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Abstract

We study fair resource allocation with strategic
agents. It is well-known that, across multiple fun-
damental problems in this domain, truthfulness and
fairness are incompatible. For example, when allo-
cating indivisible goods, no truthful and determin-
istic mechanism can guarantee envy-freeness up to
one item (EF1), even for two agents with addi-
tive valuations. Or, in cake-cutting, no truthful and
deterministic mechanism always outputs a propor-
tional allocation, even for two agents with piece-
wise constant valuations. Our work stems from
the observation that, in the context of fair division,
truthfulness is used as a synonym for Dominant
Strategy Incentive Compatibility (DSIC), requiring
that an agent prefers reporting the truth, no matter
what other agents report.

In this paper, we instead focus on Bayesian Incen-
tive Compatible (BIC) mechanisms, requiring that
agents are better off reporting the truth in expec-
tation over other agents’ reports. We prove that,
when agents know a bit less about each other, a
lot more is possible: BIC mechanisms can guaran-
tee fairness notions that are unattainable by DSIC
mechanisms in both the fundamental problems of
allocation of indivisible goods and cake-cutting.
We prove that this is the case even for an arbi-
trary number of agents, as long as the agents’ priors
about each others’ types satisfy a neutrality condi-
tion. Notably, for the case of indivisible goods, we
significantly strengthen the state-of-the-art negative
result for efficient DSIC mechanisms, while also
highlighting the limitations of BIC mechanisms,
by showing that a very general class of welfare
objectives is incompatible with Bayesian Incentive
Compatibility. Combined these results give a near-
complete picture of the power and limitations of
BIC and DSIC mechanisms for the problem of al-
locating indivisible goods.

1 Introduction

A central goal within the fair division literature is to de-
sign procedures that distribute indivisible or divisible goods

among groups of agents. For a resource allocation procedure
to reach fair and efficient outcomes, however, it needs to have
access to the preferences of the participating agents. When-
ever this information is private and each agent can strategi-
cally misreport it, the literature is riddled with negative re-
sults: eliciting the true preferences of the agents while si-
multaneously guaranteeing fairness and efficiency is usually
impossible. One of the main underlying reasons is that mon-
etary payments are commonly infeasible or undesired in fair
division, and designing “truthful” mechanisms in the absence
of such payments poses often insurmountable obstacles.
Another factor that contributes to the plethora of impossi-
bility results is that “truthfulness” in this literature has been
used as a synonym for “Dominant Strategy Incentive Compat-
ibility” (DSIC). This is a very demanding notion of incentive
compatibility which requires that every agent prefers truth-
telling to misreporting, no matter what the other agents’ re-
ports are. This ensures that no agent will have an incentive to
lie, even if they know exactly what every other agent’s pref-
erences are. However, in most real-world applications it is
unreasonable to assume that the agents know that much about
each other, so this notion may be unnecessarily stringent. In
fact, if we assume that an agent would strategically misre-
port their preferences only if they have enough information
to suggest that this would be beneficial then, in some sense,
the less an agent knows the less likely it is that they would
misreport. Rather than going to the other extreme and as-
sume the agents have no information about each other, in this
paper we consider the well-established truthfulness notion of
“Bayesian Incentive Compatibility” (BIC). This instead as-
sumes that each agent’s preference is drawn from a publicly
known prior distribution and the requirement is that telling
the truth is the optimal strategy for each agent in expectation
over the other agents’ reports. Simply put, our goal in this
paper is to understand what can and what cannot be achieved
by BIC mechanisms in the context of fair division, and the
extent to which they can outperform DSIC mechanisms.

1.1 Our Contributions

We explore the power and limitations of incentive compati-
ble mechanisms when allocating either indivisible or divisi-
ble goods among n strategic agents with additive valuations,
i.e., such that an agent’s value for a set of goods is equal to
the sum of her values for each good separately.
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Allocating indivisible goods. It is well-known that the
only deterministic DSIC mechanism for allocating indivisi-
ble goods among two agents in a Pareto efficient way is the
patently unfair “serial dictatorship” mechanism [Klaus and
Miyagawa, 2002; Schummer, 1996], where one of the agents
is allocated all the goods that they have a positive value for,
and the other agent receives the leftovers. Since Pareto ef-
ficiency may be a lot to ask for, one could imagine that a
more forgiving notion of efficiency based on stochastic domi-
nance (SD) [Bogomolnaia and Moulin, 2001] may allow us to
overcome this obstacle. Our main negative result shows that
this is not the case: even for the more permissive notion of
SD " efficiency (defined in Section 3.1) instead of Pareto effi-
ciency, we prove that the only deterministic DSIC mechanism
remains the serial dictatorship, and this holds even if for every
agent ¢, their value for each good j can take one of only three
possible values, i.e. v;; € {0,z,y} (Theorem 3). In fact,
we show that our stronger negative result is tight in more than
one ways: if we were to further relax SD " efficiency to SD ef-
ficiency (also defined in Section 3.1), or to further restrict the
number of possible agent values to two instead of three, this
would permit more deterministic DSIC mechanisms beyond
serial dictatorship.

Surprisingly, it is also known that, even if we were to
completely drop any efficiency requirement in order to avoid
the extreme unfairness of the serial dictatorship, our abil-
ity to provide non-trivial fairness guarantees would still be
severely limited. For example, if we wanted the outcome
to be envy-free up to one good (EF1), which is a well-
studied relaxation of envy-freeness [Lipton et al., 2004;
Budish, 20111, this is known to be impossible to achieve us-
ing any deterministic DSIC mechanism, even for instances
with just two agents [Amanatidis et al., 2017al. Our main
positive result shows that we can simultaneously overcome
all of the aforementioned negative results if instead of DSIC
we focus on BIC mechanisms. In fact, we can achieve this
using a variation of the very practical Round-Robin proce-
dure (where agents take turns choosing a single good each
time). We prove that our variation, RRP**, is BIC for any
distribution over agent preferences that is “neutral” [Moulin,
19801, and it returns allocations that always combine fair-
ness (in the form of EF1) with efficiency (in the form of
SD"efficiency) (Theorem 4). Apart from providing a sep-
aration between BIC and DSIC mechanisms by bypassing
both of these negative results, this also exhibits a third way
in which our result from Theorem 3 is tight. Our definition
of a “neutral” prior is satisfied by the common assumption in
the stochastic fair division literature, that v; ;s are drawn i.i.d.
from an agent-specific distribution D; [Bai and Golz, 2021;
Manurangsi and Suksompong, 2020; Manurangsi and Suk-
sompong, 2021; Amanatidis er al., 2017b], going beyond, it
also allows for certain priors where valuations are neither in-
dependently nor identically distributed (see Section 3.2).

Encouraged by our positive result, which exhibits a
practical BIC mechanism that combines fairness and
SDTefficiency, one may wonder whether BIC mechanisms
can even optimize well-motivated welfare functions. For ex-
ample, a lot of recent work in fair division has focused on
maximizing the Nash social welfare (the geometric mean of
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agents’ utilities). Apart from guaranteeing Pareto efficiency,
this outcome is also known to be EF1 for agents with additive
valuations [Caragiannis et al., 2019], and it is used in Splid-
dit, a popular platform for allocating indivisible goods [Gold-
man and Procaccia, 2015; Shah, 2017]. Our findings along
this direction are negative: we show that even for a very sim-
ple neutral distribution (uniform over normalized valuations),
a mechanism that maximizes any welfare function from a
large well-studied family that satisfies the Pigou-Dalton prin-
ciple (which, e.g., includes the Nash social welfare, the egal-
itarian social welfare, the utilitarian social welfare, and the
leximin criterion) is not BIC (Theorem 5). Finally, we prove
that if we aim for the strong efficiency guarantee of fractional
Pareto optimality (fPO), requiring that the outcome is not
Pareto dominated even by randomized allocations, then BIC
mechanisms cannot even satisfy fullfillment, which is a fair-
ness notion that is much weaker than EF1 (Theorem 6). In-
formally, an allocation is fulfilling if, whenever agent ¢ values
at least n goods strictly positively, her utility for her bundle is
strictly positive.

Allocating divisible goods. Moving beyond indivisible
goods, we then consider mechanisms for the fair allocation
of continuous, divisible, heterogeneous resources, using the
classic cake-cutting model. The cake, which captures a divis-
ible resource, is represented as the interval [0, 1] and it must
be distributed among n agents with different valuations on
different parts of the interval. Typically, agents’ valuation
functions are described by probability density functions. Re-
cently, [Tao, 2022] showed that, even for n = 2 agents with
piecewise constant valuation functions, there is no determin-
istic and DSIC cake-cutting mechanism that always outputs
a proportional allocation, i.e., one where each agent receives
at least a 1/n fraction of their total value. Our main result
for this problem circumvents this impossibility for any num-
ber of agents by relaxing to BIC mechanisms (Theorem 8).
Specifically, we propose a deterministic cake-cutting mecha-
nism that is proportional and BIC for all neutral priors. Our
mechanism works over a sequence of n rounds: in round 4,
agent ¢ arrives and agents 1 through ¢ — 1 are asked to cut the
pieces allocated to them so far into ¢ equal-sized and equal-
valued crumbs. Then, agent ¢ takes one crumb from each of
the first ¢ — 1 agents. The fact that this operation can always
be performed crucially relies on the result of [Alon, 1987]
concerning the existence of a perfect partition. Apart from
piecewise constant valuation functions, our mechanism also
provides the same guarantees for piecewise linear valuations,
which can be succinctly represented, and for which perfect
partitions can be computed efficiently.

1.2 Related Work

Bayesian incentive compatibility in fair division has been
considered in the random assignment problem, with n goods
and n agents with ordinal preferences. [Dasgupta and Mishra,
2022] consider ordinal BIC mechanisms (OBIC), and show
that the probabilistic serial mechanism, which is ordinally ef-
ficient and satisfies equal treatment of equals, is OBIC with

Informally, a partition is said to be perfect if the value of every
piece is the same for every agent.
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respect to the uniform prior. The notion of OBIC of [Das-
gupta and Mishra, 2022] has been used in voting theory,
dating back to [d’Aspremont and Peleg, 1988], to escape
infamous dictatorship results [Gibbard, 1973; Satterthwaite,
1975]. For cardinal valuations, such as ours, [Fujinaka, 2008]
studies the case of a single indivisible good that must be allo-
cated to one of n agents whose (private) values for the good
are drawn from a known product distribution. When pay-
ments are possible, [Fujinaka, 2008] designs an envy-free,
budget-balanced and BIC mechanism.

Another line of work considers other relaxations of DSIC.
For example, in the random assignment problem, [Mennle
and Seuken, 2021] introduce the notion of partial strate-
gyproofness, a relaxation of DSIC, which is satisfied if truth-
ful reporting is a dominant strategy for agents who have suf-
ficiently different valuations for different objects, and show
that in the context of school choice, this notion gives a separa-
tion between the classic and the adaptive Boston mechanism.
Starting with [Troyan and Morrill, 2020], a number of recent
papers [Ortega and Segal-Halevi, 2022; Aziz and Lam, 2021;
Psomas and Verma, 2022] relax the DSIC requirement and
explore the design of not obviously manipulable (NOM)
mechanisms. Under NOM, an agent reports their true type,
unless lying is obviously better, where the definition of “ob-
vious” for a strategy follows recent work in Economics [Li,
2017]. Closer to our interest here, [Psomas and Verma,
2022] study the allocation of indivisible goods among addi-
tive agents, and prove that one can simultaneously guarantee
EF1, PO, and NOM. [Ortega and Segal-Halevi, 2022] show
that, in the context of cake-cutting, NOM is compatible with
proportionality: an adaptation of the moving-knife procedure
satisfies both properties.

Other ways to escape the aforementioned impossibility re-
sults in truthful fair division is restricting agents’ valuations,
e.g. by focusing on dichotomous [Halpern er al., 2020;
Babaioff et al., 2021; Benabbou et al., 2021; Barman and
Verma, 2021] or Leontief valuations [Ghodsi et al., 2011;
Friedman er al., 2014; Parkes et al., 2015], or by using
money-burning (that is, leave resources unallocated) as a sub-
stitute for payments, while trying to minimize the inefficiency
that these payment substitutes introduce (e.g., [Hartline and
Roughgarden, 2008; Cole et al., 2013; Fotakis et al., 2016;
Friedman et al., 2019; Abebe et al., 2020]). Finally, a re-
cent research thread suggests the study of mechanisms that
produce fair allocations in their equilibria [Amanatidis er al.,
2023b; Amanatidis et al., 2023al. Interestingly, for agents
with additive valuations over indivisible goods, it is known
that allocations obtained in equilibria of the Round-Robin al-
gorithm are EF1 with respect to the agents’ true valuation
functions [Amanatidis et al., 2023al.

2 Preliminaries

Allocating indivisible goods. We are given a set M of m
indivisible items indexed by [m] = {1,2,...,m} to be al-
located among a set A/ of n agents indexed by [n]. An al-
location x € {0,1}™*™ assigns items to agents such that
x;; = 1if agent ¢ gets item j and O otherwise. We use
X, = (Ti1,.--,Tim) € {0,1}™ to denote agent i’s allo-
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cation and X; = {j : x;; = 1} to denote agent i’s bun-
dle in x. In an allocation, each item j € M must be allo-
cated to exactly one agent, i.e., Z?zl z;; = 1. Each agent
i € N has a private type which is a valuation vector v; € R,
where v; ; is agent ’s value for item j € M. Collectively,
the valuations of all the agents are represented by a valua-
tion profile v.= (vi,...,vy). The utility of agent i for a
given allocation x, denoted by wu;(x), is additive and defined
as ui(x) = ;e Vi j%i,;. We will often overload nota-
tions and use u;(X}) to denote the utility of agent 7 € A for
a specific bundle X, € M.

An allocation x Pareto dominates another allocation y if
for all agents ¢ € N, we have u;(x) > u;(y) and u;(x) >
u;(y) for some agent j € N. An allocation x is Pareto effi-
cient (or Pareto optimal) if there is no other allocation x’ that
Pareto dominates it.

An allocation x is called envy-free (EF) if for every pair of
agents ¢ and j € N, agent i values their allocation at least
as much as the allocation of agent j, i.e., u;(x;) > u;(x;).
However, for the indivisible item settings, an envy-free allo-
cation is not guaranteed to exist. Therefore, we consider a
relaxed notion called envy-free up to one good (EF1). For-
mally, an allocation x is EF1 if for every pair of agents ¢ and
J € N with X; # (), agent i values their allocation at least
as much as the allocation of agent 5 without agent ¢’s favorite
item, i.e., u; (X;) > u;(X; \ {g}) for some g € X;.

Allocating divisible goods. We study the cake-cutting
problem where the cake is represented by the interval [0, 1]
and is to be allocated among the set A/ of n agents. An al-
location x = (X7y,...,X,,) is a collection of mutually dis-
joint subsets of [0, 1] where X; C [0, 1] denotes the subset
of the cake allocated to agent ¢ € N. Each agent ¢’s private
type is a density (valuation) function f; : [0,1] — R over
the cake, such that fol fi(x)dz = 1foralli € N. We use
f = (f1,..., fn) todenote the collection of density functions
of all agents. Given a subset S C [0, 1], agent 4’s utility on S
is defined as u;(S) = [ fi(z)dz.

We primarily focus on two classes of valuation functions,
namely piecewise-constant and piecewise-linear valuations.
For both families, the interval [0, 1] can be partitioned into
finite intervals. For the former class, the value of the function
in each interval is a constant; for the latter class it is linear.

An allocation x = (X1,...,X,,) is proportional if each
agent receives her average share of the entire cake. Formally,
for each agent i € N we have u;(X;) > + - 4;([0,1]) = L.

Mechanisms and incentive compatibility. For both indi-
visible and divisible goods, each agent ¢ has a private type ¢;:
the valuations v; for the first and the functions f; for the sec-
ond. The agents, being strategic, may choose to misreport it
if doing so increases their utility. We use b = (by,...,b,)
to represent the reported type b; of all agent s € . A mech-
anism is represented by an allocation function x(-), which
takes as input reports b = (by,...,b,,) and outputs a feasi-
ble allocation x(b). For notational simplicity, we often refer
to a mechanism directly using its allocation function x(+).

We say a mechanism is incentive compatible if it offers ro-
bustness guarantees against strategic behaviors of agents. In
this paper, we consider two notions of incentive compatibil-
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ity. A mechanism is dominant strategy incentive compatible
(DSIC) if truthful reporting is a dominant strategy for every
agent. Formally, for every agent i € A/, every possible report
b;, and all possible reports of all other agents b_;, we have

ui(x(ti,b,i)) > ui(x(bi,b,i)). (DSIC)
We also study the incentives in the Bayesian setting where
agents have some prior knowledge of each other’s type. We
assume that the type t; of each agent i € N is drawn from
some known prior distribution D;. A mechanism is Bayesian
incentive compatible (BIC) for priors xj_,D; if reporting
truthfully is a Bayesian Nash equilibrium, i.e., no agent can
increase her expected utility by unilaterally misreporting, the
expectation being taken over the types of other agents. We
use D_; to denote the prior x ;;D;. Formally, for each agent
1 € N, and every possible report b;, we have

E [ui(x(ti,t—5)] > E_ [ui(x(bi, t—;))].

t_.~D_; t_,~D_;

(BIC)

3 Allocating Indivisible Goods

Previous work on the allocation of indivisible goods has un-
covered that DSIC mechanisms cannot be both fair and ef-
ficient. A notable example shows that requiring Pareto effi-
ciency from a deterministic DSIC mechanism limits the avail-
able options to the patently unfair class of serial dictatorships.

Theorem 1 ([Klaus and Miyagawa, 2002]). For n = 2
agents, a DSIC deterministic mechanism is Pareto efficient
if and only if it is a serial dictatorship.

Our first result, Theorem 3 in Section 3.1, strengthens The-
orem 1, showing that even if we weaken the efficiency re-
quirement from Pareto efficiency to SDTefficiency, a nat-
ural relaxation defined below, the only deterministic DSIC
mechanisms that can guarantee SD " efficiency are serial dic-
tatorships. Another notable result shows that no deterministic
DSIC mechanism always outputs EF1 allocations.

Theorem 2 ([Amanatidis et al., 2017al). There is no deter-
ministic DSIC mechanism that outputs EF1 allocations, even
for instances involving just n = 2 agents.

Theorem 4 in Section 3.2 shows that if we relax the no-
tion of truthfulness from DSIC to BIC, then neither one of
these two negative results holds anymore, i.e., there exists a
non-dictatorial deterministic BIC mechanism that guarantees
EF1. In Section 3.3 we also uncover the limitations of BIC
mechanisms by proving that a wide family social choice func-
tions are incompatible with BIC.

3.1 Strengthening the Characterization of Serial
Dictatorships
For a given agent ¢ let p; be a ranking of items j € M in

decreasing order of i’s value for them, where p;(k) = j if
item j is agent i’s k" favorite item.? For two bundles x;,y; €

2For items with the same value, we break ties lexicographically,
ie., if v; ; = v; , and j < k, then item j is ranked before k in p;.
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{0,1}™, x; weakly stochastically dominates y; for agent i, or
X; ¥ ¥i, iff for all £ € [m] we have

¢ ¢
Z Tips(k) = Z Yi,pi(k)- (1)
k=1 k=1

Additionally, we say that x; (strictly) stochastically domi-
nates y; for agent i, or x; =; y;, iff x; =; y; and x; # y;.
If x; >; yi, then there exists an ¢ € [m] for which Inequality
(1) is strict.

To define our refinement of stochastic dominance, for each
agent i € N we let M denote the set of items that i has
a positive value for, i.e., M;" ={j e M v;; > 0}
Let m; = |M;|. For two bundles x;,y; € {0,1}™, we
say that x; weakly stochastically and positively dominates y;,
denoted as x; ij‘ v, iff Inequality (1) is satisfied for all £ €
M. Thus, partial order = is essentially the partial order
> defined over the set of items M;” Similarly, x; >-j' y; iff
X; tj y; and X; # y;. Akin to the previous definition, if
X; =7 yi, then there exists an £ € M for which Inequality
(1) is strict. Note that, if two bundles satisfy x; >; y;, then
by definition, x; tj y; as well. The following lemma relates
the partial orders defined above with utilities; its proof along
with other missing proofs from this subsection appear in the
full version [Gkatzelis et al., 2023].

Lemma 1. For any agent i € N and any two bundles a,b €
{0,1}™, the following statements hold: (1) If a = b, then
u;(a) > u;(b), and (2) If a = b, then u;(a) > u;(b).

We say that an allocation y stochastically dominates x, de-
noted as y = x iff for all agents i € N we have y; =; X;
and for at least one agent j € A we have y; >; x;. Simi-
larly, we say that an allocation y stochastically and positively
dominates x, denoted as y =" x iff for all agents i € N we
have y; ij x; and for at least one agent j € N we have
y; >-j— X;.

Definition 1. An allocation x is SD efficient iff there is no
other allocation y such that'y > X.

Definition 2. An allocation x is SD efficient iff there is no
other allocation y such that y =T x.

In the following lemma we show that SDVefficiency
is implied by Pareto efficiency and SD"efficiency implies
SD efficiency.

Lemma 2. The following two implications hold for any num-
ber of items and agents with additive preferences: (1) If an
allocation x is Pareto efficient then x is SD ™ efficient as well;
(2) If an allocation x is SDV efficient then x is SD efficient as
well. Moreover, there exist allocations that are SD™ efficient
and not Pareto efficient, and allocations that are SD efficient
and not SD T efficient.

Now we state the main result of this subsection.

Theorem 3. (Characterization of serial dictatorship) For n =
2 agents, a deterministic DSIC mechanism is SD™ efficient if
and only if it is a serial dictatorship. This holds even when
agents have ternary valuations, i.e., for all agents i and items
J, we have v; ; € {0, x,y} for some y > x > 0.
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Tightness of the above characterization Theorem 3 is
tight in two orthogonal ways. Specifically, if we relax
SDTefficiency to the weaker notion of SD efficiency, then
serial dictatorship no longer remains the only DSIC mecha-
nism — this is formally stated in Proposition 1. Note that al-
though SD efficiency is widely used in the context of match-
ings (where all agents receive the same number of items), the
notion of SD T efficiency is more appropriate when each agent
may receive a different number of items. Specifically, an allo-
cation can only be stochastically dominated by another allo-
cation if all agents receive at least the same number of items;
this is not true for stochastic and positive domination.

Proposition 1. For n = 2 agents, there exists a deterministic
mechanism other than the serial dictatorship that is DSIC and
outputs SD efficient allocations.

Second, the proof of Theorem 3 holds even for ternary
preferences i.e., v;; € {0,z,y} foralli € N and j €
M. However, Theorem 3 does not hold if we consider the
slightly more restricted class of bivalued preferences, i.e.,
v;; € {z,y} for fixed z,y € Rxq; this essentially follows
from known results.

Proposition 2. For bivalued additive preferences, there ex-
ist DSIC, non-dictatorial mechanisms that output Pareto effi-
cient allocations.

3.2 Round Robin Is BIC

‘We now show that a variation of Round-Robin, which we call
ROUND-ROBINP®S (RRP**), is BIC for neutral priors. More-
over, RRP** always outputs an SD T efficient and EF1 allo-
cation,? bypassing the negative results of Theorems 2 and 3.
Missing proofs can be found in [Gkatzelis et al., 2023].

The Bayesian Setting. We assume that the for each agent
i € N, there is a neutral prior distribution D; supported over
RZ, such that the valuation vector v; = (Vily- s Vim) ~
D;. We say that D; is neutral if for every permutation o :
[m] — [m], we have Pry, .p, [yi7g(1).> s> Vio(m)] = =1»
and for each j € M, the marginal distribution of D; wrt v;;
does not have point masses. Intuitively, neutral priors imply
that all items are equivalent, in expectation. A natural ex-

ample of a neutral prior is v; ; ~ D; where D; is supported
on Rx>( and does not have a point mass. This exact prior
has been extensively studied in previous works including [Bai
and Go6lz, 2021; Manurangsi and Suksompong, 2020; Manu-
rangsi and Suksompong, 2021; Amanatidis et al., 2017b]; a
stochastic fair division model based on neutrality is also stud-
ied in [Benadg et al., 2023]. Note that, neutral priors are per-
missive enough to allow for correlated item values, for e.g.,
if v; ~ A™ ! where ~ A™! denotes a uniform draw from
the m — 1-simplex,* then the item values are identically dis-
tributed but not independent. Additionally, the item values
for an agent don’t even have to be identically drawn: for two
items, the prior v; 1 ~ U[0,1] and v; » ~ U[3, 3] is neutral.®

3We note that items which have zero value for all the agents
won’t be allocated by RRP**. Indeed, this does not affect the fair-
ness and efficiency guarantees of RRP**.

*Recall that, an m — 1-simplex A™! = {(z1, z2, . ..
> ;xs =1landz; > 0 for all 4}

>Ula, b] represents a uniform distribution over the interval [a, b].

7xm) :
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Our Mechanism. We begin by defining the RRP** mecha-
nism: intuitively, we execute the standard Round-Robin pro-
cedure but allow agents to pass their turn if all the remaining
items are zero-valued. Formally, given the report b; for each
agent ¢ € N, the mechanism first computes a tuple (p;, m;),
where p; is the strict preference order of items for agent ¢
(ties are broken lexicographically), and m; = |M;"|, where
MG = {j : bi; > 0} is the set of items agent i values
positively. Then the mechanism constructs the output allo-
cation over rounds. In each round, agents arrive in the fixed
order 1,2, ..., n, and each agent i € A is allocated the item
with the smallest (according to p;) ranking among the set of
remaining items; if in agent i’s turn all items in M have
already been allocated, then RRP** skips 7’s turn. This pro-
cess is repeated until either all the items are allocated or all
remaining items are undesirable for all the agents. In the lat-
ter case, the remaining items are allocated deterministically
and arbitrarily among the agents, resulting in a complete al-
location. RRP*® is almost ordinal, i.e., to execute it we need
the (strict) preference order p;, but also the number of zero-
valued items m; for each ¢ € A/ (noting that one can construct
./\/l:r by looking at the bottom m; elements of p;). Thus,
in the subsequent discussion, we often interchange v; with
(p:, m;). Our goal is to prove the following theorem.

Theorem 4. The ROUND-ROBIN?®® mechanism is Bayesian

incentive compatible for neutral priors, and always outputs
SD efficient and EF 1 allocations.

First, we prove that RRP** is BIC for neutral priors.
The high-level idea of our proof is similar to the arguments
of [Dasgupta and Mishra, 2022] for showing that the proba-
bilistic serial mechanism is BIC in a setting with complete or-
dinal preferences. Unlike the ordinal setting, our cardinal set-
ting allows agents to have undesirable, zero-valued items. As
hinted by Theorem 3 and Proposition 1, allowing for zero val-
ues makes it harder to establish incentive guarantees. To mit-
igate this, our mechanism RRP** (contrary to Round-Robin)
never allocates an item to an agent that doesn’t value it, unless
the item is valued at zero by everyone. This special treatment
of zero values is required to prove key structural properties
about the interim allocation (defined below), which are used
throughout our proofs.

For each agent i € A and item j € M we define the
interim allocation ¢; ;(b;) € [0,1] of a mechanism with
allocation function x(+) to be the probability that agent ¢ is
allocated item j when she reports b;. Formally, ¢; ;(b;) =
Py o [2ij(bis v_y)].

We show that, for each agent i € N, the interim allocation
of the RRP** mechanism, given neutral priors, is very struc-
tured. For each agent ¢ € N, there is a (fixed) positional
interim allocation q;** = (¢{5°,¢;5",---,q;,,) such that,
if agent 7 reports valuation b; to RRP**, then her interim al-
location ¢;, ;(b;) is exactly ¢;3° if b; ; > 0 and p;(k) = j;
otherwise, ¢; ;(b;) = 0if b; ; = 0 (Lemma 3). Intuitively,
the interim allocation of a positively valued item depends on
only its position in the preference order. Furthermore, the po-
sitional interim allocations are monotone: ¢;7° > ... > g;,»
(Lemma 4).
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Lemma 3. For each agent i € N, there exists a posi-
tional interim allocation of*® = (q; 1", ..., 4}y, ) such that if
agent 1 reports any valuation b;, then her interim allocation
¢ ;(b;) = qus if (i) b; ; > 0, and (ii) p;(k) = j; otherwise,
Gij(bi) = 01ifb; ; = 0.

Lemma 4. Positional interim allocations are monotone, i.e.,
417> a5 > . > q),, foralli € N.

Using these two lemmas we show that RRP** is BIC for
neutral priors. The high-level intuition is as follows. If agent
1 reports valuation b; having a corresponding preference or-
der p; = (j1,42,--,Jm), then Lemma 3 implies that the
interim allocations ¢; ;, (b;), gi,j,(bi), ..., g, (b;) will be
(a prefix of) the pos1t1onal interim allocation ¢f°®, which,
as per Lemma 4 is monotone, ¢;7° > ... > qp‘;,f. That
is, the interim allocations are non-increasing in the reported
preference order and are always a permutation of g{°°. Note
that, the expected utility of agent ¢ as per her true preference
viis 30" i j. (bi) - v; j,, which essentially is a vector dot
product of the true valuation and the interim allocation. This
dot product is maximized when the true valuations and the
interim allocations are aligned (i.e., are in the same order).
Given that the interim allocation is always a permutation of
q;°®, this alignment happens when agent ’s reported prefer-
ence order matches her true preference order, i.e., when agent
i reports v;, establishing that RRP** is BIC. This intuition is
formalized in the following lemma.

Lemma 5. The ROUND-ROBIN?®* mechanism is Bayesian
incentive compatible for neutral priors.

The following lemma proves that RRP* also satisfies
SDefficiency and EF1.

Lemma 6. The ROUND-ROBINP®® mechanism outputs
SD* efficient and EF1 allocations.

Combined, Lemmas 5 and 6 imply Theorem 4.

3.3 Welfare Functions and BIC

In this section, we prove that a large family of “welfare max-
imizing” mechanisms is not Bayesian incentive compatible.
All proofs of this section appear in [Gkatzelis e al., 2023].
A welfare function f : RZ; — R is a function that, given
the utilities of agents u;(x), ..., u,(x) in allocation x, out-
puts f(ui(x),...,u,(x)), that represents the collective wel-
fare of all the agents in allocation x. An allocation x is said
to maximize f if for all other feasible allocations y we have
flua(x),. o un(x)) 2 fua(y), .. un(y)).
Definition 3 (Anonymous). A welfare function f is called
anonymous iff f(21,xa, ..., Zn) = f(Trys Tryy -+, Tx, ) fOr
any permutation 7 : [n] — [n].
Definition 4 (Strictly monotone). A welfare function f is
strictly monotone iff f(z1,22,...,Zn) > f(y1,Y2,---,Yn)
whenever we have x; > y; for all i € [n] and xj > y; for
some j € [n].
Definition 5 (The Pigou-Dalton principle). The Pigou-
Dalton Principle (PDP) states that a welfare function should
weakly prefer a profile that reduces the inequality between
two agents, assuming that the utilities of all other agents stay

unchanged. Formally, a welfare function f satisfies PDP iff
for any two vectors (x1,...,x,) and (Y1, ...,Yn) such that
there are two distinct i,j € [n] satisfying (i) z; + x; =
vi + vy, (44) ;> xj, (i) x; > y; > x; (equivalently
x; > y; > xj), and (iv) x, = yg forall k € [n] \ {i,5}, we
have f(xlvx% LR xn) S f(ylayZa s 7yn)

Welfare functions satisfying anonymity, strict monotonic-
ity, and the PDP constitute a broad set of functions that in-
clude, e.g., the class of all the p-mean welfare functions® for
p < 1 [Moulin, 2004]. The class of p-mean welfare func-
tions, in turn, includes Nash social welfare, egalitarian social
welfare, utilitarian social welfare, and the leximin criterion.
In Theorem 5, we show that, for any deterministic (or ran-
domized) mechanism that outputs allocations that (ex-post)
maximize such a welfare function, f, is not BIC. We prove
this fact for a very simple neutral prior distribution according
to which each agent ¢’s values are drawn uniformly from the
m — 1-simplex, i.e., v; = (v1,v2,...,0m,) ~ A™"1 No-
tably, Theorem 4 also holds for this neutral prior supported
over normalized valuations.”

Theorem 5. There is no deterministic (or randomized) mech-
anism that is Bayesian incentive compatible for the uniform
prior and which always outputs allocations that ex-post max-
imize welfare function f, where f is any anonymous, strictly
monotone function satisfying the Pigou-Dalton principle.

A slightly modified version of the above proof can be used
to show the non-existence of deterministic (or randomized)
mechanisms that are Bayesian incentive compatible and out-
put allocations that are ex-post fPO and EF1. In fact, we can
rule out BIC mechanisms that output fPO allocations that
satisfy a fairness criterion we call fulfillment, that is much
weaker than EF'1. Specifically, an allocation x is fulfilling iff
the following condition is satisfied for all agents i € N: if
¢ has at least n items that she values positively, then agent @
gets a bundle of positive utility. It is easy to see that an EF'1
allocation must be fulfilling. Formally, this result is stated as
Theorem 6.

Theorem 6. There is no deterministic (or randomized)
Bayesian incentive compatible mechanism that outputs fPO
allocations that are fulfilling.

4 Allocating Divisible Goods: Cake Cutting

Recently, [Tao, 2022] proved a strong incompatibility be-
tween fairness and incentives in the cake-cutting problem: no
deterministic DSIC cake-cutting mechanism can always out-
put proportional allocations (see Theorem 7), for the case of
n = 2 agents and piecewise constant density functions.

®For a given p € R>o, the p-mean welfare function is defined

as fp(zr,z, ..., @) = (237 ah) e Notably, f, captures
utilitarian welfare if p = 1, Nash welfare if p — 0, and egalitarian
welfare if p — —oo0.

"It is necessary to consider normalized valuations when study-
ing welfare objectives that aren’t scale-free, for e.g. social welfare.
In particular, if the valuations aren’t normalized, then agents could
(mis)report large values for all the items, thereby forcing the mech-
anism to allocate all the items to them.
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Theorem 7 ([Tao, 20221). There is no deterministic, DSIC,
and proportional cake-cutting mechanism for piecewise-
constant valuations, even for n = 2 agents.

The Bayesian Setting. The private piecewise-constant val-
uation function f;* of each agent ¢ is drawn from a neutral
prior distribution D;. We say a prior distribution D is neu-
tral, iff for all integers k£ > 1, and disjoint pieces of cake
X1, Xo, ..., Xy satisfying | X1| = |Xa| = ... = | Xk, we
have f?rp[j = argmax?_, f*(X;)] = 1/k. Intuitively, neu-

tral priors represent a distribution of density functions such
that the probability of an agent preferring an interval over an-
other same-length interval is the same, i.e., same-length inter-
vals are equivalent in expectation. Towards bypassing Theo-
rem 7, we provide a deterministic mechanism (Mechanism
1), which we refer to as INCREMENTALACCOMMODATION
(IA), and we show that IA is Bayesian incentive compatible
for neutral priors and it always outputs proportional alloca-
tions (Theorem 8). Moreover, IA can be executed in polyno-
mial time for piecewise constant density functions.

Theorem 8. The INCREMENTALACCOMMODATION mech-
anism is Bayesian incentive compatible for neutral product
distributions, and always outputs proportional allocations.

At a high level, given reported preferences f1, fo,..., fn,
IA operates as follows. Initially, the entire cake [0, 1] is al-
located to agent 1. Other agents arrive one-by-one following
the order 2, 3, ..., n. Before the arrival of agent ¢, the entire
cake is always allocated among the agents {1,2,...,i — 1};
this allocation is denoted by X1, Xo, ..., X;_1. When agent
i arrives, each agent j € {1,2,...,4 — 1} cuts their piece of
cake, X, into i pieces, Cj,C7,...,C} using the SPLITE-
QUALoperation (Subroutine ??) described below.
SplitEqual operation. Given a piece of cake X, a function f,
and a number k, the SPLITEQUAL operation (see [Gkatzelis
et al., 2023]) partitions X into pieces C*,C?, ..., C* having
equal sizes and equal values, i.e., |C| = |C?| = ... = |C¥|
and f(C!) = f(C?) = ... = f(C*). Note that this oper-
ation can always be performed given “any” density function
fand & > 1 since the existence of such a split is directly
implied by the existence of a perfect partition.® Specifically,
if we consider k density functions where the first function,
y1(X) = | X| while the other k¥ — 1 density functions are f,
then a perfect partition C1, C?, ..., O of X — which always
exists — will satisfy the two required conditions of equal
value (since f(C") = f(C*®) for all r, s € [i]) and equal size
(since |C"| = y1(C") = y1(C?®) = |C | for all v, s € [k]).
The SPLITEQUAL operation can be efficiently performed for
piecewise constant valuations by simply dividing each subin-
terval within X having a constant-value w.r.t. f into k pieces
of equal size; the equal value condition will follow from the
fact the subinterval being divided has a constant-value. Fur-
thermore, it is known that a perfect partition can be computed
efficiently for the significantly more general class of piece-
wise linear valuations [Chen er al., 2013], allowing for effi-
cient execution of IA for this class of valuations as well.

8[Alon,
Y1,Y2, .- ., Yn, there always exists a partition X1, Xo, ...
[0, 1] such that y;(X;) = 1/n forall 4, j € [n].

1987] proved that given arbitrary density functions
Xn of
) n

After performing the SPLITEQUAL operation, each agent
J € {1 ,i — 1} offers agent i one piece amongst
Cy, ! cy, 2 C” and agent ¢ picks the one that maximizes her
value as per the reported density function f;. The resulting
allocation, after the arrival of the n™ agent, is then returned as
the final allocation. In Lemma 8, we show that IA is BIC for
neutral priors. In Lemma 9, we show that IA always outputs
proportional allocations. The proof of Lemma 9 resembles a
proof of [Fink, 1964] wherein proportionality is established
for a similar recursive cake-cutting algorithm. All proofs of
this section appear in the full version [Gkatzelis et al., 2023].

Mechanism 1: INCREMENTALACCOMMODATION

1 Input: (f1,..., fn), the reported valuations of the
agents

2 set Xq < [0,1],and X; < (@ foralli € {2,...,n}

3 for i+ 2,3,...,ndo

4 for j < 1,2,...,1—1do

5 set (C’1 02 SRS

SPLITEQUAL(Xj, fi 1)

// defined

in [Gkatzelis et al., 2023]
6 let k* < argmax,, f;(C})
7 set X, « X, U Cj’-“*
8 seth<—Xj\CJ’»“*

s return (X1, Xo,...,X,)

Lemma 7. Let X j' X; be the pieces of cake that agent j
is allocated at the beginning and the end of iteration t, re-
spectively, for some 1 < j < t < n.° Then, for any val-
uation function f the expected value of f (X;) is equal to
=1 f(x ), where the expectation is over the randomness
of the valuation function of agent t, fi', drawn from a neutral
prior D. Formally, f*ED[f(Xj)] =1 f(Xj’)
*

Now using Lemma 7, we will show that IA is Bayesian

incentive compatible for neutral priors.

Lemma 8. The INCREMENTALACCOMMODATION is
Bayesian incentive compatible with respect to product
distributions that are neutral.

Proof Sketch. At ahigh level, we show that if agent ¢ has piece
Xii after her arrival, then, eventually, in the final allocation,
her utility, as per her true valuation f;, will be proportional
to f#(X}). Specifically, let X" be the piece that agent 4 has
at the end of the mechanism’s execution. Through repeated
applications of Lemma 7 we prove that f;(X) = L. f*(X})
for any reported valuation function f;. Therefore, it suffices
to prove that truthfully reporting f;* maximizes f;(X}).

The following lemma proves that IA outputs proportional
allocations.

Lemma 9. The INCREMENTALACCOMMODATION mecha-
nism outputs proportional allocations.

Combining Lemmas 8 and 9 implies Theorem 8.

°Note that X is a random variable which depends on the valua-
tion function of agent ¢, f;", drawn from D.
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