([13]), which is a collection of matrix
functions to be used on top of CVX ([I8]). The package CVXQUAD is based on the paper
([14]), which approximates the matrix logarithm with functions that can be described by
SDPs. CVXQUAD does not scale well and the SDP approximation becomes too large for
available SDP solvers even for matrices of size 15. Note that the SDP formulation of the
quantum relative entropy function in [I4] involves linear matrix inequalities of size n? x n?.
[T5] proved self-concordance results for some functions related to quantum entropy and
then [16] designed some interior-point algorithms for various problems involving quantum
entropy. They also consider minimizing the gre(X,Y’) function for the special case of
calculating the key rate for quantum key distribution (QKD) channels, which is one of
the most popular applications of QRE programming. For this special case, both X and
Y are linear functions of another matrix p and the problem formulation is significantly
simpler than our general QRE setupE]. [25] also proposed an interior-point method, not
using the s.c. barriers for the QRE cone, for solving QKD key rate using the simplified
formulation. As far as we know, Hypatia and DDS are the only publicly available codes
for QRE programming where both use the s.c. barrier in (3)). The main differences of DDS
(and Hypatia) with [I6] and [25] are:

e DDS QRE programming is not just for the simplified QKD key rate computation,
but is for any problem with a combination of an arbitrary number of QRE cones,
with all the other function/set constraints available in DDS.

e DDS is using the optimal s.c. barrier in (3]). [L6] use their conjectured s.c. function

for the simplified problem, and [25] do not utilize self-concordance.

Several computational and theoretical challenges related to have hindered the scala-
bility of Quantum Relative Entropy (QRE) optimization solvers, specifically DDS 2.1 and
Hypatia. Among the primary issues are the complexity of evaluating the gradient and
Hessian of ® in (3)), and also solving the linear systems involving the Hessian, which are
needed in implementing the second-order IP methods. In this paper, we present a set of

numerical and theoretical techniques aimed at enhancing the performance of IP methods,

IThe code of [I6] is not publicly available.
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and then evaluate the effectiveness of these techniques through a series of numerical exper-
iments. The new techniques have been implemented in DDS 2.2 ([28]), which is introduced
and released by this paper. Here are the contributions of this paper:

e Introducing numerical and linear algebraic techniques and heuristics to improve
the calculation of the gradient and Hessian of ®, solving the needed linear systems,
and calculating the matrix-vector products. These techniques improved DDS 2.2,
and enabled us to solve much larger instances compared to DDS 2.1 and Hypatia

(Sections 2] and [3).

e Introducing and deliberating about the concept of symmetric quantum relative en-
tropy (Section [4)).

e Introducing a two-phase approach for QRE programming to improve the running
time and condition of the problems (Section [f]).

e Developing a comprehensive setup (including a two-phase approach and facial re-
duction) for calculating quantum key distribution (QKD) channel rates (Section
@, and discussing how to handle complex Hermitian matrices (Section .

e A comprehensive numerical experiment including: 1) comparison of DDS 2.2 with
Hypatia for the nearest correlation matrix, 2) using DDS for combination of QRE
and many other types of constraints, and 3) examples to elaborate on the two-phase
method and its performance improvement, 4) Solving symmetric QRE programming
problems, 5) calculating the key rate for QKD channels and presenting results for
several QKD protocols (Section .

1.1. Notations. The sets S”, S", and S}, are the set of n-by-n symmetric matrices, pos-
itive semidefinite matrices, and positive definite matrices, respectively. For a multivariate
function f, both f’ and Vf are used for the gradient, and both f” and V2f are used for

the Hessian.

2. EVALUATING THE DERIVATIVES FOR QUANTUM RELATIVE ENTROPY

In this section, we discuss how to calculate the gradient and Hessian for the s.c. bar-
rier function in . The details of our Domain-Driven infeasible-start predictor-corrector

algorithms are given in [30, BI]. At each iteration of the algorithm, for both the predictor
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and corrector steps, we solve a linear system of the form:

H 0

(4) U’ 1-1 | U | d=rgus,
0[]
H(;{,H)

where H and H are positive definite matrices based on the Hessians of the s.c. barrier ®
representing the feasible set, U is a fixed matrix, and rryg is the right-hand-side vector
that is different for the predictor and corrector steps. The following pseudocode gives a
framework for the algorithm ([30, 31]):

Framework for the Interior-Point Algorithm in DDS

INPUT: Matrix U, the oracles for calculating ® and its derivatives. A proximity measure
) and the constants 0 < §; < 0s.
while (the stopping criteria are not met)

Predictor Step

Calculate the predictor search direction d by solving with the proper rrys.
Update the current point using the search direction and a step size that guar-
antees < Js.

Corrector Step

Modify the system and the rryg in and calculate the corrector search direc-
tion d. Apply the corrector step at least once so that the updated point satisfies
< 51.

Fine Tuning
Modify the dual iterate to make sure it approximately satisfies dual feasibility.

end while
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For QRE programming, the main challenge in forming the linear system is calcu-
lating the gradient and Hessian for the gre(X,Y’) function in an efficient and numerically
stable way. For this, we need to calculate the derivatives for Tr(X1In(X)) and Tr(—XIn(Y")).
XIn(X) is the matrix extension of zln(z). For the trace of a general matrix extension func-
tion Tr(F (X)) defined in (2)), the gradient can be calculated by the following theorem:

Theorem 2.1 (see, for example, [2I]-Section 3.3). Let X and H be self-adjoint matrices
and f : (a,b) — R be a continuously differentiable function defined on an interval. Assume
that the eigenvalues of X + aH are in (a,b) for an interval around g € R. Then,

(5) L NP(X 4 aH)

o =TrHF' (X + agH).

a=aq

By putting ap = 0 in (5), we get the directional derivative of F' in the direction of H,
and we can write:

NP 4 aH)

- = TrHF'(X) = vec(F'(X)) vec(H),

a=0
where vec changes a matrix into a vector by stacking the columns on top of one another.
This implies that if we look at (Tr(F(X)))" as a vector of length n?, we have

(6) (Tr(F(X)))" = vec(F'(X)).

For the rest of our discussion, we need two definitions for univariate functions similar to
the derivative. For a continuously differentiable function f : (a,b) — R, we define the first

and second divided differences as

e, ) = .
fla)  a=p
FM(a8)— M () B+~
B— !
(. 8)— f
(7) faBr) = § HEEEE B=r#a

To calculate the Hessian of Tr(F (X)), we can use the following theorem:

Theorem 2.2 (see, for example, [21]-Theorem 3.25). Assume that f : (a,b) — R is a C'-
function and T = Diag(tq,...,t,) with t; € (a,b), i € {1,...,n}. Then, for a Hermitian
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matriz H, we have

d
8) —F(T+aH)| =T;0H,

a=0

where © is the Hadamard product and T is the divided difference matriz defined as

(9) [Tf]ZJ = f[l] (tl, tj), VZ,] S {1, ce ,n}.

T is diagonal in the statement of the theorem, which is without loss of generality. Note
that by the definition of functional calculus in , for a Hermitian matrix X and a unitary

matrix U, we have

(10) FUXU*) = UF(X)U*,

Therefore, for a matrix 7' = UDiag(ty, ..., t,)U*, we can update as
d

(11) —F(T+aH)|  =U(T;® (U HU) U,

a=0

where we extend the definition of T} in @D to non-diagonal matrices by defining that
Ty := (U*TU)y. In other words, for a non-diagonal matrix 7" = UDiag(ty,...,t,)U*, we
use Diag(t1,...,t,) to calculate T} using (9). Now we can use Theorems and to
calculate the Hessian of the function Tr(F(X)).

Theorem 2.3. Let X, H, and H be self-adjoint matrices and f : (a,b) — R be a
continuously differentiable function defined on an interval. Assume that the eigenval-
ues of X +tH and X + tH are in (a,b) for an interval around t = 0. Assume that
X = UxDiag(\y, ..., \,)U%. Then,

(12) VATe(F(X))[H, H] = Tr ((Xf, © (UyHUx)) U}ZFIUX> .

Proof. Proof. We can write

VETR(P(X)[H, H) = 25 LTe(F(X + H + o))

a=0 ‘ £=0

% da
= %Tr(HF’(X + ﬁH))‘ﬂ:O, using
(13) — Te(H LF(X + BH))ﬁ )
=0
= Tr(HUx (X @ (UL HUx)) Uy), using

- T <(Xf/ ® (UyHUYy)) U;;HUX) .
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To find a formula for the matrix form of the Hessian, note that by using the properties
of the Hadamard product, we have

vee(Xp © (UyHUx)) = Diag(vec(Xp))vec(Uy HUx).
Using this, we have
Tr ((Xf, © (U3 HUY)) U;;PIUX) = vee(Xp @ (UL HUx)) Tvec(Us HUx)
(14) = vec(UHUx) Diag(vec(Xp))vec(Us HUx)
= vec(H)T(Ux ® Ux)Diag(vee(X ;) (U% ® Ui )vec(H).
So the matrix form of the Hessian is

(15) (Tr(F))"(X) = (Ux ® Ux)Diag(vec(Xp))(Ux ® Ux).

For the other components of the Hessian of gre, we need to differentiate Tr(—XIn(Y"))
in terms of X and Y. In terms of Y, for a fixed matrix X and a continuously differentiable
function f : (a,b) — R, let us define

(16) Fx(Y):=Te(XF(Y)).

Let Y = UyDiag(v1, ..., va)Us be the spectral decomposition of Y. The gradient of Fx(Y)
can be calculated using Theorem as:

(17) Fx(Y) = Uy (Y © (Uy XUy)) Uy

The Hessian of Fx(Y) is calculated as follows in [16]:

(18) FY(Y) = (Uy ® Uy)S(Uy @ Uy),

where S is the n?-by-n? second divided difference matrix. If we assume that S is a block
matrix of size n-by-n where each block is again a matrix of size n-by-n, then we can show
the entries of S as S;; i where ¢j denotes the place of the block, and kl denotes the rows
and columns inside the block. We have:

(19) Sij = 0. Xij F2 (vis 155 ) + 6 X F2 (5 s 1),

where X := Uy XUy and ¢;; is an indicator function which is 1 if 7 = j, and 0 otherwise.
Putting together all these results, we have

Hll H12

Vi
qre’(X,Y) =
H], Hy

)
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Hy, = (Ux ® Ux)(Diag(vec(X1,)))(Ux @ Ux),
His = —(Uy ® Uy)(Diag(vec(Yin)))(Uy ® Uy),

Hyy = —(Uy @ Uy)S(Uy @ Us).
By having the derivatives of the gre function, we can calculate the derivatives for the s.c.
barrier function ® in . For simplicity, we define T :=t — qre(X,Y’). We have

=1

T
h:
(20) (¢, X,Y) = | £h+vec(—X1) |,
Lh+vec(—Y 1)

vec(! + In(X) — In(Y))
h:= vec((Uy (Y; ® (Us XUy)) Us:)).

We can write the Hessian as:

"(t, X,Y) =
_ T
o —azh’ 7=h’ 0 0
(21) —mh FHn+ (XX +His + | Fh | | 0
7zh +H, FHy+ (Y oY1) #h | | h

N J/

e
H

2.1. Other numerical techniques. For calculating the gradient and Hessian of gre(X,Y),
numerical instability happens in calculating X, and Y},, where for a matrix X = UxDiag(\1, ..., \,)U%,

using (9)), we have:

[Xi]iy = I\, N = Z
In(Ai)—In(d;) \
oo N

To make the calculation more stable, [15] used the following equivalent formula given in
[23]:

(A, N) = ¢ =B N < or A < ¥
iTAj
2tanh~!(z)
T)\j 0. W.

where z = (\;— ;) /(Ai+A;). Numerical experiments with DDS 2.2 shows that this formula

indeed works better in terms of numerical stability.
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3. SOLVING THE LINEAR SYSTEM

In QRE programming with DDS, other than solving the linear system , for calculating
the proximity measure (2 and the fine-tuning step, we need to solve linear systems that
directly have the Hessian on the left-hand-side. In this section, we discuss how to solve
these systems in DDS to significantly speed up the algorithm. Writing the Hessian as in
is efficient since the Hessian is the summation of a simpler matrix and a rank one
matrix, and we can use Sherman—-Morrison formulaﬂ to solve the linear systems involving
the Hessian. By the Sherman-Morrison formula, the linear system reduces to a linear
system with H defined in . With some linear algebra, the main part of the reduced

linear system is the one involving the matrix

(22) THy + (XX 1Hs
%Hf—z %HQQ + (Y_l ® Y_l)

Calculating Ux ® Ux and Uy ® Uy is the main computational challenge in forming this
matrix. Uy and Uy are dense matrices, but have the nice property that both are unitary
matrices, which we can exploit. By defining 1/\ := Diag(1/A,...,1/\,) and 1/y =
Diag(1/v1,...,1/v,), we can write the diagonal block matrices of as

%HH X le XD = (Uxe UX)(Diag(%vec(Xln) F1/A® 1/A)(Ux @ Uy)

1 1 . * *
FHn+ (Y @Y™) = (Uy ®Uy)(=S + Diag(1/y @ 1/7))(Uy ® Uy).

The approximation we made in DDS 2.2 for solving the linear systems with the Hessian
of ® on the left hand side is ignoring the off-diagonal block matrices in . Doing this,
the matrix can be factorized as

Diag(vec(Xy,) +1/A® 1/X) 0 .
Uxy . , Uxy
0 —79 + Diag(1/y®1/7v)
Ux @ Ux 0
Uxy =
0 Uy @ Uy

2Sherman-Morrison formula has been employed in solving convex optimization problems for a long time.
These algorithms go back to the implementation of quasi-Newton methods, implementation of ellipsoid
methods (see [3] and references therein), as well as interior-point methods (see [32], [44] and references
therein)
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By this simplification, solving the linear system is reduced to solving a system with the
matrix in the middle and mostly a system involving S. Note that in DDS 2.2, this simpli-
fication is not used for the linear system for calculating the search directions of the IP
method. For those systems, the matrix on the left hand side is a quadratic function of U,

and the Hessian does not directly appear in the left-hand-side.

4. SYMMETRIC QUANTUM RELATIVE ENTROPY

As vector relative entropy or Kullback-Leibler divergence is not symmetric, there is a
natural way to symmetrize the KL function defined in (1)) as J : R* @ R"” — R U {+o00}:

KL(z,y)+ KL(y,z), =,y € R}, supp(x) = supp(y),

400 0.W.

(23)  J(z,y) =

J(z,y) is called Jeffreys divergence or symmetrized Kullback-Leibler divergence ([33] 26]).
In a similar way, we define the symmetric QRE function as sqre : H" @ H* — R U {o0}:
qre(X,Y) +qre(Y,X)  X,Y € H7, range(X) = range(Y),

(24) sqre(X,Y) :=
+00 0.W.

SQRE is a straightforward extension of Jeffreys divergence, and it was also suggested in the
context of QRE ([41]). Clearly sqre is also a convex function in (X,Y"). A code that accepts
QRE constraints can also handle SQRE constraints using the following reformulation:

i+t < 2
(25) qre(X,Y) +qre(Y,X) <t =4 qre(X,Y) < 4
gre(Y,X) < to.
The only issue with this approach is that by this reformulation, the s.c. barrier assigned
to two QRE constraints has parameter 2n. However, it is plausible that there exists an

efficient s.c. barrier with a better parameter for the epigraph of sgre. In Subsection
we present some numerical results to show that formulation (25) works well in practice.

5. TwO-PHASE METHODS

In this section, we propose two-phase methods for solving QRE programming which

can significantly improve the running time and condition of the problem. This two-phase
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approach is different than, for example, the one for solving LP problems or SDP problems
where the two phases are roughly equivalent in terms of size and complexity. Here, phase
one for the QRE programming is a convex optimization problem that can be solved more
efficiently and much faster compared to the QRE problem. The solution of Phase-I is used
to reformulate the QRE problem to make it a smaller size and well-conditioned (or, at
least, better conditioned) QRE programming problem.

Framework for the Two-Phase QRE Programming

INPUT: A QRE optimization problem (Pgrg).

Phase-I: Create an auxiliary optimization problem (Payx), which is more robust and
much faster to solve by DDS.

Reformulation: Use the solution of (Psyx) to reformulate (Porg) as a smaller size and
better conditioned QRE programming problem (Pgrg).

Phase-II: Use DDS to solve (Pgrg).

Solution Reconstruction: Use the solution of (Pgrg) to create a corresponding solution

for (PQRE).

Consider an optimization problem of the form

min  gre (Zle x; A, M)
( <z <wu,

(26)

where M € S is given. Assume that the set of points Zle x;A; € ST lie on a smaller face
of the ST cone (see, for instance, Chapter 2 of [45]). In other words, there exist a positive

integer r < n and an n-by-r matrix V' with orthonormal columns such that

k
{X:X:}2%&}ﬂ§ﬁCV&VT
i=1

We have the freedom to model the phase-I problem to not just calculate a matrix V', but
also calculate some other useful information. We present two methods for problem ([26)):

5.1. Dual Method. We can find a facial reduction matrix V' by solving the following
optimization problem
(Phase-I) inf —In(det(Y"))

(27)
YV, A) =0, ie{l,... .k}



14 KARIMI and TUNCEL

In the above, —In(det) : S” — R U {400} is defined as

=2 in(y(Y)), Y €St

—In(det(Y)) :=
+00 0.W.

Indeed, problem (27) may be unbounded and generally may not have an optimal solution.
However, whenever has a nontrivial feasible solution Y, we expect a robust interior-
point algorithm to generate iterates Y € ST, approximately satisfying the equations
in such that Y approach maximum rank positive semidefinite solutions of .
Therefore, using such YV we can approximately identify the minimal face of S7 which
contains all optimal solutions of QRE problem ([26)).

Let Y* € S be a solution of , then we can show that the columns of V' can be
chosen as an orthonormal basis for the null space of Y*, since we have

k
(28) y* (Z xiAi> =0, Va.
=1

Note however that due to the fact that strict complementarity can fail for SDPs, the
complementary face identified by Y* may be a strict super-set of the minimal face for
(and one might need to do a full facial reduction to obtain a description of the minimal
face for which in the worst case may require (n— 1) recursive applications of the above
process, see a family of examples in [45]-Page 43). In our experiments we only performed
the above described facial reduction step once.

In defining problem ([27)), we ignored the primal constraints ¢ < z < u. In some appli-
cations, it might be worthwhile to include such constraints in deriving the corresponding
Phase-I problem such that the underlying cone is not S” but S @ Rﬁ &) Rﬁ.

5.2. Primal Method. We can use the following phase-I problem with the same feasible

region as the QRE problem:
(20) (Phase-T) inf —In(det(YF, 2;4;))
(< x<u.

As we mentioned in Subsection [5.1] here too, a robust interior-point algorithm generates
a sequence of vectors z® such that ¢ < z® < w, Zle ml@Ai € 8%, and Zle IL‘Z@AZ'
approach the relative interior of the minimal face of S, containing all optimal solutions of
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the QRE problem . Additionally, solving gives us a feasible solution that can be
given to the QRE solver as an initial point.

One important feature of Phase-1 problems and is that both problems are min-
imizing a s.c. barrier, which typically is a very well-behaved convex optimization problem
with local quadratic convergence ([36]). Additionally, both problems can be reformulated
as SDPs, which are still more robust and faster compared to the QRE problem. Since
the current version of DDS does not support minimizing a s.c. barrier (although the in-
gredients of such an algorithm are already present in the DDS code), we use the SDP
reformulations for the numerical results in Subsection 8.3l The numerical results confirm
that the two-phase approach can significantly improve the conditioning and speed of QRE

problems.

In the following section, we propose similar two-phase methods designed for calculating
the rate of QKD channels. In the numerical result section, we show that two-phase methods
can significantly improve the size and condition of the QRE problems, in general and also
in the context of QKD channel rate calculations.

6. QUANTUM KEY DISTRIBUTION RATE

One application of minimizing gre function is calculating the rate of quantum key
distribution (QKD) channels. QKD is a secure communication method between two parties
involving components of quantum mechanics ([48]). The security of the QKD channel
depends on the exact calculation of its key rate. There are different protocols for QKD
and for many of them, the main non-trivial component of calculating the key rate is an

optimization problem of the form:

min  gre(G(p), Z(G(p)))
st. A(p) =0,
(30) p =0,

where A is a linear map on Hermitian matrices and G and Z are Kraus operators. The
Linear map G : H"” — H* is defined as

(31) Gp) = > K;pKT,
j=1
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where K; € C*™ and Z?il KjK]T =< I, and the self-adjoint linear map Z : H* — H* is
defined as

(32) Z(0) = nZZchSZj,

where Z; = Z7 = Z]T € H: and 77, Z; = I. [25] used facial reduction ([4]) for calculating
the QKD rate. Their approach restricts the feasible region of the problem into a smaller
face and reduces the dimension of the matrices, which improves the performance of interior-
point methods. Another simplification by [25] is using the special structure of Z to prove

the following equation for every § = I:
(33) Tr(6In(Z(6)) = Tr(Z(0)In(Z(9)).

This can simplify the QRE function as the difference of two quantum entropy (QE) func-
tions, which makes calculating the gradients and Hessians much easier. Using these tech-
niques, [25] designed an interior-point algorithm specialized just for computing the QKD
rate.

6.1. Two-phase approach. The analytic facial reduction techniques by [25] can be used
with DDS 2.2 as well. Here, we propose a two-phase approach for finding the minimal
face of the positive semidefinite cone for the feasible region of the problem. A rationale
is that solving QRE optimization is much costlier than solving SDPs. If we can use a
Phase-I SDP to find a better-conditioned formulation for the QRE optimization problem,
the overall cost will be lower. Our Phase-I SDP is based on the following lemma:

Lemma 6.1. Consider the spectrahedron defined by the following constraints:
(Ai,p) =b;, 1={1,...,m}

(34) p = 0.

Let y € R™ be such that

i=1

(35) y'b=0.
Then, for every p in the spectrahedron defined by , we have pY = 0.
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Indeed, as in Section , we want a maximum rank solution to the system (35)). Even
then, this will correspond to a single iteration of full facial reduction. Consider a Y € S7
from the lemma that has n zero eigenvalues with spectral decomposition

Y = [U VIDiag(A1, ..., Au_n,0,...,0)[U V] .

Then, pY = 0 and p > 0 imply that p = VpV'" for some p € ST, and the feasible region

can be equivalently written as:
<VTAZ‘/,ﬁ> :bl, 1€ {1,,m}
(36) p=0,

where the size of the p matrix was reduced to n. For Phase-1 of the optimization process
(Dual method of Section , we can approximately solve the following problem:

inf —In(det(Y))

=1

(37) y'b=0.

The effect of using phase-I on the three groups of the QKD problems are shown in Table
[l The main bottleneck in the speed of the code is the dimension of G(p) and Z(G(p)) as
the arguments of gre. We can significantly reduce this dimension by the following lemma:

Lemma 6.2. Consider the Kraus operator G and assume Z(G(I)) has n non-zero eigen-

values with the spectral decomposition

(38)  Z(G(I)) :iiZinK;Zj — [U V]Diag(\i,..., M, 0,...,0)[U V]
Then, we have
(39) qgre(G(p), 2(9(p))) = qre(U'G(p)U, UTZ(G(p))V).

Proof. Proof. Note that using (33)), we have

qre(G(p), 2(G(p))) = TrG(p)In(G(p)) — TrZ(G(p))n(Z(G(p)))
(40) = Te(F(Z2(9(p)) — Te(F(UT2(G(p))U)),
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where F is the matrix extension of f(z) := zln(x). Therefore, to show (39), it suffices to
show that UTG(p)U has the same non-zero eigenvalues as G(p) and UTZ(G(p))U has the
same non-zero eigenvalues as Z(G(p)). Consider the columns of V = [v; ... wv,_5]. We
claim that

KlZlvv=0, je{l,....n}tie{l,....n.1te{l,....n—n}

(41) Klv, =0, je{l,....nghte{l,...,n—n}
For the first equation, note that for each t € {1,...,n — 2} we have
0 = ofZ(GD)w => Y W[ ZK;K!Zv
i=1 j=1
(42) = > > IKIZlu|’,
i=1 j=1

which implies the first equation in . For the second equation, we can use the first
equation and the fact that ) 2, Z, = I: For each fixed j and ¢, we can add the the
equations for all ¢« € {1,...,n,}. Equation is important since it shows that for any
p, G(p) and Z(G(p)) have the columns of V' in their null space. Therefore, the range of U
contains the ranges of G(p) and Z(G(p)) for any matrix p. This implies the statement of
the lemma. Specifically, if v is a non-zero eigenvalue of Z(G(p)) with eigenvector w, there
exists w such that w = Uw, then

U'Z(G(p))Uw = U Z(G(p))w = Ut (yw) = 1U'w.

In Subsection 8.5 we use the methods we developed here to calculate the QKD rate for
multiple protocols.

7. HANDLING COMPLEX MATRICES

For some applications, including key rate calculations for QKD channels, we need to
handle complex Hermitian matrices. For software packages such as DDS that only accept
real symmetric matrices, we need an equivalent formula for gre(X,Y’) based on the real
and imaginary parts of X and Y. For a unitary matrix U = U, + (U; (where ¢ = /—1),
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we have

R UUT +UUT =1
(43) VU =U'U =1 & .

For any complex n-by-n matrix X = X, + ¢ X;, we define a 2n-by-2n matrix X as
_ X, —X;
X
X, X,
If X is Hermitian, then X is symmetric. By using , we can show that if U is a unitary

matrix, then U is also a real unitary matrix. We can also show that if X = UDU* is a

spectral decomposition for X, then
X = UDiag(D,D)U ",

is a spectral decomposition for X. This implies that for every function f : R — RU {+o0}

we have

To(F(X)) = 2Te(F(X)).

Now we can prove the following lemma:

Lemma 7.1. For two Hermitian matrices X,Y € H} we have

qre(X,Y) = 2qre(X,Y).

Proof. Proof. First we show that for two Hermitian matrices X, W € H}, we have
(44) Tr(XW) = 2Tr(XW).
Assume that X = X, +:X; and W = W, + (W,. Then, we have
Tr(XY) = Te( X, W, — X;W; + (X, W; + X, W,)) = Tr(X, W, — X; W),
where for the last equation we used the fact that Tr(XY") is a real number. Then, we have

G Xr _Xz Wr _VVz
Tr(XY) = Tr = 2Tv (X, W, — X;W,).
Xi XT‘ I/Vz Wr

The last two equations confirm (44f). To complete the proof, we claim that for every
function F', we have

(45) F(X) = F(X).
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Assume that the spectral decomposition of X is X = UDU*.
F(X)=UFD)U" = (U, + W) F(D)(U] = U
= U,F(D)U] +U;F(D)U] + «(~U.F(D)U] + U;F(D)U,").
Therefore, we have

F0) = U.F(D)U! +U;F(D)U' U.F(D)U'" —UF(D)U
~U.F(D)U +U;F(D)U U,F(D)U + U;F(D)U,

The spectral decomposition of X is X = UDiag(D, D)U". Therefore,
F(X) = UDiag(F(D), F(D))U". By expanding this term, we can confirm that holds.
Now, and imply the result of the lemma. If we define F'(X) := In(X), then

qgre(X,Y) = Tr(XF(X)) - Te(XF(Y))

)
= Te(XF(X))—Te(XF(Y)), by using
= 2Tr X F(X) —2Tr(XF(Y)), by using
= 2qre(X,Y).

8. NUMERICAL RESULTS

The techniques designed here have been used to improve the performance of the newest
version of the software package DDS (namely DDS 2.2), which can be downloaded from
[28].

DDS accepts every combination of the following function/set constraints: (1) symmetric
cones (LP, SOCP, and SDP); (2) quadratic constraints that are SOCP representable; (3)
direct sums of an arbitrary collection of 2-dimensional convex sets defined as the epigraphs
of univariate convex functions (including as special cases geometric programming and en-
tropy programming); (4) generalized Koecher (power) cone; (5) epigraphs of matrix norms
(including as a special case minimization of nuclear norm over a linear subspace); (6) vector
relative entropy; (7) epigraphs of quantum entropy and quantum relative entropy; and (8)
constraints involving hyperbolic polynomials. The command in MATLAB that calls DDS
has the following form (see [28])

(46) [x,y,info]=DDS(c,A,b,cons,OPTIONS).
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Input Arguments:

cons: A cell array that contains the information about the type of constraints.

c,A,b: Input data for DDS: A is the coefficient matrix, ¢ is the objective vector, b is the
shift vector.

OPTIONS (optional): An array which contains information about the tolerance and initial
points.

Output Arguments:

x: Primal point.

y: Dual point which is a cell array.

info: A structure array containing performance information such as info.time, which

returns the CPU time for solving the problem.

In this section, we present several numerical examples of running DDS 2.2 for QRE
programming. We performed computational experiments using the software MATLAB
R2022a, on a 1.7 GHz 12th Gen Intel Core i7 personal computer with 32GB of memory. All
the numerical results in this section are by using the default settings of DDS, including the
tolerance of tol = 1078, Some of the examples in this section are included in a developing
work by the authors to create a library for multiple classes of modern convex optimization
problems ([29]).

8.1. Nearest correlation matrix. The nearest correlation matrix in the classical sense
has been heavily studied for years, for example by [22, 24]. Here, we are interested in
the nearest correlation matrix in the quantum sense, which was introduced in the example
folder of CVXQUAD ([13]) and then adopted by Hypatia ([7]) for numerical experiments.
For a fixed matrix M € S7, the nearest correlation matrix in the quantum sense is defined
as a matrix Yy, with all diagonals equal to 1 that minimizes gre(M,Y). In other words:

Yy = argmin  gre(M,Y)

(47)
Yi=1, ie{l,...,n}

To make a comparison with Hypatia which uses the exact formulation for the Hessian, we
consider a fixed matrix M € S" and change n to see how DDS 2.2 and Hypatia scale in
this problem. For the numerical experiments, we assume that Y is a tridiagonal matrix
with all the diagonals equal to one. We consider two cases for M: 1) M = 21, and 2) M
is a random positive definite matrix constructed as

(48) M = MyMy /||diag(MoMy )|,
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where My := rand(n) is an n-by-n matrix of uniformly distributed random numbers over
(0,1). Table|l| shows the iterations and time that both DDS 2.2 and Hypatia take to solve
the problem for different values of n. For the random M cases, the results are averaged over

10 instances. As can be seen, the running time explodes fast by increasing the dimension

TABLE 1. Finding the nearest correlation matrix in the quantum sense using
DDS 2.2 and Hypatia. Times are in seconds.

M =21 Random M (average)
n | DDS Itr/time | Hypatia Itr/time | DDS Itr/time | Hypatia Itr/time
25 | 11/ 0.8 15/ 6.6 30/ 5 19/ 4
50 | 14/ 3.6 15/ 43 37/ 20 27 / 29
75 17/ 13.7 17/ 248 51 / 65 33/ 152
100 19/ 32 18/ 900 58 / 168 40 / 829
125 21/ 50.3 20/ 1993 62 / 375 43 / 2701
150 22/ 92.53 20 / 5627 66 / 693 46 / 6079
175 24/ 139.8 time > 10? 71 /1184 time > 10?
200 26/ 237 time > 10* 75 / 1760 time > 10?
250 30/ 550 time > 10* 78 / 3501 time > 10*
300 32/ 1080 time > 10% 80 / 6980 time > 10%

of the matrices for Hypatia, where for DDS 2.2, the increase rate is more reasonable due
to the techniques used in the paper. For more numerical examples, we use the matrices

introduced in [24] for classical correlation matrix problem defined as

(49)

A Y

Mg = YT

Y

B

where A € S, is a random correlation matrix, B € S" is a random matrix with uniformly
distributed numbers and all 1 diagonal, and Y is an m-by-n random matrix with uniformly
distributed numbers. Since for the quantum nearest correlation matrix M needs to be

positive definite, we define M using M, and equation (48]).

Table [2] shows the iterations and time that both DDS 2.2 and Hypatia take to solve
the problem for different values of (m,n). Note that for the largest instances reported in
Table 2, the arguments of the gre function are 400-by-400 matrices.

8.2. QRE with other type of convex constraints. DDS is a software package for con-

vex optimization which accepts a combination of multiple conic and non-conic constraints
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TABLE 2. Finding the nearest correlation matrix in the quantum sense for

M defined by and using DDS 2.2 and Hypatia. Times are in

seconds.
(m,n) | DDS Itr/time | Hypatia Itr/time
(25,25) 31/ 16 19 / 25
(40,40) | 37/ 52.8 21/ 437
(40,60) | 40/ 134 24/ 980
(60,90) | 49/ 305 time > 10°
(100,100) | 57/ 1033 time > 10°
(200,100) | 64/ 4111 time > 107
(200,200) | 72/ 9660 time > 10°
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([28]). Considering QRE programming, DDS lets us solve problems with QRE constraints
combined with several other constraints. As far as we know, DDS is the only available
software that can solve QRE problems of these sizes combined with other types of con-
straints. Moreover, DDS is the only available code to handle some types of constraints such
as the ones involving hyperbolic polynomials. Preliminary results of QRE programming
was reported for DDS 2.1 ([27]). To compare DDS 2.1 and 2.2 for QRE programming, we
run the same table in ([27]) for DDS 2.1 and re-run it for DDS 2.2 ([2§]). The results are
given in Table . We also added the results of using CVXQUAD created by [14], which
uses SDP approximation for the QRE programming. As can be seen, CVXQUAD does
not scale well, and we have size error even for problem instances with 20-by-20 matrices.
Due to the major improvements in DDS 2.2 which we are reporting here, we can now solve

TABLE 3. Results for problems involving Quantum Relative Entropy using
DDS 2.1, DDS 2.2, and CVXQUAD (with SDPT3 as the solver)

Problem size of A | Itr/time(sec) | Itr/time(sec) | Itr/time(sec)
DDS 2.1 DDS 2.2 CVXQUAD
QuanReEntr-6 73 %13 9/ 1.0 12/ 0.8 20/ 1.7
QuanReEntr-10 201+21 | 12/ 11.2 12/ 1.2 25/ 95
QuanReEntr-20 801 x 41 15/ 344 15/ 1.2 Size error
QuanReEntr-LP-6 79 % 13 29/ 1.7 25/ 0.7 24/ 4.8
QuanReEntr-LP-6-infea | 79 * 13 30/ 1.7 28/ 0.8 28/ 3.8
QuanReEntr-LP-10 101 %21 27/ 4.6 27/ 1.3 38 / 678.9




24 KARIMI and TUNCEL

much larger instances. Consider an optimization problem of the form

min qre (AO + Zle x;A;, By + Zle :ciBi>
I >b
(50) (1) w=be
(1) |z —bnll, < a,
(III) p(z+by)>0.
For the created examples, A; and B;, i € {1,...,k}, are sparse 0,1 random symmetric

matrices. Table 4] shows the results of running DDS 2.2 on some instances of the form
(50). QRE-LP problems only have (I) as the constraint. QRE-LP-POW3 and QRE-LP-
SOCP problems have (I)-(II) as constraints, with respectively p = 3 and p = 2. The
problems with infeas in the name are infeasible. Exploiting duality in an efficient way
makes DDS robust in detecting the infeasibility of the problems ([31], 27]). The problems
QRE-Vamos has (III) as the constraint where p is a hyperbolic polynomial created by
Vamos-like matroids as explained in [27]. QRE-KL problems are of the form:

min qre (AO + Zle x;A;, By + Zle yiBi>
KL(z,y) <7,
where KL is defined in .

(51)

8.3. Two-phase methods for QRE programming. We proposed two-phase methods
for QRE programming in Section ] For numerical experiments, we have synthesized some
problems by fixing r and n, and choosing a n-by-r matrix V' which is all zero except the
main diagonal is all ones. Let E; € S” be a matrix of all zeros except a 1 on the ith
diagonal entry. Consider problem where M := I and the linear constraints are z; <1
for i € {1,...,k}. We define

A =VEV' ie{l,... k}.

Table [5[ shows the results of solving problem using DDS 2.2 for different values of r
and n. We explained that problems and are minimizing a s.c. barrier which can
be done very efficiently. Since the current version of DDS does not support this, we use
the SDP reformulations for Phase-I. As can be seen, the reformulated QRE after phase-I
is not only smaller in size, but the much fewer number of iterations shows that it is more
well-conditioned. The overall running time of the two-phase method is smaller than the
1-phase one, and the gap grows by increasing n. Note that both Phase-1 SDP and Phase-II
QRE programming are solved by using DDS.
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TABLE 4. Results for problems involving Quantum Relative Entropy using
DDS 2.2. The types of the constraints are included in the name of the
problem. The number is the size of the matrices in the QRE constraint.
Vamos stands for hyperbolic polynomials created by Vamos-like matroids.

Problem size of cell2mat (A) | Itr/time(sec)
in (46) DDS 2.2
QRE-LP-100 20101 x 101 17/ 42
QRE-LP-200-infeas 80201 x 201 50/ 966
QRE-LP-Pow3-20 842 x 21 37/ 6.7
QRE-LP-Pow3-20-infeas 842 x 21 25/ 3.8
QRE-LP-Pow3-100 20201 x 101 56/ 170
QRE-LP-Pow3-100-infeas 20201 x 101 44/ 74
QRE-LP-SOCP-20 842 x 21 39/ 4.2
QRE-LP-SOCP-20-infeas 842 x 21 24/ 3.9
QRE-LP-SOCP-100 20202 x 101 66/ 180
QRE-LP-SOCP-100-infeas 20202 x 101 28/ 90
QRE-LP-SOCP-200-infeas 80402 x 201 36/ 544
QRE-LP-SOCP-200 80402 x 201 103/ 1191
QRE-Vamos-20 811 x 6 22/ 3.6
QRE-Vamos-20-infeas 811 x 6 32/ 7.8
QRE-Vamos1-100 20011 x 6 27/ 48
QRE-Vamos2-100 20011 x 6 44/ 129
QRE-KL-100 20202 x 201 49/ 109
QRE-KL-100-infeas 20202 x 201 22/ 37
QRE-KL-200 80402 x 401 76/ 1153
QRE-KL-200-infeas 80402 x 401 25/ 278

8.4. Symmetric QRE. Handing symmetric QRE constraints using QRE ones discussed
in Section ] Consider the following two optimization problems:

min qgre (I + Zle x; A, I+ Zle xiBZ) min sqre (I + Zle x; A, I+ Zle xiBz)
x>/, x>0,
where A; € S” and B; € S", i € {1,...,k}, are sparse 0-1 random matrices (each matrix is

all zero except for two off-diagonal entries). = = 0 is a feasible solution for both problems.
We want to compare the number of iterations and running time of solving these problems
by changing n, the size of matrices where we choose k = n. Let us choose ¢ = —21, where
1 is the vector of all ones. Table [6] shows the results of the iteration count and running
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TABLE 5. The effect of the primal and dual two-phase approachs on the
running time and condition of the QRE problem. For the primal two-phase
method, a feasible initial point is also given as input to DDS.

n r Dual two-phase Primal two-phase 1-phase method
Phase-I time | iter/time | Phase-I time | iter/time iter/time
25 | 5 0.96 13 / 0.39 0.25 12/ 0.35 90/ 5.1
50 | 5 0.91 12 / 0.45 0.3 11/0.3 108/ 29
100 5 5.8 12 / 0.42 0.4 11/04 172/ 178
200 5 70 13 / 0.44 0.7 10/ 0.3 226/ 1527
300 5 654 12/ 0.74 2.9 11/ 0.44 313/ 8560
25 | 10 1.1 14 /0.6 0.3 14/ 04 78/ 4.0
50 | 10 0.9 14 / 0.63 0.38 13/0.53 97/ 26.6
100 | 10 5.3 15 / 0.68 0.49 13/0.55 164/ 180
200 | 10 72 15 / 0.68 0.78 14/ 0.49 214/ 1695
300 | 10 736 15/ 0.72 4.5 13/ 0.57 304/ 8663
25 | 20 0.7 12 /1 0.3 11/ 0.9 48/ 3.2
50 | 45 0.87 15 /4.3 0.32 13/ 3.4 50/ 14
100 | 95 4.5 25 / 46 0.56 16/ 23 54/ 81.4
200 | 195 63 32/ 342 1.07 23/ 188 50/ 478
300 | 295 621 38 / 1620 2.04 28/ 785 52/ 1412

time for both problems using DDS 2.2. As can be seen in Table [6] the ratio of iteration
counts are growing from 1 to 1.53, while the ratio of running times are growing from 1.7
to 2.45.

8.5. Quantum key distribution rate. We developed a two-phase approach for cal-
culating the QKD rate in Section [l In this section, we consider some QKD protocols
such as some variants of the Bennett-Brassard 1984 (BB84) protocol ([1]): entanglement-
based (ebBB84), prepare-and-measure (pmBB84), and measurement-device-independent
(mdiBB84) ([34]). OpenQKDSecurity is a platform for numerical key rate calculation of
QKD ([47]), where several examples for different regimes can be created. One protocol
for QKD is Entanglement-Based BB84. The parameters of the problem G, Z, and I' are
calculated based on the probability of performing measurement in one of the two possible

basis p., and the error rate e. As we use natural logarithm in DDS, the key rate R for this
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TABLE 6. Comparing SQRE and QRE using DDS 2.2

n | Itr/time(sec) | Itr/time(sec)
QRE SQRE
10 9/0.3 9/05
%5 | 12/17 15 / 3.3
50 | 13 /46 13 /8.1
100 14 /28 15 /47
150 | 14/ 81 16 / 159
200 14 / 166 17 / 333
250 15 / 344 23 / 858
300 15 / 698 23 /1712

protocol is calculated by the formula

_p
R_ln(Q) 060,

where p is the optimal value of and dgc is a constant caused by performing error-
correction.

By applying the phase-I optimization discussed above and Lemma not only do we
significantly reduce the size of the involved matrices, but we also improve the condition of
the problem. Some examples are shown in Table [/, Without using Phase-I, the problem
is ill-conditioned and DDS cannot achieve the desired accuracy.

TABLE 7. The effect of phase-I and on reducing the size of p

protocol (p.,e) (n,k) | (n,k) | Phase-I and Lemmai@i Just Lemmai@i
Phase-I time | iter/time iter /time
pmBB84  (0.5,.09) | (32.8) | (8,4) 1 19/ 2.7 81/14
pmBB84 (0.9,.09) | (32,8) | (8,4) 0.9 19/ 2.7 | ill-conditioned
mdiBB84  (0.5,.09) | (96,48) | (8,12) 1.4 25/4.7 | ill-conditioned
mdiBB84  (0.9,.09) | (96,48) | (8,12) 1.4 25/4.2 | ill-conditioned

For the protocols eeBB84, pmBB84, and mdiBB84, the QRE program is setup by
using two parameters: p, is the probability of choosing the Z basis, and e is the observed
error rate. The iteration counts and running times of using DDS 2.2 for solving the QRE
optimization problems for these three protocols are given in Tables [§] [0 and [10]
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TABLE 8. Numerical Report for ebBB84 Instances.

Protocol | Parameters (p,,e) | Size | Iter | Time
ebBB84 (0.5,.01) (16,4)] 23 | 08
ebBB84 (0.5,.03) (16,4) | 20 | 0.7
¢bBB84 (0.5, .05) (16,4) | 18 | 0.65
cbBB84 (0.5,.07) (16,4) | 17 | 0.57
ebBB84 (0.5,.09) (16,4) | 14 | 0.5
cbBB84 (0.7,.01) (16,4) | 21 | 0.8
cbBB84 (0.7,.03) (16,4) | 21 | 0.74
ebBB&4 (0.7,.05) (16,4) | 17 | 0.65
¢bBBs4 (0.7,.07) (16,4)| 16 | 0.6
ebBB84 (0.7,.09) (16,4) | 17 | 0.65
chBB84 (0.9,.01) (16,4) | 22 | 08
chBB84 (0.9,.03) (16,4) | 21 | 0.7
ebBB84 (0.9,.05) (16,4) | 17 | 0.65
chBB84 (0.9,.07) (16,4) | 17 | 0.65
ebBB84 (0.9,.09) (16,4) | 17 | 1.7

9. CONCLUSION

We developed novel numerical techniques to enhance the performance of interior-point
(IP) methods which use the optimal self-concordant (s.c.) barrier function in (3)). Extensive
numerical results demonstrate that DDS 2.2, which incorporates these techniques, can
effectively solve significantly larger instances compared to its predecessor, DDS 2.1, and
Hypatia. The two-phase approaches proposed in this paper warrants further computational
investigation in future research. The Phase-I problem can be tailored in various ways
to modify the problem to help speed up Phase-II. Currently, the primary bottleneck in
the speed of DDS 2.2 for QRE programming lies in calculating the matrix S defined
in . A significantly more efficient and numerically stable algorithm to implicitly or
explicitly compute the matrix could significantly accelerate DDS and other IP solvers for
QRE programming. Additionally, exploring the duality setup for the QRE cone presents
an intriguing open question. A numerically robust characterization of the dual cone or the
LF conjugate of the s.c. barrier could be leveraged in DDS and other solvers to further

enhance their performance.
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TABLE 9. Numerical Report for pmBB84 Instances.

Protocol | Parameters (p,,e) | Size |Iter | Time
pmBB&4 (0.5,.01) (32,8) | 24 | 1.8
pmBBs4 (0.5,.03) (32,8) | 22 | 14
pmBBs4 (0.5,.05) (32,8) | 21 | 1.3
pmBBs4 (0.5,.07) (32,8) | 18 | 1.3
pmBBs4 (0.5,.0) (32,8) | 17 | L1
pmBB84 (0.7,.01) (32,8) | 24 | 1.6
pmBB84 (0.7,.03) (32,8) | 22 | 1.4
pmBBs4 (0.7,.05) (32,8) | 20 | 14
pmBBs4 (0.7,.07) (32,8)] 18 | 1.3
pmBB84 (0.7,.09) (32,8)| 18 | L1
pmBB&4 (0.9,.01) (328)| 25 | 1.6
pmBBs4 (0.9,.03) (32,8) | 23 | 1.5
pmBBs4 (0.9,.05) (32,8) | 21 | L1
pmBBs4 (0.9, 7) (32.8) | 20 | 1.1
pmBB&4 (0.9,.09) (32,8)] 21 | 1.4
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