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Abstract—In this work, we discuss time-shift coding and
GRAND ZigZag decoding for uncoordinated multiple access
channels (MACs). Time-shift coding relies on the delay dif-
ference of the received packets to prevent fully overlapped
collisions. Users transmit with different time-shifts in desig-
nated time slots until the receiver successfully decodes all
messages. At the receiver side, ZigZag decoding is employed to
separate packets with linear complexity in noiseless scenarios.
For cases with noise, a guessing random additive noise decoding
(GRAND)-based algorithm is utilized to identify the most
probable noise vector in conjunction with ZigZag decoding.
Simulation results demonstrate that time-shift coding signifi-
cantly reduces collision probabilities, thereby enhancing system
throughput in noiseless scenarios. In the context of Gaussian
MAC, the GRAND ZigZag decoding method outperforms
successive interference cancellation (SIC)-based schemes in
high signal-to-noise ratio (SNR) regimes.

Index Terms—Time-shift coding, Uncoordinated multiple
access, GRAND

I. INTRODUCTION

A non-orthogonal multiple access channel (MAC) is a
commonly used communication mode. In the MAC model,
users share the same channel resources and attempt to
transmit packets to the same destination simultaneously. The
successive interference cancellation (SIC)-based approach
was first introduced in [1], [2], aiming to resolve both
interference and noise concurrently. The receiver attempts
to decode a packet from one user and treats the inter-
ference (packets from other users) as noise. The ALOHA
protocol [3] was originally proposed to avoid collisions.
Coded slotted ALOHA [4] considers SIC in ALOHA-like
systems to improve throughput. ZigZag decoding [5] is
capable of separating packets in noiseless MAC scenarios.
An improvement over the original ZigZag approach involves
exploiting soft message passing on a sparse graph, known
as SigSag [6]. In [7], the authors demonstrate that guessing
random additive noise decoding (GRAND) is a maximum-
a-posteriori (MAP) decoding technique for noisy MACs.

In this work, we discuss some details of the algorithm
proposed in [7]. We compare time-shift coding and GRAND
ZigZag decoding with existing schemes for noiseless and
Gaussian uncoordinated MAC. Simulation results for the
noiseless MAC scenario demonstrate that time-shift coding
effectively reduces collision probabilities through the incor-
poration of a guard interval. Furthermore, the simulation re-
sults for the Gaussian MAC scenario highlight the potential

of the GRAND ZigZag decoder to outperform SIC-based
MAC systems by effectively treating noise and interference
separately.

This paper is organized as follows. Section II gives
background on the problem. Time-shift coding and GRAND
ZigZag decoding are discussed in Section III. Simulation re-
sults of two study cases are shown in Section IV. Section V
concludes the paper.

II. PRELIMINARIES

In this paper, vectors are represented as xn =
(x1, x2, . . . , xn). The i-th entry of xn is denoted as xi.
The all-zeros matrix with dimensions n × k is represented
as 0n×k. In refers to an n × n identity matrix. A random
variable (RV) is denoted by an uppercase letter, such as X .
A specific realization of X is indicated by the corresponding
lowercase letter x. A vector of random variables is expressed
as Xn = (X1, X2, . . . , Xn). The probability density func-
tion (PDF) of a continuous RV and the probability mass
function (PMF) of a discrete RV evaluated at x are denoted
as fX(x). FX(x) represents the cumulative distribution
function (CDF) of the RV X . The bitwise exclusive OR
operation is denoted by ⊕. For functions and operations
initially defined with scalar inputs, we extend them to vector
inputs as their element-wise counterparts, i.e.,

f(xn) = (f(x1), f(x2), . . . , f(xn)) ,

xn ⊕ yn = (x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn) .

A. Uncoordinated Multiple Access

In this work, we consider a slotted MAC model in which
K users share the same channel resources and endeavor to
transmit m message bits to a common destination. We make
the following assumptions:

• the receiver and users are slot-synchronous,
• the users are uncoordinated and are unaware of the

number of active users K,
• the receiver is aware of the number of active users and

possesses knowledge of all channel states,
• The (coded) packet size is the same for each user.

B. GRAND

All GRAND [8] algorithms seek to identify the noise
effect

zn ! cn ⊕ c̃n, where c̃n is the hard decision (1)
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Algorithm 1: GRAND

Input : hard decisions c̃n, weight wn

Output: estimates ĉn, decoding state φ

1 φ← false, en = 0n

2 if c̃n ∈ C then
3 ĉn ← c̃n,φ← true
4 return

5 while φ = false do
6 en ← next error pattern with least score S(en)
7 if c̃n ⊕ en ∈ C then
8 ĉn ← c̃n ⊕ en,φ← true
9 return

10 return

that has impacted the transmission, from which the decoded
codeword is deduced. GRAND creates binary error patterns
en rank-ordered by score S(en) to find a valid codeword,
i.e., ĉn = c̃n ⊕ en ∈ C, i.e.,

ĉn = c̃n ⊕ ẑn, where ẑn = argmin
en:c̃n⊕en∈C

S(en) (2)

where the score of an error pattern en is defined by

S(en) !
n
∑

i=1

ei · wi (3)

where wi > 0 denotes the weight of the hard decision c̃i,
which could be also considered as the cost to flip c̃i. Pseudo-
code for GRAND is shown in Algorithm 1.

In a hard decision BSC, GRAND [9], [8] doesn’t have
any reliability information and thus uses weight wi = 1 for
i = 1, . . . , n, i.e., the score of error pattern en is equal to its
Hamming weight. If a bursty statistical channel characteri-
zation is available at the receiver, a Markov-informed order
can be used to generate error patterns [10], [11].

Soft GRAND (SGRAND) uses the non-quantized relia-
bility as the weight [12], i.e.,

wi = "i, i = 1, . . . , n (4)

where "i is the reliability of the hard decision c̃i, which is the
absolute value of the the symbol-wise log-likelihood ratio
(LLR) of ci based on the corresponding channel observation.

SGRAND provides maximum-likelihood (ML) decisions.
However, SGRAND requires a dynamic data structure to
generate the error patterns rank-ordered by the score de-
pending upon the real-valued reliabilities "n.

Since the rank-ordered reliabilities are increasing almost
linearly at low to moderate signal-to-noise ratio (SNR)
regime, the basic version of ordered reliability bits GRAND
(ORBGRAND) [13] considers the received bits rank-ordered
in increasing reliability and their weights are increasing
linearly, i.e.,

wi = r, "i is the r-th smallest element in "n. (5)

ORBGRAND sorts the reliabilities "n and set the weights
wn to its rank orders r ∈ {1, 2, . . . , n}, i.e., ORBGRAND
uses a %log2(n)& bits input-related statistical model-based
quantizer. Then error pattern generation could be solved
by determining distinct integer partitions. ORBGRAND’s
advantage is that, once ranking is complete, pattern gener-
ation can be done on the fly with essentially no memory.
ORBGRAND provides near-ML decoding for block error
rates (BLERs) greater than 10−4, but it is less precise at high
SNR. To overcome this problem, a multi-line ORBGRAND
with a more sophisticated statistical model is proposed
in [14].

III. TIME-SHIFT CODING AND ZIGZAG DECODING

A. Time-Shift Coding

As mentioned in Sec. II-A, each user attempts to transmit
a packet of length n to a receiver. Collisions occur due to
the lack of coordination between users and the receiver. To
resolve these collisions, users send their packets with ran-
dom time-shifts in synchronized slots, ensuring the packets
do not overlap completely.

The proposed scheme is depicted in Fig. 1. In each indi-
vidual time slot, every user independently decides whether
to transmit during that slot or not, based on a preset
transmission probability Pt. The transmission delay τ is
then randomly selected from the set {0, 1, . . . , τmax}. Each
user continues transmitting until they receive a broadcast
acknowledgment sent by the receiver once all messages are
successfully decoded.

Let xn
[k] denote the packet from user k and yn+τmax

(t) the
received symbols in slot t. We have

yN = xnKΛ+ zN , (6)

where zN is the noise vector and

N = T · (n+ τmax) (7)

yN =
(

yn+τmax

(1) , yn+τmax

(2) , . . . , yn+τmax

(T )

)

(8)

xnK =
(

xn
[1], x

n
[2], . . . , x

n
[K]

)

(9)

Λ =

[

0n×τ1,1 In 0n×(τmax−τ1,1) · · ·
...

. . .

]

. (10)

Let γN = xnKΛ denote the noiseless version of received
symbols. A mini example of Λ is shown in Fig. 2.

B. ZigZag Decoding and GRAND

On the receiver side, we try to find the most likely
estimate of transmitted symbols, i.e.,

x̂nK = argmax
xnK : xn

[k]∈C, k=1,...,K

fY N |ΓN

(

yN
∣

∣xnKΛ
)

. (11)

Equivalently, our objective is to find the most probable
estimate γ̂N that satisfies the two following constraints,

1) A unique solution x̂nK exists in linear simultaneous
equations x̂nKΛ = γ̂N .
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slot 1 slot 2 · · · slot T

user K

...

user 2

user 1

xn
[K] xn

[K] xn
[K]

xn
[k] xn

[k]

xn
[2] xn

[2] xn
[2]

xn
[1] xn

[1]

packet size nτk,t

τk,t ∈ {0, 1, . . . , τmax}

slot size = n+ τmax

Fig. 1: The proposed system model involves time-shift coding, where each user continuously transmits with a predetermined transmission probability
and an independently chosen random time-shift. Transmission continues until a broadcast acknowledgment is received from the receiver upon successful
decoding of all messages.
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Fig. 2: Matrix representation Λ for n = 4, τmax = 2, K = 3, T = 3,
τ1,{1,2,3} = {1, 0, 2}, τ2,{1,2,3} = {0, 1, 2}, τ3,{1,2,3} = {1, 1, 0},
N = 18, rank(Λ) = 12.

2) x̂n
[1], x̂

n
[2], . . . , x̂

n
[K] are all valid codewords.

To find a unique solution, the matrix Λ must be full rank,
i.e., rank(Λ) = nK. We employ a GRAND algorithm to de-
code the messages. Given a full-rank Λ, the receiver initiates
the generation of the error pattern eN , which is ranked by
the score S

(

eN
)

, to identify a vector γN that satisfies the
aforementioned constraints. It’s worth noting that the error
pattern eN is not binary. The approach proposed in [15]
is utilized to generate higher-order error patterns. Further
details are provided in Algorithm 2.

Solving a system of nK linear equations has a complexity
ranging from at least O

(

(nK)2
)

to at most O
(

(nK)3
)

.
The most efficient algorithm known to date was developed
by Don Coppersmith and Shmuel Winograd in 1990, with a
complexity of (nK)2.376 [16]. By capitalizing on the time-
shift-based structure outlined in Fig.1, we employ a ZigZag
decoder [5] to reduce this complexity. We elucidate the

ZigZag decoding process using a small example illustrated
in Fig. 3 and the following steps:

1) Identify a weight-one column (isolated symbol) j in Λ
and locate the unique non-zero element Λi,j . Discover
all non-zero elements in row i, denoted as Λi,s for s ∈
S . If Λi,s is the solitary non-zero element in column
s, it is added to the set S ′. For instance, in the initial
iteration in Fig. 3a, we identify Λ5,1 (denoted by the
red circle), leading to S = 1, 8, 15 and S ′ = 1.

2) Upon finding Λi,j = 1, we deduce x̃i = γ̃j. For
instance, in the initial iteration in Fig.3a, we obtain
x̃5 = γ̃1. If an inconsistent pair is detected (i.e.,
γ̃s1 '= γ̃s2 for s1, s2 ∈ S ′), the ZigZag decoding
process is promptly terminated and a decoding failure
(ψ = false) is reported. For example, in the 11th
iteration in Fig.3d, we find Λ8, 4 = 1 (marked by the
red circle), resulting in S = 4, 11, 16 and S ′ = 4, 11.
If γ̃4 '= γ̃11, the ZigZag decoding fails.

3) Reset row i to all-zero, i.e., Λi,s ← 0 for s ∈ S . Extract
the decoded coded symbols from vector γ̃N , i.e., γ̃s ←
γ̃s − x̃i for s ∈ S .

4) If all nK coded symbols are successfully decoded, a
decoding success (ψ = true) is returned along with the
estimates. If not, return to step 1).

Obviously, we decode one coded symbol in every single
iteration and thus need nK iterations to complete the ZigZag
decoding. In each iteration, we extract the decoded symbol
from γ̃N , which requires a maximum of T operations since
each symbol is transmitted at most T times. Therefore, the
complexity of ZigZag decoding is upper-bounded by nKS,
i.e., the number of non-zero elements in Λ.

Remark 1. Note that x̂nKΛ = γ̂N represents an nK-
dimensional system with N equations. Given that N =
T · (n + τmax), it is likely that N is greater than nK. A
fully-rank coefficient matrix ΛT guarantees the system to
have a unique solution or no solution. If the rank of the
augmented matrix

[

ΛT|γ̃T
]

is greater than nK, the system
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(a) 1st-4th iteration





































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0





































(b) 5th-7th iteration




































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0





































(c) 8th-10th iteration
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(d) 11st and 12nd iteration

Fig. 3: An example of the ZigZag decoder. The system parameters are the same as those described in Fig. 2. The circled “1”s denote the unique non-zero
elements in the columns. Only one coded symbol is decoded in each iteration, although it’s possible that more than one iteration could be processed in
parallel. E.g., we finished 4, 3, 3, 2 iterations parallelly in Fig. 3a,3b,3c,3d, respectively.

is inconsistent, as stated in [17]. Hence, it is prudent to
check whether

rank
([

ΛT|γ̃T
])

= rank (Λ) = nK (12)

before commencing the ZigZag decoding, rather than check-
ing during the decoding process as described in step 2.

IV. SIMULATION RESULTS

In this section, we provide simulation results for two study
cases,

• the throughput of the systems with different τmax in
noiseless MACs,

• the error correction performance of ZigZag decoding
and SIC-based decoder in Gaussian MACs with a fixed
spectral efficiency.

A. Study case 1:

In this study case, we consider the system throughput in
noiseless MACs with different numbers of users K. The
throughput is defined by

TP =
nK

(n+ τmax)T
. (13)

Note that the receiver is not capable of sending acknowl-
edgements to specific users.1 The receiver broadcasts an ac-

1If the receiver were able to send acknowledgements to specific users
whose messages are already decoded, the throughput would always be 1
by setting Pt = 1 and τmax = 0.

Algorithm 2: GRAND ZigZag for MAC

Input : received vector

yN =
(

yn+τmax

(1) , . . . , yn+τmax

(T )

)

Output: estimates x̂n
[k], k ∈ {1, . . . ,K}

1 φ← false, eN ← 0N , x̃N ← hard decision
(

yN
)

2 while φ = false do

3 γ̃N = x̃N − eN

4

(

x̃n
[1], . . . , x̃

n
[K],ψ

)

← ZigZag decoder
(

γ̃N ,Λ
)

5 if ψ = true then

6 if x̃n
[k] ∈ C, k ∈ {1, . . . ,K} then

7 x̂n
[k] ← x̃n

[k], k ∈ {1, . . . ,K}

8 φ← true

9 return

10 eN ← next error pattern with least score S(eN )

11 return

knowledgement to all users when all messages are decoded.

The simulation results are depicted in Fig.4. The slot
size is fixed at n + τmax = 50, requiring a trade-off
between efficiency n/ (n+ τmax) and collision probability
by adjusting τmax. The transmission probability is optimized
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)

vs. SNR for a Gaussian MAC, K =
4, m = 24, N = 128.

for each operating point in the case without time-shifts, and
set to 1/ (1 + τmax) for the case with time-shifts. We observe
that random time-shifts significantly reduce the probability
of fully overlapped collisions.2 Furthermore, they enhance
the system throughput for the case of K ≥ 2.

B. Study case 2:

In this study case, we examine the error correction
performance of the time-shift coded system with a fixed
transmission rate, i.e., fixed K and T , in Gaussian MACs.

2This behavior is analogous to random linear network coding
(RLNC)[18] with coefficients of different orders.

To simplify the system model, we assume that each user
employs the same transmission power and sends packets
modulated with binary phase-shift keying (BPSK). The SNR
is defined as the ratio of the single-user power to the noise
variance.

The simulation results are shown in Fig. 5. We consider a
system where K = 4 users share N = 128 channel uses and
each attempts to transmit m = 24 message bits. For time-
shift coding, we use uncoded packets, i.e., n = m = 24.
The slot size is set to 32 (τmax = 8) and Pt = 1. With above
mentioned setting, the receiver gets a matrix Λ with rank
less than nK after T = 4 slots with probability

Pr (rank(Λ) '= nK) = 0.0049. (14)

If the matrix Λ is not full rank, the transmission fails.
Otherwise, we initiate Algorithm 2 to find the most probable
estimate of the vector γN . Here, we utilize ORBGRAND to
generate error patterns eN with a maximum of Qmax = 105

guesses. As we have more than nK columns (constraints) in
Λ, the time-shift code itself exhibits some error correction
capability. The dashed curve in Fig. 5 displays the error
rate of GRAND ZigZag decoding when Λ is full rank. The
total error rate of time-shift coding with GRAND ZigZag
decoding is shown by the blue curve and we have

Pr
(

x̂nK '= xnK
)

=

Pr
(

x̂nK '= xnK |rank(Λ) = nK
)

· Pr (rank(Λ) = nK) .
(15)

For reference, we also present the performance of an
SIC-based system. In this setup, each user encodes the
message bits using a (128, 24) 5G polar code, and the coded
symbols are rearranged using individual interleavers. The
receiver attempts to reverse the shuffling of the signal yN

using K = 4 individual deinterleavers and then decodes
it using an successive cancellation list (SCL) decoder [19]
(L = 16), treating the other 3 packets as noise. If at least
one decoding is successful, the receiver extracts the decoded
packet from yN and repeats the SIC procedure for K = 3,
until all packets are decoded. As depicted in Fig. 5, the error
rate of the SIC-based scheme does not notably decrease
with increasing SNR, as the packets from other users are
regarded as noise and the signal-to-interference-plus-noise
ratio (SINR) remains consistently lower than 1/3 for the first
iteration of SIC decoding. It is noteworthy that time-shift
coding with uncoded packets outperforms the SIC-based
system in the high SNR regime, as it treats interference and
noise separately.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we discussed time-shift coding and GRAND
ZigZag decoding for noiseless and Gaussian uncoordinated
MAC. Due to space limitations, we present only two illus-
trative study cases. The simulation results for the noiseless
MAC demonstrate that time-shift coding reduces collision
probabilities by introducing a guard interval of size τmax.
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Furthermore, the simulation results for the Gaussian MAC
highlight that the GRAND ZigZag decoder shows promise
in outperforming the SIC-based MAC system by handling
noise and interference independently.

For the extended version of this work and future research,
we plan to explore the following topics:

• In scenarios where the receiver obtains a full-rank Λ but
has very noisy, non-decodable observations, we should
investigate improved decoding schemes to minimize the
guessing required when dealing with noisier symbols.

• Analyze the minimum Euclidean distance of time-shift
codes for a given Λ, either directly or in an average
sense.

• While the current work assumes that all time-shifts and
thus Λ are known to the receiver, the extended version
will consider joint time-shift and channel estimation.

• Conduct a comparison between time-shift coding and
(coded) slotted ALOHA-based systems, as well as
SigSag decoding [6].
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