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Abstract—We introduce a novel approach to error correction

decoding in the presence of additive alpha-stable noise, which

serves as a model of interference-limited wireless systems. In the

absence of modifications to decoding algorithms, treating alpha-

stable distributions as Gaussian results in significant performance

loss. Building on Guessing Random Additive Noise Decoding

(GRAND), we consider two approaches. The first accounts

for alpha-stable noise in the evaluation of log-likelihood ratios

(LLRs) that serve as input to Ordered Reliability Bits GRAND

(ORBGRAND). The second builds on an ORBGRAND variant

that was originally designed to account for jamming that treats

outlying LLRs as erasures. This results in a hybrid error and

erasure correcting decoder that corrects errors via ORBGRAND

and corrects erasures via Gaussian elimination. The block error

rate (BLER) performance of both approaches are similar. Both

outperform decoding assuming that the LLRs originated from

Gaussian noise by ⇠2 to ⇠3 dB for [128,112] 5G NR CA-Polar

and CRC codes.

I. INTRODUCTION

In wireless communications, information signals can be
affected by various physical phenomena: small-scale fading,
additive noise due to the electronics of the transceiver, and
interference [1]. In order to mitigate these effects, channel
coding is employed to introduce redundancy in information
sequences. Error correction decoders present in the receiver
chain are able recover originally transmitted sequences with
high probability when sufficient redundancy has been added to
overcome channel impairments [2]. The majority of decoders
proposed in the literature are characterized by two limitations:
they are designed for specific families of codes, and their
performance is typically evaluated assuming certain noise
statistics, usually additive white Gaussian noise (AWGN).
However, interference in wireless systems is ubiquitous and
characterized by a structure that does not generally conform
to AWGN [3].

This paper proposes a channel decoding framework to
take into account interference statistics. This framework en-
compasses both cases of known and unknown statistics of
alpha-stable noise at the receiver using variants of Ordered
Reliability Bits GRAND (ORBGRAND). The rest of this
section provides an overview of the literature related to alpha-
stable noise channels and GRAND.

A. Alpha-Stable Noise Channels

The studies in [4–7] constitute part of the first work that
considers alpha-stable distributions to model multi-user in-
terference in wireless networks. These frameworks consider
spatially distributed interferers and derive the characteristic
function of the resulting aggregate interference as function of
network macroparameters (e.g., base station density, transmit
power, . . .). The experimental studies conducted in [8, 9]
further support the use of alpha-stable random variables to
model the interference in IoT bands. These works demonstrate
that received signals measured in unlicensed bands exhibit
impulsive behavior since devices operating in these bands
(e.g., sensors, appliances) only operate during a small fraction
of time. In such cases, the tails of the observed interference
distributions are heavy, making alpha-stable distributions more
suitable than Gaussian models. Efforts to integrate alpha-stable
models into practical communication systems are reported in
[10–17], which introduce detectors and soft demappers for
computing log-likelihood ratios (LLR) values associated to
soft bits which serve as input to soft decision error correction
decoders. Diversity combining in the presence of the same
channels is studied in [18, 19]. In [20], capacity bounds for
additive symmetric alpha-stable noise channels are established.

B. GRAND

GRAND is a recently established decoder that was origi-
nally introduced for hard decision demodulation systems [21].
Unlike other error correction decoders, GRAND aims to
identify the binary noise effect impacting the transmission
without relying on specific code structure to decode. This
approach generates putative binary noise effect sequences in
decreasing order of likelihood and successively tests whether
what remains is a codeword when the noise effect is removed
from the hard decision demodulated sequence. In hard de-
cision settings, the query order is determined by statistical
knowledge of the channel [22]. In soft decision settings, soft
input in the form of LLRs inform the query order. Soft-
GRAND (SGRAND) [23] provides a maximum likelihood
decoding in the presence of soft-input. While not suitable for
efficient implementation in circuits, it enables the empirical
evaluation of optimal performance in the absence of com-
putational considerations. Ordered Reliability Bits Guessing
Random Additive Noise Decoding (ORBGRAND) [24] is
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a computationally efficient soft decision GRAND decoder
based on the principle of approximating rank ordered bit
reliabilities by piecewise linear functions, which enables the
efficient generation of candidate sequences using generative
integer partition algorithms. ORBGRAND has been proven
to be almost capacity-achieving in AWGN channels [25].
GRAND-EDGE and ORBGRAND-EDGE (Erasure Decoding
by Gaussian Elimination) are proposed in [26] to counteract
the potential presence of jamming. In practice, hard decision
GRAND and soft decision ORBGRAND can efficiently de-
code any moderate redundancy code of any length and are
inherently well-suited to implementation in circuits due to
being highly parallelizable [27–29].

C. Contributions & Notation

Our main contributions are as follows:
• We introduce the first decoders specifically tailored to op-

erate in alpha-stable noise channel conditions for general
families of codes of moderate redundancy.

• We provide multiple variants of these decoders, depend-
ing on the knowledge of the noise statistics available at
the receiver.

• We provide an initial evaluation of performance of these
decoders for a Cyclic Redundancy Check (CRC) code
and a CRC-Assisted Polar (CA-Polar) code, such as is
found in the 5G standard.

In the following sections, Fm represents the Galois Field with
m elements, ~x and xi denote a complex vector as well as its
ith entry.

II. MODEL AND BACKGROUND

A. System model

A binary information word ~u 2 Fk
2 is encoded with a

given error correcting code ⇠ : Fk
2 7! Fn

2 with n > k. The
resulting code word is denoted by ~c 2 Fn

2 and belongs to
the code book C containing all the possible outputs of the
encoder ⇠. This code book is therefore defined as C = {~c :
~c = ⇠(~u), ~u 2 Fk

2}. Before analog transmission, constellation
mapping is performed: each block of m successive bits in
~u is mapped onto a complex symbol of a constellation. The
resulting complex vector obtained after mapping is denoted
by ~x 2 Cn/m, with m assumed to divide n. The channel
introduces an additive alpha-stable noise in the transmitted
symbols. The resulting signal at the receiver side is therefore
defined as ~Y = ~x + ~Z 2 Cn/m where ~Z is a random vector
whose entries follow the alpha-stable distribution recalled in
the next section.

B. Alpha-stable distribution

The alpha-stable distribution is characterized by four pa-
rameters [30]:

• the stability ↵ 2 (0; 2], characterizing the rate at which
the tail of the distribution decreases;

• the skewness parameter � 2 [�1; 1], measuring the
symmetry of the distribution;

• the scale � 2 (0;+1], characterizing the width of the
density function;

• the location µ 2 R, indicating where the mode of the
distribution is located on the real line.

One of the challenges associated with the alpha-stable distri-
bution is the absence of general closed-form expressions for
its moments and probability density function (pdf), denoted
by f(x;↵,�, �, µ). An analytical expression exists for its
characteristic function and is given by

�Zi(t) , E
⇥
ejtZi

⇤
= exp

h
jtµ� |�t|↵

�
1� j�sign(t)⇣

�i
(1)

where

⇣ =

(
tan(⇡↵/2) if ↵ 6= 1

�2 log(|t|)/⇡ if ↵ = 1
(2)

Based on the above expression, the corresponding pdf can
be retrieved using numerical inversion.

Remark 1. The Gaussian distribution N (µ,�) can be ob-

tained as a particular case of the alpha-stable law by setting

↵ = 2, � = 0 and � =
p
�/2.

Remark 2. In the framework of this study, a symmetric

symbol constellation is considered. The resulting multi-user

interference at symbol level is therefore symmetric as well,

restricting the analysis of this paper to the parameter values

� = 0 and µ = 0.

Regarding the associated LLRs, no exact expression has
been obtained in the literature. As mentioned in the previous
section, analytical approximations have, however, been pro-
posed. For instance, in [12], the approximated LLR for positive
soft bits in the case of a symmetric alpha-stable distribution
with Binary Phase Shift Keying (BPSK) symbols is given by

LLR(Yi) = log
f(Yi � 1;↵, 0, �, 0)

f(Yi + 1;↵, 0, �, 0)

⇡ min

 p
2

�
Yi, 2

↵+ 1

Yi

!
(3)

The accuracy of this approximation is illustrated in Fig.
1. For low values of the received signals, a behavior similar
to LLR values in a Gaussian case can be observed (close to
linearity). However, unlike the Gaussian case, one can note a
decrease in the LLRs as the absolute value of the received soft
bits further increases. Larger values of the received soft bits
are therefore less and less reliable due to the heavier tails of
the alpha-stable distribution.

III. STATISTICAL ANALYSIS AND PROPOSED DECODERS

Building upon the theoretical background of the previous
section, the following paragraphs detail decoders tailored to
alpha-stable noise.
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Fig. 1. Numerically computed LLR values and analytical approximation from
[12], obtained for ↵ = 1.5 and � = 0.5.

1) ORBGRAND-EDGE: Originally introduced to counter-
act potential jamming effects [26], ORBGRAND-EDGE can
be employed as a first solution if the parameters of the
interference induced alpha-stable noise are unknown at the
receiver. This method consists in erasing bits of the received
signal ~Y which are characterized by extremely high soft
values Yi. These outliers are, indeed, likely to arise from the
impulsive nature of the interference, which features heavier
tails than the Gaussian distribution. In the case of alpha-
stable noise, these extreme soft values are characterized by
a decreasing reliability (see LLR in Fig. 1) motivating their
erasure. A threshold � is therefore defined such that bits
satisfying |Yi| > � are treated as erasures.

Once bits meeting that condition are removed, classical
ORBGRAND is applied to the remaining elements of the
codeword, leveraging the ability of GRAND algorithms to
decode any code structure. In order to establish a list of
candidate noise sequences, the LLR values associated to
these remaining bits should be computed and provided to
ORBGRAND. Assuming that the distribution of the alpha-
stable noise f(x;↵,�, �, µ) is unavailable at the receiver,
the exact computation of these values is not possible. To
circumvent this issue, the LLRs are instead computed by
treating the noise affecting remaining bits as AWGN. This
approximation is justified by the tendency of the alpha-stable
LLR curve which is, for low values of Yi, close to the linear
behavior of LLRs in the presence of AWGN noise (see Fig. 1).
When a candidate sequence is proposed by ORBGRAND, the
algorithms attempts to recover the original hard bits associated
to the erased elements using Gaussian elimination. If, for a
given codeword, no unique solution can be obtained from the
resulting linear system, the original ORBGRAND is applied
on the whole block (without erasing any bits).

Remark 3. It is relevant in this context to fine-tune this

decoder with respect to its erasure threshold �. Figure 2

illustrates the bit error rate (BER) obtained with ORBGRAND-

EDGE as function �. These results have been obtained for a

[128,112] cyclic redundancy check (CRC) code, ↵ = 1 and

values of � leading to the indicated SNRs. The results suggest

the existence of optimum thresholds minimizing the BER for

each considered SNR. The presence of these minima can

be justified by the following arguments: for excessively high

values of �, the algorithm will not erase some of the outliers,

which might compromise the decoding process. In contrast, for

very low values of the threshold, the algorithm might erase

too many elements of the code word, resulting in a linear

system in the Gaussian elimination that will not admit a unique

solution. In that case, the algorithm will by default resort

to applying ORBGRAND on the whole block (without any

erasures). The asymptotic performance of ORBGRAND-EDGE

for both � ! 0 and � ! +1 should therefore be identical to

the classical ORBGRAND decoder. The intermediate minimum

therefore corresponds to the optimum mean proportion of

elements to be erased within the block.
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Fig. 2. Sensitivity analysis of ORBGRAND-EDGE with respect to the
threshold �.

2) ↵-ORBGRAND-EDGE (based on reliabilities): Now as-
suming that the parameters of the alpha-stable pdf of the
noise are available at the receiver, this decoder eliminates
elements of the received codewords using their associated
reliability values LLR(Yi) instead of their soft values Yi. This
method requires another threshold ✏ chosen such that bits
satisfying |LLR(Yi)| < ✏ are erased. From Fig. 1, one can
deduce that this algorithm eliminates bits with extremely high
values Yi (similarly to ORBGRAND-EDGE), but also bits of
values Yi close to zero (i.e., near the boundaries of the BPSK
constellation zones). The remaining bits are decoded using ↵-
ORBGRAND which is also based on LLR(Yi) (see below).
In case no unique solution can be found to the linear system
associated to the Gaussian elimination, the same algorithm is
employed to decode the whole block without erasure.

3) ↵-ORBGRAND: This decoder generalizes ORBGRAND
methods by incorporating the exact nonlinear LLR values of
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the noise, computed from their alpha-stable pdf. Once they
have been computed, these LLRs are sorted in ascending order.
Linearly approximating these sorted LLR when expressed as
function of their rank order enables to efficiently generate
candidate noise sequences [24].

4) ↵-SGRAND: The list of candidate noise sequences gen-
erated by this new decoder also relies on LLRs computed
from the alpha-stable noise distribution. However, unlike ↵-
ORBGRAND, this list is dynamic: at each time step, the most
probable candidate is tested, and the list is updated with new
putative sequences. The execution of the algorithm based that
list is shown in [23] to cover vectors in a non-increasing order
of likelihood. The returned solution is therefore proven to be
a maximum likelihood code word.

Remark 4. The three latter methods require computing the

LLRs of the received soft bits. This computation theoretically

requires the knowledge of the corresponding alpha stable pdf

at the receiver side. As no closed-form expression exists for

this pdf, its values must either be stored in memory in advance,

or obtained via numerical inversion of (1). For this reason,

the approximation of (3) might be preferable. In both cases,

the estimation of parameters ↵ and � of the distribution is

required. Estimation algorithms for these parameters based

on data samples have been proposed in [31] and [32].

IV. NUMERICAL RESULTS

The performance of the decoders is illustrated in Figs. 3
and 4. Two families of codes have been employed to generate
these graphs. These families have been shown in [33, 34] to
provide competitive performance with GRAND algorithms. A
CRC code has been used for Fig. 3. This family was primarily
used for error detection. The rationale behind its use for error
correction and its correcting capabilities with GRAND are
detailed in [33]. Fig. 4 has been produced using a CRC-
assisted polar (CA-Polar) code. These codes are employed
for control channel communications in 5G New Radio. Their
performance with GRAND decoders is demonstrated in [34].
For consistency, the code dimensions [n, k] have been set
to [128, 112] for both figures. The corresponding level of
complexity allows for the production of the results of this
section using simple versions of the algorithms, without the
need for parallelization. The CRC length is given by ` = 11
for the CA-Polar code. Regarding the parameters of the alpha-
stable distribution, ↵ is set to 1 and � varies to produce the
equivalent1 SNR Eb/�2

eff on the horizontal axis of the graphs.
The block error rate (BLER) obtained if instead of using

the alpha-stable distribution one assumes AWGN is shown

1In the case of Gaussian noise, the variance of the normal distribution
directly relates to the noise power N0 present in the denominator of the
SNR Eb/N0, where Eb is the energy per bit. For a BPSK constellation,
the corresponding error probability pe, obtained with a hard demodulator
before decoding, can be analytically deduced using the inverse complementary
error function. In the presence of alpha-stable noise, such a direct connection
between variance and SNR ratio does not exist since the moments of the
alpha stable distribution are undefined. Consequently, performance results of
decoders in the presence of alpha-stable and Gaussian noises are compared
for equivalent SNR, or in other words, for an equivalent error probability pe.

in light blue curves in both Figs. 3 and 4. Code words are
in that case decoded using ORBGRAND, and the associated
LLRs are computed by treating the noise as AWGN. A first
gain in performance is illustrated in dark blue if one uses
ORBGRAND-EDGE with a fixed � = 1.2. Following Remark
3, this gain could be further enhanced using erasure thresholds
tuned for every SNR. This improvement is left for future work.

Assuming that the noise distribution is known at the re-
ceiver, the performance can be further improved using ↵-
ORBGRAND-EDGE (illustrated in grey for ✏ = 3). As
explained in the previous section, this algorithm can eliminate
a larger number of problematic bits than ORBGRAND-EDGE
since its erasure criterion is based on LLR values. The
similar performance obtained with ↵-ORBGRAND (purple
curves) can be explained by two reasons. First, even though
their values are low, the LLRs associated to the bits erased
using ↵-ORBGRAND-EDGE are nonzero and still contain a
certain amount of information. As a result, the associated soft
information could still be taken into account in the rank order-
ing performed by ↵-ORBGRAND. Second, ↵-ORBGRAND-
EDGE strongly relies on ↵-ORBGRAND to decode unerased
bits, and when the Gaussian elimination is not possible.
These results suggest that ↵-ORBGRAND-EDGE could be
further studied for longer codes (with higher redundancies)
and scenarios featuring jamming or more interference.

The best BLER in the presence of alpha-stable noise is
obtained using ↵-SGRAND (in beige) since this decoder
utilizes soft information to produce maximum likelihood code
words. The BLER with AWGN noise, which features no
outlier, is also illustrated for comparison when using classical
ORBGRAND and SGRAND (red and orange curves). It is
notable that the best BLER under alpha-stable conditions is
slightly higher but remains close (within 1dB) to the results
obtained with Gaussian noise and SGRAND. Note that Gaus-
sian noise is, for given energy, pessimal in terms of capacity.
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Fig. 3. Decoding performance obtained for a [128,112] CRC code in additive
alpha-stable noise.
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V. CONCLUSION

In this paper, we present the first decoders designed to
operated in alpha-stable noise conditions, for general moderate
redundancy codes. We have assessed the performance of these
decoders in some initial settings.

Future work includes developing multiple line versions of
↵-ORBGRAND to better approximate rank ordered LLRs
in the presence of alpha-stable noise. As shown in Fig. 5,
the linear approximation of ORBGRAND, used to generate
noise sequence candidate lists, tends to accurately approximate
sorted reliability values in the AWGN case. By contrast,
resorting to linear piecewise approximations (two or three
lines) as shown in Figure 5 would be more accurate in alpha-
stable noise conditions.

Our work considered a simple BPSK modulation and inter-
ference with short moderate-redundancy codes, but no multiple
access or channel fading. GRAND has also been applied to
assist in optimal modulation [35] and multiple access channels
[36, 37]. While we considered noise statistics, a natural
additional consideration is that of fading channels, which can
be taken into account with GRAND [22, 38–40]. While we
considered short codes with moderate redundancy, GRAND
can also be applied to long and low-rate codes (e.g., product
codes) [41]. Bringing interference through alpha-stable and
related noise distributions to such settings opens a wide array
of future research.

ACKNOWLEDGMENT

This work was supported by the Defense Advanced
Research Projects Agency (DARPA) under Grant
HR00112120008.

REFERENCES

[1] A. J. Goldsmith, Wireless Communications. Cambridge
University Press, 2005.

[2] A. F. Molisch, Wireless Communications. Wiley, 2011.

0 20 40 60 80 100 120

Rank order

0

1

2

3

4

5

6

7

8

9

10

R
el

ia
b

il
it

y

Sorted AWGN LLRs

Sorted -stable LLRs

Approx. of -stable LLRs by ORBGRAND

Approx. of -stable LLRs by ORB. 2-line

Approx. of -stable LLRs by ORB. 3-line
Appprox. of AWGN LLRs by ORBGRAND

Fig. 5. Rank ordered LLR values associated to the bits of a codeword affected
by Gaussian noise (continuous blue line) and by ↵-stable noise (continuous
red line). These results have been generated for a BPSK constellation, a block
of size 128, a symmetric alpha stable noise of parameters (↵, �) = (1, 0.05),
and a Gaussian noise of equivalent SNR. Approximations of these reliabilities
obtained by means of OBRGRAND and its multiple line variants are repre-
sented in dashed lines.

[3] H. ElSawy, A. Sultan-Salem, M.-S. Alouini, and M. Z.
Win, “Modeling and analysis of cellular networks using
stochastic geometry: A tutorial,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 1, pp. 167–203, 2017.
[4] X. Yang and A. Petropulu, “Co-channel interference

modeling and analysis in a Poisson field of interferers in
wireless communications,” IEEE Transactions on Signal

Processing, vol. 51, no. 1, pp. 64–76, 2003.
[5] M. Z. Win, P. C. Pinto, and L. A. Shepp, “A mathematical

theory of network interference and its applications,”
Proceedings of the IEEE, vol. 97, no. 2, pp. 205–230,
2009.

[6] K. Gulati, B. L. Evans, J. G. Andrews, and K. R.
Tinsley, “Statistics of co-channel interference in a field of
Poisson and Poisson-Poisson clustered interferers,” IEEE

Transactions on Signal Processing, vol. 58, no. 12, pp.
6207–6222, 2010.

[7] X. Ge, K. Huang, C.-X. Wang, X. Hong, and X. Yang,
“Capacity analysis of a multi-cell multi-antenna coop-
erative cellular network with co-channel interference,”
IEEE Transactions on Wireless Communications, vol. 10,
no. 10, pp. 3298–3309, 2011.

[8] L. Clavier, T. Pedersen, I. R. Larrad, and M. Egan,
“Alpha-stable model for interference in IoT networks,”
in IEEE CAMA 2021, pp. 575–578.

[9] L. Clavier, T. Pedersen, I. Larrad, M. Lauridsen, and
M. Egan, “Experimental evidence for heavy tailed in-
terference in the IoT,” IEEE Communications Letters,
vol. 25, no. 3, pp. 692–695, 2021.

[10] T. S. Saleh, I. Marsland, and M. El-Tanany, “Suboptimal
detectors for alpha-stable noise: Simplifying design and
improving performance,” IEEE Transactions on Commu-

MILCOM 2024 Track 1 - Waveforms and Signal ProcessingMILCOM 2024 Track 1 - Waveforms and Signal Processing

Authorized licensed use limited to: MIT. Downloaded on February 19,2025 at 21:48:07 UTC from IEEE Xplore.  Restrictions apply. 



nications, vol. 60, no. 10, pp. 2982–2989, 2012.
[11] J. Park, G. Shevlyakov, and K. Kim, “Maximin dis-

tributed detection in the presence of impulsive alpha-
stable noise,” IEEE Transactions on Wireless Commu-

nications, vol. 10, no. 6, pp. 1687–1691, 2011.
[12] V. Dimanche, A. Goupil, L. Clavier, and G. Gelle, “On

detection method for soft iterative decoding in the pres-
ence of impulsive interference,” IEEE Communications

Letters, vol. 18, no. 6, pp. 945–948, 2014.
[13] Y. Mestrah, D. Anade, A. Savard, A. Goupil, M. Egan,

P. Mary, J.-M. Gorce, and L. Clavier, “Unsupervised log-
likelihood ratio estimation for short packets in impulsive
noise,” in IEEE WCNC 2022, pp. 944–949.

[14] Y. Mestrah, A. Savard, A. Goupil, G. Gelle, and
L. Clavier, “Robust and simple log-likelihood approxi-
mation for receiver design,” in IEEE WCNC 2019, pp.
1–6.

[15] Y. Mestrah, A. Savard, A. Goupil, L. Clavier, and
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