

1 LRH: Bryospheres in stream nutrient cycling J. J. B. Steele et al.

2 RRH: Volume 43 December 2024

3

4 **Bryospheres in oligotrophic headwater streams provide nutrient-dense habitats and**
5 **dominate stream nutrient cycling**

6

7 **Jessee J. B. Steele^{1,4}, Audrey N. Thellman^{1,5}, Olivia K. Vought^{2,6}, Emma J. Rosi^{3,7}, Tammy**
8 **Wooster^{3,8}, Christopher T. Solomon^{3,9}, Emily S. Bernhardt^{1,10}**

9

10 ¹Department of Biology, Duke University, Durham, North Carolina USA

11 ²Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor,
12 Michigan USA

13 ³Cary Institute of Ecosystem Studies, Millbrook, New York USA

14

15 E-mail addresses: ⁴steele.jessee@gmail.com; ⁵Present affiliation: Department of Earth, Marine,
16 and Environmental Sciences, University of North Carolina at Chapel Hill, North Carolina USA,
17 athellma@unc.edu; ⁶ovought@umich.edu; ⁷rosie@caryinstitute.org; ⁸woostert@caryinstitute.org;
18 ⁹solomonc@caryinstitute.org; ¹⁰To whom correspondence should be addressed,
19 emily.bernhardt@duke.edu;

20

21 Received 2 November 2023; Accepted 29 May 2024; Published online XX Month 2024;

22 Associate Editor, Nathan J. Smucker.

23 *Freshwater Science*, volume 43, number 4, December 2024. © 2024 The Society for Freshwater
24 Science. All rights reserved. Published by The University of Chicago Press for the Society for
25 Freshwater Science. <https://doi.org/10.1086/XXXXXX>

26 **Abstract:** Stream bryophytes (mosses and liverworts) are widely recognized as important
27 macroinvertebrate habitats, but their overall role in the stream ecosystem, particularly in nutrient
28 cycling, remains understudied. Hubbard Brook Experimental Forest in New Hampshire, USA,
29 contains some of the most extensively researched streams in the world, yet few studies mention
30 their bryophytes. Perhaps this is because early estimates place bryophyte coverage in these
31 streams at an insignificant 2%. However, data from 2019 show that contemporary coverage
32 ranges from 4 to 40% among streams. To investigate how stream bryophyte cover may be
33 changing over time and influencing stream nutrient stocks, we conducted field surveys, measured
34 the mass of organic and inorganic bryophyte contents, and quantified nutrient uptake with bottle
35 incubations of bryophyte mats. This study marks a novel attempt to map stream bryophyte
36 coverage with estimates of C, P, and N stocks and fluxes. From our 2022 field surveys, we found
37 that median bryophyte coverage varied across streams in the same catchment (0–41.4%) and
38 shifted from just 3 y prior. We estimate that these bryophyte mats stored between 14 and 414 g of
39 organic matter per m² of stream in the form of live biomass and captured particulates. Within 12
40 h of light incubation, 35 out of 36 bryophyte clump samples sorbed peak historical water-column
41 concentrations of PO₄³⁻ as measured in the Hubbard Brook stream chemistry record. In Bear
42 Brook, our scaled estimate of bryophyte mat NO₃⁻ uptake (2.3 g N/y) constitutes a substantial
43 portion of previously estimated whole-stream NO₃⁻ uptake (12 g N/y). Cumulatively, our data
44 demonstrate that bryophytes and their associated mineral substrates and biota—known as the
45 bryosphere—are crucial in facilitating headwater stream nutrient cycling. These bryospheres may
46 contribute significantly to interannual variability in stream nutrient concentrations within
47 nutrient-poor streams, especially in climate-sensitive regions.

48 **Key words:** bryophyte, aquatic moss, Hubbard Brook, biomass, disturbance, anchor ice, nitrate,
49 phosphate, detritus

50 Bryophytes (mosses and liverworts) are ubiquitous across many headwater streams, yet they have
51 received little attention from stream ecosystem scientists. Bryophytes are widely recognized for
52 their importance as macroinvertebrate habitat (Englund 1991, Suren 1991, Parker et al. 2007,
53 Alvarez and Peckarsky 2013, Wood et al. 2016, Wulf and Pearson 2017), but there has been very
54 little study of their impact on ecosystem energetics or nutrient cycling. The few studies that do
55 exist found that despite their variable rates of photosynthesis (Fisher and Likens 1973, Ylla et al.
56 2007), stream bryophytes have greater area-specific uptake rates of P than periphyton (Steinman
57 and Boston 1993) and similar physical sorption rates of P as sediments (Meyer 1979).
58 Mulholland et al. (2000) and Peterson et al. (2001) used an isotopically enriched tracer
59 experiment, ^{15}N -labeled NH_4^+ , and found that bryophytes in Walker Branch, Tennessee, USA,
60 had the highest area-specific NH_4^+ uptake rate of any organic substrate and retained 34% of this
61 assimilated N^{15} tracer 75 d after the enrichment. Despite the implications of these early studies,
62 there are few contemporary studies that directly consider bryophyte nutrient stocks and their role
63 in nutrient cycling (Bowden et al. 1994, Finlay and Bowden 1994, Arscott et al. 1998).

64 This gap in the literature is somewhat surprising given the tremendous volume of research
65 on the impact of bryophytes on global C and N cycling (Turetsky 2003), especially in peatlands
66 (Gorham 1991, Yu 2012, IPCC 2014). An abundance of literature has demonstrated that
67 bryophytes facilitate N cycling in nutrient-poor terrestrial environments like alpine forests, the
68 tundra, and deserts (Chapin et al. 1987, Stark and Whittemore 2000, Gundale et al. 2011, Rousk
69 and Michelsen 2017). Terrestrial bryophytes are critical early-successional species because they
70 drive N fixation by hosting cyanobacteria (Rai et al. 2000, DeLuca et al. 2002, Arróniz-Crespo et
71 al. 2014). These symbionts allow terrestrial bryophytes to be extremely efficient at assimilating
72 atmospheric N_2 products into amino acids (Kahl et al. 1997, Zhu et al. 2018) compared with
73 many vascular plants (Kotanen 2002). This N is stored as biomass for 3 to 10 y (Eckstein 2000)

74 because bryophytes are able to recapture N from their own senescing tissue (Liu et al. 2020). If
75 the N is not reabsorbed, it is often stored in terrestrial bryophyte litter that resists decomposition
76 because of high phenolic concentrations (Verhoeven and Toth 1995, Britton et al. 2018).

77 Many of the chemical properties that define the biogeochemistry of terrestrial bryophytes
78 appear in stream bryophytes as well. Like terrestrial bryophytes, aquatic bryophyte tissues and
79 litter are thought to be resistant to both decomposition (Stream Bryophyte Group 1999) and
80 herbivory (Glime 2006, Parker et al. 2007). Stream bryophytes also have a high cation exchange
81 capacity, allowing them to trap positively charged ions on their leaves (Brown and Bates 1990).
82 Because bryophytes lack effective cuticles, solutions and gasses can easily move across the cell
83 surface (Turetsky 2003). Combining these properties, engineers have demonstrated that aquatic
84 bryophytes can capture and store contaminants (Cenci 2001, Carrieri et al. 2021) and heavy
85 metals (Yoshimura et al. 2000, Vincent et al. 2001, Samecka-Cymerman et al. 2002). Their
86 ability to display visible symptoms of pollution makes bryophytes useful as indicator species for
87 water quality (Bleuel et al. 2005, Ecke 2018, Martin et al. 2024). While these properties have
88 been well explored within pollution chemistry, little is known about how they may influence
89 stream ecosystem nutrient cycling.

90 The structure of aquatic bryophytes also points to their potential ability to participate in
91 active nutrient exchange with the streamwater column (Fig. 1). Bryophytes can alter water flow
92 regimes (Suren 1991, Bowden et al. 2017), which allows them to capture and store sediments and
93 detritus (Suren 1991, Finlay and Bowden 1994, Muotka and Laasonen 2002, Turunen et al.
94 2018). By slowing water flow, stream bryophytes also provide refuge to a range of microbial
95 autotrophs and heterotrophs: cyanobacteria, protists, rotifers, diatoms, and other algae (Arscott et
96 al. 1998, Stream Bryophyte Group 1999, Alvarez and Peckarsky 2013, Bowden et al. 2017).

97 Even if stream bryophytes themselves do not substantially alter C, N, and P regimes, they host
98 microbes that may be important for stream-wide nutrient dynamics.

99 It is impossible to characterize how relevant bryophyte nutrient cycling is without
100 knowing how abundant they are within headwater streams and how their populations change over
101 time. Many studies have shown that bryophytes are abundant in headwater streams (Suren 1991,
102 Bowden et al. 1994, Mulholland et al. 2000, Virtanen et al. 2001, Ashkenas et al. 2004, Parker
103 and Huryn 2006, Mulholland 2015), but it is poorly understood how variable they are across
104 time. For example, early studies at Hubbard Brook Experimental Forest found that only 2% of
105 Bear Brook was covered by bryophytes (Fisher and Likens 1973), whereas recent surveys show
106 that median coverage of the same stream is ~36% (Vought et al. 2019). This increase is
107 fascinating because early studies of bryophytes in Bear Brook found they were effective at
108 sorbing P but discounted their role in ecosystem nutrient cycling because of their low abundance
109 (Meyer 1979).

110 This study sought to characterize the role of aquatic bryophytes in nutrient cycling in a
111 nutrient-poor stream ecosystem. We asked the following: 1) How does aquatic bryophyte
112 abundance vary across headwater streams and across multiple sampling timepoints? 2) What are
113 the C, N, and P stocks in bryophytes, and are these elements stored as tissue or in captured
114 particulates? and 3) What capacity do bryophytes have for assimilating dissolved NO_3^- and
115 PO_4^{3-} ?

116

117 METHODS

118 Site description and study design

119 Our study took place in Hubbard Brook Experimental Forest (HB EF), located in New
120 Hampshire, USA (latitude 43.947°N, longitude 71.724°W; Fig. 2). Since the 1960s, researchers

121 at HBEF have measured weekly water chemistry at watershed outflows using gauging weirs, and
122 since 2018, they have measured weekly algal biomass, insect emergence, and light availability
123 during the snow-free seasons (HBWatER 2024a, b, c). HBEF has been the subject of many
124 watershed-scale biogeochemical and ecological experiments (Table S1). Like many terrestrial
125 bryophyte-dominated habitats, the headwater streams in HBEF are inhospitable for most
126 organisms because they are steep and flashy, resulting in highly variable flow rates (Hall et al.
127 2001). With $\frac{1}{3}$ of the region's precipitation is delivered as snow (Hall et al. 2001), streamflow is
128 largely seasonal; around 47% of annual streamflow occurs just in Spring (Likens 2013).
129 Furthermore, a legacy of acid rain in the region has acidified the streams, making them extremely
130 nutrient poor (Bayer et al. 2021, Likens 2021).

131 To address our research questions, we conducted a field study to map bryophyte
132 abundance in headwater streams in the HBEF. We surveyed 9 stream reaches between May 31,
133 2022 and June 22, 2022 and recorded bryophyte abundance as well as reach characteristics.
134 During these surveys, we collected bryophyte samples from 2 stream sites for lab incubations to
135 calculate nutrient uptake rates and from 9 stream sites to calculate bryophyte mass and nutrient
136 stocks. We compared our survey data with data collected between June 25, 2019 and July 17,
137 2019 by Vought et al. (2019) using a Mann–Whitney U test to analyze differences in bryophyte
138 abundance between the 2 time periods. We also used ANOVA and linear regression to assess
139 relationships among nutrient uptake rates, bryophyte mass, and habitat and substrate types.
140 Finally, we used Pearson's correlation tests to assess relationships between bryophyte abundance
141 and stream characteristics. All data are available at the Environmental Data Initiative Data Portal
142 at the following link: <https://doi.org/10.6073/pasta/2286895cbf1e5291af339d52002c502e> (Steele
143 et al. 2024).

145 **Field surveys and bryophyte abundance**

146 To collect data on stream reach characteristics and bryophyte abundance, we conducted
147 field surveys at 9 stream reaches. We surveyed 50-m stream reaches beginning above the gauging
148 weir for numbered watersheds (W1–W6, W9) and quasi-random 200-m stream reaches in Bear
149 Brook and Paradise Brook. In each stream reach, we conducted longitudinal surveys (along the
150 stream) and lateral surveys (across the stream). For the longitudinal surveys, walking upstream,
151 we recorded stream characteristics at every meter. At the center of flow, we recorded the depth
152 (cm), dominant habitat type (pool, riffle, slide, or cascade), substrate type (boulder, bedrock,
153 cobble, pebble, sand, or wood), and the presence of organic material (e.g., stick, algae, leaf litter,
154 bryophyte). For lateral surveys in the 50-m stream reaches (W1–W6, W9), we randomly selected
155 10 longitudinal meter markers to conduct transects. For lateral surveys in the 200-m Bear Brook
156 and Paradise Brook reaches, we divided the 200-m reaches into four 50-m segments and
157 randomly selected 10 longitudinal meter markers to conduct transects in each of the segments. At
158 the lateral transect markers, following the methods of Vought et al. (2019), we recorded the
159 width, bryophyte coverage, and leaf litter coverage (cm) for both wetted and active channel cross
160 sections. We defined the active channel margins by breaks in slope. We avoided seeps and
161 additional nutrient inputs in the reaches.

162 For each stream that we surveyed, we performed a Mann–Whitney U test in R (version
163 1.2.1335; R Project for Statistical Computing, Vienna, Austria) to determine if the stream's %
164 bryophyte coverage changed between 2019 and 2022. This test was appropriate because %
165 bryophyte coverage of transects is not normally distributed in streams. We calculated Pearson's
166 correlation coefficients and resulting *p*-values between bryophyte coverage and ambient stream
167 conditions (stream slope [from Likens and Bormann 2013], pH, and streamwater temperature

168 [from HBWatER 2024a]; data collected 2017–2021), habitat type, and substrates (Tables S2, S3,
169 S4, respectively).

170

171 Nitrate and phosphate uptake

172 To measure nutrient uptake, we collected bryophyte samples from each of the 200-m
173 reaches in Bear Brook and Paradise Brook. All samples were collected with a 6.8-cm-diameter
174 circular cutter during lateral transect surveys. To ensure that we collected replicate samples from
175 across the distribution of habitat types (cascade, pool, slide), we collected 6 samples/habitat from
176 a stratified random selection of sampling sites where we observed bryophytes in each of the 2
177 streams (18 samples/stream for a total of 36 samples).

178 Next, we prepared our bryophyte samples for nutrient incubation. We drained excess
179 water from bryophyte samples on a sieve and placed them right-side-up in open mason jars (0.47-
180 L capacity). We filled the jars with 400 mL of water from Paradise Brook and removed air
181 bubbles caught in the bryophyte samples. We placed the jars into a tray and used randomly
182 generated numbers to assign location in the tray and water sampling order. The tray was pre-
183 filled with enough water to submerge the bottom half of the jars. We covered the jars with foil
184 and placed them in a refrigerator in the dark at 12°C (ambient summer water temperature) for 24
185 h to allow suspended sediments to settle.

186 After the settling period, we mixed the overlying solutions by withdrawing water near the
187 top of the bryophyte clump with a syringe and reintroducing that water near the top of the jar. We
188 repeated this process 3×. After mixing we removed 120 mL of stream water and measured initial
189 NO_3^- and PO_4^{3-} concentrations for these pre-incubation samples as described below. We then
190 replaced the volume of water removed with 120 mL of NO_3^- and PO_4^{3-} stock (1.06 mg/L NO_3-N
191 and 0.012 mg/L PO_4-P , respectively, made from KNO_3 and KH_2PO_4). We incubated the samples

192 for 12 h under a growlight and 12 h in the dark at 12°C. We collected 60 mL of water after light
193 and dark incubations, filtering the samples through a Whatman GF/F glass-fiber filter (0.7- μ m
194 pore size). We froze the filtered water samples until they could be analyzed on an ion
195 chromatograph (Dionex ICS-2000 with an AS-18 analytical column; Thermo Fisher Scientific,
196 Waltham, Massachusetts) for their NO_3^- and PO_4^{3-} concentrations.

197 We applied a repeated measures analysis of variance (RM-ANOVA) to our NO_3^- uptake
198 data to assess whether bryophyte clumps assimilated more NO_3^- in light or dark conditions. After
199 removing 1 outlier, our data satisfied normality and sphericity conditions requisite for this test.
200 We performed linear regression analysis in R on log-transformed NO_3^- uptake and ash-free dry
201 mass data from Bear Brook and Paradise Brook samples to test whether bryosphere mass
202 explained variation in NO_3^- uptake. Models were fit separately for NO_3^- uptake under light and
203 dark conditions. As with the repeated measures analysis of variance described above, the data
204 met normality assumptions after the removal of 1 outlier. The same analyses could not be applied
205 to PO_4^{3-} sorption because there was no remaining PO_4^{3-} in the water column for 35 out of 36
206 samples after light incubation.

207

208 **Nutrient stocks**

209 In addition to the 36 bryophyte clumps collected from Bear Brook and Paradise Brook,
210 we collected 1 sample/transect from 5–8 lateral transects in each upper watershed (W1–W6, W9)
211 during lateral transect surveys, for a total of 84 bryophyte samples for nutrient stock analysis. To
212 prepare each sample for desiccation, we rinsed it in a tub with 2 L of deionized water or a
213 specimen cup with 100 mL of deionized water, depending on the size of the sample. We then
214 poured the sample through stacked sieves (1.19 mm and 125 μ m) into a pre-weighed container
215 and recorded the mass of the filtrate (mg). Coarse materials caught in the top sieve (>1.19 mm)

216 were placed in a paper bag, and fine materials caught in the bottom sieve (between 125 µm and
217 1.19 mm) were placed in pre-weighed aluminum tins. All samples were air dried for 3 months
218 and then weighed, which may have introduced variability in mass measurements because of
219 water retention. Samples were then heated to 550°C for 2 h in a muffle furnace to combust all
220 organic material in accordance with methods described by Benfield et al. (2017). We then
221 weighed the resulting ash-free dry mass. We performed ANOVA analyses to assess whether
222 bryospheres accumulated higher proportions of detritus or sediments between local habitats or
223 substrates.

224 We used the ash-free dry mass to calculate C, N, and P content of the bryophyte samples.
225 Assuming the common ratio of C in organic matter, 50% of the mass lost between dry and ash-
226 free mass can be estimated as C. There are no published C:N:P ratios for the species found in the
227 study site (*Fontinalis antipyretica* and *Scapania undulata*). Thus, we estimated the amount of
228 organic N and P contained in our bryophyte tissue by using low-end (145:10:1) and high-end
229 (103:8:1) molar C:N:P ratios for a similar woodland lotic bryophyte species, *Porella pinnata*
230 (Steinman 1994). The low-end ratio is similar to what Fernandez-Martinez et al. (2021) identified
231 as the median molar C:N:P ratio of 35 different aquatic and semi-aquatic bryophyte species
232 (142:8:1). Because bryophyte C:N:P ratios can vary widely based on the species and the setting
233 (Martinez et al. 2024), this approach is not ideal and points to a need for better characterization of
234 aquatic bryophyte nutrient stocks.

235

236 **Scaling to stream-wide and watershed-scale estimates**

237 We estimated the amount of C, N, and P stored in bryophyte mats across the full length of
238 our studied streams based on data collected from our surveyed reaches (Fig. 2). Because data
239 from our measures of bryophyte mass were skewed towards low values, we used the median

240 values of bryophyte cover and dry mass to estimate reach-scale bryophyte C and nutrient stocks
 241 per unit bryophyte mass. We estimated stream reach area and the bryophyte coverage per stream
 242 reach by applying midpoint Riemann sums on our transect data. We used the following equation
 243 to estimate C content per square meter of stream (g C/m²) for each reach:

244
$$\text{C content per m}^2 \text{ of stream} = \frac{C}{a} \left(\frac{s_m}{s_w} \right), \quad \text{Eq. 1}$$

245 where C is the median C content (g) of our bryophyte samples collected from a given stream
 246 reach, a is the area of each bryophyte sample we collected in that reach (0.0036 m²), s_m is the
 247 total area of the reach covered by bryophytes (m²), and s_w is the total area of the stream reach
 248 (m²). We then used stoichiometric element ratios from the literature, as noted above, to estimate
 249 the range of standing stocks of bryophyte N and P in each stream.

250 We approximated watershed-scale stream bryophyte mass by multiplying our reach-scale
 251 estimates by the total stream area in each watershed. We determined stream area for each
 252 watershed by multiplying satellite-derived stream lengths (USDA Forest Service,
 253 <https://doi.org/10.6073/pasta/c62e92e0eada569e8580f5541b064dac>, accessed 17 January 2022)
 254 by the mean transect widths measured during our surveys. We chose this method because Vought
 255 et al. (2019) documented that stream widths in the study system are fairly consistent from 1st-
 256 running water to the sampling reaches at the watershed outflow. Using the same approach and the
 257 C:N:P ratios described above, we also estimated watershed-scale bryosphere standing stocks of
 258 C, N, and P for all study watersheds. These watershed-scale estimates of bryosphere C, N, and P
 259 content allowed us to compare standing stocks of bryosphere nutrients with the export of
 260 elements from the watershed on an annual basis. If we assume that the bryosphere is a primary
 261 reservoir for stream nutrients, we can compare these standing stocks with annual watershed

262 exports of dissolved inorganic N (DIN = NO₃-N and NH₄-N) and PO₄-P from each study
263 watershed (HBWatER 2024a).

264

265 RESULTS

266 Bryophyte abundance

267 We found that bryophyte coverage was highly variable both within and among streams.
268 Data from our lateral transects demonstrated that a stream that was completely carpeted by
269 bryophytes in one section can be devoid of bryophytes in another section (Fig. 3). Furthermore,
270 median % cover across stream reaches in 2022 ranged from as little as 0% to as high as 41.4%.
271 This variability in coverage among streams was not related to differences in the streams' mean
272 slope (a proxy for the frequency of bed-moving flows), nutrient availability, pH, or temperature
273 (Table S2). However, we observed that bryophyte cover differed with channel geomorphology,
274 with bryophytes appearing to be more abundant in points of flow constriction and in shallower
275 water. Likewise, bryophytes were present more often on immobile substrates, like boulders and
276 bedrock, than pebbles or cobbles (Table S5). However, differences in the distribution of habitat
277 types (i.e., slide, cascade, riffle, pool) and substrates (i.e., bedrock, boulder, cobble, pebble, etc.)
278 among streams were not related to differences in steam-level % bryophyte coverage (Tables S3,
279 S4). In addition, we also observed that the thickness and complexity of bryophyte communities
280 varied spatially. Bryophyte mats accumulated in some parts of the stream to depths of >15 cm
281 and consisted of both live and dead tissue (Fig. 4A), whereas other locations were dominated by
282 thin layers (<2 cm) of exclusively live bryophyte tissue (Fig. 4B).

283 Bryophyte coverage was also variable over time, although changes in bryophyte coverage
284 across years was not consistent among streams. W1 had <5% median coverage in both 2019 and
285 2022, but bryophytes in W9 increased in median coverage from 10 to 41% between years

286 (Mann–Whitney U , $W = 34.5$, p -value = 0.009). Conversely, median bryophyte coverage in Bear
287 Brook declined from 36 to 24% between 2019 and 2022 (Mann–Whitney U , $W = 406$, p -value =
288 0.05). Bryophyte coverage did not notably shift in any other stream (Table S6).

289

290 **Bryophyte nutrient stocks**

291 There were large differences in bryophyte mat nutrient storage capacity between collected
292 samples. Our bryophyte sample masses ranged widely from the sparsest sample, which contained
293 only 0.0005 g organic matter (OM)/cm² of bryophyte, to the thickest bryophyte mat we sampled,
294 which contained 0.959 g of OM/cm² of bryophyte. Median bryophyte-associated OM across
295 streams ranged from 0.007 to 0.20 g OM/cm² of bryophyte ($n = 84$). It is interesting to note that
296 the stream with the largest increase in bryophyte % coverage had the 2nd-lowest median organic
297 mass content (W9 OM = 0.007 g/cm², $n = 8$).

298 For most samples, most OM was contained within living and dead bryophyte tissue,
299 though each mat had a reservoir of captured organic materials that were rinsed out (particle
300 diameter = 125 μm –1.19 mm), ranging from 0.00002 to 0.18 g/cm² ($n = 84$). These captured
301 organic particulates constituted between 0.5 and 74.2% of the total organic mass in bryophyte
302 clumps, averaging $9.7 \pm 10\%$ of the total OM. We found no differences in the OM ratio of
303 bryophytes based on their local habitat (ANOVA, $F_{3,332} = 0.9$, $p = 0.4$) or substrate (ANOVA,
304 $F_{5,498} = 0.8$, $p = 0.6$).

305 Based on our abundance and OM data, we estimated stream-scale bryophyte-associated
306 OM to range between 14 and 414 g/m² of stream, depending on the stream (Fig. 5C). Using
307 published C:N:P ratio ranges for a bryophyte species similar to those found in HBEP (Steinman
308 1994), we estimated the standing stock of N in bryophyte tissue to range from 0.6 to 0.7 g N/m²
309 of stream in our most barren stream and upwards of 18.5 to 20.7 g N/m² of stream in our mossiest

310 stream. Likewise, we estimated the organic P stock from bryophyte tissue to range from 0.1 to
311 0.2 g P/m² of stream in our most barren stream and 3.7 to 5.2 g P/m² of stream in our mossiest
312 stream.

313 In addition to trapping organic material, bryophyte mats also accumulated large quantities
314 of mineral sediments (Fig. 6). Inorganic material ranged from 0.3 to 2250 mg/cm² of bryophyte
315 across all of our samples ($n = 84$). The highest mineral content was in thick mats, where it
316 constituted up to 95% of the total mass of a bryophyte clump. We found no relationship between
317 bryophyte mat inorganic content and local habitat type (ANOVA, $F_{3,332} = 0.4, p = 0.7$) or
318 substrate type (ANOVA, $F_{5,498} = 0.3, p = 0.9$). All bryophytes contained small particles of
319 magnetite (diameter < 125 μm) that clung to a magnetic stir rod.

320

321 **Bryophyte nutrient uptake**

322 We found that bryophyte clumps had high NO_3^- assimilation and PO_4^{3-} sorption rates.
323 When incubated with water-column concentrations of NO_3^- (320 $\mu\text{g NO}_3\text{-N/L}$) and PO_4^{3-} (20 μg
324 $\text{PO}_4\text{-P/L}$) that represent the highest measured concentrations in the Hubbard Brook stream
325 chemistry record, 35 out of 36 bryophyte clumps sorbed all available PO_4^{3-} within our 12-h light
326 incubations. Because we performed light and dark incubations consecutively, PO_4^{3-}
327 concentrations were too low after light incubation to measure sorption in dark conditions in all
328 but 1 sample, which sorbed the little PO_4^{3-} remaining in the water column. Our bryophyte
329 samples also completely removed available NO_3^- from the water column within a 24-h period.
330 One bryophyte clump from Bear Brook released NO_3^- into the column during light incubation.
331 Although net NO_3^- uptake was also notably higher in light than dark conditions for samples from
332 both Paradise (RM-ANOVA $F_{1,34} = 18.4, p = 0.0006$) and Bear Brook (RM-ANOVA $F_{1,32} =$
333 10.9, $p = 0.004$; Table S7), all bryophyte clumps also assimilated NO_3^- during the dark

334 incubations (Fig. 7A–D). In fact, 7 out of 36 samples assimilated NO_3^- at a marginally higher rate
335 in the dark incubations than the light incubations.

336 Total bryophyte mat mass only weakly explained differences in NO_3^- uptake rates (Table
337 S8). Under light conditions mass explained ~16% of variability in NO_3^- uptake rates between
338 samples in both Paradise Brook and Bear Brook. Under dark conditions mass explained a greater
339 portion of variability (36%) in NO_3^- uptake rates in Bear Brook but did not explain any
340 variability in NO_3^- uptake rates in Paradise Brook (Table S8). By scaling 24-h NO_3^- assimilation
341 rates from our jar incubations and using our estimates of total stream bryophyte mass, we
342 estimated whole-stream N uptake rates due to bryophyte-associated NO_3^- assimilation to be 2.3 g
343 $\text{N m}^{-2} \text{ y}^{-1}$ for Bear Brook and 1.4 g $\text{N m}^{-2} \text{ y}^{-1}$ for Paradise Brook.

344 Bryophyte species composition differed between Bear Brook and Paradise Brook, as did
345 NO_3^- uptake rates within species. All Paradise Brook samples contained *S. undulata*, with 1 out
346 of 18 samples also including a small fraction of *F. antipyretica* (Fig. 7B, D). Conversely, Bear
347 Brook samples were more mixed: *S. undulata* was found in 10 out of 18 samples, and *F.*
348 *antipyretica* was dominant in 16 out of 18 samples (Fig. 7A, C). In Bear Brook, samples
349 containing *S. undulata* had higher mass-specific NO_3^- uptake rates than pure *F. antipyretica*
350 samples (Fig. 7C). In contrast, the mass-specific uptake rates in *S. undulata* from Paradise Brook
351 spanned the entire range of mass-specific uptake rates seen in Bear Brook for both taxa (Fig. 7D).
352 Out of 36 bryophyte clumps prepared for nutrient incubation, 7 contained live Dipteron larvae.
353 Each of these 7 samples were collected from bedrock slides or cascades.

354

355 **DISCUSSION**

356 Our study represents a novel attempt to 1) characterize change in stream bryophyte
357 coverage over time and 2) quantitatively measure their nutrient storage and uptake capacity in

358 streams of the Hubbard Brook Experimental Forest. Understanding the variability of stream
359 bryophyte coverage over time—and where nutrients are stored and transformed within bryophyte
360 mats—is critical to assess their importance to stream nutrient cycling. Our data suggest that in
361 streams with expansive bryophyte mats, the bryosphere is a significant and dynamic site of
362 nutrient cycling.

363

364 **Bryophyte abundance**

365 Within streams, bryophytes were most commonly found in points of flow constriction and
366 on stable substrates like bedrock and boulders (Table S5), consistent with previous observations
367 of headwater streams (Steinman and Boston 1993, Suren 1996, Vought et al. 2019). Similar to
368 Suren (1996), we found no difference in stream stability or substrate between streams covered in
369 moss or liverworts. Steinman and Boston (1993) found that bryophytes accumulate more mass in
370 riffles and on boulders, but we did not observe strong differences in bryophyte mat mass between
371 habitat and substrate type. This difference in our results is likely because the stream in their
372 study, Walker Branch, is proportionally dominated by flat and slow-flowing runs with larger
373 stretches of pebbles and sand. In comparison, the HBEF streams we studied are steeper, faster
374 flowing, and have a higher proportion of stable substrate with a step-pool morphology.

375 Among streams, median bryophyte coverage ranged from 0 to 41.4%. Though the streams
376 we surveyed had different proportions of ideal bryophyte habitat (i.e., bedrock or boulder slides),
377 we found no consistent pattern in the distribution of different substrates and habitat types
378 between the most and least bryophyte-dominated streams (Tables S3, S4). Therefore, although
379 substrate and habitat type partly explained differences in bryophyte distribution within streams, it
380 did not explain differences in coverage and mass among streams. Regardless, our results align
381 with previous studies that found that small substrates, like pebbles and sand, are incapable of

382 accruing large amounts of moss because of bed disturbance flows (Steinman and Boston 1993,
383 Suren 1996, Scarlett and O'Hare 2006). Other likely drivers of bryophyte abundance, such as
384 stream slope, pH, temperature, and nutrient availability, did not explain differences in bryophyte
385 coverage across streams (Table S2). Collectively, none of our commonly measured variables
386 were sufficient to explain the high spatial and temporal variability of bryophyte coverage that we
387 observed across HBEF headwaters.

388 In addition to high spatial variability, we found that change in bryophyte coverage
389 between 2019 and 2022 was greater than we expected. Two streams, Bear Brook and W9, had
390 large shifts in bryophyte coverage over time—with one experiencing a 31% increase and the
391 other a 12% decrease in coverage. However, most streams (7 out of 9) did not appear to have
392 notable changes in bryophyte coverage. For Bear Brook, we can compare our recent surveys of
393 bryophyte coverage (24–36%) with a much earlier survey conducted by Fisher and Likens in
394 1973 (2%). There was a major winter storm in 1968, the year before Fisher and Likens surveyed
395 Bear Brook (S. Fisher, Arizona State University, Tempe, AZ, personal communication), which
396 may have led to a decrease in bryophyte coverage at that time. Past studies demonstrate that
397 winter storms decrease stream moss abundance (Steinman and Boston 1993) and that stream
398 areas with abundant anchor ice are devoid of moss (Lind et al. 2014), which suggests that
399 weather disturbance events may drive bryophyte distribution in HBEF streams. If this is the case,
400 sensitivity to extreme weather events may be a more important driver of change than rising
401 temperatures in stream bryospheres. As extreme weather events become more common
402 (Rahmstorf and Coumou 2011), scour from storms and winter freezing may become more
403 frequent. We have very limited information about the ability of bryophyte mats to recover from
404 scouring. Steinman and Boston (1993) observed that after a winter storm disturbance, the
405 bryophyte % coverage recovered within a couple of months, whereas total mass had not fully

406 recovered after 6 mo. In that study the relative ratios of species also changed after the storm,
407 which—as our data suggest—could influence bryosphere nutrient uptake.

408 It is evident that the bryophyte cover and mass in any stream can vary greatly over longer
409 time periods, but with only 3 y of data we cannot confidently conclude whether bryophytes are
410 becoming more or less abundant in these headwater streams. Because of the high spatial
411 variability of bryophyte coverage in these streams, it is also possible that the differences we
412 observed between 2019 and 2022 were due to spatial variability in the stream bed (i.e.,
413 happenstance sampling of less- or more-dense bryophyte sections). It is likewise important to
414 note that error may be introduced because of differences in practices between sampling teams.
415 Nonetheless, our data raise the question of what drives interannual differences in stream
416 bryophyte populations and distribution. Our data suggest that stream bryophyte populations can
417 be quite dynamic, and annual static quadrat survey data is necessary to determine whether valley-
418 wide abundance of bryophytes is increasing or decreasing in HBEF.

419 Understanding how bryophyte populations change over time helps us understand to what
420 extent they contribute to stream nutrient cycling. For example, although Meyer (1979) identified
421 that bryophytes efficiently sorb P in Bear Brook, she discounted their overall contribution to P
422 capture because Fisher and Likens (1973) previously reported bryophyte coverage to be a mere
423 2%. As years passed, studies of Bear Brook began reporting anecdotal increases in bryophyte
424 abundance (Findlay et al. 1997), but the lack of formal surveys until 2001 (TW, unpublished
425 data) and 2019 has proliferated the misconception that contemporary HBEF streams are
426 characteristically devoid of bryophytes.

427

428 **Bryophyte nutrient stocks**

429 We estimate that in the summer of 2022, bryophytes stored between 14 and 414 g OM/m²
430 of stream. Our data suggest that bryophyte organic matter stocks in some HBEF streams are
431 among the highest of those reported in the literature and that variation across HBEF streams
432 spans nearly the full range of variation reported for streams in the literature (Fig. 8). The range of
433 organic matter that we estimated for HBEF streams is most similar to the range identified by
434 **Virtanen** et al. (2001) in the Kuusamo streams of Finland (150–650 g OM/m²). In the stream with
435 the least bryophyte abundance (W1), the N stock within the bryosphere is $\sim 1/50$ of annual N
436 watershed exports, and the P stock is roughly equivalent to P watershed exports (Fig. 9). In
437 contrast, in the stream with the most bryophyte abundance (W2), the bryosphere stored $>8\times$ more
438 N and P in the stream channel than is exported from the watershed each year.

439 In these otherwise nutrient-poor streams, the bryosphere provides an important standing
440 stock of inorganic nutrients that may limit or fuel the production of algal, microbial, and insect
441 biota. Knowing where nutrients are stored within these bryophyte mats is important to understand
442 their role in nutrient cycling. Although it is possible that bryophytes could decrease nutrient
443 availability for other stream organisms by outcompeting them for nutrients and storing nutrients
444 in inedible tissues (**Glime** 2006, **Parker** et al. 2007), it is more likely that bryophytes increase a
445 stream's overall ability to capture and store nutrients by providing physical structure to capture
446 detritus and host epiphytic algae, microbes, and insects. Aquatic bryophytes harbor algae and
447 macroinvertebrates in fast-flowing waters in which they otherwise would not be able to subsist
448 (**Arscott** et al. 1998, **Stream Bryophyte Group** 1999, **Alvarez** and Peckarsky 2013, **Bowden** et al.
449 2017). The physical structure of bryophytes also allows them to capture potentially bioavailable
450 particulate matter that may otherwise wash downstream. From our ash-free dry mass samples, we
451 found a mean of $90.3 \pm 10\%$ of OM was stored as bryophyte tissue, whereas most inorganic

452 matter was captured as sediment. However, captured particulates constituted upwards of 74% of
453 organic matter in some bryophyte mats.

454 It is important to note that the organic matter stocks in bryophyte mats are relatively small
455 compared with coarse woody debris. In Bear Brook, for example, large woody debris contributes
456 622 to 1120 g C/m² of stream (Findlay et al. 1997), whereas bryophyte mats contain an estimated
457 21 g C/m² of stream. Despite woody debris contributing ~30 to 50× more C than contributed by
458 bryophyte mats, they both act as physical obstructions that alter streamflow, such that they
459 increase a stream's overall nutrient retention and cycling capability. Large woody debris can act
460 as a dam, trapping dense accumulations of leaf litter that can harbor macroinvertebrates and
461 microbes (Tank et al. 2010), similar to bryophytes. Unlike woody debris, however, bryophytes
462 have living tissue with nutrient demands in addition to those of the biota they harbor.

463

464 **Bryophyte nutrient uptake**

465 Previous work at HBEP provided conclusive evidence that stream bryophytes are highly
466 effective at sorbing and assimilating P (Meyer 1979). Our results suggest that bryophyte mats
467 may also drive instream NO₃⁻ assimilation. By scaling the mean 1-d NO₃⁻ uptake from our Bear
468 Brook bryophyte incubations with the stream-level bryophyte cover, we estimated that
469 bryophyte-associated NO₃⁻ uptake (2.3 g N m⁻² y⁻¹) constitutes a substantial portion of
470 previously estimated whole-stream NO₃⁻ uptake rates in this stream (12 g N m⁻² y⁻¹) (Bernhardt
471 et al. 2003). It is important to note that our methods allowed us to measure net nutrient uptake
472 rates. It is possible that gross nutrient turnover rates in the bryosphere are considerably higher.

473 Our results further demonstrate that NO₃⁻ uptake in bryophyte mats is not attributable to
474 bryophytes alone but may be due in large part to the organisms they host. NO₃⁻ uptake was
475 generally greater in light than dark conditions, but all bryophyte clumps assimilated NO₃⁻ during

476 the dark incubation period as well. Because bryophytes are photosynthetic, this result suggests
477 that heterotrophs make important contributions to NO_3^- uptake in the bryosphere. This
478 conclusion is further supported by our finding that mass only explained ~16% of variation in
479 NO_3^- uptake in light conditions among samples from both Bear Brook and Paradise Brook, but
480 upwards of 36% of variation in samples from Bear Brook under dark conditions. The amount of
481 photosynthetic tissue contained in bryophytes does not scale linearly with mass. Instead, larger
482 bryophyte mats tend to consist of large accumulations of dead tissue beneath living tissue. Thus,
483 we propose that mass explained more variation in our Bear Brook samples under dark conditions
484 because the effect was driven by increased heterotrophic uptake due to increased surface area for
485 colonization, and the effect was not drowned out by the uptake attributable to photosynthesis. It
486 is possible that mass did not explain any variation in uptake in Paradise Brook under dark
487 conditions because those samples contained different taxa than those from Bear Brook.

488 We measured different NO_3^- uptake rates between samples that were dominated by *F.*
489 *antipyretica* vs those dominated by *S. undulata* in Bear Brook where these 2 species co-occur.
490 This difference might lead one to believe that *S. undulata* characteristically uptakes less NO_3^-
491 than *F. antipyretica* uptakes. Yet, we observed that the range in NO_3^- uptake across samples from
492 Paradise Brook—where we almost exclusively found *S. undulata*—was similar to the full range
493 of NO_3^- uptake rates observed from samples in Bear Brook, regardless of the sample's bryophyte
494 taxon composition. Although it is possible that there is a negative interaction effect between the 2
495 species, our study did not contain enough mixed bryophyte samples from Paradise Brook for
496 comparison, meaning this effect could equally be due to ambient differences between Bear Brook
497 and Paradise Brook. It is interesting to speculate and well worth further exploration to discover
498 whether these 2 bryophyte taxa support distinct communities of epifauna and microbes that may
499 influence their role in nutrient uptake.

500 Almost all (35 out of 36) bryophyte clumps sorbed annual peak stream concentrations of
501 PO₄³⁻ within 12 h of light incubation, consistent with previous studies that found stream
502 bryophytes sorb P (Meyer 1979, Steinman and Boston 1993). Because there were no detectable
503 concentrations of PO₄³⁻ remaining in the water column after light incubation, we could not
504 measure PO₄³⁻ sorption in the dark. Therefore, we could not distinguish whether the consumption
505 of PO₄³⁻ we observed in the light incubation was due to physical sorption or biological uptake.
506 For this reason, we are using the term sorption to represent all removal of PO₄³⁻ from the water
507 column. Future studies should compare PO₄³⁻ uptake in light and dark conditions to better
508 understand whether bryosphere removal of PO₄³⁻ in headwater streams is driven by biological
509 uptake or sorption. However, the rapid sorption rates we measured may help elucidate why
510 stream organisms are able to survive in such oligotrophic water columns. If sorbed P is held in
511 bioavailable fractions, then a bryophyte mat's constituent organisms may not need to source their
512 P from the nutrient-poor water column. Water-column nutrient content alone may be insufficient
513 to characterize the nutrient profile of headwater streams with developed bryophyte mats.

514 Cumulatively, our results suggest that HBEF streams contain dynamically changing,
515 complex, and extensive bryospheres with high nutrient uptake and storage capacity. We found
516 that the spatial and temporal distributions of the bryosphere in HBEF streams are not explainable
517 solely by ambient stream conditions and resource availability. Our results raise interesting
518 questions around the extent to which disturbance events influence the distribution, composition,
519 and recovery of the bryosphere, which is important for stream ecosystem function.

520

521 **ACKNOWLEDGEMENTS**

522 Author contributions: JJBS, ANT, EJR, and ESB designed the study. Data were collected
523 by JJBS, ANT, OKV, and ESB and analyzed and interpreted by JJBS, ANT, and ESB. The

524 manuscript was drafted by JJBS, ANT, and ESB, and all coauthors provided essential comments
525 and revisions.

526 We send a special thanks to members of the Bernhardt and Emanuel labs for providing
527 invaluable feedback on our research. We graciously thank Geoff Wilson from The Cary Institute,
528 as well as Misaki Foster from Duke University, for field and dry lab assistance; lab managers
529 Brooke Hassett and Steve Anderson from Duke University for wet lab assistance; and the
530 summer 2022 residents of Pleasant View Farm for making our field station feel like home. JJBS
531 was supported through a United States National Science Foundation (NSF) Research Experiences
532 for Undergraduates fellowship and research funds derived from NSF Grant 1907683 with
533 additional support from Duke University's Office of University Scholars and Fellows. This work
534 is a contribution of the Hubbard Brook Ecosystem Study. Hubbard Brook is part of the Long-
535 Term Ecological Research network, which is supported by the NSF. The Hubbard Brook
536 Experimental Forest is operated and maintained by the United States Department of Agriculture
537 Forest Service, Northern Research Station.

538 **LITERATURE CITED**

539 **Alvarez**, M., and B. L. Peckarsky. 2013. The influence of moss on grazers in high-altitude
540 streams: Food, refuge or both? *Freshwater Biology* 58:1982–1994.

541 **Arróniz-Crespo**, M., S. Pérez-Ortega, A. De Los Ríos, T. G. A. Green, R. Ochoa-Hueso, M. Á.
542 Casermeiro, M. T. de la Cruz, A. Pintado, D. Palacios, R. Rozzi, N. Tysklind, and L. G.
543 Sancho. 2014. Bryophyte-cyanobacteria associations during primary succession in
544 recently deglaciated areas of Tierra del Fuego (Chile). *PLOS One* 9:e96081.

545 **Arscott**, D. B., W. B. Bowden, and J. C. Finlay. 1998. Comparison of epilithic algal and
546 bryophyte metabolism in an arctic tundra stream, Alaska. *Journal of the North American
547 Benthological Society* 17:210–227.

548 **Ashkenas**, L. R., S. L. Johnson, S. V. Gregory, J. L. Tank, and W. M. Wollheim. 2004. A stable
549 isotope tracer study of nitrogen uptake and transformation in an old-growth forest stream.
550 *Ecology* 85:1725–1739.

551 **Bayer**, M. O., L. K. Swartz, and W. H. Lowe. 2021. Predictors of biofilm biomass in oligotrophic
552 headwater streams. *Northeastern Naturalist* 28:28–48.

553 **Benfield**, E. F., K. M. Fritz, and S. D. Tiegs. 2017. Leaf-litter breakdown. Pages 71–82 in G. A.
554 Lamberti and F. R. Hauer (editors). *Methods in stream ecology. Volume 2: Ecosystem
555 function.* 3rd edition. Academic Press, London, UK and San Diego, California.

556 **Bernhardt**, E. S., G. E. Likens, D. C. Buso, and C. T. Driscoll. 2003. In-stream uptake dampens
557 effects of major forest disturbance on watershed nitrogen export. *Proceedings of the
558 National Academy of Sciences* 100:10304–10308.

559 **Bleuel**, C., D. Wesenberg, K. Sutter, and J. Miersch. 2005. The use of the aquatic moss
560 *Fontinalis antipyretica* L. ex Hedw. as a bioindicator for heavy metals: 3. Cd²⁺
561 accumulation capacities and biochemical stress response of two *Fontinalis* species.

562 Science of the Total Environment 345:13–21.

563 **Bowden**, W. B., J. C. Finlay, and P. E. Maloney. 1994. Long-term effects of PO₄ fertilization on
564 the distribution of bryophytes in an arctic river. Freshwater Biology 32:445–454.

565 **Bowden**, W. B., J. M. Glime, and T. Riis. 2017. Macrophytes and bryophytes. Pages 243–271 in
566 F. R. Hauer and G. A. Lamberti (editors). Methods in stream ecology. Volume 1:
567 Ecosystem structure. 3rd edition. Academic Press, London, UK and San Diego, California.

568 **Britton**, A. J., R. J. Mitchell, J. M. Fisher, D. J. Riach, and A. F. S. Taylor. 2018. Nitrogen
569 deposition drives loss of moss cover in alpine moss–sedge heath via lowered C : N ratio
570 and accelerated decomposition. New Phytologist 218:470–478.

571 **Brown**, D. H., and J. W. Bates. 1990. Bryophytes and nutrient cycling. Botanical Journal of the
572 Linnean Society 104:129–147.

573 **Carrieri**, V., J. Á. Fernández, J. R. Aboal, E. Picariello, and F. De Nicola. 2021. Accumulation of
574 polycyclic aromatic hydrocarbons in the devitalized aquatic moss *Fontinalis antipyretica*:
575 From laboratory to field conditions. Journal of Environmental Quality 50:1196–1206.

576 **Cenci**, R. M. 2001. The use of aquatic moss (*Fontinalis antipyretica*) as monitor of
577 contamination in standing and running waters: Limits and advantages. Journal of
578 Limnology 60:53–61.

579 **Chapin**, F. S. III, W. C. Oechel, K. Van Cleve, and W. Lawrence. 1987. The role of mosses in the
580 phosphorus cycling of an Alaskan black spruce forest. Oecologia 74:310–315.

581 **DeLuca**, T. H., O. Zackrisson, M.-C. Nilsson, and A. Sellstedt. 2002. Quantifying nitrogen-
582 fixation in feather moss carpets of boreal forests. Nature 419:917–920.

583 **Ecke**, F. 2018. The added value of bryophytes and macroalgae in ecological assessment of lakes.
584 Ecological Indicators 85:487–492.

585 **Eckstein**, R. L. 2000. Nitrogen retention by *Hylocomium splendens* in a subarctic birch

586 woodland. *The Journal of Ecology* 88:506–515.

587 **Englund**, G. 1991. Effects of disturbance on stream moss and invertebrate community structure. *Journal of the North American Benthological Society* 10:143–153.

588 **Fernandez-Martinez**, M., C. Preece, J. Corbera, O. Cano, J. Garcia-Porta, J. Sardans, I. A. Janssens, F. Sabater, and J. Penuelas. 2021. Bryophyte C:N:P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. *Ecology Letters* 24:1375–1386.

590 **Findlay**, S., G. E. Likens, L. Hedin, S. G. Fisher, and W. H. McDowell. 1997. Organic matter dynamics in Bear Brook, Hubbard Brook Experimental Forest, New Hampshire, USA. *Journal of the North American Benthological Society* 16:43–46.

591 **Finlay**, J. C., and W. B. Bowden. 1994. Controls on production of bryophytes in an Arctic tundra stream. *Freshwater Biology* 32:455–466.

592 **Fisher**, S. G., and G. E. Likens. 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. *Ecological Monographs* 43:421–439.

593 **Glime**, J. M. 2006. Bryophytes and herbivory. *Cryptogamie, Bryologie* 27:191–203.

594 **Gorham**, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. *Ecological Applications* 1:182–195.

595 **Gundale**, M. J., T. H. DeLuca, and A. Nordin. 2011. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. *Global Change Biology* 17:2743–2753.

596 **Hall**, R. O. Jr, G. E. Likens, and H. M. Malcom. 2001. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. *Journal of the North American Benthological Society* 20:432–447.

597 **HBWatER** (Hubbard Brook Watershed Ecosystem Record). 2024a. Continuous precipitation and

610 stream chemistry data, Hubbard Brook Ecosystem Study, 1963 – ongoing. Version 10.

611 Environmental Data Initiative. (Available from:

612 <https://doi.org/10.6073/pasta/d2134b69e922988cb056a3c1a837e459>)

613 **HBWatER** (Hubbard Brook Watershed Ecosystem Record). 2024b. The Hubbard Brook stream

614 ecology record: Light, 2018 – ongoing. Version 1. Environmental Data Initiative.

615 (Available from: <https://doi.org/10.6073/pasta/0f40b75b299494d736645d940fa2b5a4>)

616 **HBWatER** (Hubbard Brook Watershed Ecosystem Record). 2024c. The Hubbard Brook stream

617 ecology record: Algal biomass (chlorophyll-a), 2018 – ongoing. Version 1.

618 Environmental Data Initiative. (Available from:

619 <https://doi.org/10.6073/pasta/7fa32d94240fc7780d62cb7e65eafdb2>)

620 **IPCC** (Intergovernmental Panel on Climate Change). 2014. Climate change 2013: The physical

621 science basis: Contribution of Working Group I to the fifth assessment report of the

622 Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M.

623 Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (editors).

624 Cambridge University Press, Cambridge, UK and New York, New York.

625 **Kahl**, S., J. Gerendas, V. Heeschen, R. G. Ratcliffe, and H. Rudolph. 1997. Ammonium

626 assimilation in bryophytes. L-glutamine synthetase from *Sphagnum fallax*. *Physiologia*

627 *Plantarum* 101:86–92.

628 **Kotanen**, P. M. 2002. Fates of added nitrogen in freshwater arctic wetlands grazed by snow

629 geese: The role of mosses. *Arctic, Antarctic, and Alpine Research* 34:219–225.

630 **Likens**, G. E. 2021. Ambio's legacy on monitoring, impact, and management of acid rain. *Ambio*

631 50:278–280.

632 **Likens**, G. E., and F. H. Bormann. 2013. Biogeochemistry of a forested ecosystem. 3rd edition.

633 Springer Science+Business Media, New York, New York.

634 Lind, L., C. Nilsson, and C. Weber. 2014. Effects of ice and floods on vegetation in streams in
635 cold regions: Implications for climate change. *Ecology and Evolution* 4:4173–4184.

636 Liu, X., Z. Wang, X. Li, K. Rousk, and W. Bao. 2020. High nitrogen resorption efficiency of
637 forest mosses. *Annals of Botany* 125:557–563.

638 Martin, A., J. Corbera, O. Cano, C. Preece, J. Penuelas, F. Sabater, and M. Fernandez-Martinez.
639 2024. The influence of nitrate pollution on elemental and isotopic composition of aquatic
640 and semi-aquatic bryophytes. *Aquatic Botany* 190:103710.

641 Meyer, J. L. 1979. The role of sediments and bryophytes in phosphorus dynamics in a headwater
642 stream ecosystem. *Limnology and Oceanography* 24:365–375.

643 Mulholland, P. J. 2015. Lotic Intersite Nitrogen eXperiment II (LINX II): A cross-site study of
644 the effects of anthropogenic land use change on nitrate uptake and retention in 72 streams
645 across 8 different biomes (2003–2006). Version 3. Environmental Data Initiative.
646 (Available from: <https://doi.org/10.6073/pasta/eac34b6c1cfb0268dd76ef68a7a90bfc>)

647 Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster, and
648 J. L. Meyer. 2000. Nitrogen cycling in a forest stream determined by a ^{15}N tracer addition.
649 *Ecological Monographs* 70:471–493.

650 Muotka, T., and P. Laasonen. 2002. Ecosystem recovery in restored headwater streams: the role
651 of enhanced leaf retention. *The Journal of applied ecology* 39:145–156.

652 Parker, J. D., D. E. Burkepile, D. O. Collins, J. Kubanek, and M. E. Hay. 2007. Stream mosses as
653 chemically-defended refugia for freshwater macroinvertebrates. *Oikos* 116:302–312.

654 Parker, S. M., and A. D. Huryn. 2006. Food web structure and function in two arctic streams with
655 contrasting disturbance regimes. *Freshwater Biology* 51:1249–1263.

656 Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E.
657 Marti, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K.

658 Hamilton, S. Gregory, and D. D. Morrall. 2001. Control of nitrogen export from
659 watersheds by headwater streams. *Science* 292:86–90.

660 Rahmstorf, S., and D. Coumou. 2011. Increase of extreme events in a warming world.
661 Proceedings of the National Academy of Sciences 108:17905–17909.

662 Rai, A. N., E. Söderbäck, and B. Bergman. 2000. Tansley Review No. 116: Cyanobacterium–
663 plant symbioses. *The New Phytologist* 147:449–481.

664 Rousk, K., and A. Michelsen. 2017. Ecosystem nitrogen fixation throughout the snow-free period
665 in subarctic tundra: Effects of willow and birch litter addition and warming. *Global
666 Change Biology* 23:1552–1563.

667 Samecka-Cymerman, A., K. Kolon, and A. Kempers. 2002. Heavy metals in aquatic bryophytes
668 from the Ore Mountains (Germany). *Ecotoxicology and Environmental Safety* 52:203–
669 210.

670 Scarlett, P., and M. O'Hare. 2006. Community structure of in-stream bryophytes in English and
671 Welsh rivers. *Hydrobiologia* 553:143–152.

672 Stark, L. R., and A. T. Whittemore. 2000. Bryophytes from the northern Mojave Desert. *The
673 Southwestern Naturalist* 45:226–232.

674 Steele, J. J. B., A. N. Thellman, O. K. Vought, and M. Foster. 2024. Hubbard Brook
675 Experimental Forest: 2019 and 2022 stream bryophyte abundance. Version 1.
676 Environmental Data Initiative. (Available from:
677 <https://doi.org/10.6073/pasta/2286895cbf1e5291af339d52002c502e>, Accessed May 2024)

678 Steinman, A. D. 1994. The influence of phosphorus enrichment on lotic bryophytes. *Freshwater
679 Biology* 31:53–63.

680 Steinman, A. D., and H. L. Boston. 1993. The ecological role of aquatic bryophytes in a
681 woodland stream. *Journal of the North American Benthological Society* 12:17–26.

682 Stream Bryophyte Group. 1999. Roles of bryophytes in stream ecosystems. *Journal of the North*
683 American Benthological Society 18:151–184.

684 Suren, A. M. 1991. Bryophytes as invertebrate habitat in two New Zealand alpine streams.
685 *Freshwater Biology* 26:399–418.

686 Suren, A. M. 1996. Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale
687 variables in South Island, New Zealand streams. *New Zealand Journal of Marine and*
688 *Freshwater Research* 30:501–523.

689 Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin, and M. L. Stephen. 2010. A
690 review of allochthonous organic matter dynamics and metabolism in streams. *Journal of*
691 *the North American Benthological Society* 29:118–146.

692 Turetsky, M. R. 2003. The role of bryophytes in carbon and nitrogen cycling. *The Bryologist*
693 106:395–409.

694 Turunen, J., P. Louhi, H. Mykrä, J. Aroviita, E. Putkonen, A. Huusko, and T. Muotka. 2018.
695 Combined effects of local habitat, anthropogenic stress, and dispersal on stream
696 ecosystems: a mesocosm experiment. *Ecological applications: a publication of the*
697 *Ecological Society of America* 28:1606–1615.

698 Verhoeven, J. T. A., and E. Toth. 1995. Decomposition of *Carex* and *Sphagnum* litter in fens:
699 Effect of litter quality and inhibition by living tissue homogenates. *Soil Biology and*
700 *Biochemistry* 27:271–275.

701 Vincent, C. D., A. J. Lawlor, and E. Tipping. 2001. Accumulation of Al, Mn, Fe, Cu, Zn, Cd and
702 Pb by the bryophyte *Scapania undulata* in three upland waters of different pH.
703 *Environmental Pollution* 114:93–100.

704 Virtanen, R., T. Muotka, and M. Saksa. 2001. Species richness–standing crop relationship in
705 stream bryophyte communities: Patterns across multiple scales. *Journal of Ecology*

706 89:14–20.

707 **Vought**, O., E. Rosi, S. Hamilton, E. Bernhardt, and A. Thellman. 2019. The distribution of moss
708 in streams at Hubbard Brook Experimental Forest. (Available from:
709 https://www.caryinstitute.org/sites/default/files/public/reprints/vought_2019_reu.pdf)

710 **Wood**, J., M. Pattillo, and M. Freeman. 2016. Organic-matter retention and macroinvertebrate
711 utilization of seasonally inundated bryophytes in a mid-order Piedmont river.
712 *Southeastern Naturalist* 15:403–414.

713 **Wulf**, P., and R. G. Pearson. 2017. Mossy stones gather more bugs: Moss as habitat, nurseries
714 and refugia for tropical stream invertebrates. *Hydrobiologia* 790:167–182.

715 **Ylla**, I., A. M. Romaní, and S. Sabater. 2007. Differential effects of nutrients and light on the
716 primary production of stream algae and mosses. *Fundamental and Applied Limnology:*
717 *Archiv für Hydrobiologie* 170:1–10.

718 **Yoshimura**, E., N. Sato, N. K. Nishizawa, K. Satake, and S. Mori. 2000. Accumulation of metals
719 in the cell walls of the liverwort, *Scapania undulata*. *Journal of Environmental Science
720 and Health, Part A* 35:837–847.

721 **Yu**, Z. C. 2012. Northern peatland carbon stocks and dynamics: A review. *Biogeosciences*
722 9:4071–4085.

723 **Zhu**, R.-G., H.-Y. Xiao, Z. Zhang, and Y. Lai. 2018. Compound-specific $\delta^{15}\text{N}$ composition of
724 free amino acids in moss as indicators of atmospheric nitrogen sources. *Scientific Reports*
725 8:14347.

726 **FIGURE CAPTIONS**

727 Fig. 1. Stream bryophyte structure in Hubbard Brook Experimental Forest in New Hampshire,
728 USA. A.—Streams at Hubbard Brook are largely dominated by aquatic and semi-aquatic
729 bryophytes. B.—These bryophytes are most abundant in bottlenecks with laminar flow,
730 often trapping debris. The left of the boulder shows what may be scour—a patch of moss
731 ripped off and yet to grow back. C.—Although the streams look verdant, bryophyte mats
732 often contain several centimeters of dead tissue, providing structure to retain detritus and
733 biota. Paintings by Emma Rosi. Paintings are based on photos and were all painted with
734 the same pigments to be more color, light, and saturation balanced than source photos.

735

736 Fig. 2. Map of the study site in Hubbard Brook Experimental Forest, New Hampshire, USA,
737 which included 7 headwater streams in upper watersheds (W1–W6, W9) and 2 additional
738 stream reaches (Bear Brook [BB] and Paradise Brook [PB]). The inset map shows W9,
739 which is southwest of the other stream reaches. We surveyed bryophyte coverage and
740 collected bryophyte samples along stream stretches denoted in black. Our stream-level
741 estimates of bryophyte-associated stocks and NO_3^- uptake are based on how much of the
742 grey-outlined extrapolated streams are covered by bryophytes. We measured flux data at
743 the weirs.

744

745 Fig. 3. Comparison of bryophyte abundance within streams between years in Hubbard Brook
746 Experimental Forest, New Hampshire, USA. Some streams had similar coverage over
747 time (i.e., W1, W2, and W6), and others varied (i.e., BB and W9). W9's % bryophyte
748 coverage increased between years from 10 to 41% (Mann–Whitney U, p -value = 0.009),
749 whereas BB's coverage declined from 36 to 24% (p -value = 0.05). No other streams had a

750 consistent change in coverage between years. These results demonstrate that there is no
751 clear trend in bryophyte coverage change over time, but coverage can change over
752 relatively short time spans. Survey data for 2019 was collected by Vought et al. (2019).
753 For numbered watersheds, $n = 7\text{--}10$. For Bear Brook (BB) and Paradise Brook (PB), $n =$
754 40. Boxes encompass the minimum, interquartile range, median, and maximum; outliers
755 are depicted as points.

756

757 Fig. 4. Comparison of types of bryophyte mats in streams in Hubbard Brook Experimental
758 Forest, New Hampshire, USA. A.—A thick (>15 cm), developed bryophyte sample from
759 a bedrock slide in W2. Most bryophyte tissue is dead and nonphotosynthetic, and water
760 flows through the whole profile. B.—A thin (<2 cm) bryophyte sample from a cobble in
761 W9, consisting exclusively of live tissues attached directly to bare rock.

762

763 Fig. 5. A—.Bryophyte cover at the stream scale in Hubbard Brook Experimental Forest, New
764 Hampshire, USA. B—.Organic matter (OM) stocks for each stream at the mat scale.
765 C—.OM stocks for each stream extrapolated to the stream scale. Bryophyte coverage
766 varied within streams and between streams, likely, in part, because of variable stream
767 geomorphology. Bryophytes generally shared similar profile depths—and thus organic
768 matter stocks—between streams, except those in W2, which were more massive. Taken
769 together, despite being located in the same larger catchment, these streams varied widely
770 in bryophyte abundance and OM density.

771

772 Fig. 6. Bryophyte mats in Hubbard Brook Experimental Forest, New Hampshire, USA,
773 accumulate large quantities of mineral sediments, especially within thick clumps. Each

774 bar represents 1 bryophyte clump, with its organic matter content above the horizontal
775 line and its inorganic mineral content below the line. By mass, 45.1% of sampled
776 bryophyte mats were proportionally dominated (>50%) by mineral material ($n = 84$).
777

778 Fig. 7. Aerial (A, B) and mass-specific (C, D) NO_3^- uptake rates of bryophyte clumps in light and
779 dark conditions in Bear Brook (A, C) and Paradise Brook (B, D) in Hubbard Brook
780 Experimental Forest, New Hampshire, USA. Uptake rates are expressed in terms of NO_3^- .
781 Paired points represent 1 bryophyte clump that was incubated under both light and dark
782 conditions, and size displays the sample's total mass, ranging from 0.02 to 25.93 g ($n =$
783 36). We found that bryophyte clumps assimilated more NO_3^- under light conditions than
784 dark conditions (Table S7), suggesting that photosynthetic uptake contributes to NO_3^-
785 uptake. In Bear Brook, bryophyte mats containing *Scapania undulata* had greater mass-
786 specific NO_3^- uptake rates than pure *Fontinalis antipyretica* samples. Although more-
787 massive samples generally assimilated more NO_3^- , mass only weakly explained
788 differences in NO_3^- uptake between samples (Table S8).
789

790 Fig. 8. Comparison of organic matter stocks in bryophyte mats across surveyed streams from this
791 study and other studies. Data labeled with open squares are from this study. Data labeled
792 with closed circles are from (Suren 1991, Bowden et al. 1994, Mulholland et al. 2000,
793 Virtanen et al. 2001, Ashkenas et al. 2004, Parker and Huryn 2006, Mulholland 2015).
794 Variability in bryosphere organic matter between streams in Hubbard Brook Experimental
795 Forest is comparable to variability seen at the continental scale. Furthermore, some of the
796 streams at Hubbard Brook are among the most dominated by bryophyte organic matter.

797 Methods used to find comparison streams and detailed coordinates for each referenced
798 stream are in Table S9.

799

800 Fig. 9. Comparison of bryosphere N and P stocks to watershed N and P exports in streams in
801 Hubbard Brook Experimental Forest, New Hampshire, USA. Bars represent the estimated
802 standing stocks of bryosphere N and P in the 2 watersheds with the lowest (W1) and
803 highest (W2) bryophyte cover. Numbers above the arrows represent watershed N and P
804 flux estimates and are the mean annual fluxes reported for each of these watersheds from
805 water years 2017 to 2021 (HBWatER 2024a).