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ABSTRACT

Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo
induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted
from sequences based on their distinctive sequence signatures.

Areas covered: We overview 20 years of progress in the sequence-based prediction of MoRFs which
resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides, and lipids.
These methods range from simple discriminant analysis to sophisticated deep transformer networks
that use protein language models. They generate relatively accurate predictions as evidenced by the
results of a recently published community-driven assessment.

Expert opinion: MoRFs prediction is a mature field of research that is poised to continue at a steady
pace in the foreseeable future. We anticipate further expansion of the scope of MoRF predictions to
additional partner molecules, such as nucleic acids, and continued use of recent machine learning
advances. Other future efforts should concentrate on improving availability of MoRF predictions by
releasing, maintaining, and popularizing web servers and by depositing MoRF predictions to large
databases of protein structure and function predictions. Furthermore, accurate MoRF predictions should
be coupled with the equally accurate prediction and modeling of the resulting structures of complexes.

ARTICLE HISTORY
Received 31 October 2024
Accepted 26 December 2024

KEYWORDS

Intrinsic disorder; MoRF;
molecular recognition
feature; prediction; deep
learning; protein—protein
interactions; protein-lipid
interactions; protein—
peptide interactions

1. Introduction

Intrinsically disordered regions (IDRs) are regions in protein
sequences that lack a stable structure under physiological condi-
tions [1-4]. Several bioinformatics studies demonstrate that pro-
teins with IDRs are present across the entire taxonomy, with much
higher rates of occurrence in the eukaryotic organisms [5-9]. Many
IDRs interact with ligands that include a broad spectrum of bio-
molecules, such as proteins, peptides, DNA, RNA, lipids, and
a variety of small molecules that include drugs [10-18]. The con-
formational flexibility of IDRs offers certain advantages when com-
pared to ordered (structured) regions, including the one-to-many
binding where one IDR interacts with multiple different molecules
[19-23]. One of the most common types of interacting IDRs is the
molecular recognition feature (MoRF) [11,24]. MoRFs are relatively
short sequence segments that are embedded in longer IDRs and
that typically undergo disorder-to-order transitions when interact-
ing with ligands [11,24,25]. Some MORF regions can remain partly
or even fully disordered in the bound state [26,27]. The limits on
the MoRF region lengths differ across studies, with some defining
them as in the 10 to 70 consecutive amino acids range [24,25]
while other works considering shorter segments that span
between 5 and 25 residues in length [11,24,28]. Moreover, MoRFs
are classified into several types that are defined based on the
primary type of the secondary structure that they fold into upon
binding, i.e. a-MoRFs (composed mostly of a-helices), 3-MoRFs

(mostly B-sheets), y-MoRFs (irregular structures), and complex-
MoRFs (mixed secondary structures) [25]. A recent bioinformatics
study that investigated nearly 900 species suggested that 20% to
30% of IDRs, depending on the taxonomic assignment, include
MoRF regions [11]. Importantly, sequences of the MoRF segments
have unique signatures that differ from other types of disordered
and ordered regions [11]. These differences motivated the devel-
opment of computational sequence-based predictors of MoRFs
[29,30]. Scientists use these predictive tools in a wide range of
investigations. For instance, one of the most popular MoRF pre-
dictors, MoRFpred [31], has been utilized recently to investigate
cell signaling pathways [32], 20S proteasome substrates [33],
a variety of viral proteomes including SARS-CoV-2 [34], rotavirus
[35], and hepatitis E [36], and interactomes of YY1 [37], SNED1 [38],
and GO0S2 [39] proteins. Moreover, MoRF predictions have clinical
relevance, as the dysfunction of proteins with binding IDRs was
found to be associated with a number of human diseases [40-42].
One of the results of this dysfunction is misfolding that may induce
a range of conformational illnesses including the prion,
Alzheimer’s, polyQ and Parkinson'’s diseases, and the Down’s syn-
drome [41,43]. Furthermore, MoRF-containing proteins have reg-
ulatory and signaling functions that fundamentally rely on the
protein-ligand interactions, and their dysfunction was linked to
cardiovascular  diseases, cancers, and viral pathogenesis
[34,35,40,44,45]. A few specific examples include the tau and AB
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proteins that are associated with conformational diseases, BRCA-1,
p53, and AFP proteins that are involved in cancers, and viral capsid
proteins that were shown to be implicated in the pathogenesis of
viral infections [34-36,40,45,46]. We note that these findings relied
on bioinformatics analyses that took advantage of high-quality
predictions of binding IDRs [34-36,40,45,46].

Dozens of MoRF predictors have been developed to date,
prompting the need to survey them. The last time the MoRF
predictors were comprehensively surveyed was in 2019 [30].
That review provided a brief historical overview, covered 13
predictors (shown in bold font in Table 1), and discussed their
predictive performance by relying on results collected from
several articles that introduce individual predictors [30].
Several more recent surveys that focused on a broader collec-
tion of methods that predict binding IDRs are also listed and
briefly summarized the MoRF predictors [75-77]. These
broader predictors target-binding regions that are not limited
in length and are not necessarily embedded in longer IDRs,
and which interact with specific ligand types. Some popular
examples include ANCHOR [78] and ANCHOR?2 [79] that target
protein and peptide binding IDRs; DisoRDPbind [80],
DeepDISObind [81], and DisoFLAG [82] that predict DNA and
RNA binding IDRs; and DisolLipPred [72], MemDis [83], and
DisoFLAG that focus on the lipid binding IDRs. Importantly,
the recent surveys have discussed MoRF predictors in passing
and lacked coverage of the newest tools, beyond 2020 [75]
and 2021 [76,77]. Motivated by the promiscuity and functional
importance of MoRFs in nature, substantial amount of recent
efforts toward the development of MoRF predictors, and
a number of modern machine learning advances that were
utilized in these efforts, herein we provide an updated, com-
prehensive, and practical overview of the MoRF prediction
area. In particular, we cover 25 methods, provide an insightful
historical overview that spans the 20 years of these develop-
ment efforts, highlight recent advances that include the use of
deep learning algorithms and protein language models, and
summarize evaluation of representative methods based on
arguably more objective results from a large community-
organized assessment (compared to the past survey). In addi-
tion, as developers of these tools and authors of some of the
past surveys, we also offer our opinion on the current issues
and future progress in this active area of research.

2. Historical overview

Table 1 summarizes the key characteristics for the 25 MoRF
predictors that include 7 methods that were released since
2020 and 12 methods that were not covered in the last survey
[30]. This comprehensive list of methods was established by
analyzing past surveys [30,75-77], manually scanning citations
to the articles that introduce the listed predictors, and per-
forming manual analysis of relevant PubMed searches. We
focus our discussion of this active field of research on three
important and complementary aspects. First, we provide
a chronological historical overview that highlights major mile-
stones. Second, we discuss the availability of these 25 predic-
tors and analyze the relation of this aspect with their impact
measured using citations. Third, we discuss recent community-

driven efforts in measuring predictive performance and run-
time and highlight the corresponding results for the MoRF
predictors.

Figure 1 presents a chronological record of the 20-year-
long development efforts and includes annotations of the five
major milestones. The first milestone in 2005 marks the pub-
lication of the first a-MoRFpred method [28]. This method is
limited to the prediction of the a-MoRFs and it was designed
using a small dataset of 12 proteins with 14 a-MoRF regions.
This design was improved 2 years later with the publication of
a-MoRFpred-Il by the same research group headed by Prof.
Dunker [47]. MoRFpred-Il used a larger training dataset with
99 proteins and 102 a-MoRFs and applied machine learning
algorithm to produce the predictive model in a form of
a shallow feed-forward neural network [47]. The second mile-
stone (Figure 1) is the release of MoRFpred [31,49], the first
tool that addresses the prediction of generic MoRFs that are
not limited to a particular MoRF type (as compared to the a-
MoRFs). This method was trained on a relatively large dataset
with over 400 proteins and features a more advanced design
that includes several sequence-derived inputs, such as an
evolutionary profile and prediction of intrinsic disorder and
solvent accessibility, which are input to a support vector
machine model. MoRFpred was released as a free webserver
that is available and operational to this date.

The third milestone is defined by the first use of a deep
learning-based model in the en_DCNNMoRF predictor that
was published in early 2019 [61]. This marks a major shift in
the design of the MoRF predictors since the substantial major-
ity of the subsequently developed methods also rely on the
deep neural network models, i.e. 8 out of 11 have been
released since 2019 (Table 1). The en_DCNNMoRF’'s model
includes two deep convolutional neural networks which
results are averaged to produce the final MoRF predictions
[61]. The other deep learning-based MoRF predictors utilize
a wide range of network topologies including feedforward
networks [62,74], convolutional networks [64,66], recurrent
networks [65,67], and transformers [73]. The fourth milestone
marks the recent expansion of the scope of the MoRF predic-
tors. Until 2023, these methods targeted the prediction of
MoRFs that interact with proteins and peptides. This can be
explained by the fact that the ground truth annotations of
these proteins and peptide-binding MoRFs, which were used
for training and assessment of these methods, were relatively
easy to collect from existing databases, such as Protein Data
Bank [84] and MobiDB [85]. The first method that considers
other types of partner molecules is CoMemMoRFPred, which
predicts lipid-binding MoRFs [69]. Development of this
method was possible because of the preceding release of
the MemMoRF database in 2021 [86], which was used to
source the corresponding ground truth annotations. The
most recent milestone is associated with the first use of the
protein language models (PLMs), which occurred in 2024 [73].
PLMs are used to generate inputs into the predictive models,
and they are typically applied in conjunction with deep neural
networks, which is the case for both MoRF predictors that
applied PLMs [73,74]. More specifically, MoRF_ESM uses the
ESM-2 PLM [87] and a deep transformer network [73], and
IDBindT5 uses the ProtT5 PLM [88] and a deep feedforward
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Figure 1. Timeline of the development of MoRF predictors. Color-coded bars denote modes of availability, which include never available (NA), no longer available
(NLA), source code (SC), web server (WS), and web server and code (WS+SC). Dark green callouts show major community assessment events. Light green callouts

identify major milestones.

network [74]. We believe that this field of research has reached
a mature stage, as evidenced by the steady rate of the devel-
opment efforts over the last 5 year, after a spike between 2015
and 2019 (Figure 1). The new methods will continue to be
released at a steady pace that will be fueled by the last three
milestones, in particular the development of new deep net-
work architectures and new PLMs, and the expansion of the
scope.

3. Availability and impact

We summarize the availability of 25 MoRF predictors in Table 1.
We enumerated five scenarios: available as a web server (WS; 3
predictors); available as downloadable source code (SC; 6 pre-
dictors); available as both server and code (WS+SC; 6 predic-
tors); never available (NA; 7 predictors) when the corresponding
article that introduced a given method did not provide infor-
mation on availability; and no longer available (NLA; 3 predic-
tors) when the links to the code or server that were provided in
the original article no longer work. The WS option is arguably
convenient since users can easily access servers using a web
browser and the entire prediction process is typically done in
the server side without installing software on the user’s side.
However, servers typically limit individual prediction requests to
one protein or a small batch of proteins (for load balancing
between users) and the runtime of a given prediction is
affected by the current server load. The SC option is less con-
venient since the code has to be downloaded and installed by
users and the computations have to be done on the user’s
hardware. Some of these installations can be challenging
since they rely on multiple third-party applications and may
require specific hardware and/or software infrastructure. On the
other hand, the SC option facilitates generation of predictions
at a large scale and embedding of the corresponding predictor
into other bioinformatics pipelines. Altogether, 15 of the 25
methods are available to the end users (60% availability rate),
with 6 of them available as both WS and SC. This is similar to
the recently estimated 65% availability rate for the predictors of
the intrinsic disorder [89] and a bit higher than the below 50%

availability for predictors of protein and nucleic acid-binding
residues [90,91].

We investigated whether the mode (lack) of availability is
associated with the impact of MoRF predictors, which we
approximate based on their citations in Google Scholar as of
September 2024 (Table 1). We quantified the total number of
citations and the annual number of citations (total divided by
the number of years since publication), and we used the latter
to compare impact across methods. We excluded predictors
from 2024 since their citation data is not reliable. The 25 MoRF
predictors were cited altogether about 3100 times. More
importantly, we found that predictors that offer WS were
cited at a much higher rate, i.e. median annual citations of
17.3 for the methods available as only WS and 10.1 for the
tools available as code and web server, when compared with
the other three options, i.e. median annual citations of 2.6, 2.8,
and 1.7 for the predictors that were never available, no longer
available, and available as only SC, respectively. Our observa-
tion that the availability of the WS option substantially boosts
citations agrees with a recently released broader analysis of
the availability and impact of sequence-based predictors of
protein structure and function [92]. We hypothesize that tools
available as WSs are more popular because users may need
their predictions in an ad hoc manner that would not justify
the installation effort and/or may not have the computational
resources and experience needed to install and run the pre-
dictors locally.

4. Predictive performance

Assessments of the predictions of ligand-binding IDRs were
included in the two recently completed community-organized
Critical Assessment of Intrinsic Disorder (CAID) events: CAID1 in
2021 [93] and CAID2 in 2023 [94] (Figure 1). This inclusion
demonstrates the importance and relevance of MoRF predictors.
These evaluations were performed by independent assessors
who evaluated predictors that were provided by their authors
before the event started. A large number of predictors were
tested on blind test datasets (authors of predictors did not
have access to the test proteins) using community-accepted



metrics that quantify predictive quality. The CAID evaluations are
arguably more objective when compared to the smaller-scale
tests that are performed when individual predictive tools are
published. Moreover, the fact that the participating predictors
are run by the same assessors on the same hardware platform
facilitates reliable and consistent comparison of runtime.

CAID2 evaluated 32 predictors of binding IDRs that included 4
MoRF predictors: DISOPRED3 [52], MoRFchibi_light and
MoRFchibi_web that are part of the MoRFchibi SYSTEM [53,54],
and OPAL [59]. Figure 2 summarizes these results by comparing
the top 10 predictors of binding IDRs that were ranked based on
two popular metrics: Area Under the ROC Curve (AUG; y-axis in
Figure 2) and Area Under the Prediction—Recall Curve (AUPRC,
x-axis in Figure 2). Following CAID2, we also include the F1 metric
that quantifies performance based on the highest point on the
precision - recall curve, i.e. maximal F1 values that can be
obtained by a given predictor [94] (callouts in Figure 2). We
observed that 3 of the 4 MoRF predictors were ranked among
the top 10 predictors of binding IDRs in CAID2 (Figure 2). These
three methods secured the highest AUPRC values and relatively
high AUC values, which placed them in the best top-right quad-
rant in Figure 2. Moreover, their F1 scores were 0.36 for
MoRFchibi_web, 0.35 for OPAL, and 0.34 for MoRFchibi_light.
MoRFchibi_web was arguably the best predictor when consider-
ing both the predictive performance and runtime. It generated
predictions in about 2.5 min per protein, secured the highest
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AUPRC of 0.284, the second highest AUC of 0.751, and MCC of
0.36, behind only the ENSHROUD method that obtained nearly
identical AUC of 0.753 and MCC of 0.36 but much lower AUPRC
of 0.252. Altogether, these results demonstrate that current
MoRF predictors offer competitive levels of predictive
performance.

5. Expert opinion

Computational prediction of MoRFs in protein sequences is
a mature field of research with deep historical roots that stretch
over 20 years. We show that the current tools are relatively accu-
rate and that recently developed methods have already taken
advantage of recent machine learning advances, including the
use of sophisticated deep neural networks (e.g. transformers)
and protein language models (e.g. EMS-2 and ProtT5). We believe
that these efforts will continue at a steady pace in the foreseeable
future as new deep network architectures and PLMs will be devel-
oped and released. In particular, we observe a recent trend in the
development of PLMs that have begun to target specific classes/
families of proteins, with examples of ProGen that focuses on
certain families of lysozymes [95] and IgLM on antibodies [96].
Similar efforts toward developing PLMs that target proteins with
MoRFs should drive further improvements in accuracy for the
MoRF predictors. We also foresee further expansion of the scope
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Figure 2. Comparison of predictive performance for the prediction of binding IDRs in the CAID2 experiment [94]. The performance was measured using AUC (y-axis),
AUPRC (x-axis), F1 (callouts), and runtime measured per 1000 amino acids long protein (callouts). MoRF predictors are highlighted by bold font in red color in the

callouts.
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of the MoRF predictions to additional types of partner molecules,
such as DNAs and RNAs.

Given that this field has reached the mature stage, we
believe that efforts should be shifted to improving the avail-
ability of the MoRF predictions to the end users. This could be
done in three complementary ways. First, the authors of the
new predictors should be required to offer and maintain
a web server for their tools. This should substantially increase
impact, as we demonstrated empirically for the already pub-
lished predictors, and we argue that the corresponding cost is
relatively low. We believe that the requirement to support
web servers for an extended period of time should be
enforced at the point of their publication. Several venues
stipulate these requirements including the Bioinformatics jour-
nal (application notes articles; minimum of 2 years of support),
Journal of Molecular Biology (‘Computation Resources for
Molecular Biology’ issue; 3 years of support), and Nucleic
Acids Research journal (web server issue; 5 years of support).
These requirements should be unified and potentially
extended to over 5 years, which in our view would benefit
both the developers (boosted impact) and users (improved
access). Second, the web servers of the leading MoRF predic-
tors should be popularized via inclusion into centralized pre-
dictive resources, which provide easy access to multiple
predictors that cover a broad spectrum of structural and func-
tional aspects of proteins. Several such resources are available
including (alphabetically) Brewery [97,98], CAID prediction
portal [99], DEPICTER [100,101], MULTICOM [102,103],
PredictProtein [104,105], RIDAO [106] and PSIPRED workbench
[107,108]. As of October 2024, the CAID portal includes three
MoRF predictors (DISOPRED3, MoRFchibi SYSTEM, and OPAL)
[99], DEPICTER covers the MoRFchibi SYSTEM [101], and
PSIPRED workbench includes DISOPRED3 [108]. These efforts
should be strengthened by expanding into other resources.
Third, pre-computed results generated by MoRF predictors
should be made available via the existing databases of the
intrinsic disorder predictions, which include D?P? [109],
MobiDB [85,110] and DescribePROT [111,112]. These resources
offer access to large collections of pre-computed predictions
that span hundreds and even thousands of organisms, and
which can be conveniently searched and obtained nearly
instantly via a web interface. These databases address several
issues related to the direct use of predictors which could be
difficult (i.e. finding server or code could be challenging and
making predictions could be time-consuming) and wasteful
(different users make the same predictions when studying the
same proteins). However, predictors still have to be used when
attempting to obtain results for proteins that are not included
in these databases. We note that as of October 2024
DescribePROT includes prediction of the MoRFchibi SYSTEM
[101] for 2.3 million proteins from 273 organisms while the
other two databases do not cover MoRF predictions. Adding
MoRF predictors to the other resources, particularly MobiDB
that covers 245 million proteins, would substantially improve
the availability of the MoRF predictions.

Prediction of the MoRFs in protein sequences should be
subsequently followed by modeling structures of the resulting
protein—protein, protein—peptide, and protein-lipid complexes
(i.e. MoRFs typically fold upon binding). Modeling these

interactions for IDRs, including MoRF regions, is rather challen-
ging and relatively few suitable tools are currently available.
One of the first methods that can handle docking for intrinsi-
cally disordered regions is IDP-LZerD [113,114]. Importance of
docking for modeling these interactions can be supported with
numerous examples, such as the work on the intrinsically dis-
ordered NUPR1 protein [115-117]. A relatively recent investiga-
tion of methods for docking with IDRs reveals that three tools
produce relatively good results [118]: IDP-LZerD [113,114],
CABS-Dock [119] and AlphaFold-Multimer [120]. However, the
atomic-level details of the structures that they produce require
further improvements [118]. Coupling accurate sequence-based
MoRF predictions with an equally accurate subsequent predic-
tions of the complex structure would provide powerful means
to enable a more comprehensive understanding of the protein—
ligand interactions. These investigations, particularly when per-
formed jointly between these two research communities,
deserve more attention.
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