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Abstract—While many communication systems experience ex-
traneous noise that is well-modelled as Gaussian, experimental
studies have shown that large values are more common when
noise is impulsive and the Laplace distribution has been proposed
as a more appropriate statistical model in that setting. Guessing
Random Additive Noise Decoding is a class of forward error
correction decoders that can avail of channel knowledge to
improve decoding. Here we introduce a GRAND decoder that
is specifically tailored to impulsive noise, which we call Laplace
Ordered Reliability Bits GRAND (LORBGRAND). By adapting
GRAND to the characteristics of Laplace noise we find an im-
provement of the order of ⇠1dB in block error rate, highlighting
the benefits of noise-specific decoding strategies. Additionally,
we extend the algorithm to provide soft output to indicate the
probability estimation of correct decoding, which can be used to
identify unreliable decoded signals.

Index Terms—GRAND, soft decoding, Laplacian noise, univer-
sal decoding

I. INTRODUCTION

In many communication scenarios, additive noise is typi-
cally modeled using a Gaussian distribution. However, some
channels experience impulsive noise which is better to be
described by a distribution with a heavier tail in its probability
density function (pdf) resulting in more frequent outliers [1]–
[3], which may confound forward error correction decoding.
The Laplace distribution is commonly employed to model
impulsive noise in these contexts, including ultra-wideband
and multi-user interference environments [4]–[12]. Fig. 1
illustrates the difference of the two noise distributions. With
considerable interest in modeling impulsive noise using the
Laplace distribution, there has been a significant amount of
related research analyzing channel performance [13]–[15] and
proposing detectors [4]–[8], [16]–[18].

Soft input decoding relies on reliability information about
the received signal and its performance can be degraded
by greater number of outliers caused by impulsive noise.
Guessing Random Additive Noise Decoding (GRAND) and
its variants [19]–[26] are particularly well-suited to incorporate
knowledge of the channel. Here we investigate how GRAND
decoding can be tailored to Laplacian noise. Soft detection
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Fig. 1. Gaussian distribution and Laplace distribution with the same variance
and zero mean. Laplacian pdf has higher value near the mean and a heavier
tail compared to Gaussian as shown in the large plot and the zoom-in.

variants of GRAND provide near Maximum Likelihood de-
coder and are computationally efficient for any moderate
redundancy code of any structure [27], [28]. GRAND al-
gorithms can be highly parallelized, making them efficient
when implemented in circuits [29]–[34]. The main idea behind
GRAND algorithms is to sequentially generate putative binary
noise effect sequences in decreasing order of likelihood based
on statistical models or soft input, invert them from the
received demodulated bits and check if what remains is in
the codebook. The first instance that is found is the decoding.

Ordered Reliability Bits Guessing Random Additive Noise
Decoding (ORBGRAND) [21] is a variant of GRAND that
uses soft input, in the form of reliabilities of received bits, to
determine its query order, resulting in higher accuracy of de-
coding. Its algorithm, by design, is suitable for implementation
in hardware. It has been employed to assess the applicability
of both conventional and non-traditional code structures for
ultra reliable low latency communication [27], [35].

With the consideration of impulsive noise, we introduce
a variant of ORBGRAND called Laplacian-ORBGRAND
(LORBGRAND) as a soft input decoder specifically suited
to Laplacian Noise. This variant demonstrates the suitability
of GRAND algorithms to tackle the challenges posed by
specific types of noise in communication systems. Addition-
ally, it has recently been established that soft input GRAND
algorithms can readily provide soft output in the form of
an accurate estimate of the posterior probability of correct
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decoding [36]. This desirable feature can be used to inform
decoding failure or inform iterative decoding of long, low-
rate codes [37]. This approach is versatile and can be applied
with any soft input GRAND algorithm. Computation of the
soft output only requires knowledge of the code’s dimensions
and the accumulation of probabilities for each binary noise
effect query during GRAND decoding. Consequently, this
calculation does not add to algorithmic complexity or memory
requirements. We validate the precision of the soft output with
LORBGRAND, demonstrating its suitability for use in this
new noise environment.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the model setup, detailing
the assumptions and formulations for decoding in Laplacian
noise channels. Section III presents the decoding algorithm,
explaining the implementation of LORBGRAND. Section
IV discusses the simulation results including performance
comparison of LORBGRAND and ORBGRAND in various
CRC codes, the comparison of LORBGRAND and CRC-
Aided Successive Cancellation List (CA-SCL) decoding in
CRC-Aided Polar (CA-Polar) code, and the justification of
soft output algorithm paired with LORBGRAND. Section VI
concludes the paper with a discussion.

II. MODEL SETUP

Let Xn = (X1, ..., Xn) 2 {0, 1}n be a binary codeword
chosen uniformly at random from a codebook C ⇢ {0, 1}n
of 2k codewords. A codeword Xn is sent through a channel
using binary modulation and the detector receives signal Rn =
(R1, ..., Rn) = 1 � 2Xn + Zn where Zn = (Z1, ..., Zn) and
{Zi} are i.i.d real value noise effects.

Given an assumption on the distribution of noise, let fR|X
be the pdf of R conditioned on X . The log-likelihood ratio
(LLR) of a received signal Ri is defined to be

LLR(Ri) = log
fR|X(Ri|1)
fR|X(Ri|0)

, (1)

which is can be calculated using the pdf of the noise distri-
bution. With (1), we use �(Ri) = |LLR(Ri)| to denote the
reliability of Ri. Let Yi = (sign(LLR(Ri)) + 1)/2, we use
Y n = (Y1, Y2, ..., Yn) to denote signal demodulated from Rn.

In many systems, noise is well modeled as Gaussian, in
which case (1) leads to the well-known formulae

LLRN (Ri) = log
e�(Ri+1)2/(2�2)

e�(Ri�1)2/(2�2)
=
�2Ri

�2
, (2)

�N (Ri) =
2|Ri|
�2

. (3)

The Laplace distribution, however, has a heavier tail and hence
is widely used to model impulsive noise. Since i.i.d. noise is
a special case of white noise, we will call the channel an
Additive White Laplacian Noise (AWLN) channel. LLRs in

an AWLN differ from those in (2). Using the definition in (1)
and the pdf for Laplace distribution we obtain

LLRL(Ri) = log
1
2be

� |Ri+1|
b

1
2be

� |Ri�1|
b

=
|Ri � 1|� |Ri + 1|

b
, (4)

�L(Ri) =
2I(|Ri|>1) + |2Ri|I(|Ri|1)

b
, (5)

where I(·) is the indicator function. By (5), �L(Ri) achieves
its maximum 2/b when |Ri| � 1. The demodulated likelihood
of the hard decision bit Yi is in error can be represented as

Bi = P (Yi 6= Xi|Ri) =
e��(Ri)

1 + e��(Ri)
,

from which we can evaluate the likelihood of a binary noise
effect sequence zn

P (Zn = zn|Rn) =
nY

i=1

(1�Bi)
Y

i:zi=1

Bi

1�Bi

(6)

/
Y

i:zi=1

Bi

1�Bi

= exp

 
�

nX

i=1

�(Ri)zi

!
. (7)

Equation (7) says that, regardless of the distribution of noise,
it suffices to find the rank order of the values

P
n

i=1 �(Ri)zi
to rank order binary noise effect patterns by their likelihood.
This idea is one of the essential foundations of ORBGRAND,
which uses a statistical model and resulting solution of an
integer partition problem to create an efficient algorithm to
generate noise patterns from approximate highest to low-
est probability. When considering AWLN, �L(Ri) replaces
�N (Ri) in (7) and a new pattern generation algorithm needs
to be developed.

Suppose ⇤1,⇤2, ..,⇤n are i.i.d random variables having the
same distribution, P (⇤i  u) = F (u), with F�1(s) = inf{u :
F (u) � s} denoting the inverse of the cumulative distribution
function (cdf). Let ⇤(1),⇤(2), ...,⇤(n) be the corresponding
order statistics such that ⇤(i) � ⇤(j) for all i > j. The Law
of Large Numbers can be used to show the following, for
which a sketch prove will be provided later: for ↵ 2 [0, 1],
the ↵th sample quantile ⇤(b↵nc) ! F�1(↵) in probability
with converge rate n2 [38]. If we fixed a number of quantiles
↵1,↵2, ...,↵k and use the fact that F�1 is monotonic, the
convergence result says that the plot of order statistics will
be well-approximated by the function F�1. Therefore, by
substituting ⇤i with �(Ri) using either (3) or (5), depending
on the assumption of noise, the plot of rank ordered reliability
versus the rank will be similar to the inverse of P (�(Ri)  u)
for a random signal Rn. A sketch proof is as follows: for any
✏ > 0, let I(·) be the indicator function,

P
�
⇤(b↵nc) � F�1(↵) + ✏

�

= P

0

@
nX

j=1

I(⇤j�F�1(↵)+✏) � n� b↵nc+ 1

1

A

= 1� P

0

@ 1

n

nX

j=1

I(⇤j�F�1(↵)+✏) <
n+ 1

n
� b↵nc

n

1

A .
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By the law of large numbers,

1

n

nX

j=1

I(⇤j�F�1(↵)+✏) ! 1� P (⇤ < F�1(↵) + ✏)

in probability and 1 � P (⇤ < F�1(↵) + ✏)  1 � ↵ < (n +
1)/(n)�(b↵nc)/(n). Therefore, P (⇤(b↵nc) � F�1(↵)+✏)!
0 as n ! 1. Similarly, P (⇤(b↵nc)  F�1(↵) � ✏) ! 0.
As a result, ⇤(b↵nc) ! F�1(↵) in probability for any given
↵ 2 [0, 1]. Such convergence has rate n2 by the proof of
strong law of large numbers assuming the indicator variable
has finite fourth moment, which it has as the indicator variable
is a Bernoulli variable. Therefore we would expect that when a
random signal Rn is given, the plot of rank ordered reliability
versus the rank will be similar to the inverse of cdf of �L.

Simulations shown in Fig. 2 contrast rank-ordered like-
lihoods of reliabilities in AWGN and AWLN channels at
different SNRs. While they are approximately linear in an
AWGN, in an AWLN they are piecewise linear and go flat
after a given index.

To understand this, as Xi is independent and has equal
probability of being 0 or 1, then P (�L(Ri) < 2/b) =
P (|Ri| < 1|Xi = 0) = (1� e�2/b)/2. This implies that when
given n bits, we would expect around (1 � e�2/b)n/2 bits
to have reliability less than the maximum, and therefore we
would anticipate that the plot of rank ordered reliability will
go flat after approximately the first (1�e�2/b)n/2 bits. Fig. 2
also verifies the relation between maximum value of reliability,
the number of bits that achieves maximum and the value of
b. For example, for the case where b = 0.315, the maximum
value of reliability is 2/b ⇡ 6.34 and (1 � e2/b)/2 ⇡ 0.5
which means half of the bits have maximum reliability. When
rank ordering reliabilities, we call the lowest rank such that
the corresponding reliability reaches maximum as the change
point and denote it by ✓ =

P
n

i=1 I{�L(Ri)<2/b}+1. Fig. 3 also
provides a demonstration that the expected value of change
point is near n/2 within proper range of the SNR and its
corresponding range of b.

III. DECODING ALGORITHM

It is proposed by [21] that if the rank ordered reliability plot
has simple structure, it is possible to design an algorithm to
generate possible noise sequences from the highest probability
to the lowest with efficiency and low complexity.

For notational simplicity, we shall assume that the reliabil-
ities, {�L(Ri) : i 2 {1, 2, ..., n}} happen to be received in
increasing order of bit position, so that �L(Ri)  �L(Rj)
for i  j. In practice, for each received block we sort the
reliabilities and store the permutation, ⇡n = (⇡1, ...,⇡n), such
that ⇡i records the received order index of the ith least reliable
bit. The permutation ⇡n enables us to map all considerations
back to the original order that the bits were received in.

As it has been shown in Fig. 2, the rank ordered reliability
can be approximated for some ✓, c,� by

�L(Ri) ⇡
(
�(i+ c) if i  ✓

�(✓ + c) if i > ✓
. (8)

 

Fig. 2. Both plots are for n = 128 at different SNR. The left plots rank
ordered reliability for signals from a AWGN channel, where the reliability is
calculated by (3). The right plot uses (5) with signal from AWLN. In each
plot, the parameter of the noise distribution corresponding to the value of SNR
is also provided. In an AWGN channel, the plot can be approximated by a
straight line which is one of the motivation of ORBGRAND [21]. In contrast,
when considering AWLN, the plot must be approximated by a piece-wise
linear function that goes flat beyond a given index.

 

Fig. 3. The graph plots the average value of change point divided by n
versus different values of SNR. This plot shows that for SNR in the range
of [4,+1), the average value of change point is around half of n, which
coincides with the fact that P (�L(Ri) < 2/b) = (1� e�2/b)/2.

This enables us to generate noise sequences zn with probabil-
ity from highest to lowest.

For a noise sequence zn, we define its Total Weight to be

W ⇤(zn) =
X

i:zi=1

�L(Ri)/�. (9)

For any zn, define its Logistic Weight to be WL(zn) =P
n

i=1 izi and its Hamming Weight to be WH(zn) =
P

n

i=1 zi.
By (7) and (9), generating the noise with highest probability
to lowest is the same as generating the noise with lowest
Total Weight to highest. Equation (8) leads to the following
relationship: For any zn = (z1, z2, ..., zn), the first part
z✓�1
l

= (z1, z2, ..., z✓�1) contributes to the Total Weight as the
sum of Logistic Weight and Hamming Weight WL(z

✓�1
l

) +
cWH(z✓�1

l
) while the second part zn�✓+1

r
= (z✓, ..., zn)

contributes to the Total Weight as Hamming Weight (✓ +
c)WH(zn�✓+1

r
) which says that W ⇤(zn) can be approximated

by WL(z
✓�1
l

)+ cWH(z✓�1
l

)+(✓+ c)WH(zn�✓+1
r

). Note that
the zero sequence 0n is always the first error sequence to be
tested since it has zero Total Weight.

MILCOM 2024 Track 1 - Waveforms and Signal ProcessingMILCOM 2024 Track 1 - Waveforms and Signal Processing

Authorized licensed use limited to: MIT. Downloaded on February 19,2025 at 21:40:52 UTC from IEEE Xplore.  Restrictions apply. 



We now provide our Laplacian noise soft decoder LORB-
GRAND in Algorithm 1. In the algorithm, noise sequences
with increasing Total Weight w⇤ are generated until the first
codeword is identified. For each value of w⇤, line 3 to line 8 in
the algorithm generates the set S(w⇤) = {zn : W ⇤(zn) = w⇤}
where each element in the set will be tested to see if the
recovered sequence is in the code-book.

Algorithm 1 LORBGRAND.
Inputs: �L(rn) as soft information for received signal rn =
(r1, r2, ..., rn). Demodulated bits yn based on rn. Code-book
membership function C : {0, 1}n ! {0, 1} with 1 if and only
if the decoded signal is in the code book.
Output: decoded signal cn,⇤

1: ✓, c calculate parameters to approximate ordered relia-
bility based on (8) and received reliabilities �L(rn).

2: for w⇤ = 1, 2, ... do
3: S(w⇤)  ; .
4: for each j = 0, 1, ..., bw⇤/(✓ + c)c do
5: Sr(j) {z✓�n+1

r
: WH(z✓�n+1

r
) = j}.

6: Sl(w⇤, j)  {z✓�1
l

: WL(z
✓�1
l

) + cWH(z✓�1
l

) =
w⇤ � j(✓ + c)}

7: S(w⇤)  S(w⇤) [ {zl
L

zr : zl 2 Sl(w⇤, j), zr 2
Sr(j)}.

8: end for
9: for each zn 2 S(w⇤) do

10: if C(|yn � zn|) = 1 then
11: return cn,⇤ = |yn � zn|
12: end if
13: end for
14: end for

A demonstration of how the noise sequences with given
Total Weight W ⇤ = w⇤ are generated is presented: for w⇤ = 7
under the situation where the parameters n = 5, ✓ = 4, c = 0,
the goal is to generate the set S(7) = {zn : W ⇤(zn) = 7}.
Since ✓ = 4, n = 5, each noise sequence is split into two
parts, z3

l
= (z1, z2, z3) and z2

r
= (z4, z5). For each different j,

Sr(j) contains the candidates of z2
r
= (z4, z5) while Sl(7, j)

contains the candidate of z3
l
. Since bw⇤/(✓+c)c = 1, only the

cases for j = 0, 1 needs to be considered. In the first iteration
where j = 0, the only possible z2

r
that has WH(z2

r
) = 0 is

(0, 0) and therefore Sr(0) = {(0, 0)}. However, Sl(7, 0) = ;
because there is no z3

l
such that WL(z3l ) + cWH(z3

l
) = 7.

Therefore in the first iteration, S(7) = ;. After that, the next
iteration with j = 1 is performed, two sequences z2

r
= (1, 0)

or (0, 1) are found to have Hamming Weight WH(z2
r
) = 1

and therefore Sr(1) = {(1, 0), (0, 1)}. Then all possible
sequences z3

l
such that WL(z3l ) + 0 · WH(z3

l
) = 7 � 4 = 3

are generated, which results in Sl(7, 1) = {(0, 0, 1), (1, 1, 0)}.
Each element in Sl(7, 1) and Sr(1) are then appended
to each other to produce the set Sl(7, 1)

N
Sr(1) =

{(0, 0, 1, 1, 0), (1, 1, 0, 1, 0), (0, 0, 1, 0, 1), (1, 1, 0, 0, 1)}. The
elements in the set Sl(7, 1)

N
Sr(1) are then added to

S(7) = ;, which updates the latter set to be S(7) =
{(0, 0, 1, 1, 0), (1, 1, 0, 1, 0), (0, 0, 1, 0, 1), (1, 1, 0, 0, 1)}. As

j = 1 is the last iteration for w⇤ = 7, the set S(7) is finalized
and will be used for membership testing in line 9 through 13.

LORBGRAND generates all possible noise patterns itera-
tively with increasing value of Total Weight, i.e., noise patterns
are generated from highest likelihood to lowest on the fly. The
query order is illustrated in Fig. 4.

 

 

Fig. 4. First 100 noise queries are shown for LORBGRAND in upper figure
and for ORBGRAND1 in lower figure. In both cases we let n = 13. Each row
is a noise sequence with white being no bit flip and black corresponding to
a bit flip. The change point ✓ in the simulation of LORBGRAND is 6. One
of the main differences between the two algorithms is that ORBGRAND1
gradually includes less reliable bits, while LOBRGRAND quickly considers
all latter bits as they are equally unreliable.

IV. PERFORMANCE EVALUATION

If not otherwise specified, solid lines indicate that the
receiver and the decoder assume AWLN, and thus LLR and
reliability are calculated using (4) and (5). In contrast, dashed
lines are used when the receiver and decoder assume AWGN,
and thus (2) and (3) are used, even though the true noise
distribution is Laplacian.

Error Rate Performance. We first present simulation
results for decoders LORBGRAND and ORBGRAND1 [21]
in CRC codes. While CRC code are ubiquitously used for
error detection, GRAND decoders are capable of using CRC
codes for error correction and they have been established to
be good codes [27]. The results of the ORBGRAND1 (ORB)
decoder are represented by a red line, while those of the
LORBGRAND (LORB) decoder are represented by a blue
line. While ORB provides near optimal decoding in AWGN,
the resulting performance improvement in having a matched
Laplace-specific decoder in LORB is of the order of ⇠1dB as
can be seen in Fig. 5 and 6.
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Fig. 5. AWLN channel employing a [128, 110] CRC code. Circles mark
BLER while crosses mark BER. As depicted in the figure, LORBGRAND
shows an improvement of ⇠ 0.5 dB in Eb/N0 compared to ORBGRAND1.

 

Fig. 6. AWLN channel employing CRC code with different dimensions. In
both cases when [n, k] = [64, 46] or [32, 16], which are represented by
cross marks and circle marks respectively, LORBGRAND exhibits consistent
improvement of the order ⇠ 1 dB in Eb/N0.

While CRC codes are non-traditional, as GRAND algo-
rithms can decode any code, we also consider the non-
systematic CA-Polar code used for control channel communi-
cations in the 5G New Radio (NR) standard. CA-Polar codes
have an established decoder in the form of CRC Assisted
Successive Cancellation List (CA-SCL) decoding [39]. The
CA-Polar code has dimensions n = 64 and k = 40, which
has 24 parity bits and uses the 11�bit CRC specified for 5G
NR up-link control channels. Instead of setting the list size of
CA-SCL to 8 as normally recommended for computational
feasibility, we set it to 16 to increase its accuracy. For
LORBGRAND, it is set to abandon the search and record a
block error if no codeword is found within 226 queries. Note
that all GRAND algorithms identify an erroneous decoding
after approximately geometrically distributed number of code-
book queries with mean 2n�k [19], [36]. Hence setting the
abandoning threshold to be 226 > 224 where 24 is the number
of parity bits, is sufficiently to ensure that LORBGRAND
rarely abandons. Fig. 7 provides a comparison of BLER
between CA-SCL and LORBGRAND and demonstrates the
advantage of GRAND decoders, which fully utilize the CRC
bits for error correction [27] unlike CA-SCL, extends to
AWLN.

 

Fig. 7. The simulation is conducted using [64, 40] CA-SCL under AWLN
channel and all decoders are fed with correct LLR. The figure records the
comparison of BLER where Blue line represents LORBGRAND while Black
line represents CA-SCL [39]. As depicted in the plot, LORBGRAND shows
at least 0.5 dB improvement down to 10�5 for BLER.

Soft Output Accuracy. As recently derived in [36], [37],
soft input GRAND algorithm can provide soft output in the
form of an a posteriori probability that the decoding is correct.
The algorithm for generating soft output [36] can be applied
to any GRAND algorithm as long as the input LLRs are
correct as these are used to evaluate the likelihood of each
queried noise effect sequence via (6). We use the soft output
algorithm in LORBGRAND to provide an estimate of the
probability of correct decoding. To evaluate the robustness of
the approach in AWLN channel, we conducted simulations
whose results are presented in Fig. 8. The accuracy of the
soft output that was previously reported for AWGN channels
is sustained in the AWLN setting. Using this soft output, for
example, LORBGRAND can use CRC codes for both error
correction and error detection simultaneously, where the latter
is done by tagging for erasure based on the soft output.

 

Fig. 8. Simulation result of soft output accuracy in AWLN channel. The
code is a [64, 46] CRC with Eb/N02 [2, 5]dB. The soft output provides
the predicted block error probability plotted against the empirical BLER
conditioned on the value of the soft output. For a given value of p̂ denoting
the predicted block error probability, the corresponding conditioned BLER
is calculated by the BLER of the samples with soft output approximately
equal to p̂. Dashed line indicates that the LLR is calculate using mismatched
formula while solid line indicates correct calculation of LLR. As depicted in
the graph, when ORB and LORB decoders are fed with correct LLR, their
plots are almost identical to the x = y line, indicating the predicted block
error probability coincides with the actual BLER. Conversely, misusing LLR
calculated with (2) leads to plot that is above from the y = x line, meaning
that incorrect LLR provides inaccurate estimates.
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V. CONCLUSION

In this work, we introduced a GRAND decoder called
Laplacian-ORBGRAND (LORBGRAND), that is specifically
designed for decoding in the presence of AWLN. The decoder
generates noise effect sequences in a fashion that has elements
of both ORBGRAND, known for its precision in Gaussian
noise, and hard detection GRAND for binary symmetric
channels. By matching the decoder to the channel, the LOR-
BGRAND decoder exhibits improved BLER and BER per-
formance over the original ORBGRAND while maintain the
same computational efficiency. Through simulation, we found
that LORBGRAND consistently provides an improvement of
order ⇠ 1dB for different codes. Furthermore, we extended
the investigation to include the calculation of soft output, a
critical aspect for upgrading error detection [36] and enabling
iterative decoding [37] in AWLN channels.
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