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Abstract

Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods
that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently
published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that
include availability and impact of predictors, key features of their predictive models, and important aspects related to their training
and assessment. We observe that the past decade has brought increased use of deep neural networks and protein language models,
which contributed to substantial gains in the predictive performance. We also highlight advancements in vital and challenging issues
that include cross-predictions between deoxyribonucleic acid (DNA)-binding and ribonucleic acid (RNA)-binding residues and targeting
the two distinct sources of binding annotations, structure-based versus intrinsic disorder-based. The methods trained on the structure-
annotated interactions tend to perform poorly on the disorder-annotated binding and vice versa, with only a few methods that target
and perform well across both annotation types. The cross-predictions are a significant problem, with some predictors of DNA-binding
or RNA-binding residues indiscriminately predicting interactions with both nucleic acid types. Moreover, we show that methods with
web servers are cited substantially more than tools without implementation or with no longer working implementations, motivating
the development and long-term maintenance of the web servers. We close by discussing future research directions that aim to drive
further progress in this area.
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Introduction

Interactions between biomolecules are major drivers of cellular
processes. In particular, protein—nucleic acids interactions play
crucial roles in a number of key cellular functions including
deoxyribonucleic acid (DNA) replication, transcription, transla-
tion, and gene regulation [1-5]. Moreover, their misregulation is
associated with several human diseases [6-8], providing further
motivation to study these interactions. Several experimental
techniques, such as pull-down assays, chromatin immunopre-
cipitation and CRISPR-Cas based approaches are used to study
the protein—nucleic acids interactions [3, 9]. Additionally, atomic-
level details that include information about the interacting
residues and nucleotides can be obtained from experimentally
solved structures of protein-nucleic acids complexes [10, 11].
However, obtaining structures of these complexes is relatively
cost-intensive and challenging, especially when considering
that nearly 250 million protein sequences are available as of
September of 2024, with 90 million that were collected over
the past 5 years [12]. To this point, computational methods that
predict protein—nucleic acids interactions from sequences can be

beneficial in bridging this large and growing function annotation
gap. These computational tools are typically trained/generated
from the limited amounts of the experimentally annotated data.
The trained models can be used to produce predictions in a
high-throughput manner for a large number of uncharacterized
proteins, if their predictive performance is sufficiently good.
The functional importance of protein-nucleic acids interactions
combined with the availability of a sufficient amount of the
corresponding experimental data for the model training and
testing has motivated the development of several dozens of
computational predictors of nucleic acid-binding residues in
proteins.

These predictors can be divided into two groups, those that use
the protein structure versus protein sequence as the input. The
structure-based methods exploit the structural features, such as
secondary structure, solvent accessibility, characteristics of spa-
tial neighborhoods in the structure and shape complementarity,
to derive predictive models [13-20]. Some of the popular and
recent structure-based methods include (chronologically) aaRNA
[17], NucleicNet [18], Graphbind [19], Geobind [20], and PNAbind
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Table 1. Summary of surveys that discuss sequence-based predictors of the nucleic acid-binding residues. The articles are sorted
chronologically with the most recent study at the top of the table. The ‘Type of methods covered’ column identifies whether a given
survey covers ‘Str’ methods that were trained on the structure-annotated proteins and/or ‘dis’ methods that were trained on the

disorder-annotated proteins. Bold font identifies data for this review

Reference (year Target of Type of methods No. of No. of methods Types of training Cross-prediction
published) assessment covered sequence-based that were datasets discussed
predictors of published after discussed
DBRs/RBRs 2018 (year of the
covered most recent
method)
This study (NA) DNA and RNA Str + Dis 87 34 (2024) Yes Yes
[40] (2023) DNA and RNA Dis 3 2 (2022) Yes No
[30] (2022) DNA and RNA Str+Dis 13 3 (2021) No No
[34] (2020) RNA Str 28 2 (2019) No Yes
[31] (2019) DNA Str 8 0 No No
[33] (2016) DNA and RNA Str 30 0 No Yes
[37] (2016) RNA Str 12 0 No No
[41] (2015) DNA and RNA Str 24 0 No Yes
[29] (2015) DNA Str 7 0 No No
[38] (2015) RNA Str 19 0 No No
[35] (2013) DNA Str 13 0 No No
[36] (2013) DNA Str 11 0 No No
[28] (2013) RNA Str 10 0 No Yes
[39] (2012) RNA Str 13 0 No No

[21]. With the availability of a large number of structures pre-
dicted with AlphaFold2 [22], some of the recent methods, such as
EquipNAS [23], GraphSite [24], and GraphNABP [25], utilize puta-
tive structures to train their models. In this survey, we focus the
sequence-based predictors that use only the protein sequences
as inputs to predict the DNA-binding residues (DBRs) and the
ribonucleic acid (RNA)-binding residues (RBRs). Since the release
of the first sequence-based predictors in 2004 [26, 27], many more
methods were published [28-34]. We identified over two dozen
sequence-based predictors that were released in the past 5 years,
demonstrating that this is an active field of research. Availability
of a large number of methods prompted the release of several
surveys that we summarize in Table 1. These reviews typically
enumerate the available predictors, list the corresponding refer-
ences, summarize their predictive models, and provide guidance
on how to select an appropriate method from a pool of multiple
choices. They usually cover dozens of methods that include tools
that predict DBRs [29, 31, 35, 36], RBRs [28, 34, 37-39] and both
DBRs and RBRs [30, 33, 40, 41].

Most of the surveyed predictors are trained on training datasets
using machine learning (ML) algorithms. Based on the source of
the binding annotations in the training datasets, they are divided
into two categories. The firstincludes data derived from the struc-
tures of protein—nucleic acids complexes, which we refer to as
structure-annotated training data. The second category involves
binding interfaces that are positioned in intrinsically disordered
regions (IDRs), resulting in the disorder-annotated training data.
IDRs lack stable structure under physiological conditions [42-45].
Protein sequences may have one or multiple IDRs, which in some
cases may cover an entire sequence.

Several studies show that IDRs are functionally important and
abundant in the nucleic acid-binding proteins [46-51]. Impor-
tantly, protein—nucleic acids interactions in IDRs differ in multiple
ways from the interacting structured regions. The former typically
have polymorphic conformations that are induced by interacting
with different ligands [52, 53]. Moreover, they are enriched in

disorder-promoting amino acids and form larger interfaces upon
binding with partner molecules when compared with the inter-
faces in the structured regions [54-56]. These differences may
impact ability of the corresponding methods to make accurate
predictions, especially when they are applied to make predictions
in IDRs while the underlying model was trained on the structure-
annotated dataset, and vice versa. With that in mind, Table 1
reveals that virtually all past surveys focus on the methods that
were trained on the structure-annotated proteins [28, 29, 31,
33-39, 41], with just two articles that consider tools that were
trained from the disorder-annotated proteins [30, 40]. Moreover,
one of these two articles covers just two predictors trained from
the disorder-annotated data and discusses methods that targets
interactions with other ligands, such as proteins and lipids [40],
and the other mentions one disorder-trained predictor without
discussing this aspect of the model training [30].

Another important aspect is cross-prediction between DBRs
and RBRs. Research show that some of the current methods heav-
ily cross-predict (mis-predict) DBRs as RBRs and vice versa [33,
41]. This issue was sporadically discussed in some of the surveys
[28, 33, 34, 41]. The first independent survey covering the cross-
prediction was authored by Zhao et al. [28] (Table 1), while the first
prediction tool that assessed the cross-predictions was SPOT-Seq
[57]. However, the cross-prediction analysis in both studies was
limited only to the predictors of the RNA-binding proteins, which
produce protein-level results that do not include prediction of
RBRs. The most recent assessment, conducted in 2020, performed
a residue-level analysis on the cross-prediction but it covered only
predictors of RBRs [34]. We find that since the study by Yan et al.
[33], none of the surveys in the past 8 years discussed the cross-
prediction across predictors of DBRs and RBRs.

We provide a thorough and practical overview of this active
field of research, substantially improving over the past surveys
that are listed in Table 1. We cover the largest number of
sequence-based nucleic acid-binding residue predictors, which
include over two dozen new methods that were published in the
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past 5 years and which were not included in the previous review
articles (Table 1). We examine how the underlying predictive
models changed over time, investigate their availability and
impact, and provide an expanded discussion of cross-predictions
for the predictors of both DBRs and RBRs. Moreover, we categorize
predictors on whether they are trained on the structure-
annotated versus disorder-annotated proteins and discuss the
corresponding implications. Altogether, we comprehensively
review the 20-year long journey of the development of predictors
of DBRs and RBRs.

Materials and methods
Selection of methods

We performed an extensive literature search to obtain the list of
sequence-based predictors of nucleic acid-binding residues. We
considered three main sources: (i) the past surveys that covered
sequence-based nucleic acid-binding residue predictors [28-31,
33-39, 41]; (ii) studies that cite these surveys; and (iii) a manual
search in PubMed using the following search keywords: [(Nucleic
acid binding residue) OR (RNA binding residue) OR (DNA bind-
ing residue) OR (nucleotide binding residue)] AND |[(prediction)
OR (identification)], [(Nucleic acid binding site) OR (RNA binding
site) OR (DNA binding site) OR (nucleotide binding site)] AND
[(prediction) OR (identification)]. We further filtered and selected
only those methods which are published in peer-reviewed Q1
journals. Using the above protocol, we identified 87 sequence-
based nucleic acid-binding residue prediction methods, which
more than doubles the number of such methods covered in each
of the previous surveys (Table 1).

Predictive performance assessment

Predictive performance is an important aspect of surveying tools
in this area. While every published method was evaluated and
compared against a selection of other predictors, the list of the
other methods is typically rather short. Summarizing results from
across multiple sources is challenging since several factors must
be considered to ensure that results of different methods can be
directly compared. Specifically, the corresponding assessments
must be performed on the same benchmark dataset, with same
type of annotations of binding residues, and at least one common
metric of predictive performance. Additionally, these studies often
covered overlapping methods, making it difficult to boost cover-
age, particularly for more recently published tools. We considered
these factors and were able to collect, report and discuss the
predictive performance of 20 methods, with 13 of them published
within the past 5 years.

We discuss the assessments of the DBR and the RBR pre-
dictors separately. The DNA-binding test dataset that we used
to assess the DBR predictors was first reported by Patiyal et al.
[58], and subsequently used in two recent studies [59, 60]. This
dataset combines the DNA-binding datasets that were developed
to assess two earlier predictors, hybridNAP [32] and ProNA2020
[61]. This test dataset contains 46 DNA-binding proteins with 965
DBRs and 9911 non-DBRs. The RNA-binding test dataset that we
used to assess the RBR predictors was compiled to evaluate the
Pprint2 method [62], and was also recently used in the article that
introduces MucLiPred [60]. Similar to the DNA-binding dataset, it
combines the datasets sourced fromrefs. [32] (hybridNAP) and [61]
(ProNA2020). This test dataset contains 161 RNA-binding proteins
with 6966 RBRs and 44,349 non-RBRs. The annotations of binding
residues for the test proteins sourced from the hybridNAP article
were obtained from the Biolip database [63, 64], which in turn
was derived from PDB [65, 66]. The binding residue annotations

for the test proteins from the ProNA2020 article were collected
from the Protein-DNA Interface database [67] and the Protein-
RNA Interface database [68], both of which also rely on the PDB-
derived data.

The 20 predictors of RBRs and DBRs output numeric propensity
scores for the corresponding type of binding for each amino acid
in the input protein sequence. These propensities are used to
generate binary state predictions (binding versus non-binding)
using a threshold, where residues with propensities > threshold
are assumed to bind, and the remaining residues are assumed
not to bind. Based on their frequent use in the source evaluation
articles [32, 58-62] and related comparative surveys [34, 38,41, 69—
73], we used the area under the receiver operating characteristic
curve (AUC) to evaluate the predicted propensity scores and the
Matthews Correlation Coefficient (MCC) to evaluate the predic-
tions of binary states:

MCC = (TN + TP — FN « FP) /
 [(TP + FP) (TP + FN) (TN + FP) (TN + FN)]

where TP, TN, FN, and FP are the numbers of true positives
(correctly predicted binding residues), true negatives (correctly
predicted non-binding residues), false negatives (binding residues
incorrectly predicted as non-binding), and false positives (non-
binding residues incorrectly predicted as binding), respectively.
MCC values range between —1 and 1, where 0 denotes predictions
at random levels and a higher positive score indicates stronger
correlation between predictions and the native annotations of
binding. The AUC is the area under the curve defined by the true
positive rates (TPR) versus false positive rates (FPR) computed over
the thresholds equal to all unique predicted propensities:

TPR = TP/ (TP + FN)
FPR = FP/ (FP + TN)

While AUC theoretically ranges from 0 to 1, the AUC of a random
predictor is ~0.5 and higher values that are > 0.5 suggest stronger
predictive performance. We collected the AUC and MCC scores
for the predictors of DBRs from refs. [58-60, 74, 75] and for the
predictors of RBRs from refs. [60, 62].

Results

We summarized details concerning the comprehensive list of
the 87 predictors, such as their name, prediction target (DBRs,
RBRs, or both), type of predictive models and training datasets,
outputs and consideration given to cross-predictions, in Table 2.
We covered 36 predictors of DBRs, 29 predictors of RBRs, and 22
predictors that target both DBRs and RBRs. Some methods are
designed for specific types of nucleic acids and proteins. Specifi-
cally, SDCpred [76] predicts residues that interact with the mono-
and dinucleotide-specific DNAs; SRCpred [77] targets predictions
of the dinucleotide-specific RNA binding; DNAgenie [78] predicts
A-DNA, B-DNA and single-stranded DNA binding residues; and
TSNAPred [79] predicts residues that interact with the A-DNA,
B-DNA, single stranded DNA, mRNA, tRNA, and rRNA. More-
over, EPDRNA [80] generates predictions of nucleic acid-binding
residues in proteins associated with human diseases including
cancer, cardiovascular and neurodegenerative diseases.

We analyzed the 87 methods from multiple complementary
perspectives including a historical overview, their availability
and impact, predictive performance, the consideration of the
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Table 2. Sequence-based predictors of DBRs and RBRs. The methods are arranged in the chronological order. The ‘target’ column shows
types of predicted binding residues: DNA-binding (D), RNA-binding (R), and DNA- and RNA-binding (DR). The ‘predictive architecture’
column covers neural network (NN), support vector machine (SVM), naive Bayes (NB), logistic regression (LR), random forest (RF),
template-based prediction (TB), decision tree (DT), linear regression (LR), and long short-term memory (LSTM) NN; deep-learning
models are marked with [D]; we also name the protein language model (PLM) that a given method uses, if any, inside the round
brackets. The ‘training dataset’ column differentiates between methods trained from the structure-annotated interactions (S),
disorder-annotated interactions (D), and both types of annotations (S + D). The ‘output’ column includes propensity scores (P), binary
state (B), and both (B +P). The ‘cross-prediction’ column shows whether the cross-prediction was not mentioned (NM), discussed but
not considered (Dis), or corrected/considered (Corr) when designing a given method.

Ref Year Name Target (D, R, Predictive Training Output (B, P, Cross-
published DR) architecture (PLM dataset (S, D, B+P) prediction
types used for S+D) (NM/Dis/-
feature extraction) Corr)

[26] 2004 DBS-pred D NN S P NM
27 2004 Jeong et al. R NN S B NM

g
[81] 2005 DBS-PSSM D NN S B+P NM
[82] 2006 BindN DR SVM S B+P NM
[83] 2006 DNABindR D NB S P NM
84 2006 Jeong et al. R NN S B NM

g
[85, 86] 2006 DP-Bind D LR, SVM S B+P NM
[87] 2007 DISIS D NN, SVM S B NM
[88] 2007 Hoetal. D SVM S B NM
[89, 90] 2006 RNABindR R NB S B NM
[91] 2008 Pprint R SVM S B+P NM
[92] 2008 PRINTR R SVM S B NM
[93] 2008 RISP R SVM s B+P NM

(o)

[94] 2008 RNAProB R SVM S B NM
[95] 2009 BindN-RF D RF S B+P NM

-Threader +

96 2009 DBD-Thread D TB S B+P NM

[97] 2009 DBindR D RF S B+P NM
rote
[98] 2009 P DNA D SVM S B NM
[76] 2009 SDCpred D NN s P NM
, iRa +

99, 100 2009 PiRaNhA R SVM S B+P NM
[101] 2010 BindN+ DR SVM S B+P NM

1 + 1S
[102] 2010 NAPS DR DT S B+P Di
[103] 2010 PRNA R RF S B+P NM

104 rote
[104] 2010 P RNA R SVM S B NM

105 2010 RBRpred R SVM S B NM

12

[106] 2010 RNA R LR S B NM

etaDBSite , NN, LR, RF,

[107] 2011 MetaDBSi D NB, NN, LR, RF, SVM S B NM
[108] 2011 PRBR R RF S B+P NM

re

77 2011 SRCpred R NN S P NM

1 11 ol and Han R VM B NM
[109] 20 Choi and S S

ang et al.

110 2011 Wang l R SVM S B NM

57 11 POT-Se R TB B NM
20 SPOT-Seq S
[111] 2012 DNABR D RF S B+P NM

11 1 meta R VM P NM
[112] 2012 2 S S

arget.

113 2013 TargetS D SVM S P NM
[114] 2014 Pan et al. R RF S B NM
[115] 2014 SPOT-Seq-DNA D TB S B NM
[116] 2014 SPOT-Seq-RNA R TB S B NM
[117] 2014 RNABindRplus R SVM, LR S B+P NM
[17] 2014 aaRNA R NN S B+4P NM
[118] 2015 RBRIdent R RF S B+P NM
[119] 2015 SNBRFinder DR SVM, TB S B+P NM
[120, 121] 2015 DisoRDPbind DR LR D B+P NM
[122] 2015 RBScore-SVM R SVM S B NM
[123] 2016 Dang et al D RF S P NM
[124] 2016 DQPred-DBR D SVM S B+P NM
[125] 2016 FastRNABindR R RF, SVM S P NM
[126] 2016 TargetDNA D SVM S B+P NM
[127] 2017 DRNApred DR LR s B+P Corr
[128] 2017 PRODNA D Sparse S P NM

Representation
[129] 2017 EL_PSSM-RT D RF, SVM S B NM
[130] 2018 PDRLGB D Light Gradient S B NM
Boosted DT

(Continued)
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Ref Year Name Target (D, R, Predictive Training Output (B, P, Cross-
published DR) architecture (PLM dataset (S, D, B+P) prediction
types used for S+D) (NM/Dis/-
feature extraction) Corr)
[131] 2018 funDNApred D Fuzzy Cognitive Map S P NM
[132] 2019 DNAPred D SVM S B+P NM
[32] 2019 hybridNAP DR LR S B+4P NM
[133] 2019 NucBind DR SVM, TB S B+P Dis
[134] 2019 PSPrint-seq R RF S B NM
[135] 2019 iProDNA- D [D] Convolutional S B+P NM
CapsNet NN, Feed forward NN
[61] 2020 ProNA2020 DR NN, SVM (ProtVec) S B4P NM
[136] 2020 EL_LSTM D [D] LSTM NN S B NM
[137] 2021 SPDH D SVM S P NM
[78] 2021 DNAgenie D LR, k-nearest S B+P Corr
neighbor, NB, RF,
SVM
[138] 2021 NCBRPred DR [D] Recurrent NN S B+P Corr
[139] 2021 bindEmbed21 DR [D] Convolutional S B+P NM
NN (ProtT5)
[140] 2022 MTDsite DR (D] S B Dis
Bidirectional-LSTM
NN
[141] 2022 DeepDISOBind DR [D] Convolutional D B+P Corr
NN
[142] 2022 PredDBR D [D] Convolutional S B NM
NN, NN
[58] 2022 DBPred D [D] Convolutional S B NM
NN
[79] 2022 TSNAPred DR [D] CapsNet, Light S B+4P Dis
Gradient Boosted DT,
NN
[143] 2022 iDRNA-ITF DR [D] NN, Bidirectional S B+4P Corr
gated recurrent NN
(CAN-NER)
[62] 2023 Pprint2 R [D] Convolutional S B NM
NN
[144] 2023 Guan et al. D [D] Transformer, S p NM
Convolutional NN
[145] 2023 ProRBR R RF s B+P NM
[146] 2023 HybridRN- R [D] Convolutional S+D B+P Corr
Abind NN, Recurrent NN,
RF
[147] 2023 GLMSite DR [D] Graph NN S B+P NM
(ProtTrans and
ESMFold)
[59] 2024 CLAPE-DB D [D] Convolutional S B+P NM
NN (ProtBERT)
[148] 2024 HybridDBR- D [D] Transformer, NN S+D B+P Corr
pred
[80] 2024 EPDRNA DR RF, k-nearest S B+P NM
neighbor, LR,
XGBoost
[149] 2024 DRBpred DR Light Gradient S B+P NM
Boosted DT
[60] 2024 MucLiPred DR [D] NN (BERT) S B+P NM
[150] 2024 ULDNA D [D] LSTM NN (ESM2 S B+P NM
and ProtTrans)
[151] 2024 SOFB DR [D] Convolutional S B NM
NN,
Bidirectional-LSTM
NN (NA Bert, ProtT5)
[152] 2024 GPSFun DR [D] Graph NN S B+4P NM

(ProtT5-XL-U50)

(Continued)
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Table 2. Continued

Ref Year Name Target (D, R, Predictive Training Output (B, P, Cross-
published DR) architecture (PLM dataset (S, D, B+P) prediction
types used for S+D) (NM/Dis/-
feature extraction) Corr)
[153] 2024 GPSite DR [D] Graph NN S B+P NM
(ProtTrans and
ESMFold)
[75] 2024 PDNApred D [D] Convolutional S B+P NM
NN, Bidirectional
Gated Recurrent
Unit NN (ESM2 and
ProtT5)
[74] 2024 DIRP D [D] Convolutional S B+P NM
NN (ESM2 and
ProtTrans)
[154] 2024 DeepDBS D [D] LSTM NN, RF S B+P NM
25 T
uDNA =RNA mDNA & RNA
20
72}
T
o
‘E
o 15
£
[T
(<}
]
210
£
=]
4
5
0

2004-2005 2006-2007 2008-2009 2010-2011 2012-2013 2014-2015 2016-2017 2018-2019 2020-2021 2022-2024

2N N

Nar of publication /\

7N

7

)

i

=~
=)

) o~ o TN @

2 ~||ow o

B £ = seg| |22 52R| |E=
o Q = = . = —
=6 3 = ey So|llss5a T O™
¢ & C ~ Soug Sse 883 o | 22§ Semy
0 og m © T L 3w 00 = B o soll§T 9 3558
= < 05 =2 ® T 2| E o T 5
ogo a t 229 £ s c o = a < =30} N
= =1 [PR=Ro R T g N Qg < cZllc3 TE LT
595 & 5 N P S =90 - 1 = =0 D =z s Og S
SR s =2 2a2d 53 ) cdll2e% =28 E
sN s s Z 8L 5™ 5€E S sell o= fF 520c38
Sv88| |BE SE L% sca| |s82| [29f 53] |85¢:2
223% 3@ 0239 b= 023 agfleg c 53 0g
9g 85 |22 ETSS o058 [Ecg| [82]ESS| |2ls=
Sp8e Qg =829 o_-o% =0 0 sQllEg o 8230 E
- N 5 - Y 3<% =5 a "‘59 =~ Olldo © — O 59
om0 g @ @ [ °g8 2= oallsc s © 33>
=n = =aq =0 ZG =2/ =0 g = flse%R =S OF
(g =) L tox?2 LT = oo S||LET L®o=

Figure 1. Timeline of the release of the 87 sequence-based nucleic acid binding residue predictors. The color-coded bars represent methods that target
prediction of DBRs (blue), RBRs (orange), and both DBRs and RBRs (green). The major milestones are shown at the bottom in the blue-bordered boxes.

structure-based versus disorder-based annotations of binding
in their training datasets, and cross-predictions between DBRs
and RBRs.

Historical overview

Figure 11illustrates the timeline of the release of the 87 predictors,
where we highlighted eight major milestones. The first methods
that predict exclusively DBRs (DBS-pred) or RBRs (predictor by
Jeong et al.) were published in 2004 [26, 27]. Since then, at least

one method was released each year. DBS-pred [26] is the first
predictor of DBRs that was released as a web server. This con-
tribution introduced a simple predictive architecture in the form
of a shallow feed forward neural network (NN) and defined how
to collect datasets with annotations of DBRs, which were used to
train and test this predictive model. At the same time, Jeong et al.
published two methods, one in 2004 [27] and another in 2006 [84],
but neither predictor was released for public use (no code and no
web server). RNABIndR that was published in 2007 [89], is the first
predictor of RBRs that is available as a web server.
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As another milestone (Fig. 1), BindN that was published in 2006
[82], is the first method that predicts both DBRs and RBRs. Except
for this aspect, BindN arguably did not contribute to moving other
aspects of this field forward as it utilizes a relatively simple design,
which consists of a classical support vector machine (SVM) model
that uses just three biochemical features of amino acids as the
input (pKa, hydrophobicity, and molecular mass). This simplicity
motivated the subsequent release of an improved BindN+ version
in 2010 [101], which was designed to utilize more sophisticated
inputs that rely on evolutionary information. By 2009, 20 methods
were released and yet the issue of the cross-predictions between
DBRs and RBRs did not surface. Authors of NAPS [102], a tool
that predicts DBRs and RBRs, were the first to briefly discuss
this concern but they did not address it in their design. It took
several more years until 2016 when the cross-prediction was
quantified and compared across predictors in the comparative
study by Yan et al. [33]. This study motivated the development
and release in 2017 of DRNApred [127], which was designed to
accurately predict and discriminate between DBRs and RBRs (i.e.
minimize the cross-predictions). The main innovation that was
introduced in DRNApred is a two-layered architecture, where
predictions of DBRs and RBRs produced by the first layer are
input together into the second predictive layer that refines
them to minimize cross-predictions. Importantly, until 2015
all the methods were developed using the structure-annotated
training data. As a major milestone (Fig. 1), DisoRDPbind that
was published in 2015 [120], is the first tool that was designed
using the disorder-annotated training and test datasets, extending
the DBR/RBR annotation protocols that were introduced in mid
2000s.

The predictive architectures of the methods, see Table 2, are
predominantly based on ML algorithms, with a just few excep-
tions where template-based approaches are used [57, 96, 115,
116]. For example, SNBRFinder [119] and NucBind [133] utilize a
template-based approach to predict protein structure from the
input sequence, which is followed by the application of ML-
generated models, particularly SVM, that identify putative DBRs
and RBRs from the predicted structures. Significant majority of
the predictors of DBRs and RBRs rely on shallow ML algorithms.
Many different shallow ML algorithms were tried including the
most widely used SVM, which was applied by itself in 19 predictors
[82,88,91-94, 98, 99, 101, 104, 105, 109, 110, 113, 122, 124, 126, 132,
137] and in combination with some other algorithms in additional
9 predictors [61, 78, 85, 87, 107, 117, 119, 129, 133]. The next two
popular shallow ML algorithms are random forest (RF), which was
applied in 14 methods [78, 80, 95, 97, 103, 108, 111, 114, 118, 123,
125,129, 145, 146], and shallow NN that were used in 10 methods
[17, 26, 27,61, 76, 77, 81, 84, 87, 107]. Some of the other shallow
ML algorithms include logistic regression (LR) [78, 80, 85, 107, 117,
120, 121, 127], naive Bayes (NB) [78, 83, 89, 107], linear regression
[32, 106] and decision trees (DT) [61, 102, 130, 149]. Interestingly,
we observed a substantial increase in the use of deep NNs (DNNs)
over the past 5 years, where 24 of the 34 predictors rely on the
DNN models. Released in 2019, iProDNA-CapsNet [135] is the first
method that applied the DNN model, marking another major
milestone (Fig. 1). The main innovation behind this predictor was
the formulation and training of the predictive model that involves
two two-dimensional convolutional layers connected to a fully
connected feed forward layer. However, iProDNA-CapsNet relies
on rather generic inputs, in the form of evolutionary information
that was previously utilized to design several past predictors.
Analysis of Table 2 reveals that the convolutional NNs are the
most widely used architecture of DNNs among the predictors of

RBRs and DBRs [58, 59, 62, 74, 75, 135, 139, 141, 142, 144, 146, 151],
although several other architectures that include unidirectional
and bidirectional recurrent networks, transformers, and graph
networks were also used. In addition to the development of the
DNN models, we identified a recent trend of using pre-trained
protein language models (PLMs) as feature/input extraction tools
[59-61, 74, 75, 139, 147, 150-153]. Simply put, PLMs process an
input protein sequence in a way similar to processing a sen-
tence in human language, where functional motifs and domains
of the protein act as words in the sentence [155], producing a
vector of numerical features for each amino acid. PLMs have
been used to solve several bioinformatics problems and litera-
ture shows that their use tends to lead to improvements in the
predictive performance of models [156, 157]. In the context of
the prediction of nucleic acid-binding residues, the ProNA2020
method in 2020 [61] was the first to use PLM called ProtVec
[158] for the feature/input extraction, denoting another milestone
(Fig. 1). Henceforth, eleven other predictors including bindEm-
bed21 (PLM: ProtTrans-ProtT5 [159]) [139], iDRNA-ITF (PLM: CAN-
NER [160]) [143], CLAPE-DB (PLM: ProtTrans-ProtBERT [159]) [59],
MucLiPred (PLM: ProtTrans-ProtBERT [159]) [60], GLMSite (PLM:
ProtTrans [159], ESMFold [161]) [147], ULDNA (PLM: ESM2 [161],
ESM-MSA [162] and ProtTrans [159]) [150], SOFB (PLM: ProtTrans-
ProtT5 [159]) [151], GPSFun (PLM: ProtTrans- ProtT5-XL-U50 [159])
[152], GPSite (PLM: ProtTrans [159], ESMFold [161]) [153], PDNApred
(PLM: ProtTrans-ProtT5 [159] and ESM2 [161]) [75] and DIRP (PLM:
ProtTrans [159] and ESM2 [161]) [74] use PLMs for the feature
extraction. The latest milestone was the development and release
of HybridRNAbind in 2023 [146], which is the first tool that was
trained using both structure- and disorder-annotated training
data, bridging the two annotations types. Additionally, this RBR
predictor also minimizes cross-prediction between RBRs and DBRs
[146]. Soon after, HybridDBRpred, which targets prediction of DBRs
and similarly combines the structure- and disorder-annotated
training data, was published [148].

The above historical overview (Fig. 1) suggests that the timeline
can be divided into two distinct decades, each defined by a num-
ber of unique characteristics. The first decade spans the period
between 2004 and 2014, and the second decade includes years
from 2014 onwards. The major focus during the first decade was
on developing predictors that target either DBRs or RBRs, resulting
in 16 DBR predictors, 17 RBR predictors and just three tools that
predict both DBRs and RBRs. Moreover, these methods rely on rela-
tively simple shallow ML algorithms and they were trained exclu-
sively on the structure-annotated proteins. The second decade is
a more dynamic period where five major milestones took place
(Fig. 1). Although many predictors of either DBRs or RBRs were
still developed, 19 methods that target both types of nucleic acid-
binding residues were released in this period including 6 out
of the 12 methods published in 2024 (Table 1). Furthermore, we
observed a big shift in the choice of predictive architectures that
increasingly included deep ML models and modern PLMs for the
feature/input extraction, with the underlying objective to improve
predictive performance. The second decade also brought consid-
eration to the cross-predictions between DBRs and RBRs and pre-
dicting both structure- and disorder-annotated interactions. The
former likely stems from the increased focus on predicting both
types of interactions, which inevitably brings the matter of evalu-
ating whether these predictions overlap. Altogether, the second
decade featured development of more sophisticated predictive
models that attempted to address the challenging issues affecting
quality (cross-predictions) and scope (disorder- and structure-
annotated) of DBRs and RBRs predictions.
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Availability and impact

An important aspect of computational predictors is their accessi-
bility to users. Supplementary Table S1 provides details concern-
ing the mode of availability (a web server (WS), a standalone code
(SC), both or neither, as declared in the corresponding publica-
tion) and their current availability (whether or not the declared
mode is currently available). We verified the availability of these
implementations in November 2024 when we collected these
data by checking the web links from the reference articles. This
led to three outcomes: available (we list the corresponding links
in Supplementary Table S1), not working (links in the original
reference did not work as of November 2024), and never available
(authors did not make their tools available in the original refer-
ence).

The two modes of availability, WS and SC, differ in multiple
aspects. Users can access WSs via a web browser and these
predictions are computed on the server side, typically without
installing any software on the user’s side. This makes a WS an
arguably easier to use option, however, each prediction request is
usually limited to a single protein or a small batch of proteins
and the runtime might be affected by the ongoing server load.
On the other hand, SC has to be downloaded and installed by the
user and the computations are performed on the user’s hardware.
SC can be challenging to install, requiring users to install one or
more third-party applications and have specific hardware and/or
software infrastructure. However, SC offers certain advantages
when compared to WS, including ability to be embed into other
bicinformatics pipelines and to generate predictions at a large
scale. We found that 75 out of the 87 listed methods provided
at least one mode of availability at the time of their publication
(Supplementary Table S1). Out of these 75 methods, 56 (77%) were
originally released as WSs, either solely or along with SC, making
WSs the most common mode of availability.

Though SC was provided for the first time in 2010 by the
authors of PRNA [103], this option was rather uncommon until
recently. Out of the 28 methods that were published with SC, 21
were released in the past 5 years. Moreover, 9 of these 21 methods
were originally published with both WS and SC, which arguably
broadens the utility of the methods when compared to tools that
offer one mode of availability. However, as of November 2024 only
35 out of the 75 originally available methods have a working
WS or SC; the links for the other 40 no longer work. Among the
35 currently available methods, 12 are only WS, 13 are only SC,
and 10 are both WS and SC. The overall availability rate for the
sequence-based predictors of RBRs and DBRs is at 40% (35 out of
87), which is same as the 40% rate for the predictors of protein-
binding residues [71] and lower than the recently reported 71%
rate for the predictors of the disordered binding residues [40].

We also analyzed the impact or popularity of the sequence-
based predictors of RBRs and DBRs based on their citations,
which we collected from the Google Scholar in November 2024
(Supplementary Table S1). While we collected the total number
of citations for each method, we relied on the corresponding
annual citation rates (i.e. total citations divided by the number
of years since publication) which are more appropriate to com-
pare between methods. We also excluded the methods which are
published from 2023 onwards, since they are too new to reliably
measure their citations.

We found that methods that did not offer either mode of avail-
ability (i.e.not made available) are cited substantially less (median
annual citations =3) compared to the tools which originally had
at least one mode of availability (median annual citations=8).
These median annual citation counts are much larger for the

methods that have currently working WS and/or SC (median
annual citations =13). Among these working tools, the tools with
only working WS receive the most citations (median annual cita-
tions =15), closely followed by the methods with both WS and
SC (median annual citations=14). Moreover, methods that are
available solely as SC are comparatively less cited (median annual
citations=5). We hypothesize that the higher citations for the
methods with working WSs are because this mode of availability is
accessible to a much broader group of users, including those who
have limited technical expertise and computational resources. On
the other hand, methods that were not made available secure
relatively poor citation numbers, which suggests that availability
strongly affects the rate of use (citations). Moreover, we also
observed that methods which were originally available but which
currently do not work obtain much fewer citations when con-
trasted against tools with working WS and/or SC (median annual
citations = 8 versus 13, respectively). This implies that availability
of methods should be maintained after their release, or otherwise
their impact is much diminished.

Lastly, we briefly comment on a few most impactful/cited
methods. BindN [82], the first tool that predicts both DNA- and
RNA-binding residues, has the highest total citations of 495
(Supplementary Table S1). Since then, this tool has undergone
two upgrades [95, 101], with the most recent version, BindN+
[101], released in 2010, which received over 200 citations to date.
DBS-pred [26], predictor of DBRs, is the only other tool that has
total citations at over 400. Among predictors of RBRs, Pprint [91]
with an overall citations of 322, is the most cited. In fact, Pprint
along with DP-Bind [85] (overall citations of 270) are the only two
methods that have maintained their implementations for over
10 years, which likely contributed to their high citation counts.
There are 21 methods which have been cited >100 times and
hybridNAP [32], which was published in 2019, is the most recent
method to collect such high number of citations.

We also highlight a few recently published applications of these
highly cited tools in biological contexts to further substantiate
their impact. Multiple predictors including BindN [82], BindN+
[101] and metaDBsite [107] were used in tandem to characterize
the DSrC protein from sulfur oxidizing bacterium Allochromatium
vinosum [163]. Similarly, DRNApred [127], Pprint [91] and RNAbind-
Plus [117] were applied to study the GRP20 protein in the context
of flower development [164], while Pprint and hybridNAP [32]
were applied to investigate roles of the SIX1 protein in the iron
metabolism associated with progression of endometrial cancer
[165]. These predictors were also used individually, with an exam-
ple of DRNApred [127] that was recently applied to characterize
proteins encoded by a viral mycobacteriophage gene [166] and
CRESS DNA viruses [167]. Methods that have low runtimes were
used to analyze entire proteomes. For instance, DisoRDPbind [120]
was used to investigate length variation of short tandem repeats
in A. thaliana [168], abundance and function of intrinsic disorder in
the polyomavirus [169], and functions of the RNA-binding proteins
in human [48]. DisoRDPbind together with DRNAPred and Pprint
were applied to analyze the COVID-19 proteome [170]. Moreover,
these tools were used to generate predictions at the scale of mul-
tiple proteomes and these data are conveniently available to the
users via specialized databases. For instance, GPSite’s predictions
for the entire Swiss-Prot database are available in the GPSiteDB
database [153], while DisoRDPbind’s predictions for 273 reference
proteomes, which cover the popular and model organisms, can be
conveniently obtained from the DescribePROT database [171, 172].

To summarize, our analysis revealed a significant amount of
interest in the area of the nucleic acid binding residue prediction
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Figure 2. Relation between the publication year and predictive performance for the corresponding methods that was measured on the same benchmark
dataset of 46 DNA-binding proteins that was introduced and applied in refs. [58-60, 74, 75] (top panel) and the same benchmark dataset of the 161 RNA-
binding proteins that was used in refs. [60, 62] (bottom panel). Hollow markers denote methods that predict DBRs (top panel) or RBRs (bottom panel) while
solid markers are for predictors of DRBs and RBRs (both panels). The primary/left y-axis quantifies the AUC values (blue markers) and the secondary/right
y-axis gives the MCC values (green markers). The color-coded dashed lines are the moving averages of the corresponding metrics calculated over three
consecutive methods based on the publication years. The numerical values of AUCs and MCCs are given in the Supplementary Tables S2 (results for

the top panel) and S3 (results for the bottom panel).

(i.e. the corresponding predictors were collectively cited over 6600
times and 21 of them were cited over 100 times), where methods
with working WSs are the most cited/popular. These observations
are in good agreement with a recent analysis for a broader collec-
tion of predictors of protein structure and function [173].

Predictive performance

We summarized predictive performance of the current predictors
and analyzed how it evolved over time in Fig. 2. We compared
performance of 16 predictors of DBRs and 10 predictors of RBRs.
We used the same test datasets and performance metric for each
of the two collections of methods to ensure that results can be
directly compared across the corresponding tools. We relied on
popular and recently developed test datasets that were intro-
duced in refs. [58, 62]. The dataset for the assessment of the DBR
predictors includes 46 DNA-binding proteins and was used in refs.
[58-60, 74, 75], while the other dataset covers 161 RNA-binding
proteins and was used in refs. [60, 62]. Figure 2 reports AUC that
evaluates quality of the putative propensity scores and MCC that
quantifies quality of the binary state predictions. Further details
can be found in the Materials and Methods section.

Figure 2 visualizes relations between predictive performance
of the 20 predictors and their corresponding publication time.

The performance of both DBR and RBR predictors varies widely
between modest levels (AUC of ~0.6; MCC of ~0.2) and high
levels (AUC > 0.80; MCC > 0.4), with an overall trend of improving
with passing years. We computed moving average-based trends
by averaging AUC and MCC scores over a window of three chrono-
logically consecutive methods (dashed lines in Fig. 2). From these
trends, we found that earlier methods secure similar and rela-
tively modest performance with an average AUC <0.7 and MCC
<0.2. The performance trends upwards starting around 2020, with
the recent methods having AUC well >0.8 and MCC of ~0.5. The
best-performing predictors of DBRs are DIPR (2024) with AUC of
0.89 and MCC of 0.49 and PDNApred (2024) with AUC of 0.90
and MCC of 0.49; Supplementary Table S2. The best predictors
of RBRs are MucLiPred (2024) with AUC of 0.84 and MCC of
0.43 and Pprint2 (2023) which secures AUC of 0.82 and MCC of
0.49; Supplementary Table S3. This demonstrates that the most
accurate predictions of RBRs and DRBs are produced with similar
levels of performance, with predictors of DBRs performing slightly
better.

We also analyzed relation between the AUC and MCC scores
and found that these scores are inconsistent for some meth-
ods, i.e. they should roughly follow a linear relation while some
results deviate from this trend (Supplementary Fig. S1). MCC is a
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threshold-dependent measure that is derived from the predicted
propensities for binding while AUC directly evaluates the propen-
sities without the use of a threshold. The articles that presented
these results used a ‘default’ threshold of 0.5 to generate the
binary predictions for the calculation of MCC. Setting the same
threshold value fails to account for the differences in the ranges
and distributions of the propensities produced by different meth-
ods, leading to MCC values that are computed at different rates
of positive (binding) to negative (non-binding) predictions. This
could be the reason for the observed inconsistencies. A better
strategy is to apply thresholds that standardize the predictions
of different methods to a consistent prediction rate (say 5% or
10% FPR). However, the overall correlations between MCC and AUC
metrics are high, with the Pearson’s correlation coefficient of 0.95
and 0.87 for the DBR and the RBR predictors, respectively.

As we discuss in the Historical Overview section, recent meth-
ods often rely on the DL-based models when compared with
older methods that primarily use shallow ML-based algorithms
(Table 2). Correspondingly, we investigated whether the recent
improvements in the predictive importance could be attributed
to the use of the more sophisticated predictive models. We lim-
ited this analysis to the predictors that were published since
2019 when the first DL-based predictor was released. Using the
corresponding results from Supplementary Tables S2 and S3, we
found that the DL-based DBR predictors have substantially higher
predictive performance than the shallow ML-based predictors
that were published in the same period of time, with median
AUC =0.86 versus 0.72 and median MCC =0.40 versus 0.18. Similar
observations are true for the RBR predictors, where the DL-based
methods secure median AUC =0.80 versus 0.68 for the other group
of predictors, and MCC=0.31 versus 0.10, respectively. Recent
studies in related areas including protein function prediction [174,
175] and intrinsic disorder prediction [176] similarly showed that
DL-based predictive models substantially outperform the shallow
ML-based models. Our analysis reveals that the same is true for
the prediction of the nucleic acid binding residues.

We also investigated whether similar patterns of differences
can be observed when comparing recently released (since
2019) predictors that use PLMs for the feature/input extraction
versus those that do not utilize PLMs. Based on the data in
Supplementary Tables S2 and S3, we found that predictors of
DBRs that use PLMs secure median AUC=0.87 and median
MCC=0.42 versus median AUC=0.72 and median MCC=0.18 for
the methods that do not use PLMs. For the predictors of RBRs, we
similarly observed that the PLM-utilizing methods generate on
average more accurate predictions than the other methods, with
median AUC=0.77 versus 0.72 and median MCC=0.19 versus
0.14, respectively. These results suggest that the application of
PLMs produces improvements in the predictive performance
for the predictors that cover both types of binding residues.
Our observation is also supported by an empirical analysis that
demonstrated that the use of the ProtT5 PLM produces higher
levels of accuracy than the use of the popular multiple sequence
alignment-based inputs for equivalent models that predict DBRs
and RBRs [139].

However, we note a limitation of our analysis. The predictive
performance can be impacted by sequence similarity between
the training and test proteins. In principle, predictors should be
tested on the test proteins that share low similarity (typically
<30%) with the training proteins. Several of the recent predic-
tors in the above analysis were tested under this low similarity
regime [58-60, 62, 74, 75], including DBpred, MucLiPred, CLAPE-
DB, Pprint2, PDNApred, and DIRP. The training datasets of the

other methods may share higher levels of similarity, and thus their
reported predictive performance might be inflated. However, this
does not affect our observations since the methods for which the
performance was tested on the low similarity test proteins are the
most accurate. Additionally, the two test datasets are structure-
annotated, which means that this assessment does not reflect
the performance on the disorder-annotated protein-nucleic acids
interactions. We discuss this issue in a following section.

Structure-annotated and disorder-annotated
training datasets

We divided the 87 predictors into two groups based on their
training data: trained from the structure-annotated interactions
(structure-trained) versus trained from the disorder-annotated
interactions (disorder-trained). The ‘Training dataset’ column
in Table 2 shows the type of interaction annotations used for
training each method, where ‘S’ represents structure-annotated
datasets and ‘D’ represents disorder-annotated datasets. The
binding annotations for these two types of training datasets were
obtained from two distinct sources. The structure-annotated
binding residues were collected from the structures of the
protein-nucleic acids complexes which are extracted directly
from the PDB database [65, 66] or indirectly from the PDB-derived
BioLip database [63, 64]. These annotations rely on certain criteria,
such as distance between interacting atoms and number of
atoms interacting per residue, to identify binding versus non-
binding residues. On the other hand, the disorder-annotated
interactions were derived from the DisProt database [177, 178],
the largest repository of experimentally validated intrinsically
disordered proteins. These annotations concern binding sequence
regions rather than specific binding residues, as is the case
for the structure-based annotations. In other words, disorder-
annotated training datasets include disordered regions that are
involved in binding, assuming (imprecisely) that all residues
in the corresponding region are binding. The lack of the more
precise annotation of the corresponding binding residues in
the disordered regions is a result of an inherent difficulty in
capturing these details without the structure. This limitation was
discussed in the context of the recent community assessments of
predictions of disordered binding regions [70, 179].

Table 2 shows that large majority of methods, 83 out of 87, was
developed using solely the structure-annotated training datasets.
On the other hand, DisoRDPbind [120, 121] and DeepDISOBind
[141] are the two methods that are exclusively trained on
the disorder-annotated data (Table 2). Both methods provide
prediction of DBRs and RBRs alongside prediction of protein-
binding residues. The rather low number of tools trained from
the disorder-annotated interactions can be attributed to the fact
that the corresponding data was released relatively recently, in
early 2010s [180-182]. Interestingly, two recent studies reported
that the structure-trained methods perform well on the structure-
annotated proteins, whereas they secure poor to modest perfor-
mance on the disorder-annotated proteins and vice versa [146,
148]. For example, when considering the predictors of RBRs [146],
the structure-trained MTDsite performs the best on the structure-
annotated interactions with AUC=0.76, whereas, its AUC drops
to 0.60 for the disorder-annotated interactions [146]. Similarly,
the disorder-trained DeepDISOBind performs best on disorder-
annotated interactions with AUC=0.72, whereas, it secures a
much lower AUC of 0.64 for the structure-annotated interactions
[146]. Similar observations were published for the predictors
of DBRs [148]. The fact that the ground truth annotations of
binding for the disorder-annotated versus structure-annotated
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datasets are different (residues versus regions) and come from
different source databases may explain the dichotomy in the
method development efforts, i.e. methods are typically designed
using either structure-annotated or disorder-annotated training
sets and consequently they do not work equally well across
the two annotation types. Similar observation of the dichotomy
of structure-trained versus disorder-trained predictions was
reported for the sequence-based predictors of the protein-binding
residues [183].

To this end, two recently published methods, HybridRNAbind
[146] and HybridDBRpred [148], were designed to address this
dichotomy by targeting both types of annotations, i.e. they are
trained and tested on datasets composed of both types of annota-
tions. HybridRNAbind that predicts RBRs performs relatively well
with the AUC of 0.76 on the structure-annotated interactions and
AUC of 0.72 for the disorder-annotated interactions [146]. Simi-
larly, HybridDBRpred that targets prediction of DBRs secures AUCs
of 0.83 and 0.77 for the structure-annotated and the disorder-
annotated interactions, respectively [148]. The development of
these two methods shows that it is possible to build predictors
that work well across the two annotation types, and suggests that
these efforts should continue.

Cross-prediction between DBRs and RBRs

DNA and RNA share relatively high levels of similarity in their
physicochemical nature, as both are made up of a monomeric
unit having a nitrogenous base and a sugar-phosphate group.
Given their resemblance at the molecular level, it is reasonable to
expect that predictors of nucleic aci- binding residues may face
difficulties to accurately discriminate between DBRs and RBRs.
Besides accurately predicting putative binding residues, these
methods also should be free from the cross-predictions where
DBRs are confused for RBRs and vice versa. High levels of cross-
predictions would mean that the corresponding methods predict
residues that interact with nucleic acids in the type agnostic
manner.

Two early surveys conducted empirical assessments of cross-
predictions for several predictors of DBRs and RBRs, covering
methods that were published before 2014 [33, 41]. These studies
reported similar findings suggesting that none of these older
methods accurately discriminates between DBRs and RBRs. Miao
et al. found that several accurate predictors of RBRs also obtain
high AUC scores when tested on predicting DBRs in the DNA-
binding proteins, which implies that these methods predict
binding residues irrespective of whether they bind DNA or RNA
[41]. While they also show that some methods, such as PRNA,
RNABindRPlus, RBScore-SVM, discriminate between DBRs and
RBRs, the predictive performance of these tools on the RNA-
binding datasets is low, with AUCs ~0.5 [41]. The study by Yan
et al. quantified cross-predictions by measuring the fraction
of DBRs (or RBRs) that are mis-predicted as RBRs (or DBRs)
[33]. They found that among the RBR predictors, RNABindR
has the highest cross-prediction rate, incorrectly classifying
>60% of DBRs as RBRs while BindN+ has the lowest rate, at
~45%. For the DBR predictors, DBS-PSSM generates the most
cross-predictions, with 44% RBRs predicted as DBRs. A positive
exception is ProteDNA, predictor of DBRs, which accurately
distinguishes DBRs from RBRs but has low sensitivity for DBRs,
since it was designed to specifically predict DBRs in transcription
factors [33]. These assessments emphasize the need to develop
new predictors that minimize the cross-predictions between DNA
and RNA. They motivated the release of DRNApred [127], which
is the first method that was specifically designed to restrict

cross-predictions. Consequently, a subsequent survey of the RBR
predictors shows that DRNApred performs the best in terms of
the cross-predictions [34]. However, these comparative studies are
relatively old and do not cover recently published predictors [33,
34, 41]. We note that authors of several newer methods, such as
NCBRpred [138], iDRNA-ITF [143], DNAgenie [78], DeepDISOBind
[141], MTDsite [140], HybridDBRpred [148] and HybridRNAbind
[146], evaluated cross-predictions and designed their models to
minimize them. However, these studies considered/evaluated
relatively few methods and used different datasets and metrics,
constraining comparative analysis to a rather limited number of
recent tools. Moreover, many recently published methods that
include seven methods from 2024 and several that predict both
DBRs and RBRs [60-62, 74, 75, 139, 147, 149, 151-154] overlooked
this crucial aspect. To this end, we note that reports of predictive
performance that do not account for the cross-predictions should
be interpreted with caution.

Discussion

Sequence-based prediction of nucleic acid-binding residues is a
mature and an active research area. We identified nearly 90 pre-
dictors that were published over the last two decades, including
29 that were published over the past 5 years and 12 that were
released in 2024. We discussed multiple practical characteristics
of these methods including their availability and impact, key
features of their predictive models, and major aspects related to
their training and assessment. We observed that the last decade
produced a noteworthy progress in terms of improvements in
the predictive quality, use of sophisticated predictive models and
PLMs, and advancements on multiple vital and challenging issues,
such as targeting of the two distinct annotation types (structure-
based versus disorder-based) and cross-predictions.

Our analysis of the availability reveals that predictors that
have a web server or a standalone code are cited substantially
more than tools without implementations. Methods with the
arguably easier to use web servers attract more citations when
compared to the tools with the code. Furthermore, we found
that methods that have implementations that are working and
are maintained over the long term (in particular working and
maintained web server) secure much higher citation counts
compared to tools with originally available implementations that
currently do not work. In the context of predictive models, the
recently released predictors increasingly rely on modern deep
network architectures. Our analysis revealed that these models
outperform the previously-dominant shallow machine-learning
algorithms, which is in line with results of similar analyses in
related area of protein structure and function prediction [174-
176]. We also stressed the impact of training on two distinct types
of datasets: structure- versus disorder-annotated. Majority of
predictors were trained on the structure-annotated interactions
and they perform poorly when tested on the disorder-annotated
interactions. Similarly, the predictors trained on the disorder-
annotated datasets perform rather poorly on the structure-
annotated interactions. The underlying dichotomy of the
predictive models and their inability to crossover to the other type
of annotations mirrors the prediction of protein-binding residues
[183]. This motivated the development of the HybridDBRpred
and HybridRNAbind methods that perform relatively well for
both structure and disorder-annotated interactions. However,
some protein—nucleic acids interactions are driven by the
assembly of protein chains, such as the ones found in the
ribosomal complexes [184, 185]. The sequence-based methods
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that are trained on monomeric protein chains may underper-
form for these proteins, particularly when compared with the
structure-based methods that use the corresponding complexes
for the training. Finally, we indicated that cross-predictions
between DBRs and RBRs is a crucial aspect of empirical
assessments of predictive performance, and yet this aspect
was not evaluated for many of the recently published tools.
Consequently, while some of the recently released predictors were
shown to produce accurate results (AUC> 0.8 and MCC > 0.4;
Supplementary Tables S2 and S3), users should also quantify
and analyze their cross-prediction rates to formulate a more
holistic picture of their performance. In general, users should
avoid predictors with high cross-prediction rates since this means
that their predictions are nucleic acids type agnostic. The binding
residues that are predicted by the accurate sequence-based tools
can be used to support subsequent modelling of the protein-
nucleic acids interactions. In particular, tools that specialize
in modelling and predicting binding specificity for the protein—
nucleic acids complexes [18, 186-190] would likely benefit from
the knowledge where a given DNA or RNA binds on the protein
surface. While some of these tools target specific types of proteins,
such as transcription factors [186, 188, 190], other tools can be
applied to a more generic class of nucleic acid-binding proteins
[18, 187, 189].

Our analysis motivates several considerations for future work.
Many of the recently released predictors of RBRs and DBRs utilize
PLMs to derive inputs to the predictive models, with ProtT5 and
ProtBERT from the ProtTrans project [159] being the common
selections. Our empirical analysis suggests that the use of PLMs
leads to substantial improvements in predictive performance for
predictors of both DBRs and RBRs, which is based on their overall
higher AUC and MCC values when compared to the predictors that
do not utilize PLMs. However, PLMs used by the current predictors
were produced using generic collections of protein sequences
while several PLMs that were designed for specific types/classes
of proteins were released in recent years. For example, IDP-BERT
was designed to capture characteristics of intrinsically disordered
proteins [191]; ProGen was built from sequences of five families of
lysozymes [192]; and IgLM was trained using antibody sequences
[193]. We believe that similar efforts geared towards developing
and using PLMs that target nucleic acid-binding proteins should
drive further improvements in accuracy for the predictors of DBRs
and RBRs. As a first step in this direction, the authors of the
SOFB predictor adopted the generic ProtT5 PLM to make it more
suitable for the recognition of nucleic acid-binding residues, and
named this model NABert [151]. Moreover, structural and func-
tional aspects of proteins are typically conserved in their amino
acid sequences. Consequently, evolutionary profiles generated
using protein sequence databases are commonly used to predict
nucleic acids binding residues [62, 74, 78, 81, 86, 88, 91, 92, 94,
101, 129, 133, 153] and in related areas, such as the prediction
of secondary structures [194-196], and intrinsic disorder [40, 197-
199]. A few studies have pointed to the impact of the quality of
the evolutionary profile on the predictive performance, which in
turns stem from the size and quality of the underlying sequence
alignment databases [81, 200]. These considerations offer addi-
tional opportunities to improve predictive performance of future
RBRs and DBRs predictors.

Another important consideration concerns the ability of cur-
rent and future predictors to accurately discriminate between
DBRs and RBRs. The authors of future methods should measure
and comparatively assess cross-predictions and design their mod-
els to minimize them. While in same aspects DNA and RNA are

relatively similar, they are distinct in the structures of their bind-
ing interfaces [201, 202]. The w-stacking interactions between the
aromatic amino acids and the nucleobases or sugar moieties of
DNA and RNA play vital role in protein-nucleic acids recognition
[203]. Previous studies highlighted differences between stacking
interactions with DNA and RNA in terms of their rate of occur-
rences and preferences of amino acids with respective nucle-
obases [204, 205]. These fine details, which are typically extracted
from 3D structures of protein-nucleic acids complexes, could
be perhaps approximated from protein sequences or sequence-
predicted protein structures, providing a way to improve the abil-
ity to distinguish between DBRs and RBRs. Moreover, future com-
parative assessments should cover the cross-prediction aspect
to reveal which current methods accurately identify DNA versus
RNA-binding residues and which are nucleic acids type agnostic.
The last such study was published in 2020 [34] and is relative out-
dated given the large number of methods that were released sub-
sequently. Furthermore, these assessments should cover cross-
predictions between DBR and RBRs and also between DBRs/R-
BRs and residues that interact with other types of ligands, such
as proteins, peptides and small molecules. Similar evaluations
were done recently in the context of developing predictors of the
protein-binding residues [206].

We also emphasize the substantial impact of ensuring
sustained/long-term availability of web servers for the predictors
of RBRs and DBRs. The current 40% availability rate should be
improved to match levels in other areas, such as the 71% rate
for the intrinsic disorder predictors [40]. As shown in a recent
study [173] and our analysis, this is likely to increase their
scientific impact that is indirectly measured by their citation
rates. This can be accomplished by requiring the commitment
to support web servers for an extended period of time at the
point of publication, which would benefit both the developers and
users.

Lastly, the structures of the protein-nucleic acids complexes
are useful to investigate atomic level details of these interac-
tions. They can be predicted when the native structures are
unavailable, which is relatively common. Many such predictors
are available including several docking-based tools [207-210]. The
recently released Flex-LZerD that considers flexibility of the pro-
tein upon docking to nucleic acids [211], partly addresses predic-
tions for the disordered binding regions. The release of AlphaFold3
that predicts structures of protein-ligand complexes, where lig-
ands include proteins, nucleic acids, small molecules and ions
[212], is also notable. However, AlphaFold3 authors note that
their model generates ‘spurious structural order (hallucinations) in
disordered regions’ [212], which is a major drawback in the context
of prediction of nucleic acid-binding residues that frequently
reside in the disordered regions [46, 47, 49-51]. Moreover, these
methods can be applied only when the structure of the nucleic
acid is known, in contrast to the tools that we review which make
predictions solely from the protein sequences.

Key Points
e Eighty-seven predictors of nucleic acid-binding residues
in protein sequences were developed in the last two
decades
e Machine learning is the primary approach to develop
these predictors
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e Recent use of deep learning and protein language mod-
els resulted in substantial gains in predictive perfor-
mance

e Cross-predictions between RNA-binding and DNA-
binding residues are a significant challenge

e Predictors with working web servers enjoy high citation
rates, motivating development and long-term mainte-
nance of web servers

Supplementary data

Supplementary data is available at Briefings in Bioinformatics
online.
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