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ABSTRACT

Plasma reactors are promising to decarbonize the production of NH3, but their NH3 energy yields need to improve to facilitate their
broad adoption. Two emerging strategies to reduce energy inefficiencies aim to protect the freshly formed NH3 from destruction by the
plasma by leveraging NH3 adsorption properties of porous materials as either catalyst supports or as membranes. As metal-organic
frameworks (MOFs) are promising porous materials for adsorption-based applications, we performed large-scale computational
screening of 13,460 MOFs to study their potential for the abovementioned uses. To reduce computational cost by ~10-fold, we developed
a generalizable hierarchical MOF screening strategy that starts with the selection of a 200-MOF set based on NH3 adsorption Henry’s
constants, for which the relevant performance metrics are calculated via molecular simulation. This set is used to “initialize” a machine
learning (ML) model that predicts the relevant metrics in the whole MOF database, in turn guiding the selection of additional promising
MOFs to be evaluated via molecular simulation. The ML model is then iteratively refined leveraging the emerging molecular simulation
data from the MOFs selected at each iteration from the ML predictions themselves. From evaluation of only ~10 % of the database, for
each use (catalyst support or membrane), 20 extant MOFs were holistically assessed and proposed for experimental testing based on
desirable adsorption properties as well as complementary properties (e.g., high thermal decomposition temperature, constituted by earth
abundant metals, etc). Data-driven material design guidelines also emerged from the screening. For instance, a pore diameter of ~10 A
and a heat of adsorption of ~90 kJ/mol were found beneficial for the catalyst support use. On the other hand, for the membrane-based
strategy, a pore diameter of ~2.75 A, and a heat of adsorption of ~80 kJ/mol were found beneficial. The presence of V was found
beneficial for both uses.

KEYWORDS: metal-organic frameworks, GCMC simulations, dielectric discharge barrier, shielding protection, membrane reactor,
gradient boosted machines, MOF histograms

1. INTRODUCTION

NHj is a crucial chemical in our society primarily due to its role
in fertilizer production. Over 200 million tons of NHj are
produced yearly.! Moreover, NH; demand could increase in the
future if it were to be exploited as an energy vector.? For
instance, NH3 could be used i) as a means to store H,,*> which
could be released from NHj3 via cracking, and then used in H»
fuel cells, whose only byproduct is H»O, ii) directly in NH3 fuel
cells,* in which the only byproducts would be N, and H», iii)
even directly in internal combustion engines’, (ideally) only
emitting N, and H»O as byproducts. However, the current CO,
emissions tied to NH3 production (ca. 2% of the world's annual
CO; emissions)® puts climate and food sustainability goals at
odds with each other, and jeopardizes future utilization of NH3
as a “clean” energy vector. Thus, it is apparent that achieving
carbon-free NH3 synthesis stands as one of the most important
needs of our society.

Most CO, emissions associated with current NHj
synthesis arise from CHj4 reforming that is done in situ at NH3

production plants to obtain the H, feedstock for the NHj
forming reaction (i.e. N, + 3H, = 2NH3).® Thus, the key to
carbon-free NH;3 synthesis is the switch to “green” H» as
feedstock, which is likely to be produced in distributed fashion
from H,O electrolysis.! Accordingly, coupling NH3 synthesis
with (intermittently available) green H, demands distributed
synthesis of NH; in easy turn-on/turn-off reactors,” thereby
requiring NH; synthesis at low pressure.® To avoid high
pressure requirements, one needs to synthesize NH;3 at
sufficiently low temperature to overcome equilibrium
constraints. Thus, achieving sufficiently fast N, feed
decomposition (and subsequent hydrogenation) at low
temperature is key, for which alternatives such as plasma-
assisted catalysis are being explored.’

In plasma-assisted catalytic NHj synthesis, high-
energy electrons in a non-thermal plasma collide with gas
species, either dissociating them or vibrationally (or
electronically) exciting them. One common way to start a
plasma is by creating a discharge between two electrodes
separated by insulating media, as in a dielectric barrier
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discharge (DBD) reactor.!? Although numerous species form in
the plasma, vibrationally excited N»

(N2(v), and N and H radicals are currently thought as
the most important species interacting with the catalyst. Either
Na(v) or N radicals (depending on catalyst nitrophilicity)
facilitate the formation of surface-bound N*, whereas H
radicals facilitate its subsequent hydrogenation via Eley-Rideal
(ER) reactions.!! This plasma-assisted approach significantly
boosts NH3 production at low temperature (e.g., 400 K) and
ambient pressure relative to thermal catalysis.” However, with a
maximum NHj3 energy yield of 36 gnis/kWh reported to date, !°
at least a 3-fold improvement is needed to reach the 100
enus/kWh some estimate is needed for economic feasibility.!!

In earlier work, the reaction energy for the elementary
ER step H- + HNNH, — HNNH; (AEqum0) was found to
empirically correlate with overall NH; formation rate in various
plasma reactors.” Using the most optimistic of these
correlations (i.e., TOFnu3= -0.404 AExnr20- 0.55,R*>=0.9), NH;
formation rate at constant plasma power could increase ~10 %
for every ~0.10 eV reduction in AEqr0. Given the correlation
between AEnqro and N binding energy (En) to the catalyst
(AExnm0 = -0.1885 En - 2.64 | R? = 0.85), the above ~10%
increase in NHj3 formation rate would correspond to an increase
0of 0.53 eV in Ex. Therefore, a 3-fold
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Figure 1. Percentage increment of NHj production turnover frequency (TOF)
as a function of the N binding energy (Ey), published in a previous work.”!' Au
is the best reported catalyst among the investigated metals, therefore used as the
reference (i.e., 0% TOF increment) in this study. Red dashed lines show the
estimated requirement in Ey (vertical) and its corresponding percentage TOF
increment (horizontally) to achieve the required 3-fold increase in NH; energy
yield if only the catalyst material is modified.

improvement on NHj3 energy yield solely changing the catalyst
composition may require an unrealistic change in Ex beyond 9
eV over the current best catalyst for plasma-assisted NHj
synthesis (Fig. 1).

On the other hand, it has been realized that additional
reactor inefficiencies paradoxically arise from the same
mechanisms that facilitate NH; formation at low temperature
under plasma. Namely, the collisions with high energy

electrons that can facilitate dissociation of reactants can also
destroy a significant fraction of the freshly formed NHs. For
instance, simulations by vant’ Veer et al.'> suggests that
between 50% and 90% of the NH3 produced in a plasma reactor
is decomposed at different stages during NH3 synthesis aided
by pulsed plasma. Thus, to complement catalysts development
strategies there is now growing interest in strategies to reduce
the exposure of the formed NHj3 to the plasma. Strategies to
reduce NH3 exposure to the plasma include i) packing the
reactor bed with a highly porous catalyst, within which formed
NHj; tends to be retained through adsorption (Fig. 2a), and ii)
equipping the reactor with a porous membrane that selectively
adsorbs the formed NH; and permeates it out of the reactor (Fig.
2b).

Both strategies present pros and cons. For instance, the
plasma reactor strategy i (PRS-I) can provide more active sites
per reactor volume, but could unfavorably alter the discharge
behavior, while also requiring cyclic operation to periodically
recover the NH3. The plasma reactor strategy ii (PRS-II), on the
other hand, allows continuous reactor operation, but limits the
number of active sites per reactor volume. In proof-of-concept
for PRS-I, Gorky et al. showed a 3-fold increase in NHj3
synthesis rate using mesoporous silica SBA-15 as a catalyst,
compared to fumed SiO,.'> Rouwenhorst et al. displayed a 2-
fold enhancement in NH3 energy yield by using zeolite-4A as
an adsorbent.'* On the other hand, as proof-of-concept for PRS-
II, Gorky et al. employed CC3 as a membrane in a plasma
reactor, which facilitated the removal of NH3, achieving a 5-
fold improvement in the NH3 synthesis rate using as a baseline
a reactor without catalyst.!> Mizushima et al. utilized an
aluminum tubular membrane-like catalyst to achieve a 2-fold
energy efficiency improvement compared to a reactor without
catalyst as well.'®

For adsorption-driven applications—as PRS-I and
PRS-II are—metal-organic frameworks (MOFs) appear as
enticing material prospects due to the possibility to fine-tuning
their chemistry and porous architecture to engender the required
adsorption behavior.!” MOF tunability arises because MOFs are
made of interconnected metal-based nodes and organic linkers,
whose combinatorics can yield an overwhelming number of
porous crystal networks of distinct architecture and/or
chemistry.'®2° Indicative of the potential applicability of MOFs
in plasma technologies, Shah ef al. used Ni-MOF-74 to improve
the NH; yield under different plasma powers,?! whereas as
Yang et al has shown the potential of MOFs as catalyst
supports.”?> Concurrently, interest in MOF NH; adsorption
properties has increased recently, with a growing number of
experiments reporting NH3 adsorption at 1 bar, albeit usually at
near room temperature. MOFs tested for the latter include UiO-
66 (169 mmole/gMop),23
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Figure 2. Strategies to protect NH; from destruction by the plasma in dielectric
barrier discharge (DBD) reactors. a) Plasma reactor strategy I (PRS-I): the DBD
reactor is filled with porous adsorbent particles between the inner and outer
electrodes (catalyst sites can be supported on or embedded within the particles).
NH3 is adsorbed/retained within the pores so that it is shielded from the plasma.
b) Plasma reactor strategy II (PRS-II): the DBD reactor uses a metallic mesh as
inner electrode over a porous membrane. NHj selectively adsorbs into and
diffuses through the membrane leaving the reactor with little exposure to the
plasma. Success of both PRS-I and PRS-II depends on material adsorption
properties.

MFM-300(Sc) (19.5 mmolnus/gmor),>* LiCl-MIL-53 (33.9
mmolnus/gmor),”> among many others.”*?’ However, the
overwhelming number of extant and hypothesized MOFs
makes impractical a comprehensive evaluation of these
materials for a given application. A bottleneck that in other
MOF applications has been usually alleviated by large-scale
computational studies,?®>° which are however yet to be
performed for PRS-I and PRS-II.

As NH3 adsorption is not as affordable to calculate as
the adsorption of small nonpolar molecules (e.g., CHs, Ha, Xe,
or Kr) that other MOF screening studies have focused on,3!3
we decided to set up a hierarchical screening workflow. We
thus first set out to calculate the NH; adsorption Henry’s
constant (Knns) as a first filter to identify 200 promising MOFs
for PRS-I and PRS-II based on adsorption affinity for NHz—
from this point on referred to as the MOF2qokn set—which were
then to have their adsorption-based performance metrics fully
evaluated using molecular simulations of adsorption. Note that
the use of an early Henry’s constant-based filter is rather
established in computational hierarchical screening of
adsorbents, with earlier examples including the screening of
MOFs for hexane isomer separation capabilities,* zeolites for
separation of alcohols from aqueous solutions,** and MOFs for
CO; capture from air.*

However, suspecting limitations in the ability of the
NHj3 adsorption Henry’s constant to identify the actual 200 most
promising MOFs in the database, we developed and introduced

a new additional screening stage to improve the quality of
MOFs that ultimately emerges from screening, while still
avoiding to evaluate the whole MOF database. Specifically, we
iteratively trained a machine learning (ML) model (vide infra),
and used the model iteratively to reassess the database and
identify MOFs that may outperform the MOFaok# set that had
emerged from the early Henry’s constant-based screening filter.
Using the additional ML-aided stage, for each plasma reactor
strategy, we ultimately obtained a new set of 200 promising
MOFs (from this point on referred to as MOF2gomr sets). These
sets presented significantly higher average performance than
the original set emerging from the Henry’s constant-based
screening filter. Thus, the present work also presents a
methodological innovation that could be applied to other MOF
screenings.

Upon completion of the screening, we proceeded to
propose MOF designs that could be experimentally tested to
implement the two plasma reactor strategies discussed in this
work. As successful material development is a multi-objective
problem that goes beyond the maximization of a specific
metric, additional considerations (some requiring calculation of
additional properties) were made to propose these designs
holistically. Furthermore, recognizing that even the synthesis
and experimental testing of carefully selected candidate MOFs
is not guaranteed, we also aimed to use the obtained screening
data to derive robust data-driven material design rules for the
described plasma reactor strategies. These rules are based on
data-driven structure-property relationships that naturally
emerge as a byproduct of large-scale material screening
studies,’**7 and could have impact beyond MOFs. In other
words, guidelines such as optimal pore sizes, heats of
adsorption, and favorable chemical functionalities/moieties
should translate relatively well to other classes of porous
materials that could also be used to facilitate realizing the
plasma reactor design strategies presented in this work.

2. COMPUTATIONAL METHODS

2.1. MOF database. The hybrid database used in this work
incorporates 13,460 MOFs, with ~75% of MOFs coming from
the 2019 CoRE MOF database,?® and ~25% of MOFs generated
in previous work using our topology-based crystal constructor
code ToBaCCo-3.0.'® CoRE MOFs are extant MOFs known for
their high, but non-systematic, structural and chemical
diversity, and their bias towards small pores.* In contrast,
ToBaCCo MOFs are hypothetical MOF prototypes known for
their moderate, but systematic, chemical and structural
diversity, and their bias toward medium to large pores.’® The
complementarity of these two MOF sources make the hybrid
database highly appealing for screening. Textural properties of
MOFs in the hybrid database (i.e., void fraction, surface area,
and pore sizes) were estimated using the code zeo++.40 Zeo++
utilizes two spherical probe radii for pore structure analysis: one
for identifying accessible pores via a percolation algorithm and
one for Monte Carlo sampling to assess the pore structure. Both
radii were set at 1.3 A to match the kinetic diameter of NH.
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2.2. Molecular simulations. Molecular simulations were
conducted using the RASPA-2.0 code.*! The Widom insertion
method, with at least 10,000 random insertion moves, was
applied to determine adsorption Henry’s constants at the
desired temperature.*?> Grand canonical Monte Carlo (GCMC)
simulations were used to estimate adsorption loadings. Each
GCMC simulation was conducted with 10,000 equilibration
cycles followed by 10,000 production cycles. The number of
Monte Carlo moves per cycle was equal to the number of
molecules in the simulation box, with a minimum of 20 moves.
These moves included molecule insertion/deletion, translation,
and rotation, with additional molecule swap moves for
mixtures. Molecule-molecule and molecule-MOF interactions
were simulated using the Lennard-Jones (LJ) and Coulomb
potentials,® with cutoffs respectively set at 12.8 A and 12.0 A.
Additionally, for Coulomb interactions beyond 12.0 A, Ewald
summation was used.***> NH; and N, molecules were assigned
LJ parameters and charges based on the TraPPE force field
(which was parameterized to reproduce VLE curves),**” while
H, parameters were taken from a well-known study on
dispersion attraction-driven H» sorption by Darkrim and
Levesque.®® For all MOF atoms, LJ parameters were sourced
from the Dreiding force field, unless they were unavailable (as
for some metals), in which case the universal force field
parameters were borrowed.*>° LI parameters for cross-
interactions were obtained using Lorentz-Berthelot mixing
rules.>! Charges for MOF atoms were assigned based on the
best method available for each MOF subset (higher similarity
to DFT calculated charges in periodic MOF unit cells). Thus,
atomic charges in ToBaCCo MOFs were previously determined
using the MBBB method, which relies on density functional
theory (DFT) calculations on MOF building blocks.?® And
atomic charges in CoRE MOFs were assigned using the
PACMOF method, which is a machine learning model
developed by Snurr and colleagues trained on DFT calculations
on complete MOFs unit cells.’> Recently, Liu and Luan
highlighted the superior accuracy of PACMOF over other rapid
charge assignment techniques.*

2.3. Performance Metrics.

Plasma reactor strategy i (PRS-I). Plasma discharges cannot
occur within nanopores.® Thus, the basic material feature
needed to implement the NH3 shielding protection strategy
(Fig. 2a) is the ability to retain as much NHj3 as possible within
the material pores. We proposed to simply use the NHj
adsorption loading Nyys; at 400 K and 1 bar as the performance
metric for PRS-I. The temperature and pressure are selected
based on typical DBD reactor operation parameters.”'> As
adsorption selectivity is not expected to be decisive for this
strategy, we perform our simulations using a pure NH3 gas
phase. We hypothesize that the benefits of a porous material
with higher Nnps are two-fold. Higher Nnps as an indication of
i) a higher affinity for NH3 that should be beneficial for the
retention of NH3 within the material pores, and ii) a higher NH3-
holding capacity that may extend the reactor operation time
elapsed between NH3 removal periods.

Plasma reactor strategy i (PRS-II). This strategy
incorporates a membrane in the plasma reactor. Thus, an
important material feature for PRS-II (Fig. 2b) is the ability to
rapidly (high permeability /J flush out the product NH; without
flushing the reactants N> and H (high permselectivity o). Under
the solution-diffusion theory precepts, NH; permeability s

is:
Pz = Nyms X Dz /Py (1)

where Dyys and Pyys are the diffusion coefficient and partial
pressure of NHj, respectively. Permselectivity, on the other
hand, is the product of adsorption selectivity (Syz3):

NNH3/YNH3 2)
(NN2 + NH2) /(YN2 + YH2)

Snuz =

(where N; and y; represent the adsorption loading and gas phase
molar fraction of species i, respectively) and diffusion

selectivity  nu:

C 13 = D/ Dono iz (€)

where D, n2 12 1s the mean diffusion coefficient of N, and H,.
There is wusually a tradeoff between permeability and
permselectivity,®> so that a performance metric accounting for
both properties can be the product Jms; x onms. The (less
computationally expensive) adsorption-dependent contribution
to that metric is “Snuz X Nwyws,” which we propose as the first
performance metric for screening. To this end, we calculated
adsorption loadings at 400 K and 1 bar, again informed by
typical DBD reactor operation parameters.”'? For the gas phase
composition, we considered several scenarios, but focused on a
case where the plasma reactor is fed H, and N; at stoichiometric
ratio (3:1), and 10% conversion was achieved (similar to a
single pass through the Haber Bosch process)*®. The above
resulted in a composition corresponding to 6% NH3, 23% N»
and 71% H,. Note, however, that consideration of other feed
ratios and conversion scenarios seems to result in similar MOF
rankings (Fig. S3).

The (more computationally expensive) diffusion-
dependent contribution to the Zm; X aww; product is
Dnis* D na 12, for which we originally anticipated performing a
second screening step (adhering to the hierarchical screening
philosophy) based on diffusion coefficient calculations.
However, this step was modified upon learning that the
diffusion-limiting pore diameter (DLPD) among numerous
promising MOFs based on the adsorption-based metric ranged
between 2.61 and 2.86 A. Thus, the second screening step
instead focused on identifying MOFs with DLPD values
between the kinetic diameter of NH3 (2.6 A) and Ho/N (2.9
A/3.6 A). This step effectively considers size selectivity (i.e.,
molecular sieving), which is an extreme case of diffusion
selectivity.’’ Through the approach above the MOFs ultimately
presented as candidates for PRS-II combine both favorable
adsorption and diffusion properties.

2.4. Machine learning basics.

The search workflow was developed in Python 3.9, comprising
the machine learning (ML) model itself and the iterative
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learning pipeline. For the ML model, we used the tree ensemble
algorithm from XGBoost 2.1.0 as it is expected to outperform
other algorithms when working with small datasets. The mean
absolute error of the prediction (MAE) was used as the loss
function, along with elastic net regularization (ENR) to help
combat overfitting. This regularization adds a penalty for
adding leaves and with penalties for having large leaf weights
based on the summation of the absolute (Ridge regression type)
and squares (Lasso regression type) of these weights.
Hyperparameter tuning was done via grid search conducted on
the model trained with an initial training set of 200 MOFs
(MOF29okn set). The hyperparameters include a tree depth of
11, a learning rate of 0.05, and values for L1 and L2 of 6 and 2,
respectively. The iterative learning pipeline was written
leveraging libraries in Scipy 1.14, Pandas 2.2.2, and Sklearn
1.5.0, and primarily focuses on continuously selecting new
MOFs to grow the training data based on rankings based on ML
predictions, while ensuring that previously selected MOFs are
excluded from the rankings. Additional details about the
pipeline are discussed in Section 3.2.

3. RESULTS AND DISCUSSION

3.1. Efficacy of Henry’s constant-based filter. We started by
assessing the ability of the NH3 adsorption constant, Kygs, to
broadly rank MOFs for PRS-I and PRS-II. To this end, 200
MOFs were randomly selected from the hybrid database (from
now on referred to as the MOF2or set) and had both Kyusz and
the corresponding performance metrics calculated. Namely,
Nyms from pure gas adsorption for PRS-I and Syus X Nyws from
gas mixture (NH3, N>, and H) adsorption for PRS-II,
respectively. Then, three rankings were created for MOFs in the
MOFgor set based on Knwz, Nyusz (for PRS-I) and Snwz X Nyms
(for PRS-II) respectively. Within the MOF»or set, we observed
the MOF rankings based on Kyx3 and Nams (Fig. 3a) to correlate
well with each other (Spearman ranking correlation coefficient,
SRRC, equal to 0.95). A similar correlation was observed for
the rankings based on Kyxz and Syus X Nyus (Fig. 3b, SRRC =
0.97). These results reassured us of the ability of Kyus to
broadly discriminate between two MOFs with high disparity in
performance, and thus be an acceptable early filter for
hierarchical screening. However, despite the high SRCC
values, the relatively scattered points around the parity line
indicate that Kyuz may not be as effective in discriminating
between two MOFs that exhibit closer performance. Especially
in the region corresponding to the most highly ranked MOFs
(e.g., Fig. 3¢, bottom left).
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Figure 3. Parity plots comparing MOF rankings based on the Henry’s constant

(Kyvi3) and rankings based on Nyzzz (PRS-I) (a,c) and Sviz X Nymz (PRS-1I)
(b,d). a-b) Comparison of ranking for 200 randomly chosen MOFs (MOF
set). c-d) Comparison of ranking for the 200 MOFs with the highest Ky values
(MOFygkn set emerging from the Kyyz filter in traditional hierarchical
screening). Spearman ranking correlation coefficient (SRCC) is shown in each
plot. Kyy; was found capable of broadly discriminating between really good and
really bad MOFs (a-b), but not of finely discriminating between MOFs with
similar performance (c,d).

Thus, we calculated Ky for the whole MOF database
and selected the 200 MOFs with the highest Kyxz3 values (i.e.,
the previously mentioned MOFxoku set), as done in standard
hierarchical screening. We then calculated the corresponding
performance metrics for the MOF2o0ku sets, and again created
three rankings based on Kyw3, Nz (for PRS-I) and Syus X Nyms
(for PRS-II), respectively. Within MOFqokn sets, no correlation
was observed between the ranking based on Kymz and the
rankings based on Nyuz and Syus X Nus, respectively (Fig.
3¢,d), reinforcing our concern about the shortcomings of Kyz;s
to discriminate between MOFs that are not dramatically
different in performance. Based on these observations, we
hypothesized that the MOF»qokn set would capture some good-
performing MOFs but was unlikely to closely represent the
actual top-200 MOFs for PRS-I and PRS-II in the 13,460-MOF
database. Thus, we decided to use machine learning to find a
new set of 200 MOFs (i.e., the previously mentioned MOF2omt
set) that more closely reflects the actual top-200 MOFs for
PRS-I and PRS-II applications.
3.2. Iterative machine learning-aided search workflow.
The workflow for the ML-aided search stage is summarized in
Fig. 4. The overarching goal of our strategy was to improve the
MOFoxn set that emerged from traditional hierarchical
screening, while still avoiding running molecular simulations
on the full 13,460-MOF database. The fundamental idea was to
start by initializing ML models to predict Nyz3 (for PRS-I) and
Snms X Nyms (for PRS-ID), respectively, leveraging the molecular



simulation data already generated for the MOFypr and
MOF:q0kn sets. Specifically, the MOFaor set was consistently
used as a validation set and the MOF»ooxn set was used as the
initial training set. We expected this dataset selection strategy
to make the initial training set imbalanced toward high
performance MOFs, probably making the initial ML model
more accurate to predict the metric in high-performing MOFs
than in low-performing MOFs. However, we considered this
acceptable since the goal of the model was to accurately identify
the high-performing MOFs, not necessarily to correctly predict
the metric in all 13,460 MOFs.

The initial ML models were then used to make a first
prediction of Nygsz (for PRS-I) and Syas x Naws (for PRS-ID),
respectively, on the remaining 13,060 MOFs in the database for
which molecular simulations had not been done yet. Out of this
prediction, the 50 highest-performing MOFs according to the
ML models for PRS-I and PRS-II, respectively, were identified
and then their metrics evaluated via molecular simulation. We
then i) identified the new top-200 MOFs by examining all
MOFs evaluated with molecular simulation (this set constitutes
the initial MOF2oomr set), and ii) “grew” the training dataset by
adding the new molecular simulation data, and used it to train
new ML models to predict Nyus (for PRS-I) and Syus X Nyws
(for PRS-II), respectively.

The above was the end of the first iteration cycle, and
subsequent cycles continued by sequentially i) identifying the
50 highest performing MOFs for PRS-I and PRS-II according
to the predictions of the respective ML models trained in the
preceding cycle, among MOFs not yet evaluated by molecular
simulations, and then evaluating them with molecular
simulations, #7) updating the MOF»pom set by identifying the
new top-200 MOFs among all MOFs evaluated with
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Figure 4. The workflow of the iterative machine learning (ML) pipeline. The
pie chart illustrates the division of the dataset used in this work. A flow diagram
is linked to this pie chart illustrating the iterative process of enhancing
prediction accuracy from the ML model. This process starts with the MOF,gokn
set and finalizes with the selection of the MOFomr. set by updating the initial
set with MOFs in the eligible set. The ML model integrated into the pipeline

here is a gradient boosting machine. In the flow diagram, M stands for the
metric evaluated for each application.

molecular simulation up to that iteration, iij) training new ML
models to predict the metric for PRS-I and PRS-II, respectively,
using the larger training dataset resulting from the addition of
new simulation data to the data collected in previous iterations.
As we will detail later, to track the progress of the search, we
determine the differences between the MOF oM set at a given
iteration and i) the MOF2ok set and ii) the MOFpomr from the
preceding iteration.

3.3. MOF representation by histograms. Adsorption
loadings depend on the adsorption energies of all potential
adsorption sites. Thus, towards predicting adsorption loadings
via ML, some authors have opted to pre-calculate the
adsorption energy of a given species along a grid of adsorption
sites within a MOF unit cell, and feed that information to a ML
model in the form of adsorption energy histograms.>® However,
energy histograms are a MOF representation that requires
molecular modeling expertise and is largely specific to the
species for which the histogram was built. Looking for a more
accessible and generalizable MOF representation, and
recognizing that adsorption energies in potential adsorption
sites largely depend on the force field parameters (i.e., ¢ and €
LJ parameters and charge g) of the corresponding nearest MOF
atoms (and the distance to them), we opted to develop 2D
histograms based on the latter information as input for our ML
model (Fig. 5).

The first step in generating the histograms is the
generation of an evenly spaced grid (here using a 1 A spacing
between neighbor grid points). The grid symmetry matches the
symmetry of the MOF unit cell (Fig. 5a). For instance, cubic
and trigonal unit cells result in grids of cubic and trigonal
symmetry, respectively. The second step is identifying the
nearest atom to each grid point (considering periodic boundary
conditions) (Fig. 5b). To make the identification efficient,
instead of linear search (which involves measuring the distance
of a given grid point to every MOF atom), we used space
partitioning by KD trees, which are commonly used in nearest
neighbor searches in many fields.>*' Here, KD trees partition
the unit cell space into subregions by iteratively bisecting the
original subregion in which an atom resides into two new
subregions, each containing half the atoms residing in the
original subregion. To identify the nearest neighbor atoms for a
given grid point, first the subregion in which the grid point
resides is determined. Then, only the distances to the atoms also
residing in that subregion are calculated, and the nearest atom
among them is determined.

Once the nearest atom to a given grid point is
determined, the grid point is described by its distance d to the
nearest atom, and the LJ parameters (¢ and ¢) and charge (q)
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Figure 5. Steps to convert MOF structures into 2D histograms and then into machine-readable one-dimensional vector representations. a) An evenly spaced grid with
points separated by 1 A is created within the MOF unit cell. The symmetry of the grid is consistent with the symmetry of the unit cell. b) A K-Dimensional tree algorithm
is used to find the nearest MOF atom to each grid point, and the LJ parameters (¢ and €) and charge (g) of this nearest atom are assigned to the grid point. ¢) The data
collected of the interaction parameters (o, € and ¢) is collapsed in three 2D histograms per MOF as a function of distance (all distances higher than 20 A are placed in the
last bin). d) Each one of the three 2D histograms per MOF is “flattened” and concatenated resulting in a vector with 4440 features. ) Standard deviations for each feature
across MOFs were evaluated to discard those with negligible differences along the whole dataset (using as threshold a standard deviation per feature <= 0.0025) leading
to f) a MOF representation with 300 features per MOF to be used as input to the ML model.

of said nearest atom. Then the frequency (counts) with which
grid points with particular (o, d), (¢, d), and (g, d) combinations
respectively occur is determined and used to build three 2D
histograms. One for each kind of combination. Thus, the
number assigned to each 2D histogram bin corresponds to the
number of grid points falling in that particular bin divided by
the total number of grid points. Each histogram features 1480
bins arranged in a 74 x 20 grid (Fig. 5¢). The grid size is the
result of dividing d into 20 bins spanning the 0-20 A range, and
o, € and ¢ into 74 bins spanning the 0 to 4 A, 0 to 350 K, and -
3 to 3 e ranges, respectively (see details in Section S3).

3.4. From MOF histograms to MOF feature vectors.
Visually, the resulting 2D histogram appears as a characteristic
heatmap encoding the adsorption environment in a given MOF.
However, as our envisioned ML model (gradient boosting
machines) require a 1D vector as input, each 2D histogram was
“flattened” by stacking their columns back-to-back into a 1,480
x 1 vector. Then, the three resulting vectors were stacked back-
to-back into a 4,440 x 1 vector (Fig. 5d). Then, to reduce the
4,400 x 1 feature vector, we sought to eliminate features that
were expected to correlate poorly with the metrics to be
predicted, due to the similar values of these features across all
MOFs. Accordingly, the standard deviations for each feature
across all 13,460 MOFs were calculated (Fig. Se), and features
with standard deviations less or equal to 0.0025 were

eliminated. Upon completion of this exercise, a 300 x 1 feature
vector emerged as a representation of the MOF for ML (Fig.
5f). As apparent from Fig. S4 most of the eliminated features
correspond to bins for distances beyond 6 — 10 A (depending on
o, &, q) and/or for g values more negative than —1.03 e and/or ¢
values higher than 4.4 A.

3.5. Evolution of ML-aided MOF search. We can think of the
differences between the evolving MOFom. set and the
MOFg0kn set as indicative of the extent to which the ML model
helps identify higher-performing MOFs over traditional
hierarchical screening. These differences can be quantified
based on the changes that occur relative to the MOFoxu to
make the MOFomt. set in each iteration. As it turns out, by the
20" iteration of the ML-aided search about 80% of the MOFs
in the MOFgokn were replaced (Fig. 6a) with higher performing
MOFs, and changes between consecutive MOF oM sets were
minimal. The number of MOFs in the MOFjokn that were
demoted in ranking in each iteration is lower during early and
late iterations, and higher during middle iterations (Fig. S5a,b).
The lower demotion rate during early iterations is probably due
to the early ML models being less accurate (Fig. S6). While
during late iterations the lower demotion rate is probably due to
the MOF2oom1 set converging towards the actual top-200 MOFs
for each scenario, respectively.



The overlap between the actual top-200 MOFs and the
MOF0me set cannot be determined without evaluating all
MOFs in the database with molecular simulation. However,
there are indications that the overlap is large such as the ranking
changes between consecutive MOFoomr sets approaching zero
by the 20" iteration (Fig. S5c-d). Regardless of the above, by
the 20" iteration, the MOFaomr set clearly outperforms the
MOF2okn set as evinced by the change in the mean value of
Nnm3 (lOg(SNH3 X NNH3)) from 7.36 mol/kg (487 log(mol/kg))
in the MOFaoku set to 13.66 mol/kg (5.81 log(mol/kg)) in the
MOFzoome set, as shown in Fig. 6b (Fig. 6¢). Thus, it is clear
that the added ML-based search stage identified more
promising MOFs than the standard hierarchical screening did.
Remarkably, the significant improvement over the MOF2poxu
set was accomplished with an ML model that ultimately only
required molecular simulation data for ~10% of the MOF
database.

The creation of the MOF»omr set is facilitated by the
evolving ML model, whose evolving accuracy can be examined
from the perspective of the training and validation sets. From
the training set perspective, the prediction mean absolute error
(MAE) for the PRS-I (log of the PRS-II) metric changed from
439 mol/kg (2.68 log(mol/kg)) to 0.44 mol/kg (0.1
log(mol/kg)). From the wvalidation set perspective, the
prediction error for the PRS-I (log of the PRS-II) metric
changed from 2.05 mol/kg (1.73 log(mol/kg)) to 1.42 mol/kg
(1.12 log(mol/kg)) (Fig. S8-S9). As a reference, note that the
mean of the PRS-I (log of the PRS-II) metric in the final training
set is 13.66 mol/kg (5.81 log(mol/kg)). Inspection of the
learning curves (Fig. S10-S11) show that the differences in
MAE between training and validation sets are not due to
overfitting. Instead, these differences can be explained by the
anticipated imbalance mismatch between the validation set
(MOF20r), which is random, and the training set, which is
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Figure 6. ML-aided MOF search performance across iterations: a) Percentage of MOFs in MOFokn set (200 initial MOFs chosen based on the Henry constant, Ky3)
replaced by MOFs with higher metric values during each iteration. b-c) Shift in probability density of MOF performance metric values for PRS-I and for the logarithm
of the metric for PRS-II, respectively, between zero (MOF,gky set) and twenty iterations (final MOF o\ set). All quantities calculated with Nyys mol/kg.

biased toward high-performing MOFs. As noted earlier, we
deemed this anticipated imbalance to be acceptable, under the
condition that the models could sufficiently predict the metrics
for the highest-performing MOFs, (Fig. S7), ensuring that their
ability to correctly rank MOFs (especially high-performing
ones) was sufficiently high as shown in this work (see
Spearman ranking correlation coefficients, SRCC, in Fig. S8d,
S9d).

3.6. Data-driven MOF design guidelines. A byproduct of
computational material screening is the emergence of data-
driven structure-property relationships (SPR) that can be
exploited as guidelines to design materials for the applications
of choice. These data-driven guidelines allow extracting value
out of screening studies regardless of material candidate
identification and experimental testing, which sometimes may
not occur due to synthesis, stability, cost, or other unforeseen
challenges. Herein, these relationships could be applicable
beyond MOFs—as long as the adsorption mechanism is based

on physisorption—and emerged efficiently as we only ran
molecular simulations for a fraction of the MOF database. This
fraction includes the 200 random MOFs in the MOFr set,
which allows us to glimpse the overall shape of the relationship,
whereas the bias of the remaining examined MOFs toward high
performance allows us to define well the relevant region where
the metric of interest is optimized.

Dimensionality reduction techniques such as t-SNE
clearly shows that optimal materials for PRS-I and PRS-II tend
not to overlap and demand different properties of the MOFs
(Fig. S12). For instance, PRS-I tends to demand more porosity
than PRS-II. Thus, we examine structure-property relationships
separately. Still, note that there are 29 MOFs appearing in the
MOF2pmr sets for both PRS-I and PRS-II (these sets are
provided as supplementary info). Specifically, for PRS-I,
materials with an average pore diameter ~10 A are better suited
to maximize the performance metric (Nyu3) at the conditions
that NH3 is synthesized in typical DBD reactors (Fig. 7a). This



pore diameter is almost four times the kinetic diameter of NH3
(2.6 A), reflecting that an optimal material for PRS-I needs
sufficient space to accommodate and retain NH3 molecules. As
pore size correlates inversely with heat of adsorption, there is a
tradeoff between providing space for NH3; and attracting NH3
enough to retain it. This tradeoff seems to result in an optimal
heat of adsorption of 90 kJ/mol (Fig. 7b) for PRS-1.

For PRS-II, materials with average pore diameters
~2.75 A are better suited to maximize the performance metric
(Swuz X Nym3) at typical plasma-assisted NHsz synthesis
conditions (Fig. 7¢). This optimal average pore diameter is
close to the kinetic diameter of NH3 and is a manifestation of
the known peak in adsorption selectivity S when the adsorbent
pore diameter is closer to the diameter of the adsorbate of
interest than to that of the other adsorbates.®? The closeness of
the optimal pore diameter for PRS-II to the kinetic diameter of
NHj3 also suggests the stronger dominance of S in the Syus X
Nyms product. The optimal heat of adsorption for PRS-II is 80
kJ/mol (Fig. 7d). Due to the overall correlation between
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Figure 7. The values of the metric for PRS-I (Nyyu3) and for the logarithm of
the metric for PRS-II (log(SnxusxNnns)) from 1,200 MOFs evaluated via
molecules simulation (200 MOFs from the MOF,r set, and 1,000 MOFs that
at one point or another belonged to the MOFym set) plotted against the
average value of the pore size distribution (a and c¢) and the heat of adsorption
(b and d). The color of each bin represents the average surface area in (b) and
the fraction of MOFs in the database with a DLPD between 2.6 and 2.9 A in (c
and d). The percent transparency of each bin corresponds to the number of
MOFs each bin contains: 25%, 50%, 75% and 100% for bins with fewer than 2
MOFs, 2-4 MOFs, 4-6 MOFs, more than 6 MOFs. Red points reference
simulated values for CC3, which was experimentally tested for PRS-II in the
literature, >3

average pore diameter and diffusion-limiting pore window
diameter (DLPD), a considerable number of MOFs with high
Swniz X Nyusz product also possess a DLPD that lies in between
the kinetic diameter of NH3 (2.6 A) and H, and N, (2.9 A and
3.6 A, respectively), as shown in Fig. 7¢,d. A fact that will be

leveraged in our selection of MOFs proposed for experimental
testing later on.

While aiming for a material design that has specific
pore dimensions is a tangible task, aiming for a certain heat of
adsorption is somewhat more abstract. Partly because the heat
of adsorption correlates inversely with pore diameter but also
depends on chemistry. Thus, to examine the possibility of
chemistry-based design rules we conducted one-sided t-tests to
identify statistically significant differences between the
compositions of MOFs in the final MOFomr, set and the whole
database (Table 1). For PRS-I, we find that elements that are
significantly more abundant in the MOFoomr set, at least with a
p-value threshold of 0.05, are H, C, and V thus are deemed to
potentially boost the Nyy3z metric for a MOF of a given pore
structure. By contrast, with the same p-value threshold elements
such as N, O, F, Si, S, Cl, and Br are found to be

Table 1. Most statistically significant cases of higher element abundance (+
case) or lower element abundance (- case) in the final MOF,go\. set than in the
whole database. Significance was assessed by the p-value from one-sided t-tests
comparing the average element percentages in the MOF in each set.

PRS-I PRS-II
Element V;;)ugep(:i-) Vil?l%ep(-) Element Vallfugep(:*-) Vla?fep(-)

H -6.8 - (o) -46.9 -
\% -1.8 - P -6.1 -

C -1.3 - A% -3.8 -
Li -0.9 - Mo 2.9 -
Cu -0.9 - Na -2.5 -
Y -0.9 - Sr -1.8 -
Pd -0.6 - Y -1.6 -
In -0.6 - K -1.5 -
Mo -0.6 - Ru -1.2 -
Se -0.6 - Se -1 -
Br - -69 Zn - -55.5
Cl - -22.7 Br - -35.7
Cr - -22.7 C - -26
Al - -18 Cr - -25.4
S - -11.6 H - -20.6
Zr - -7.4 Cu - -18.5
Mn - -6.6 F - -15.8
Cd - -5.9 Zr - 9.8
Co - -5.2 Fe - 9.4
Zn - -4.1 N - -5.6

F - -3.5 Ni - -5.6
Fe - 3.4 Co - -3.1
Si - 2.3 Cl - -3.1
Mg - -2.3 Mn - -1.7
O - -1.7 S - -1.4
Ni - -1.6 Mg - 13
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relatively less abundant in the MOF oMy set for PRS-I, and thus
are considered to be potentially detrimental for Nyus. For PRS-
II, on the other hand, we find O, P and elements like Na, K, V,
Se, Sr, Y, and Mo to be more abundant in the final MOF20omL
set than in the database and are good candidates to boost Syus x
Nyms. By contrast, metals such as Mg, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Zr, Cd, and elements such as H, C, N, F, S, CI, and Br are
less abundant in the MOFpMmr set than in the entire dataset,
suggesting these elements to typically hamper Syus X Nyms. To
be sure, the applicability of the above observations is contingent
on the absence of chemical reactions during NH3 adsorption.

We discarded the possibility that the seemingly more
(less) favorable clements for PRS-I and/or PRS-II just
happened to appear in MOFs featuring textural properties closer
(farther) to the optimal values discussed in Fig. 7. To achieve
this, for all MOFs featuring a given element, we created a vector
containing the normalized average of largest pore diameter
(LPD), diffusion limiting pore diameter (DLPD), gravimetric
surface area (GSA), void fraction (V¢) (so that each vector
component can only vary between 0 and 1), and calculated their
distance to the vector containing the normalized average of the
above properties in the corresponding MOF oM. sets. For each
element X, we call this Adexmral-x. We observed no clear direct
or inverse correlation
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Figure 8. Comparison of the median charge (¢g) of different element groups in
the whole database (green), the MOFpom1 set for Nyys (blue) and MOF,pour, set
for Syuz X Nyus (orange). Each bar indicates the corresponding median, and the
dashed line indicates the corresponding median absolute error.

between Adiexwra-x and whether an element was seemingly more
or less favorable for PRS-I and/or PRS-II (Fig. S15).
Accordingly, we proceeded to examine potential links between
element properties and MOF performance, using median
element charges (Fig. 8) as reference—given the expected role
played by electrostatics during NH3 adsorption—as well as
visual inspection of MOFs.
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With almost neutral charge, C and H having above
(below) average presence in the best MOF's for PRS-I (PRS-II)
is probably unrelated to their charge. But as C and H constitute
the backbone of linkers, their above (below) average presence
likely stems from the longer (shorter) organic linkers required
to meet the larger (smaller) ideal pore diameter for PRS-I (PRS-
II). Linker length requirements are also probably the primary
driver of the below (above) average presence of O in the best
MOFs for PRS-I (PRS-II), as O atoms are typically found
capping linkers and/or embedded in the inorganic nodes.
Halogens (F, Cl, Br), which typically appear as part of linker
functionalization, have negative charges and below average
presence in the best MOFs for either PRS-1 or PRS-II. This
observation suggests negative charges to be not as well suited
to attract NH3 as large positive charges. This notion is
strengthened with S, who is typically bonded to C and has a
negative charge across the database, but is bonded to O and has
a positive charge in the best MOFs for PRS-I and PRS-II. Thus,
its below average presence in the best MOFs reflects S rarely
featuring the better suited positive charge.

Note, however, that when accompanied with a nearby
positively charged element, elements with negative charges can
create a pattern that reinforces the attraction to NH; (see Section
3.8). For instance, O, which was found to typically have a
nearby H in a node hydroxyl or in a linker, can create such a
pattern. On the other hand, elements with large positive charges
and high accessibility seem more capable of attracting NH3z on
their own (see Section 3.8). For instance, V, which is typically
a node constituent, emerges as an element with above average
abundance for both PRS-I and PRS-II due to its high
accessibility and high positive charge (median q ~1.5e, Fig.
S16). Indeed, although other node-constituent metals such as Zr
may have higher charges (median q ~ 2.2e, Fig. S16), they have
below average presence in the best MOFs because they seldom
present the necessary accessibility. In contrast, other node-
constituent metals such as Cu, may tend to have high
accessibility but may also have lower charges (median q ~1.0e,
Fig. S16), leading to average or below average presence of this
element in the best MOFs. Overall, the below, around or above
average presence of an element in the best MOFs is tied to its
charge and accessibility, with largely positive accessible sites
being better suited for NH3 adsorption. Note that the exact
charges assigned to MOF atoms somewhat varies with the
charge assignment method. The above information could be
used as an additional early filter to pre-select a smaller set of
MOFs on which to run simulations if a different charge
assignment method is used.

3.7. MOFs proposed for experimental testing. We sought to
suggest candidate MOFs holistically for experimental testing
for PRS-I and PRS-II, going beyond simply listing the MOFs
with the very highest performance metric values. We followed
a rubric where, given two MOFs of similar performance to
choose from for either PRS-I or PRS-II, we prefer a i) a
previously synthesized MOF over a hypothesized one, ii) a
MOF featuring only one metal type over one featured multiple
metal types, iii) a MOF featuring an earth-abundant metal over



one featuring scarce or rare earth metals, iv) the MOF featuring
the lowest NH3 heat of adsorption, v) the MOF with the highest
expected thermal stability. For PRS-II, we further limited our
selection to MOFs with DLPD between 2.6 and 2.9 A, as this
range is conducive to very high diffusion selectivity for NH3
over H, and N, via molecular sieving. The latter complements
NH; adsorption selectivity and capacity (i.e., Syus x Nyw) tO
facilitate fast and selective NH;3 permeance for PRS-II MOFs.

According to the above, while metric values for all
MOFs in the final MOFyomL sets are provided as
Supplementary Information, here we suggest three (twenty in
SI) specific MOFs for PRS-I and PRS-II, respectively, in Fig.
9 (Table S3-S4). In considering the properties of the suggested
MOFs, keep in mind that partly due to our additional (post-
screening) selection criteria, their properties are close but not
exactly equal to the optimal property values brought up in the
discussion around Fig. 7 (e.g., we traded off somewhat smaller
performance metric values for more manageable heats of
adsorption). These MOFs also feature chemical formulas that
may not always feature elements that tend to be favorable or
may feature elements that fend not to be favorable for PRS-I or
PRS-II per the discussion around Table 1. This situation is just
an indication that while here we suggest promising candidates
for testing for PRS-I and PRS-II from the 13,460-MOF hybrid
database, there are likely more optimal combinations of MOF
chemistry and structure that were not encountered among the
studied materials.

The MOFyoomr sets are completely dominated by
structures in the CoRE MOF database, hence the MOFs

suggested herein for experimental testing are all previously
C1gH11CuOs b)

Toecom(“C) 276

C24H14CuNO4

synthesized MOFs, whose original publication, presenting their
synthesis recipe, is provided in Table S3-S4. The thermal
stability of the MOFs was estimated using an ML model
developed by Nandy et al.,** and made available in the
MOFSimplify website.®* This model consists of a trained
artificial neural network that uses revised autocorrelation
(RAC) descriptors and geometric features of the MOFs as
input,®#% and was trained using reported thermogravimetric
analysis (TGA) data for 3,132 MOFs (64% training, 16%
validation, and 20% testing), with a mean absolute error (MAE)
of 47 K. All MOFs in Fig. 9 (and Table S3-S4) are predicted to
have thermal decomposition temperatures (Tpecom) €xceeding
500K, which is more than twice the MAE of the model over the
relevant plasma reactor operating temperature of 400K. Thus,
the anticipated ease of synthesis and high thermal stability of
the proposed MOFs makes them highly attractive for
experimental testing.

3.8. Adsorption mechanism in MOFs proposed for
experimental testing. We conclude this work with an
investigation of the underlying NH3 adsorption mechanism in
the proposed MOF candidates for PRS-I and PRS-II. To this
end, we obtained the radial distribution functions (RDFs) of N
and H atoms in NH3 with respect of key atoms of each MOF,
and simulated the adsorption isotherms at 400 K at the
temperature and compositions relevant for each application but
varying the total pressure from 0.01 to 10 bar (Fig. S17). We
observed that a different NH; adsorption mechanism operates
in MOFs optimal for PRS-I than those optimal for PRS-II (Fig.
S18).
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Figure 9. The top three holistically chosen MOFs for PRS-I (top) and PRS-II (bottom), which meet the criteria of being made with a single (relatively common) metal,
having moderate heats of adsorption (Qs), high thermal stability (Tgecom). The CSD codes are CESFIQ (a), ACOCOM (b), LEQBUG (c), ALATAK (d), ZEDRAD (e),
and FOKZIQ (f). Tgecom, Qs GSA, DLPD, and V¢ represent MOF decomposition temperature, heat of adsorption, gravimetric surface area, diffusion limiting pore diameter,

and void fraction, respectively, for each MOF.

Generally, MOFs for PRS-II tend to operate closer to
saturation than MOFs for PRS-I (Fig. 10a,c), which is
consistent with the typically larger pores required for the latter
application. For PRS-, the H atoms in NH3 tend to be closer to
the MOF O atoms, whereas the N atom in NH3 tends to be closer
to MOF H atoms (Fig. 10b). This shows an orientation effect
on NHj3 driven by the opposite charge of H (N) in NH3 with
respect to the charge of the MOF O (H atoms), with the Hymus-
Owmor interaction likely corresponding to O---H:--N hydrogen
bonds. The further located and not particularly prominent peaks
for pair interactions involving the MOF metal suggests a
secondary role for the metal. The latter is consistent with the
significantly lower than average transition metal charge in top
MOFs for PRS-I (Fig. 8) and only one metal (V) making the list
of elements seeming to favor performance for PRS-I (Table 1).

For PRS-II, the orientation effect in NH3 is preserved
with respect to the O and H atoms in the MOF. However,
contrary to the PRS-I cases, it is observed that the N atom of
NH; is closer to the metal than the H atoms in NHj; are. Besides,
the N-metal and H-metal peaks also present a distinctive
sharpness not found in the PRS-I cases (Fig. 10d, Fig. S18).
Accordingly, it is likely that NH3 sorption in optimal MOFs for
PRS-II is mainly driven by strong electrostatic interactions
between negatively charged N in NH3 and the MOF metal. The
weak peak for H atoms in NH3 and H atoms in the MOF, which
are of equal sign charge, can be explained as a consequence of
the smaller size of H atoms, the MOF operating close to
saturation, and the N of NHj; attempting to get as close as
possible to the MOF metal atoms. The latter is consistent with
the optimal metal charge for PRS-II being generally higher than
for PRS-I, and the larger number of metals making the list of
elements to seemingly favor performance for PRS-II (Table 1).
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Figure 10. Saturation of the selected MOFs under operation conditions (400 K
and 1 bar) for a) PRS-I, and c¢) PRS-II. Radial distribution function (RDF)
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between N (solid lines) and H (dashed lines) atoms in NH; and key atom types
in a representative MOF for b) PRS-1(CSD code: CESFIQ) and d) PRS-II (CSD
code: ALATAK). Plots show that for PRS-I MOFs NHj sorption is driven by
the interaction of MOF O (H) and with the H (N) of NH;. For PRS-II, NH;
sorption is driven by the interaction of MOF metal atoms with the N of NHj3.

CONCLUSIONS

A MOF search strategy leveraging an iteratively trained ML
model was successfully developed to find MOFs with
promising adsorption properties to potentially enhance plasma
reactor performance for NHj; synthesis. The MOFs found
through this method had better predicted performance metrics
than those of the MOFs that would have been selected using
traditional hierarchical screening, which usually leverages
calculation of adsorption Henry’s constants. The iteratively
trained ML model was found to successfully drive the MOF
search despite only learning from an imbalanced training
dataset that was biased toward “high performance” MOFs. The
resulting MOF search required full examination (i.e., with
molecular simulation) of only ~10% of a 13,460-MOF hybrid
database, from which forty MOFs were proposed for
experimental testing for two separate plasma reactor
enhancement strategies (twenty for each case). One strategy
leverages MOFs as catalyst supports while the other leverages
MOFs as membranes. Selection of these MOFs went beyond
sole examination of the adsorption metrics and was holistically
made considering factors such as expected ease of
synthesizability (e.g., having an existing recipe, being made of
easily accessible metals, etc), thermal stability, among others.
For instance, as part of the holistic selection for MOFs for
plasma membrane reactors, the calculation of diffusion
coefficients as screening step was bypassed by using an
additional selection criterion: a diffusion limiting pore window
size between the kinetic diameter of NH3 and N»/H,. The
molecular simulation generated data was shown to yield useful
data-driven structure-property relationships, which could be
leveraged to guide design porous materials for the plasma
reactor enhancement strategies described here, even if said
materials may not necessarily be MOFs. The search strategy
presented here could be applied to MOF search for other
applications, or even had the same principles applied to other
materials and properties.

SUPPLEMENTARY INFORMATION

The supplementary information is available free of charge.
Molecular simulation details; MOF rankings across different
feed ratios and conversions; details of the 2D histogram
algorithm; ML model performance; dimensionality reduction of
the MOF textural space; structure-property and elemental
composition relationships; top 20 (per application), holistically



chosen, promising MOFs for experimental testing.
Spreadsheets with data for MOF0oxku and MOF2oomr sets.
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