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Introduction

Multi-ligand binding residues (MLBRs) are
defined as amino acids in protein sequences that
interact with multiple different types of ligands, i.e.,
different small molecules, peptides, proteins, DNA,

RNA and/or lipids. The ability to bind multiple
ligands in the same site can be explained by the
existence of populations of different protein
conformers in solution.1 In the presence of a speci-
fic ligand, one of these conformations becomes
energetically more favorable and the resulting
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Abstract

Multi-ligand binding residues (MLBRs) are amino acids in protein sequences that interact with multiple dif-
ferent ligands that include proteins, peptides, nucleic acids, and a variety of small molecules. MLBRs are
implicated in a number of cellular functions and targeted in a context of multiple human diseases. There
are many sequence-based predictors of residues that interact with specific ligand types and they can be
collectively used to identify MLBRs. However, there are no methods that directly predict MLBRs. To this
end, we conceptualize, design, evaluate and release MERIT (Multi-binding rEsidues pRedIcTor). This tool
relies on a custom-crafted deep neural network that implements a number of innovative features, such as
a multi-layered/step architecture with transformer modules that we train using a custom-designed loss
function, computation of evolutionary couplings, and application of transfer learning. These innovations
boost predictive performance, which we demonstrate using an ablation analysis. In particular, they reduce
the number of cross-predictions, defined as residues that interact with a single ligand type that are incor-
rectly predicted as MLBRs. We compare MERIT against a representative selection of current and popular
ligand-specific predictors, meta-predictors that combine their results to identify MLBRs, and a baseline
regression-based predictor. These tests reveal that MERIT provides accurate predictions and statistically
outperforms these alternatives. Moreover, using two test datasets, one with MLBRs and another with only
the single ligand binding residues, we show that MERIT consistently produces relatively low false positive
rates, including low rates of cross-predictions. The web server and datasets from this study are freely
available at http://biomine.cs.vcu.edu/servers/MERIT/.
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protein–ligand complex is formed.2 An “extreme”
case of the underlying structural plasticity are the
intrinsically disordered regions3,4 that are capable
of one-to-many binding, i.e., one disordered region
binds multiple different partner molecules typically
by folding into different structures.5Well-known pro-
teins that include the one-to-many binding disor-
dered regions are p53 and 14-3-3.6,7 Other
illustrative examples of MLBRs include G protein–
coupled receptors and HIV-1 reverse transcriptase
that have sites that interact with a variety of small
ligands.8,9 MLBRs also bind large biomolecules,
such as nucleic acids, proteins and peptides. For
instance, sequence regions that interact with both
DNA and RNA.10 Studies suggest that the multi-
ligand binding and the associated conformational
flexibility are involved in the allosteric regulation
and facilitate evolution of new binding functions.11,12

Moreover, some drugs that combat human dis-
eases, which include cancers, mental disorders,
cardiovascular diseases and HIV, rely on the bind-
ing sites composed of MLBRs.13,14,8,9 These exam-
ples suggest that identification of MLBRs has
biological and practical value.
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Experimental methods, such as X-ray
crystallography, nuclear magnetic resonance, and
cryo-electron microscopy are used to identify
binding residues in proteins.15 However, they do
not scale to match the exponential growth of the
protein sequence space, which currently has about
300 million unique chains.16,17 One viable option to
reduce this annotation gap is to develop and use
accurate computational predictors of binding resi-
dues. Dozens of these predictors were developed
to date and they can be divided into methods that
use protein structure vs. protein sequence as the
input.18–24 Some of the recently released
structure-based predictors include GraphBind,25

DeepPocket,26 GraphSite,27 LigBind,28 GeoBind,29

and DeepProSite.30 We focus on methods that pre-
dict binding residues from the sequence since they
are typically faster and require arguably easier to
acquire sequences to make the predictions. A few
popular and/or recently released methods that pre-
dict protein-binding residues include SCRIBER,31

HybridPBRpred,32 PROBselect,33 DELPHI,34

PITHIA,35 DeepPRObind,36 HN-PPISP,37 and
ISPRED-SEQ.38 Representative sequence-based
predictors of DNA-binding residues include Tar-
getDNA,39 DNAPred,40 and HybridDBRpred.41

Example predictors of the RNA-binding residues
are FastRNABindR,42 PredRBR,43 and
HybridRNAbind.44 Popular methods that predict
residues that bind small ligands include TargetS,45

TargetVita,46 HEMEsPred,47 DeepATPseq,48

SCAMPER,49 LMetalSite,50 and M-Ionic.51 While
many tools are limited to a specific ligand type,
some predict binding for multiple types of ligands.
Prediction of the DNA binding and the RNA binding
residues is covered by BindN+,52 DRNApred,53

NucBind,54 TSNAPred,55 iNucRes-ASSH,56 and

MucLiPred.57 The DNA, RNA and protein binding
residues are predicted by DisoRDPbind,58

HybridNAP,24 ProNA2020,59 and
DeepDISOBind.60 MTDsite covers DNA, RNA, car-
bohydrate, and peptide binding.61
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However, to the best of our knowledge, none of
the current predictors directly identifies MLBRs.
While one could use multiple methods in tandem
to predict MLBRs, this is rather tedious and
difficult to accomplish. It requires identifying
suitable predictors, running them using their web
servers or implementations (if they are
operational), collecting and standardizing their
predictions, which could be in different ranges and
formats, to properly combine them. To this end,
we introduce MERIT (Multi-ligand binding
rEsidues pRedIcTor), first-of-its-kind deep network
model that accurately predicts MLBRs. We
consider MLBRs as residues that interact with
multiple biologically-relevant ligands, as defined in
the popular BioLiP resource.62,63 We developed
and applied new training, validation and test data-
sets with annotations of MLBRs and residues that
bind one ligand type. We utilize the latter annota-
tions to consider and minimize cross-predictions,
defined as the residues that bind one ligand type
that are incorrectly predicted as MLBRs. Low
cross-prediction values mean that the correspond-
ing prediction properly differentiates single ligand
binding residues vs. MLBRs. This is inspired by
recent ligand-specific predictors of binding residues
that similarly quantify and aim to combat cross-
predictions, defined as the residues that bind other
ligand types that are predicted as binding to the tar-
get ligand.31,32,53,54,64–66 MERIT maximizes quality
of the MLBR predictions by crafting a specialized
deep network-based predictor that: (1) uses evolu-
tionary couplings tomodel the fact that multiple resi-
dues bind the same ligand; (2) hybridizes
transformer modules and fully connected feed-
forward modules to adequately process different
types of sequence-derived inputs; and (3) applies
transfer learning and an advanced loss function to
minimize the cross-predictions. We also empirically
demonstrate that it generates predictions relatively
quickly.

Materials and Methods

Selection of methods and construction of
meta-predictors for comparative analysis

We select and use a collection of nine
representative sequence-based predictors of
binding residues to indirectly predict MLBRs and
provide a baseline that should be substantially
improved by MERIT. These tools are highly cited
and/or recently released, relatively fast, available
as server or code, and cover a broad spectrum of
ligands. We provide details in the Supplement.
The nine selected tools are BindN+,52 TargetS,45



co e)

3

J. Zhang, S. Basu, F. Zhang, et al. Journal of Molecular Biology xxx (xxxx) xxx

Table 1 Predictive performance of MERIT, the current predictors of binding residues, meta-predictors of MLBRs, and a
baseline logistic regression model on the test dataset. We report averages ± the corresponding standard deviations
based on the 100 tests; see the last paragraph in in the “Assessment of predictive performance” sub-section. We
calibrate sensitivity so that the corresponding predictions maintain the same FPR = 5% or produce the number of
putative MLBRs that is equal to the number of native MLBRs. We give the p-values when comparing against the MERIT
model inside the round brackets. The best results are shown in bold font.

Type Prediction

target

Method

name

Sensitivity F1max AUROC

Number of putative

MLBRs equals

number of

native MLBRs

FPR = 5%

Current tools DNA BindN+ 0.085 ± 0.011

(p = 2.0E 147)

0.126 ± 0.014

(p = 3.7E 156)

0.103 ± 0.009

(p = 8.8E 148)

0.608 ± 0.014

(p = 3.5E 162)

DisoRDPbind 0.046 ± 0.007

(p = 8.8E 176)

0.065 ± 0.007

(p = 2.0E 191)

0.064 ± 0.005

(p = 1.3E 177)

0.502 ± 0.011

(p = 4.9E 216)

MTDsite 0.064 ± 0.009

(p = 8.7E 163)

0.096 ± 0.012

(p = 5.7E 172)

0.096 ± 0.009

(p = 7.6E 153)

0.614 ± 0.012

(p = 5.9E 166)

MucLiPred 0.115 ± 0.012

(p = 2.0E 123)

0.173 ± 0.013

(p = 2.4E 134)

0.136 ± 0.010

(p = 1.3E 121)

0.676 ± 0.012

(p = 1.3E 124)

RNA BindN+ 0.104 ± 0.012

(p = 2.1E 130)

0.156 ± 0.014

(p = 5.0E 142)

0.123 ± 0.010

(p = 1.4E 131)

0.633 ± 0.013

(p = 8.0E 154)

DisoRDPbind 0.028 ± 0.009

(p = 7.3E 180)

0.049 ± 0.011

(p = 1.4E 189)

0.065 ± 0.005

(p = 9.3E 177)

0.515 ± 0.014

(p = 2.5E 201)

MTDsite 0.065 ± 0.007

(p = 2.6E 166)

0.100 ± 0.013

(p = 3.0E 168)

0.101 ± 0.008

(p = 5.6E 150)

0.620 ± 0.012

(p = 3.6E 166)

MucLiPred 0.112 ± 0.015

(p = 5.7E 119)

0.180 ± 0.015

(p = 7.0E 126)

0.142 ± 0.009

(p = 1.6E 117)

0.687 ± 0.013

(p = 6.3E 112)

Protein DisoRDPbind 0.026 ± 0.006

(p = 3.9E 188)

0.043 ± 0.008

(p = 1.7E 197)

0.062 ± 0.005

(p = 2.0E 179)

0.477 ± 0.014

(p = 6.1E 212)

SCRIBER 0.060 ± 0.011

(p = 1.5E 158)

0.090 ± 0.014

(p = 3.2E 169)

0.080 ± 0.009

(p = 5.1E 162)

0.539 ± 0.020

(p = 1.2E 171)

ISPRED-SEQ 0.034 ± 0.008

(p = 5.7E 180)

0.058 ± 0.009

(p = 2.2E 191)

0.072 ± 0.006

(p = 4.5E 172)

0.554 ± 0.013

(p = 8.5E 193)

Peptide MTDsite 0.065 ± 0.007

(p = 3.3E 167)

0.096 ± 0.009

(p = 2.2E 177)

0.090 ± 0.007

(p = 9.8E 161)

0.591 ± 0.012

(p = 6.3E 178)

ADP TargetS 0.158 ± 0.018

(p = 1.2E 69)

0.230 ± 0.021

(p = 1.5E 80)

0.180 ± 0.020

(p = 4.2E 53)

0.656 ± 0.014

(p = 7.6E 133)

AMP TargetS 0.153 ± 0.015

(p = 6.6E 83)

0.212 ± 0.018

(p = 1.6E 98)

0.169 ± 0.013

(p = 2.4E 81)

0.683 ± 0.012

(p = 1.1E 118)

ATP TargetS 0.186 ± 0.017

(p = 4.9E 39)

0.248 ± 0.020

(p = 5.5E 66)

0.200 ± 0.019

(p = 1.9E 30)

0.677 ± 0.014

(p = 1.7E 118)

GDP TargetS 0.095 ± 0.012

(p = 2.4E 137)

0.161 ± 0.015

(p = 6.5E 138)

0.135 ± 0.011

(p = 5.4E 120)

0.690 ± 0.013

(p = 3.7E 109)

GTP TargetS 0.113 ± 0.013

(p = 3.6E 123)

0.187 ± 0.015

(p = 7.2E 122)

0.146 ± 0.010

(p = 1.2E 111)

0.657 ± 0.013

(p = 5.6E 139)

Ca2+ TargetS 0.089 ± 0.010

(p = 2.1E 146)

0.142 ± 0.011

(p = 1.8E 155)

0.112 ± 0.008

(p = 2.5E 143)

0.619 ± 0.010

(p = 3.2E 171)

MIonic 0.111 ± 0.010

(p = 1.1E 130)

0.159 ± 0.013

(p = 3.3E 143)

0.122 ± 0.008

(p = 5.9E 136)

0.623 ± 0.011

(p = 1.1E 164)

Fe2+ MIonic 0.146 ± 0.011

(p = 1.1E 97)

0.197 ± 0.018

(p = 2.6E 110)

0.167 ± 0.009

(p = 3.2E 92)

0.537 ± 0.005

(p = 2.5E 225)

Fe3+ TargetS 0.110 ± 0.009

(p = 3.3E 135)

0.181 ± 0.012

(p = 8.2E 132)

0.143 ± 0.008

(p = 1.7E 119)

0.674 ± 0.011

(p = 2.6E 133)

MIonic 0.142 ± 0.010

(p = 8.4E 105)

0.192 ± 0.015

(p = 1.9E 120)

0.151 ± 0.010

(p = 3.3E 108)

0.555 ± 0.006

(p = 1.7E 215)

Mg2+ TargetS 0.119 ± 0.012

(p = 1.2E 121)

0.207 ± 0.016

(p = 1.1E 109)

0.156 ± 0.011

(p = 1.8E 101)

0.664 ± 0.010

(p = 9.1E 144)

MIonic 0.184 ± 0.013

(p = 1.4E 49)

0.247 ± 0.014

(p = 1.7E 77)

0.189 ± 0.012

(p = 4.1E 58)

0.690 ± 0.013

(p = 3.9E 109)

Mn2+ TargetS 0.124 ± 0.009

(p = 1.5E 124)

0.194 ± 0.014

(p = 8.3E 121)

0.154 ± 0.009

(p = 2.9E 106)

0.675 ± 0.011

(p = 3.3E 132)

MIonic 0.183 ± 0.009

(p = 2.1E 57)

0.242 ± 0.013

(p = 1.1E 85)

0.187 ± 0.010

(p = 1.2E 66)

0.620 ± 0.008

(p = 1.7E 178)

( ntinued on next pag



Table 1 (continued)

TargetVita,46 DisoRDPbind,58 SCRIBER,31

MTDsite,67 ISPRED-SEQ,38 MucLiPred,57 and M-
Ionic51 that collectively predict interactions with 22
types of ligands (proteins, peptides, DNA, RNA,
ATP, ADP, AMP, GDP, GTP, Ca2+, Mg2+, Mn2+,
Fe2+, Fe3+, Zn2+, Co2+, Cu2+, Po4

3 , So4
2 , carbohy-

drate, heme, and vitamins). We apply them in two
alternative ways: by using their outputs directly to
predict MLBRs, and by developing three meta-
predictors that aim to identify residues predicted to
bind multiple different ligands. The generation of
the meta-predictions consists of two steps: normal-
ize the putative propensities generated by the nine
tools and calculate the meta-predictions from these
normalized values. We formulate the three meta-
predictors by considering three different normaliza-
tions, which we define in detail in the Supplement.
They include a simple min–max normalization
(MinMaxaverage meta-predictor), distribution
mapping-based normalization (Mapaverage meta-
predictor), and a normalization that uses the binary
state predictions (Binaryaverage meta-predictor). In
the second step, we use the best predictor for a
given ligand type which we select based on the
highest AUROC on the test dataset for that ligand

(Table 1). We average the two highest normalized
propensities across the predictions for the 22 ligand
types. This is motivated by the fact that MLBRs
must interact with at least two different ligand types.
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Type Prediction

target

Method

name

Sensitivity F1max AUROC

Number of putative

MLBRs equals

number of

native MLBRs

FPR = 5%

Zn2+ TargetS 0.090 ± 0.008

(p = 7.4E 150)

0.138 ± 0.011

(p = 1.5E 155)

0.118 ± 0.007

(p = 1.9E 142)

0.627 ± 0.010

(p = 2.7E 167)

MIonic 0.128 ± 0.008

(p = 1.5E 122)

0.177 ± 0.013

(p = 6.0E 133)

0.135 ± 0.007

(p = 3.5E 129)

0.596 ± 0.007

(p = 1.6E 194)

Co2+ MIonic 0.147 ± 0.009

(p = 5.8E 104)

0.194 ± 0.013

(p = 2.7E 121)

0.150 ± 0.008

(p = 4.6E 112)

0.586 ± 0.008

(p = 2.9E 197)

Cu2+ MIonic 0.123 ± 0.009

(p = 4.4E 124)

0.162 ± 0.014

(p = 1.6E 138)

0.137 ± 0.009

(p = 1.8E 123)

0.524 ± 0.004

(p = 3.8E 232)

Po4
3 MIonic 0.215 ± 0.014

(p = 7.2E 05)

0.295 ± 0.017

(p = 2.2E 18)

0.220 ± 0.013

(p = 9.3E 11)

0.657 ± 0.010

(p = 3.9E 149)

So4
2 MIonic 0.164 ± 0.015

(p = 1.2E 69)

0.241 ± 0.016

(p = 1.4E 80)

0.180 ± 0.013

(p = 3.1E 68)

0.653 ± 0.009

(p = 8.5E 153)

Carbohydrate MTDsite 0.061 ± 0.007

(p = 3.5E 169)

0.090 ± 0.010

(p = 1.8E 178)

0.085 ± 0.007

(p = 2.4E 163)

0.576 ± 0.012

(p = 4.2E 186)

Heme TargetS 0.063 ± 0.011

(p = 6.5E 158)

0.084 ± 0.013

(p = 6.5E 175)

0.093 ± 0.016

(p = 1.1E 156)

0.644 ± 0.009

(p = 3.6E 162)

Vitamin TargetVita 0.094 ± 0.010

(p = 4.7E 143)

0.130 ± 0.010

(p = 2.7E 161)

0.102 ± 0.008

(p = 3.2E 149)

0.585 ± 0.011

(p = 2.1E 183)

Meta predictor MLBRs MinMaxaverage 0.160 ± 0.010

(p = 3.1E 86)

0.222 ± 0.016

(p = 2.3E 95)

0.167 ± 0.010

(p = 3.2E 90)

0.720 ± 0.013

(p = 1.9E 74)

Mapaverage 0.150 ± 0.014

(p = 1.4E 87)

0.239 ± 0.017

(p = 3.5E 79)

0.179 ± 0.011

(p = 7.9E 74)

0.730 ± 0.013

(p = 3.1E 61)

Binaryaverage 0.137 ± 0.014

(p = 8.0E 99)

0.227 ± 0.018

(p = 5.2E 87)

0.171 ± 0.012

(p = 3.4E 82)

0.723 ± 0.014

(p = 3.5E 69)

Machine learning MLBRs Baseline regression 0.164 ± 0.015

(p = 2.3E 69)

0.241 ± 0.021

(p = 6.0E 70)

0.179 ± 0.015

(p = 1.5E 65)

0.702 ± 0.015

(p = 5.0E 92)

MERIT 0.223 ± 0.015 0.319 ± 0.019 0.233 ± 0.015 0.773 ± 0.011

4

Datasets

We develop training, validation and test datasets
with annotations of MLBRs and residues that
interact with a single ligand type using BioLiP2.
This resource provides access to annotations of
residues that interact with biologically-relevant
ligands (including peptides, proteins, nucleotides,
nucleic acids and relevant small molecules) that
are extracted from high-resolution structures
(below 3 A) of protein–ligand complexes that we
collected from the Protein Data Bank.68 We follow
procedures in related works to construct these
datasets.24,31,69We use the training dataset to com-
pute the predictor, validation dataset to parametrize
the trained model and ensure that it does not overfit
the training dataset (i.e., we select parameters that
maximize performance on the validation dataset),
and test dataset to compare the trained model with
alternative solutions (i.e., we exclude the test set

move_t0005
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during the model design process). We also appro-
priately ensure that proteins in these datasets share
low, below 25% sequence similarity to be consistent
with the published studies. We further detail the
dataset collection in the Supplement. Supplemen-
tary Table S1 summarizes datasets, which are
available at http://biomine.cs.vcu.edu/servers/
MERIT/. Supplementary Table S2 provides the
breakdown of the number of binding residues and
proteins for the ligands that interact with at least
100 amino acids across the three datasets. More-
over, Supplementary Figure S1A shows the break-
down of the binding residues according to the
number of ligand types they interact with. About
60% of binding residues interact with one ligand
type, 25% with two ligand types, <1% with over 5
ligands, and the maximal number of interacting
ligand types is 9.
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Assessment of predictive performance

The current ligand binding predictors, meta-
predictors that we formulate, and MERIT generate
two types of outputs: real-valued propensity for
multi-ligand binding and a binary state (MLBR vs.
nonMLBR). The binary states are typically
generated from the propensities using a threshold,
where residues with propensities threshold are
predicted as MLBRs, and otherwise as non-
MLBRs. We assess the predicted propensities
with the popular area under the receiver operating

characteristic curve (AUROC) metric and we use
sensitivity and F1max to assess the binary
predictions. Moreover, motivated by related
studies,31,32,44,64–66 we evaluate cross-predictions
(single ligand binding residues predicted as
MLBRs) and over-predictions (non-binding residues
predicted asMLBRs) using several metrics, CPRra-
tio and OPRratio for the binary state predictions and
the area under the cross-prediction curve (AUCPC)
and the area under the over-prediction curve
(AUOPC) for the putative propensities. We define
these metrics and how they are computed in the
Supplement.

Figure 1. The architecture of MERIT. FCNN (fully connected feed-forward neural network); FF (feed-forward);
numbers in the round brackets define the number of neurons used for a given network layer. Underlined text identifies
major innovations.

As part of comparative analysis, we perform
statistical significance tests to assess whether
differences between the proposed method and
other predictors are robust across a collection of
diverse test sets. To do that, we compare 100
results collected for randomly picked subsets of
50% of the test proteins. We use the Anderson-
Darling test at 0.05 significance to check whether
the corresponding measurements are normal. For
normal data, we use the student t-test, and
otherwise we apply the Wilcoxon rank-sum test.
We assume that differences are statistically
significant if p-value < 0.01.

MERIT model

MERIT aims to accurately predict MLBRs (high
AUROC) and minimize the cross-predictions (low



AUCPC). It makes predictions in three main steps
(Figure 1): (1) compute features; (2) predict
binding residues using features; and (3) predict
MLBRs.
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In the first step, we use the input sequence to
derive a sequence matrix which we utilize to
compute a custom-designed feature set that is
suitable for processing by the deep neural network
model. The sequence matrix is composed of
columns that correspond to the amino acids in the
sequence and multiple rows that include the
sequence itself; multiple sequence alignment
generated by HHblits70 using the UniProt30 data-
set; relative amino acids propensity for binding with
ligands that we compute using the training dataset
with the Composition Profiler program,71 putative
intrinsic disorder produced by VSL2B,72 which
was recently shown to provide accurate results in
the context of identifying disordered binding
residues73; secondary structure predicted by the
popular PSI-PRED74; and relative solvent accessi-
bility predicted using fast and accurate ASAquick.75

We use this sequence matrix to compute three dis-
tinct feature subsets (shown in Figure 1 by back-
grounds in three shades of blue): protein-level,
window-level, and the typically used residue-level
features. The protein-level features aggregate the
data in the matrix over the entire sequence to quan-
tify an overall bias of a given protein to include
MLBRs. The window-level features summarize
information from the matrix in a sliding sequence
window, which is motivated by the fact that binding
residues cluster together in the sequence, i.e.,
some sequence segments include high density of
binding residues vs. other that are devoid of binding
residues. Finally, the residue-level features quantify
inputs for individual amino acids including the pre-
dicted residue and its neighboring residues in the
sequence. Development of these three distinct fea-
ture sets is motivated by their use in the flDPnn
method, which produced accurate prediction of
intrinsic disorder and disordered binding regions76

in the recently completed CAID177 and CAID278

experiments. We enumerate and define individual
features in the Supplement.
In step two, we input these three feature sets into

a custom-designed deep neural network model that
is composed of two modules that together predict
ligand binding residues: the multi-ligand binding
module (yellow background in Figure 1) and the
single-ligand binding module (green background in
Figure 1). Each module consists of three units that
process the corresponding three feature sets. We
input the protein-level and the window-level
features into two fully connected feedforward
neural networks (FCNNs) since these features are
not ordered. These features are calculated by
averaging the information from individual rows in
the sequence matrix for a given sequence window
and over the entire sequence. In other words, use

of other, more complex network types is not
warranted since these two feature sets quantify
different types of input characteristics that do not
follow a spatial or sequence arrangements. The
two FCNNs include five layers where the last two
layers are shared and the layers are gradually
reduced in size to compact the resulting latent
feature spaces. We process the residue-level
features with a unit composed of three stacked
transformers since these features follow the
sequence order (i.e., they represent a short
sequence window). The transformers are relatively
fast to train and capable of exploiting the
sequence order. Each transformer consists of a
self-attention unit, a feedforward layer, and a
normalization layer. The feature space generated
by the transformer unit is merged with the spaces
generated for the other two feature sets using the
last two feedforward layers.

6

In the third step, we refine predictions of MLBRs
by using a 4-layer FCNN that merges latent
feature spaces generated in the second step by
the single-ligand and the multi-ligand binding
modules. The objective is to improve accuracy of
the MLBR predictions by reducing the cross-
predictions with the help of the single-ligand
binding predictions. As in step two, the
subsequent layers are gradually smaller to reduce
the resulting latent feature space to a single
output neuron that generates the propensity for
multi-ligand binding. We use the ReLU activation
function for all nodes in the feedforward layers,
except for the output node where we apply the
sigmoid function to properly scale the output
propensities. We train this architecture using
Pytorch with the popular Adam optimizer on the
training dataset. We set the learning rate and the
batch size to 0.001 and 256, respectively.
The MERIT’s model includes five key innovations

(Figure 1 identifies them using underline): (1)
calculation of the evolutionary couplings in the
sequence matrix; (2) use of transformer modules
to process the residue-level features; (3)
application of the transfer learning to develop the
two modules in the second step; (4) design of a
multi-step architecture where the third step is used
to refine and improve prediction of the MLBRs
from the multi ligand binding module in step two;
and (5) development and use of an advanced loss
function to train the network. The first two
innovations aim to maximize overall performance
of the MLBR predictions while the motivation for
the latter three innovations is to minimize the
cross-predictions.
The evolutionary couplings are evolutionarily

conserved pairwise amino acid associations that
are typically calculated from multiple sequence
alignments. They link residues that coevolved
together and which correspondingly may share
similar purpose. One of these purposes could be
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ligand binding,79 in which case all residues that
interact with the same ligand should be evolutionar-
ily coupled. Thus, couplings should help with finding
MLBRs that on average should have more cou-
plings since they are included in multiple sets of
binding (“coupled”) residues that interact with differ-
ent ligands when compared with the single-ligand
binding residues. We compute the evolutionary
coupling sores from the multiple sequence align-
ments generated with HHblits70 against the Uni-
Clust30 database. We detail their calculation in
the Supplement.

J. Zhang, S. Basu, F. Zhang, et al. Journal of Molecular Biology xxx (xxxx) xxx

The transformer units are particularly suitable to
model latent feature spaces for inputs that are
sequence-ordered.44,80,81 We posit that they can
be effectively combined with the FCNN to improve
predictive performance.
We use transfer learning to train the two modules,

the multi-ligand binding and the single ligand
binding, in the step two of our architecture
(Figure 1). We pre-train the single ligand binding
module using the training set annotated with the
single ligand binding residues (i.e., we set MLBRs
as negatives). We similarly pre-train the multi
ligand binding module using the training set
annotated with the MLBRs (i.e., we set the single
ligand binding residues as negatives). We pre-
trained these two modules separately using the
cross-entropy loss function with the objective to
maximize the AUROC value on the validation
dataset. We also ensure that the difference in
AUROC between the training and validation
datasets is small (<0.03) to prevent potential
overfitting into the training dataset. These
modules specifically target predictions of the two
distinct types of binding residues and use them to
refine prediction of MLBRs by reducing the cross-
predictions (prediction of MLBRs for the putative
single ligand binding residues). We do that by
freezing the two pre-trained networks when we
subsequently train MERIT (i.e., we “transfer” the
pre-trained networks into the MERIT model).

Loss function

The default loss function for training the network
is the cross-entropy. Its main drawback is the
inability to effectively differentiate between
different types of errors, i.e., mispredicting single
ligand binding for multi ligand binding, non-binding
for multi ligand binding, and multi ligand binding
for non-binding. We substitute the cross-entropy
with the focal loss function82,83 for training the
MERIT model with the pre-trained single ligand
binding and multi ligand binding modules. We re-
formulate the focal loss function to suit our predic-
tion by introducing a and b coefficients that allow
us to balance cross-predictions vs. over-
predictions, with the objective to minimize cross-
predictions while maintaining an overall high predic-
tive performance:

Focal Loss 1 predmulti
r
labelmulti log predmulti

a predmulti
r labelnon log 1 predmulti

b predmulti
r labelsingle log 1 predmulti

where predmulti is the predicted MLBR propensity;
labelmulti, labelnon, and labelsingle stand for the multi
ligand binding, non-binding and single ligand
binding annotations, respectively; r is set to 2 to
reduce impact of the errors for well-predicted
MLBRs, i.e., difference between the label 1 that
denotes MLBR vs. the predicted propensity is
small; and a and b are parameters that quantify
contribution of the over-prediction and cross-
prediction errors, respectively. We fine-tune a and
b using the training and validation datasets. We
consider a = {0.5, 1, 2, 4} and b = {1, 5, 8, 10, 12,
15, 20}, where values of b are larger since we aim
to reduce the cross-predictions. We run a grid
search over these parameters and sele a =
and = 10 that provides high value of AUROC
and low value of AUCPC on the validation dataset
for the model trained on the training dataset using
MLBRs as labels. Moreover, like for the pre-
training, we ensure that the difference in AUROC
between training and validation datasets is below
0.03 to avoid overfitting.

ct
b

Results

Ablation analysis

We empirically test contributions of the five
innovations to the predictive performance of
MERIT. We perform an ablation analysis where
we remove these innovations, one at the time,
which leads to the following five configurations: (1)
exclude evolutionary couplings; we re-train the
model but when the evolutionary couplings-based
inputs are removed; (2) replace transformer unit;
we re-train the model where the transformer unit is
replaced by a FCNN unit; (3) remove transfer
learning; we re-train the model without pre-training
the modules in step 2; in other words, we train the
entire network at once; (4) remove step 3; we
reduce this network to the multi-ligand binding
module from step 2; and (5) use default loss
function; we re-train using the default cross-
entropy loss function.
Figure 2 compares performance of the MERIT

model (dark blue bars) with the five ablation
setups. We find that each of the five innovations
provides statistically significant improvements to
MERIT (p-values < 0.01) when considering the
overall performance (AUROC in Fig 2A an
F1max in Fig 2B), cross-predictions (AUCPC in
Figure 2C) and over-predictions (AUOPC in
Figure 2D). The exclusion of the step 3 of the
model (yellow bars in Figure 2) leads to the
largest drop in AUROC (from 0.773 to 0.736) and
the biggest increase in the cross-predictions (from
0.303 to 0.383 in AUCPC) and in the over-
predictions (from 0.223 to 0.257 in AUOPC). This
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demonstrates the value of using the single ligand
binding module in step 2 to limit the number of
false positives (incorrectly predicted MLBRs),
particularly considering the big drop in the cross-
predictions. We also find that use of the optimized
focal loss function (orange bars in Figure 2),
evolutionary couplings (green bars in Figure 2),
and transformer units (gray bars in Figure 2) also
provide large reductions in cross-predictions and
overpredictions, leading to the substantial
increases in AUROC. The smallest magnitude of
the change is associated with the use of the
transfer learning (light blue bars in Figure 2);
however, this innovation still provides statistically
significant improvements over each of the four
metrics.
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Figure 2. Ablation analysis on the test dataset that compares MERIT with its five variants where one of the five
innovations is removed. We quantify the predictive performance with AUROC (panel A; higher values are better),
F1max values (panel B; higher values are better), AUCPC values (panel C; lower values are better), and AUOPC
values (panel D; lower values are better). We show averages (bars) with the corresponding standard deviations (error
bars) based on the 100 tests; see the last paragraph in the “Assessment of predictive performance” sub-section. We
report the corresponding p-values at the top of the bars by comparing against the complete MERIT model.

Comparative assessment

Table 1 compares MERIT with the nine selected
popular and/or recent predictors of DNA, RNA,
protein, and small ligand binding residues, the
three meta-predictors use their results to predict
MLBRs, and a baseline predictor that applies the
same inputs as MERIT and a simple logistic
regression on the test dataset. The results
produced by the current tools that predict
interactions with specific ligand types provide

modest levels of performance when applied to find
MLBRs (AUROC 0.69). The meta- predictors
provide more accurate results, with the best
Mapaverage model that secures AUROC of 0.730,
F1max of 0.18, and sensitivity at FPR = 5% of
0.24. This is because they predict MLBRs by
combining results across multiple ligands. This
best meta-predictor outperforms the baseline
regression model that obtains AUROC of 0.702,
F1max of 0.18 and sensitivity at FPR = 5% of
0.24, which in turn improves over the predictions
of the individual ligand types. MERIT generates
the most accurate results, with AUROC of 0.77,
F1max of 0.23 and sensitivity at FPR = 5% of
0.32, significantly outperforming all other methods
(p-value < 0.01). The sensitivity reveals that
MERIT secures 0.32/0.05 = 6.4 times higher true
positive rate compared to its false positive rate.
This and the AUROC > 0.75 suggest that MERIT
generates relatively accurate predictions of
MLBRs. The corresponding ROC curves
(Supplementary Figure S2A) shows a wide margin
between the MERIT’s curve and the curves of the
other methods. Comparison of MERIT with the
baseline regression quantifies the overall
contribution of using the multi-step deep neural
network model. The differences have large
magnitude (AUROC of 0.77 vs. 0.70; F1max of
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0.23 vs. 0.18; sensitivity at FPR = 5% of 0.32 vs.
0.24) and they are statistically significant (p-
value < 0.01).

J. Zhang, S. Basu, F. Zhang, et al. Journal of Molecular Biology xxx (xxxx) xxx

Supplementary Figure S1B analyzes differences
in the predictive performance, quantified with
sensitivity, across MLBRs that interact with
different number of distinct ligands. We compare
MERIT, the most accurate Mapaverage meta-
predictor, and the baseline regressor. We
consider MLBRs that bind 2, 3, 4, 5 and >5
ligands; we combine MLBRs that bind 6 and more
distinct ligands due to relatively small sample size
(i.e., <50 MLBRs for each number of ligands).
Supplementary Figure S1B shows that MERIT’s
performance increases as the number of ligands
grows, from 0.21 for MLBRs that interact with two
ligand types to 0.29 for >5 ligands; the overall
MERIT’s sensitivity is 0.22 (Table 1). To compare,
the performance of the best meta-predictor and
the baseline regressor does not change in the
function of the number of interacting ligands
(Supplementary Figure S1B), staying around their
overall sensitivity of 0.15 and 0.16 (Table 1),
respectively. However, we note that these results
should be considered accurate given that the
overall fraction of MLBRs in the test dataset is
0.032.
We also performed this analysis for ligands that

we grouped into five broad classes: (1) nucleic
acids; (2) proteins and peptides; (3) metal ions; (4)
nucleotides; and (5) other ligands. Supplementary
Figure S1C compares predictive performance of
MERIT against the best meta-predictor and
baseline regressor for MLBRs that interact with
ligands that belong to one ligand class, two
classes and three ligand classes. There are only a
few MLBRs that interact with four ligand classes
and none that interact across the five classes,
which is why exclude these cases from our
analysis. Similar to the other result, MERIT’s
performance improves for MLBRs that cover more
ligand classes. The two other methods follow
similar trend but their predictions are consistently
less accurate than MERIT’s predictions. The
consistent increase in the MERIT’s performance
as the number of interacting ligands and ligand
classes grows can be explained by the use of the
evolutionary couplings, which are not dependent
on similarity between ligands that underlies the
ligand classes, and transformers that can
adequately take advantage of these inputs.
Altogether, we find that MERIT offers accurate

predictions of MLBRs that outperform the current
and alternative solutions, and makes modestly
more accurate predictions of MLBRs that bind
larger number of ligand types and classes.

Evaluation of the cross- and over-predictions

MLBRs and single ligand binding residues share
some characteristics (e.g., they should be
evolutionarily conserved and most of them should

be localized on protein surface) when contrasted
with the non-binding residues. Thus, MLBRs
should be harder to differentiate from the other
binding residues (cross-predictions) compared to
the non-binding residues (over-predictions). This
is why we expect that in relative terms the cross-
predictions are likely to dominate false positives
when compared to the over-predictions.
Supplementary Table S3 compares the cross-
prediction and over-prediction errors. The
corresponding cross-prediction curves and over-
prediction curves are in Supplementary Figures
S2B and S2C, respectively.
We find that the cross-predictions for all methods,

except MERIT, are at the near-random levels, with
AUCPCs > 0.4. As expected, they are higher than
the over-predictions, where the meta-predictors
and the baseline regression secure AUOPCs of
around 0.3. Similar observations are true when
using the CPRratio and OPRratio values.
CPRratios are lower than OPRratios and
CPRratios for many of the methods are at near
random levels, i.e., values are close to 1.
OPRratios for the meta-predictors and regression
are in the 5.2–6.3 range, suggesting that these
solutions are 5–6 times better than random in the
context of the over-predictions. The poor cross-
prediction performance can be explained by the
fact that the meta-predictors and the logistic
regression baseline were not optimized to exclude
single ligand binding residues among their
predictions of MLBRs.
Importantly, MERIT secures relatively low rates of

cross-predictions and over-predictions, which are
significantly better than the results of all other
methods (p-value < 0.01; Supplementary
Table S3). It secures AUCPC of 0.303, which is
reasonably good, and a low AUOPC of 0.223. The
cross-prediction and over-prediction curves of
MERIT are better/lower than the curves of the
other methods by a wide margin (Supplementary
Figures S2B and S2C). The MERIT’s CPRratio
and OPRratio measured when predicting the
correct number of MLBRs (i.e., numbers of
putative and native MLBRs are equal) reveal that
our tool is 3.8 and 9.6 times better than a random
predictor when considering the cross-predictions
and over-predictions, respectively. These results
suggest that MERIT performs very well in the
context of the over- and cross-predictions, which
can be attributed to the several innovations which
specifically aim to reduce these errors.

Assessment on the single ligand binding
proteins

Using the clustered sequences from the fourth
step of the dataset selection process described in
the Supplement, we randomly select 200 proteins
that have single ligand binding residues and no
MLBRs. This dataset shares low, below 25%
similarity with the training and validation datasets,



and is available on the MERIT page at http://
biomine.cs.vcu.edu/servers/MERIT/. We use it to
assess whether MERIT improves over the other
methods for these challenging “negative” proteins.
Supplementary Figure S3 compares performance
of MERIT, the three meta-predictors of MLBRs
and the baseline regression model on this dataset.
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Supplementary Figure S3A, which quantifies the
false positive rates (fraction of residues incorrectly
predicted as MLBRs) on this dataset shows that
MERIT generates substantially better results than
the meta-predictors and the baseline. These
improvements are consistent for the cross-
predictions (Supplementary Figure S3B) and over-
predictions (Supplementary Figure S3C). Using
the threshold for the generation of the binary
states that is calibrated to produce the correct
number of MLBRs on the test dataset (i.e., the
numbers of the predicted and the native MLBRs
are equal), we find that MERIT generates 2.8% of
residues as MLBRs on this dataset with the single
ligand binding residues. To compare, the baseline
regression and the best meta-predictor predict
4.7% and 4.9% residues as MLBRs, respectively.
As expected, the cross-prediction rate is higher
than the over-prediction rate; however, MERIT
predicts 11% of the single ligand binding residues
as MLBRs (cross-predictions), which corresponds
to on average two cross-predicted residues per
protein, compared to 14% for the baseline and
17% for the best meta-predictor.
A modest amount of cross-predictions could be

explained because annotations of binding
residues are potentially incomplete, i.e.,
interactions with some ligands might be missing in
the source databases, which is true across all
datasets used to develop predictors of the ligand
binding residues. Thus, some of the single ligand
binding residues could in fact bind multiple ligand
types, suggesting that some cross predictions
could actually be correct predictions.
Correspondingly, MERIT shows higher rate of
MLBR predictions for the single binding residues
(Supplementary Figure S3B) than for the non-
binding residues (Supplementary Figure S3C). We
posit that its cross-predictions could be
investigated to potentially uncover these missing/
not-yet-annotated interactions. However, this
analysis is beyond the scope of this method/web
server article. Altogether, we argue that MERIT’s
predictions generalize well for the single ligand
binding proteins, consistently improving over the
alternatives.

Runtime analysis

We use a random selection of 100 proteins from
the test dataset to investigate a relation between
the MERIT runtime and sequence length. We sort
the sequences in the ascending order by their

length into four equally sized subsets.
Supplementary Figure S4 plots the median per-
protein runtimes measured in minutes against the
median sequence length for the four protein sets.
The overall median per protein runtime for MERIT
is 8.9 min, with the first and third quartiles of 3.7
and 16.5 min, respectively. The runtime grows
with the sequence length for shorter proteins and
then the growth saturates for proteins with 500 or
more residues. The main factor that drives runtime
is the calculation of evolutionary couplings, which
is done for conserved residues. The leveling of the
runtime for the longer proteins is likely due to a
drop in the fraction of conserved residues, relative
to the sequence length, i.e., a larger fraction of
residues is conserved for shorter chains
compared to the fraction for longer proteins.
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Web server

MERIT is available as a free web server at http://
biomine.cs.vcu.edu/servers/MERIT/. We provide
further details in the Supplement. The server page
also provides access to the training, validation and
test datasets, which can be used to facilitate
future research in the area of analysis and
prediction of MLBRs.
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