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SPECIAL REPORT

Two decades of advances in sequence-based prediction of MoRFs, disorder-to-order 
transitioning binding regions
Jiangning Songa,b and Lukasz Kurgan c

aBiomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia; bMonash 
Data Futures Institute, Monash University, Melbourne, VIC, Australia; cDepartment of Computer Science, Virginia Commonwealth University, 
Richmond, VA, USA

ABSTRACT
Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo 
induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted 
from sequences based on their distinctive sequence signatures.
Areas covered: We overview 20 years of progress in the sequence-based prediction of MoRFs which 
resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides, and lipids. 
These methods range from simple discriminant analysis to sophisticated deep transformer networks 
that use protein language models. They generate relatively accurate predictions as evidenced by the 
results of a recently published community-driven assessment.
Expert opinion: MoRFs prediction is a mature field of research that is poised to continue at a steady 
pace in the foreseeable future. We anticipate further expansion of the scope of MoRF predictions to 
additional partner molecules, such as nucleic acids, and continued use of recent machine learning 
advances. Other future efforts should concentrate on improving availability of MoRF predictions by 
releasing, maintaining, and popularizing web servers and by depositing MoRF predictions to large 
databases of protein structure and function predictions. Furthermore, accurate MoRF predictions should 
be coupled with the equally accurate prediction and modeling of the resulting structures of complexes.
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1. Introduction

Intrinsically disordered regions (IDRs) are regions in protein 
sequences that lack a stable structure under physiological condi
tions [1–4]. Several bioinformatics studies demonstrate that pro
teins with IDRs are present across the entire taxonomy, with much 
higher rates of occurrence in the eukaryotic organisms [5–9]. Many 
IDRs interact with ligands that include a broad spectrum of bio
molecules, such as proteins, peptides, DNA, RNA, lipids, and 
a variety of small molecules that include drugs [10–18]. The con
formational flexibility of IDRs offers certain advantages when com
pared to ordered (structured) regions, including the one-to-many 
binding where one IDR interacts with multiple different molecules 
[19–23]. One of the most common types of interacting IDRs is the 
molecular recognition feature (MoRF) [11,24]. MoRFs are relatively 
short sequence segments that are embedded in longer IDRs and 
that typically undergo disorder-to-order transitions when interact
ing with ligands [11,24,25]. Some MORF regions can remain partly 
or even fully disordered in the bound state [26,27]. The limits on 
the MoRF region lengths differ across studies, with some defining 
them as in the 10 to 70 consecutive amino acids range [24,25] 
while other works considering shorter segments that span 
between 5 and 25 residues in length [11,24,28]. Moreover, MoRFs 
are classified into several types that are defined based on the 
primary type of the secondary structure that they fold into upon 
binding, i.e. α-MoRFs (composed mostly of α-helices), β-MoRFs 

(mostly β-sheets), γ-MoRFs (irregular structures), and complex- 
MoRFs (mixed secondary structures) [25]. A recent bioinformatics 
study that investigated nearly 900 species suggested that 20% to 
30% of IDRs, depending on the taxonomic assignment, include 
MoRF regions [11]. Importantly, sequences of the MoRF segments 
have unique signatures that differ from other types of disordered 
and ordered regions [11]. These differences motivated the devel
opment of computational sequence-based predictors of MoRFs 
[29,30]. Scientists use these predictive tools in a wide range of 
investigations. For instance, one of the most popular MoRF pre
dictors, MoRFpred [31], has been utilized recently to investigate 
cell signaling pathways [32], 20S proteasome substrates [33], 
a variety of viral proteomes including SARS-CoV-2 [34], rotavirus 
[35], and hepatitis E [36], and interactomes of YY1 [37], SNED1 [38], 
and G0S2 [39] proteins. Moreover, MoRF predictions have clinical 
relevance, as the dysfunction of proteins with binding IDRs was 
found to be associated with a number of human diseases [40–42]. 
One of the results of this dysfunction is misfolding that may induce 
a range of conformational illnesses including the prion, 
Alzheimer’s, polyQ and Parkinson’s diseases, and the Down’s syn
drome [41,43]. Furthermore, MoRF-containing proteins have reg
ulatory and signaling functions that fundamentally rely on the 
protein–ligand interactions, and their dysfunction was linked to 
cardiovascular diseases, cancers, and viral pathogenesis 
[34,35,40,44,45]. A few specific examples include the tau and Aβ 
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proteins that are associated with conformational diseases, BRCA-1, 
p53, and AFP proteins that are involved in cancers, and viral capsid 
proteins that were shown to be implicated in the pathogenesis of 
viral infections [34–36,40,45,46]. We note that these findings relied 
on bioinformatics analyses that took advantage of high-quality 
predictions of binding IDRs [34–36,40,45,46].

Dozens of MoRF predictors have been developed to date, 
prompting the need to survey them. The last time the MoRF 
predictors were comprehensively surveyed was in 2019 [30]. 
That review provided a brief historical overview, covered 13 
predictors (shown in bold font in Table 1), and discussed their 
predictive performance by relying on results collected from 
several articles that introduce individual predictors [30]. 
Several more recent surveys that focused on a broader collec
tion of methods that predict binding IDRs are also listed and 
briefly summarized the MoRF predictors [75–77]. These 
broader predictors target-binding regions that are not limited 
in length and are not necessarily embedded in longer IDRs, 
and which interact with specific ligand types. Some popular 
examples include ANCHOR [78] and ANCHOR2 [79] that target 
protein and peptide binding IDRs; DisoRDPbind [80], 
DeepDISObind [81], and DisoFLAG [82] that predict DNA and 
RNA binding IDRs; and DisoLipPred [72], MemDis [83], and 
DisoFLAG that focus on the lipid binding IDRs. Importantly, 
the recent surveys have discussed MoRF predictors in passing 
and lacked coverage of the newest tools, beyond 2020 [75] 
and 2021 [76,77]. Motivated by the promiscuity and functional 
importance of MoRFs in nature, substantial amount of recent 
efforts toward the development of MoRF predictors, and 
a number of modern machine learning advances that were 
utilized in these efforts, herein we provide an updated, com
prehensive, and practical overview of the MoRF prediction 
area. In particular, we cover 25 methods, provide an insightful 
historical overview that spans the 20 years of these develop
ment efforts, highlight recent advances that include the use of 
deep learning algorithms and protein language models, and 
summarize evaluation of representative methods based on 
arguably more objective results from a large community- 
organized assessment (compared to the past survey). In addi
tion, as developers of these tools and authors of some of the 
past surveys, we also offer our opinion on the current issues 
and future progress in this active area of research.

2. Historical overview

Table 1 summarizes the key characteristics for the 25 MoRF 
predictors that include 7 methods that were released since 
2020 and 12 methods that were not covered in the last survey 
[30]. This comprehensive list of methods was established by 
analyzing past surveys [30,75–77], manually scanning citations 
to the articles that introduce the listed predictors, and per
forming manual analysis of relevant PubMed searches. We 
focus our discussion of this active field of research on three 
important and complementary aspects. First, we provide 
a chronological historical overview that highlights major mile
stones. Second, we discuss the availability of these 25 predic
tors and analyze the relation of this aspect with their impact 
measured using citations. Third, we discuss recent community- 

driven efforts in measuring predictive performance and run
time and highlight the corresponding results for the MoRF 
predictors.

Figure 1 presents a chronological record of the 20-year- 
long development efforts and includes annotations of the five 
major milestones. The first milestone in 2005 marks the pub
lication of the first α-MoRFpred method [28]. This method is 
limited to the prediction of the α-MoRFs and it was designed 
using a small dataset of 12 proteins with 14 α-MoRF regions. 
This design was improved 2 years later with the publication of 
α-MoRFpred-II by the same research group headed by Prof. 
Dunker [47]. MoRFpred-II used a larger training dataset with 
99 proteins and 102 α-MoRFs and applied machine learning 
algorithm to produce the predictive model in a form of 
a shallow feed-forward neural network [47]. The second mile
stone (Figure 1) is the release of MoRFpred [31,49], the first 
tool that addresses the prediction of generic MoRFs that are 
not limited to a particular MoRF type (as compared to the α- 
MoRFs). This method was trained on a relatively large dataset 
with over 400 proteins and features a more advanced design 
that includes several sequence-derived inputs, such as an 
evolutionary profile and prediction of intrinsic disorder and 
solvent accessibility, which are input to a support vector 
machine model. MoRFpred was released as a free webserver 
that is available and operational to this date.

The third milestone is defined by the first use of a deep 
learning-based model in the en_DCNNMoRF predictor that 
was published in early 2019 [61]. This marks a major shift in 
the design of the MoRF predictors since the substantial major
ity of the subsequently developed methods also rely on the 
deep neural network models, i.e. 8 out of 11 have been 
released since 2019 (Table 1). The en_DCNNMoRF’s model 
includes two deep convolutional neural networks which 
results are averaged to produce the final MoRF predictions 
[61]. The other deep learning-based MoRF predictors utilize 
a wide range of network topologies including feedforward 
networks [62,74], convolutional networks [64,66], recurrent 
networks [65,67], and transformers [73]. The fourth milestone 
marks the recent expansion of the scope of the MoRF predic
tors. Until 2023, these methods targeted the prediction of 
MoRFs that interact with proteins and peptides. This can be 
explained by the fact that the ground truth annotations of 
these proteins and peptide-binding MoRFs, which were used 
for training and assessment of these methods, were relatively 
easy to collect from existing databases, such as Protein Data 
Bank [84] and MobiDB [85]. The first method that considers 
other types of partner molecules is CoMemMoRFPred, which 
predicts lipid-binding MoRFs [69]. Development of this 
method was possible because of the preceding release of 
the MemMoRF database in 2021 [86], which was used to 
source the corresponding ground truth annotations. The 
most recent milestone is associated with the first use of the 
protein language models (PLMs), which occurred in 2024 [73]. 
PLMs are used to generate inputs into the predictive models, 
and they are typically applied in conjunction with deep neural 
networks, which is the case for both MoRF predictors that 
applied PLMs [73,74]. More specifically, MoRF_ESM uses the 
ESM-2 PLM [87] and a deep transformer network [73], and 
IDBindT5 uses the ProtT5 PLM [88] and a deep feedforward 
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network [74]. We believe that this field of research has reached 
a mature stage, as evidenced by the steady rate of the devel
opment efforts over the last 5 year, after a spike between 2015 
and 2019 (Figure 1). The new methods will continue to be 
released at a steady pace that will be fueled by the last three 
milestones, in particular the development of new deep net
work architectures and new PLMs, and the expansion of the 
scope.

3. Availability and impact

We summarize the availability of 25 MoRF predictors in Table 1. 
We enumerated five scenarios: available as a web server (WS; 3 
predictors); available as downloadable source code (SC; 6 pre
dictors); available as both server and code (WS+SC; 6 predic
tors); never available (NA; 7 predictors) when the corresponding 
article that introduced a given method did not provide infor
mation on availability; and no longer available (NLA; 3 predic
tors) when the links to the code or server that were provided in 
the original article no longer work. The WS option is arguably 
convenient since users can easily access servers using a web 
browser and the entire prediction process is typically done in 
the server side without installing software on the user’s side. 
However, servers typically limit individual prediction requests to 
one protein or a small batch of proteins (for load balancing 
between users) and the runtime of a given prediction is 
affected by the current server load. The SC option is less con
venient since the code has to be downloaded and installed by 
users and the computations have to be done on the user’s 
hardware. Some of these installations can be challenging 
since they rely on multiple third-party applications and may 
require specific hardware and/or software infrastructure. On the 
other hand, the SC option facilitates generation of predictions 
at a large scale and embedding of the corresponding predictor 
into other bioinformatics pipelines. Altogether, 15 of the 25 
methods are available to the end users (60% availability rate), 
with 6 of them available as both WS and SC. This is similar to 
the recently estimated 65% availability rate for the predictors of 
the intrinsic disorder [89] and a bit higher than the below 50% 

availability for predictors of protein and nucleic acid-binding 
residues [90,91].

We investigated whether the mode (lack) of availability is 
associated with the impact of MoRF predictors, which we 
approximate based on their citations in Google Scholar as of 
September 2024 (Table 1). We quantified the total number of 
citations and the annual number of citations (total divided by 
the number of years since publication), and we used the latter 
to compare impact across methods. We excluded predictors 
from 2024 since their citation data is not reliable. The 25 MoRF 
predictors were cited altogether about 3100 times. More 
importantly, we found that predictors that offer WS were 
cited at a much higher rate, i.e. median annual citations of 
17.3 for the methods available as only WS and 10.1 for the 
tools available as code and web server, when compared with 
the other three options, i.e. median annual citations of 2.6, 2.8, 
and 1.7 for the predictors that were never available, no longer 
available, and available as only SC, respectively. Our observa
tion that the availability of the WS option substantially boosts 
citations agrees with a recently released broader analysis of 
the availability and impact of sequence-based predictors of 
protein structure and function [92]. We hypothesize that tools 
available as WSs are more popular because users may need 
their predictions in an ad hoc manner that would not justify 
the installation effort and/or may not have the computational 
resources and experience needed to install and run the pre
dictors locally.

4. Predictive performance

Assessments of the predictions of ligand-binding IDRs were 
included in the two recently completed community-organized 
Critical Assessment of Intrinsic Disorder (CAID) events: CAID1 in 
2021 [93] and CAID2 in 2023 [94] (Figure 1). This inclusion 
demonstrates the importance and relevance of MoRF predictors. 
These evaluations were performed by independent assessors 
who evaluated predictors that were provided by their authors 
before the event started. A large number of predictors were 
tested on blind test datasets (authors of predictors did not 
have access to the test proteins) using community-accepted 

Figure 1. Timeline of the development of MoRF predictors. Color-coded bars denote modes of availability, which include never available (NA), no longer available 
(NLA), source code (SC), web server (WS), and web server and code (WS+SC). Dark green callouts show major community assessment events. Light green callouts 
identify major milestones.

4 J. SONG AND L. KURGAN



metrics that quantify predictive quality. The CAID evaluations are 
arguably more objective when compared to the smaller-scale 
tests that are performed when individual predictive tools are 
published. Moreover, the fact that the participating predictors 
are run by the same assessors on the same hardware platform 
facilitates reliable and consistent comparison of runtime.

CAID2 evaluated 32 predictors of binding IDRs that included 4 
MoRF predictors: DISOPRED3 [52], MoRFchibi_light and 
MoRFchibi_web that are part of the MoRFchibi SYSTEM [53,54], 
and OPAL [59]. Figure 2 summarizes these results by comparing 
the top 10 predictors of binding IDRs that were ranked based on 
two popular metrics: Area Under the ROC Curve (AUC; y-axis in 
Figure 2) and Area Under the Prediction–Recall Curve (AUPRC, 
x-axis in Figure 2). Following CAID2, we also include the F1 metric 
that quantifies performance based on the highest point on the 
precision – recall curve, i.e. maximal F1 values that can be 
obtained by a given predictor [94] (callouts in Figure 2). We 
observed that 3 of the 4 MoRF predictors were ranked among 
the top 10 predictors of binding IDRs in CAID2 (Figure 2). These 
three methods secured the highest AUPRC values and relatively 
high AUC values, which placed them in the best top-right quad
rant in Figure 2. Moreover, their F1 scores were 0.36 for 
MoRFchibi_web, 0.35 for OPAL, and 0.34 for MoRFchibi_light. 
MoRFchibi_web was arguably the best predictor when consider
ing both the predictive performance and runtime. It generated 
predictions in about 2.5 min per protein, secured the highest 

AUPRC of 0.284, the second highest AUC of 0.751, and MCC of 
0.36, behind only the ENSHROUD method that obtained nearly 
identical AUC of 0.753 and MCC of 0.36 but much lower AUPRC 
of 0.252. Altogether, these results demonstrate that current 
MoRF predictors offer competitive levels of predictive 
performance.

5. Expert opinion

Computational prediction of MoRFs in protein sequences is 
a mature field of research with deep historical roots that stretch 
over 20 years. We show that the current tools are relatively accu
rate and that recently developed methods have already taken 
advantage of recent machine learning advances, including the 
use of sophisticated deep neural networks (e.g. transformers) 
and protein language models (e.g. EMS-2 and ProtT5). We believe 
that these efforts will continue at a steady pace in the foreseeable 
future as new deep network architectures and PLMs will be devel
oped and released. In particular, we observe a recent trend in the 
development of PLMs that have begun to target specific classes/ 
families of proteins, with examples of ProGen that focuses on 
certain families of lysozymes [95] and IgLM on antibodies [96]. 
Similar efforts toward developing PLMs that target proteins with 
MoRFs should drive further improvements in accuracy for the 
MoRF predictors. We also foresee further expansion of the scope 

Figure 2. Comparison of predictive performance for the prediction of binding IDRs in the CAID2 experiment [94]. The performance was measured using AUC (y-axis), 
AUPRC (x-axis), F1 (callouts), and runtime measured per 1000 amino acids long protein (callouts). MoRF predictors are highlighted by bold font in red color in the 
callouts.
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of the MoRF predictions to additional types of partner molecules, 
such as DNAs and RNAs.

Given that this field has reached the mature stage, we 
believe that efforts should be shifted to improving the avail
ability of the MoRF predictions to the end users. This could be 
done in three complementary ways. First, the authors of the 
new predictors should be required to offer and maintain 
a web server for their tools. This should substantially increase 
impact, as we demonstrated empirically for the already pub
lished predictors, and we argue that the corresponding cost is 
relatively low. We believe that the requirement to support 
web servers for an extended period of time should be 
enforced at the point of their publication. Several venues 
stipulate these requirements including the Bioinformatics jour
nal (application notes articles; minimum of 2 years of support), 
Journal of Molecular Biology (‘Computation Resources for 
Molecular Biology’ issue; 3 years of support), and Nucleic 
Acids Research journal (web server issue; 5 years of support). 
These requirements should be unified and potentially 
extended to over 5 years, which in our view would benefit 
both the developers (boosted impact) and users (improved 
access). Second, the web servers of the leading MoRF predic
tors should be popularized via inclusion into centralized pre
dictive resources, which provide easy access to multiple 
predictors that cover a broad spectrum of structural and func
tional aspects of proteins. Several such resources are available 
including (alphabetically) Brewery [97,98], CAID prediction 
portal [99], DEPICTER [100,101], MULTICOM [102,103], 
PredictProtein [104,105], RIDAO [106] and PSIPRED workbench 
[107,108]. As of October 2024, the CAID portal includes three 
MoRF predictors (DISOPRED3, MoRFchibi SYSTEM, and OPAL) 
[99], DEPICTER covers the MoRFchibi SYSTEM [101], and 
PSIPRED workbench includes DISOPRED3 [108]. These efforts 
should be strengthened by expanding into other resources. 
Third, pre-computed results generated by MoRF predictors 
should be made available via the existing databases of the 
intrinsic disorder predictions, which include D2P2 [109], 
MobiDB [85,110] and DescribePROT [111,112]. These resources 
offer access to large collections of pre-computed predictions 
that span hundreds and even thousands of organisms, and 
which can be conveniently searched and obtained nearly 
instantly via a web interface. These databases address several 
issues related to the direct use of predictors which could be 
difficult (i.e. finding server or code could be challenging and 
making predictions could be time-consuming) and wasteful 
(different users make the same predictions when studying the 
same proteins). However, predictors still have to be used when 
attempting to obtain results for proteins that are not included 
in these databases. We note that as of October 2024 
DescribePROT includes prediction of the MoRFchibi SYSTEM 
[101] for 2.3 million proteins from 273 organisms while the 
other two databases do not cover MoRF predictions. Adding 
MoRF predictors to the other resources, particularly MobiDB 
that covers 245 million proteins, would substantially improve 
the availability of the MoRF predictions.

Prediction of the MoRFs in protein sequences should be 
subsequently followed by modeling structures of the resulting 
protein–protein, protein–peptide, and protein-lipid complexes 
(i.e. MoRFs typically fold upon binding). Modeling these 

interactions for IDRs, including MoRF regions, is rather challen
ging and relatively few suitable tools are currently available. 
One of the first methods that can handle docking for intrinsi
cally disordered regions is IDP-LZerD [113,114]. Importance of 
docking for modeling these interactions can be supported with 
numerous examples, such as the work on the intrinsically dis
ordered NUPR1 protein [115–117]. A relatively recent investiga
tion of methods for docking with IDRs reveals that three tools 
produce relatively good results [118]: IDP-LZerD [113,114], 
CABS-Dock [119] and AlphaFold-Multimer [120]. However, the 
atomic-level details of the structures that they produce require 
further improvements [118]. Coupling accurate sequence-based 
MoRF predictions with an equally accurate subsequent predic
tions of the complex structure would provide powerful means 
to enable a more comprehensive understanding of the protein– 
ligand interactions. These investigations, particularly when per
formed jointly between these two research communities, 
deserve more attention.
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