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ABSTRACT 

Plasma reactors are promising to decarbonize the production of NH3, but their NH3 energy yields need to improve to facilitate their 

broad adoption. Two emerging strategies to reduce energy inefficiencies aim to protect the freshly formed NH3 from destruction by the 

plasma by leveraging NH3 adsorption properties of porous materials as either catalyst supports or as membranes. As metal-organic 

frameworks (MOFs) are promising porous materials for adsorption-based applications, we performed large-scale computational 

screening of 13,460 MOFs to study their potential for the abovementioned uses. To reduce computational cost by ~10-fold, we developed 

a generalizable hierarchical MOF screening strategy that starts with the selection of a 200-MOF set based on NH3 adsorption Henry’s 

constants, for which the relevant performance metrics are calculated via molecular simulation. This set is used to “initialize” a machine 

learning (ML) model that predicts the relevant metrics in the whole MOF database, in turn guiding the selection of additional promising 

MOFs to be evaluated via molecular simulation. The ML model is then iteratively refined leveraging the emerging molecular simulation 

data from the MOFs selected at each iteration from the ML predictions themselves. From evaluation of only ~10 % of the database, for 

each use (catalyst support or membrane), 20 extant MOFs were holistically assessed and proposed for experimental testing based on 

desirable adsorption properties as well as complementary properties (e.g., high thermal decomposition temperature, constituted by earth 

abundant metals, etc). Data-driven material design guidelines also emerged from the screening. For instance, a pore diameter of ~10 Å 

and a heat of adsorption of ~90 kJ/mol were found beneficial for the catalyst support use. On the other hand, for the membrane-based 

strategy, a pore diameter of ~2.75 Å, and a heat of adsorption of ~80 kJ/mol were found beneficial. The presence of V was found 

beneficial for both uses. 

KEYWORDS: metal-organic frameworks, GCMC simulations, dielectric discharge barrier, shielding protection, membrane reactor, 

gradient boosted machines, MOF histograms 

1. INTRODUCTION 

NH3 is a crucial chemical in our society primarily due to its role 

in fertilizer production. Over 200 million tons of NH3 are 

produced yearly.1 Moreover, NH3 demand could increase in the 

future if it were to be exploited as an energy vector.2 For 

instance, NH3 could be used i) as a means to store H2,3 which 

could be released from NH3 via cracking, and then used in H2 

fuel cells, whose only byproduct is H2O, ii) directly in NH3 fuel 

cells,4 in which the only byproducts would be N2 and H2, iii) 

even directly in internal combustion engines5, (ideally) only 

emitting N2 and H2O as byproducts. However, the current CO2 

emissions tied to NH3 production (ca. 2% of the world's annual 

CO2 emissions)6 puts climate and food sustainability goals at 

odds with each other, and jeopardizes future utilization of NH3 

as a “clean” energy vector. Thus, it is apparent that achieving 

carbon-free NH3 synthesis stands as one of the most important 

needs of our society.  

Most CO2 emissions associated with current NH3 

synthesis arise from CH4 reforming that is done in situ at NH3 

production plants to obtain the H2 feedstock for the NH3 

forming reaction (i.e. N2 + 3H2 = 2NH3).6 Thus, the key to 

carbon-free NH3 synthesis is the switch to “green” H2 as 

feedstock, which is likely to be produced in distributed fashion 

from H2O electrolysis.1 Accordingly, coupling NH3 synthesis 

with (intermittently available) green H2 demands distributed 

synthesis of NH3 in easy turn-on/turn-off reactors,7 thereby 

requiring NH3 synthesis at low pressure.8 To avoid high 

pressure requirements, one needs to synthesize NH3 at 

sufficiently low temperature to overcome equilibrium 

constraints. Thus, achieving sufficiently fast N2 feed 

decomposition (and subsequent hydrogenation) at low 

temperature is key, for which alternatives such as plasma-

assisted catalysis are being explored.9  

In plasma-assisted catalytic NH3 synthesis, high-

energy electrons in a non-thermal plasma collide with gas 

species, either dissociating them or vibrationally (or 

electronically) exciting them. One common way to start a 

plasma is by creating a discharge between two electrodes 

separated by insulating media, as in a dielectric barrier 
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discharge (DBD) reactor.10 Although numerous species form in 

the plasma, vibrationally excited N2 

 

(N2(v), and N and H radicals are currently thought as 

the most important species interacting with the catalyst. Either 

N2(v) or N radicals (depending on catalyst nitrophilicity) 

facilitate the formation of surface-bound N*, whereas H 

radicals facilitate its subsequent hydrogenation via Eley-Rideal 

(ER) reactions.11 This plasma-assisted approach significantly 

boosts NH3 production at low temperature (e.g., 400 K) and 

ambient pressure relative to thermal catalysis.9 However, with a 

maximum NH3 energy yield of 36 gNH3/kWh reported to date,10 

at least a 3-fold improvement is needed to reach the 100 

gNH3/kWh some estimate is needed for economic feasibility.11  

In earlier work, the reaction energy for the elementary 

ER step H⋅ + HNNH2 → HNNH3 (∆Erxn|r20) was found to 

empirically correlate with overall NH3 formation rate in various 

plasma reactors.7 Using the most optimistic of these 

correlations (i.e., TOFNH3= -0.404 ∆Erxn|r20 - 0.55, R2 = 0.9), NH3 

formation rate at constant plasma power could increase ~10 % 

for every ~0.10 eV reduction in ∆Erxn|r20. Given the correlation 

between ∆Erxn|r20 and N binding energy (EN) to the catalyst 

(∆Erxn|r20 = -0.1885 EN - 2.64 , R2 = 0.85), the above ~10% 

increase in NH3 formation rate would correspond to an increase 

of 0.53 eV in EN. Therefore, a 3-fold  

  
Figure 1. Percentage increment of NH3 production turnover frequency (TOF) 
as a function of the N binding energy (EN), published in a previous work.7,11 Au 

is the best reported catalyst among the investigated metals, therefore used as the 

reference (i.e., 0% TOF increment) in this study. Red dashed lines show the 
estimated requirement in EN (vertical) and its corresponding percentage TOF 

increment (horizontally) to achieve the required 3-fold increase in NH3 energy 

yield if only the catalyst material is modified. 

improvement on NH3 energy yield solely changing the catalyst 

composition may require an unrealistic change in EN beyond 9 

eV over the current best catalyst for plasma-assisted NH3 

synthesis (Fig. 1). 

On the other hand, it has been realized that additional 

reactor inefficiencies paradoxically arise from the same 

mechanisms that facilitate NH3 formation at low temperature 

under plasma. Namely, the collisions with high energy 

electrons that can facilitate dissociation of reactants can also 

destroy a significant fraction of the freshly formed NH3. For 

instance, simulations by vant’ Veer et al.12 suggests that 

between 50% and 90% of the NH3 produced in a plasma reactor 

is decomposed at different stages during NH3 synthesis aided 

by pulsed plasma. Thus, to complement catalysts development 

strategies there is now growing interest in strategies to reduce 

the exposure of the formed NH3 to the plasma. Strategies to 

reduce NH3 exposure to the plasma include i) packing the 

reactor bed with a highly porous catalyst, within which formed 

NH3 tends to be retained through adsorption (Fig. 2a), and ii) 

equipping the reactor with a porous membrane that selectively 

adsorbs the formed NH3 and permeates it out of the reactor (Fig. 

2b).  

Both strategies present pros and cons. For instance, the 

plasma reactor strategy i (PRS-I) can provide more active sites 

per reactor volume, but could unfavorably alter the discharge 

behavior, while also requiring cyclic operation to periodically 

recover the NH3. The plasma reactor strategy ii (PRS-II), on the 

other hand, allows continuous reactor operation, but limits the 

number of active sites per reactor volume. In proof-of-concept 

for PRS-I, Gorky et al. showed a 3-fold increase in NH3 

synthesis rate using mesoporous silica SBA-15 as a catalyst, 

compared to fumed SiO2.13 Rouwenhorst et al. displayed a 2-

fold enhancement in NH3 energy yield by using zeolite-4A as 

an adsorbent.14 On the other hand, as proof-of-concept for PRS-

II, Gorky et al. employed CC3 as a membrane in a plasma 

reactor, which facilitated the removal of NH3, achieving a 5-

fold improvement in the NH3 synthesis rate using as a baseline 

a reactor without catalyst.15 Mizushima et al. utilized an 

aluminum tubular membrane-like catalyst to achieve a 2-fold 

energy efficiency improvement compared to a reactor without 

catalyst as well.16  

For adsorption-driven applications—as PRS-I and 

PRS-II are—metal-organic frameworks (MOFs) appear as 

enticing material prospects due to the possibility to fine-tuning 

their chemistry and porous architecture to engender the required 

adsorption behavior.17 MOF tunability arises because MOFs are 

made of interconnected metal-based nodes and organic linkers, 

whose combinatorics can yield an overwhelming number of 

porous crystal networks of distinct architecture and/or 

chemistry.18–20 Indicative of the potential applicability of MOFs 

in plasma technologies, Shah et al. used Ni-MOF-74 to improve 

the NH3 yield under different plasma powers,21 whereas as 

Yang et al has shown the potential of MOFs as catalyst 

supports.22 Concurrently, interest in MOF NH3 adsorption 

properties has increased recently, with a growing number of 

experiments reporting NH3 adsorption at 1 bar, albeit usually at 

near room temperature. MOFs tested for the latter include UiO-

66 (16.9 mmolNH3/gMOF),23  
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Figure 2. Strategies to protect NH3 from destruction by the plasma in dielectric 

barrier discharge (DBD) reactors. a) Plasma reactor strategy I (PRS-I): the DBD 

reactor is filled with porous adsorbent particles between the inner and outer 
electrodes (catalyst sites can be supported on or embedded within the particles). 

NH3 is adsorbed/retained within the pores so that it is shielded from the plasma. 

b) Plasma reactor strategy II (PRS-II): the DBD reactor uses a metallic mesh as 
inner electrode over a porous membrane. NH3 selectively adsorbs into and 

diffuses through the membrane leaving the reactor with little exposure to the 

plasma. Success of both PRS-I and PRS-II depends on material adsorption 
properties. 

 

MFM-300(Sc) (19.5 mmolNH3/gMOF),24 LiCl-MIL-53 (33.9 

mmolNH3/gMOF),25 among many others.26,27 However, the 

overwhelming number of extant and hypothesized MOFs 

makes impractical a comprehensive evaluation of these 

materials for a given application. A bottleneck that in other 

MOF applications has been usually alleviated by large-scale 

computational studies,28–30 which are however yet to be 

performed for PRS-I and PRS-II. 

As NH3 adsorption is not as affordable to calculate as 

the adsorption of small nonpolar molecules (e.g., CH4, H2, Xe, 

or Kr) that other MOF screening studies have focused on,31,32 

we decided to set up a hierarchical screening workflow. We 

thus first set out to calculate the NH3 adsorption Henry’s 

constant (KNH3) as a first filter to identify 200 promising MOFs 

for PRS-I and PRS-II based on adsorption affinity for NH3—

from this point on referred to as the MOF200KH set—which were 

then to have their adsorption-based performance metrics fully 

evaluated using molecular simulations of adsorption. Note that 

the use of an early Henry’s constant-based filter is rather 

established in computational hierarchical screening of 

adsorbents, with earlier examples including the screening of 

MOFs for hexane isomer separation capabilities,33 zeolites for 

separation of alcohols from aqueous solutions,34 and MOFs for 

CO2 capture from air.35  

However, suspecting limitations in the ability of the 

NH3 adsorption Henry’s constant to identify the actual 200 most 

promising MOFs in the database, we developed and introduced 

a new additional screening stage to improve the quality of 

MOFs that ultimately emerges from screening, while still 

avoiding to evaluate the whole MOF database. Specifically, we 

iteratively trained a machine learning (ML) model (vide infra), 

and used the model iteratively to reassess the database and 

identify MOFs that may outperform the MOF200KH set that had 

emerged from the early Henry’s constant-based screening filter. 

Using the additional ML-aided stage, for each plasma reactor 

strategy, we ultimately obtained a new set of 200 promising 

MOFs (from this point on referred to as MOF200ML sets). These 

sets presented significantly higher average performance than 

the original set emerging from the Henry’s constant-based 

screening filter. Thus, the present work also presents a 

methodological innovation that could be applied to other MOF 

screenings. 

Upon completion of the screening, we proceeded to 

propose MOF designs that could be experimentally tested to 

implement the two plasma reactor strategies discussed in this 

work. As successful material development is a multi-objective 

problem that goes beyond the maximization of a specific 

metric, additional considerations (some requiring calculation of 

additional properties) were made to propose these designs 

holistically. Furthermore, recognizing that even the synthesis 

and experimental testing of carefully selected candidate MOFs 

is not guaranteed, we also aimed to use the obtained screening 

data to derive robust data-driven material design rules for the 

described plasma reactor strategies. These rules are based on 

data-driven structure-property relationships that naturally 

emerge as a byproduct of large-scale material screening 

studies,36,37 and could have impact beyond MOFs. In other 

words, guidelines such as optimal pore sizes, heats of 

adsorption, and favorable chemical functionalities/moieties 

should translate relatively well to other classes of porous 

materials that could also be used to facilitate realizing the 

plasma reactor design strategies presented in this work. 

 

2. COMPUTATIONAL METHODS 

2.1. MOF database. The hybrid database used in this work 

incorporates 13,460 MOFs, with ~75% of MOFs coming from 

the 2019 CoRE MOF database,38 and ~25% of MOFs generated 

in previous work using our topology-based crystal constructor 

code ToBaCCo-3.0.18 CoRE MOFs are extant MOFs known for 

their high, but non-systematic, structural and chemical 

diversity, and their bias towards small pores.39 In contrast, 

ToBaCCo MOFs are hypothetical MOF prototypes known for 

their moderate, but systematic, chemical and structural 

diversity, and their bias toward medium to large pores.39 The 

complementarity of these two MOF sources make the hybrid 

database highly appealing for screening. Textural properties of 

MOFs in the hybrid database (i.e., void fraction, surface area, 

and pore sizes) were estimated using the code zeo++.40 Zeo++ 

utilizes two spherical probe radii for pore structure analysis: one 

for identifying accessible pores via a percolation algorithm and 

one for Monte Carlo sampling to assess the pore structure. Both 

radii were set at 1.3 Å to match the kinetic diameter of NH3.  

https://sciwheel.com/work/citation?ids=16198187&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15952365&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15037526,15970311&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16194501,16194038,12777135&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16197274,16197442&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16194177&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3907616&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15126177&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14258528,12890360&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14441406&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12256919&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16194510&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16194510&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5754816&pre=&suf=&sa=0&dbf=0


4 

2.2. Molecular simulations. Molecular simulations were 

conducted using the RASPA-2.0 code.41 The Widom insertion 

method, with at least 10,000 random insertion moves, was 

applied to determine adsorption Henry’s constants at the 

desired temperature.42 Grand canonical Monte Carlo (GCMC) 

simulations were used to estimate adsorption loadings. Each 

GCMC simulation was conducted with 10,000 equilibration 

cycles followed by 10,000 production cycles. The number of 

Monte Carlo moves per cycle was equal to the number of 

molecules in the simulation box, with a minimum of 20 moves. 

These moves included molecule insertion/deletion, translation, 

and rotation, with additional molecule swap moves for 

mixtures. Molecule-molecule and molecule-MOF interactions 

were simulated using the Lennard-Jones (LJ) and Coulomb 

potentials,43 with cutoffs respectively set at 12.8 Å and 12.0 Å. 

Additionally, for Coulomb interactions beyond 12.0 Å, Ewald 

summation was used.44,45 NH3 and N2 molecules were assigned 

LJ parameters and charges based on the TraPPE force field 

(which was parameterized to reproduce VLE curves),46,47 while 

H2 parameters were taken from a well-known study on 

dispersion attraction-driven H2 sorption by Darkrim and 

Levesque.48 For all MOF atoms, LJ parameters were sourced 

from the Dreiding force field, unless they were unavailable (as 

for some metals), in which case the universal force field 

parameters were borrowed.49,50 LJ parameters for cross-

interactions were obtained using Lorentz-Berthelot mixing 

rules.51 Charges for MOF atoms were assigned based on the 

best method available for each MOF subset (higher similarity 

to DFT calculated charges in periodic MOF unit cells). Thus, 

atomic charges in ToBaCCo MOFs were previously determined 

using the MBBB method, which relies on density functional 

theory (DFT) calculations on MOF building blocks.28 And 

atomic charges in CoRE MOFs were assigned using the 

PACMOF method, which is a machine learning model 

developed by Snurr and colleagues trained on DFT calculations 

on complete MOFs unit cells.52 Recently, Liu and Luan 

highlighted the superior accuracy of PACMOF over other rapid 

charge assignment techniques.53 

2.3. Performance Metrics.  

Plasma reactor strategy i (PRS-I). Plasma discharges cannot 

occur within nanopores.54 Thus, the basic material feature 

needed to implement the NH3 shielding protection strategy 

(Fig. 2a) is the ability to retain as much NH3 as possible within 

the material pores. We proposed to simply use the NH3 

adsorption loading NNH3 at 400 K and 1 bar as the performance 

metric for PRS-I. The temperature and pressure are selected 

based on typical DBD reactor operation parameters.7,12 As 

adsorption selectivity is not expected to be decisive for this 

strategy, we perform our simulations using a pure NH3 gas 

phase. We hypothesize that the benefits of a porous material 

with higher NNH3 are two-fold. Higher NNH3 as an indication of 

i) a higher affinity for NH3 that should be beneficial for the 

retention of NH3 within the material pores, and ii) a higher NH3-

holding capacity that may extend the reactor operation time 

elapsed between NH3 removal periods.  

Plasma reactor strategy ii (PRS-II). This strategy 

incorporates a membrane in the plasma reactor. Thus, an 

important material feature for PRS-II (Fig. 2b) is the ability to 

rapidly (high permeability P) flush out the product NH3 without 

flushing the reactants N2 and H2 (high permselectivity α). Under 

the solution-diffusion theory precepts, NH3 permeability PNH3 

is: 

PNH3 = NNH3 x DNH3 /PNH3 (1) 

where DNH3 and PNH3 are the diffusion coefficient and partial 

pressure of NH3, respectively. Permselectivity, on the other 

hand, is the product of adsorption selectivity (SNH3): 

         𝑆𝑁𝐻3  =  
𝑁𝑁𝐻3/𝑦𝑁𝐻3

(𝑁𝑁2 + 𝑁𝐻2 ) /(𝑦𝑁2 + 𝑦𝐻2)
             2)   

(where Ni and yi represent the adsorption loading and gas phase 

molar fraction of species i, respectively) and diffusion 

selectivity ζ NH3: 

ζ NH3 = DNH3/Dm,N2,H2       (3) 

where Dm,N2,H2 is the mean diffusion coefficient of N2 and H2. 

There is usually a tradeoff between permeability and 

permselectivity,55 so that a performance metric accounting for 

both properties can be the product PNH3 x αNH3. The (less 

computationally expensive) adsorption-dependent contribution 

to that metric is “SNH3 × NNH3,” which we propose as the first 

performance metric for screening. To this end, we calculated 

adsorption loadings at 400 K and 1 bar, again informed by 

typical DBD reactor operation parameters.7,12 For the gas phase 

composition, we considered several scenarios, but focused on a 

case where the plasma reactor is fed H2 and N2 at stoichiometric 

ratio (3:1), and 10% conversion was achieved (similar to a 

single pass through the Haber Bosch process)56. The above 

resulted in a composition corresponding to 6% NH3, 23% N2 

and 71% H2. Note, however, that consideration of other feed 

ratios and conversion scenarios seems to result in similar MOF 

rankings (Fig. S3). 

The (more computationally expensive) diffusion-

dependent contribution to the PNH3 x αNH3 product is 

DNH3
2/Dm,N2,H2, for which we originally anticipated performing a 

second screening step (adhering to the hierarchical screening 

philosophy) based on diffusion coefficient calculations. 

However, this step was modified upon learning that the 

diffusion-limiting pore diameter (DLPD) among numerous 

promising MOFs based on the adsorption-based metric ranged 

between 2.61 and 2.86 Å. Thus, the second screening step 

instead focused on identifying MOFs with DLPD values 

between the kinetic diameter of NH3 (2.6 Å) and H2/N2 (2.9 

Å/3.6 Å).  This step effectively considers size selectivity (i.e., 

molecular sieving), which is an extreme case of diffusion 

selectivity.57 Through the approach above the MOFs ultimately 

presented as candidates for PRS-II combine both favorable 

adsorption and diffusion properties.  

2.4. Machine learning basics. 

The search workflow was developed in Python 3.9, comprising 

the machine learning (ML) model itself and the iterative 
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learning pipeline. For the ML model, we used the tree ensemble 

algorithm from XGBoost 2.1.0 as it is expected to outperform 

other algorithms when working with small datasets. The mean 

absolute error of the prediction (MAE) was used as the loss 

function, along with elastic net regularization (ENR) to help 

combat overfitting. This regularization adds a penalty for 

adding leaves and with penalties for having large leaf weights 

based on the summation of the absolute (Ridge regression type) 

and squares (Lasso regression type) of these weights. 

Hyperparameter tuning was done via grid search conducted on 

the model trained with an initial training set of 200 MOFs 

(MOF200KH set). The hyperparameters include a tree depth of 

11, a learning rate of 0.05, and values for L1 and L2 of 6 and 2, 

respectively. The iterative learning pipeline was written 

leveraging libraries in Scipy 1.14, Pandas 2.2.2, and Sklearn 

1.5.0, and primarily focuses on continuously selecting new 

MOFs to grow the training data based on rankings based on ML 

predictions, while ensuring that previously selected MOFs are 

excluded from the rankings. Additional details about the 

pipeline are discussed in Section 3.2. 

 

3. RESULTS AND DISCUSSION 

3.1. Efficacy of Henry’s constant-based filter. We started by 

assessing the ability of the NH3 adsorption constant, KNH3, to 

broadly rank MOFs for PRS-I and PRS-II. To this end, 200 

MOFs were randomly selected from the hybrid database (from 

now on referred to as the MOF200R set) and had both KNH3 and 

the corresponding performance metrics calculated. Namely, 

NNH3 from pure gas adsorption for PRS-I and SNH3 x NNH3 from 

gas mixture (NH3, N2, and H2) adsorption for PRS-II, 

respectively. Then, three rankings were created for MOFs in the 

MOF200R set based on KNH3, NNH3 (for PRS-I) and SNH3 x NNH3 

(for PRS-II), respectively. Within the MOF200R set, we observed 

the MOF rankings based on KNH3 and NNH3 (Fig. 3a) to correlate 

well with each other (Spearman ranking correlation coefficient, 

SRRC, equal to 0.95). A similar correlation was observed for 

the rankings based on KNH3 and SNH3 x NNH3 (Fig. 3b, SRRC = 

0.97). These results reassured us of the ability of KNH3 to 

broadly discriminate between two MOFs with high disparity in 

performance, and thus be an acceptable early filter for 

hierarchical screening. However, despite the high SRCC 

values, the relatively scattered points around the parity line 

indicate that KNH3 may not be as effective in discriminating 

between two MOFs that exhibit closer performance. Especially 

in the region corresponding to the most highly ranked MOFs 

(e.g., Fig. 3c, bottom left). 

 
Figure 3. Parity plots comparing MOF rankings based on the Henry’s constant 

(KHNH3) and rankings based on NNH3 (PRS-I) (a,c) and SNH3 x NNH3 (PRS-II) 

(b,d). a-b) Comparison of ranking for 200 randomly chosen MOFs (MOF200R 
set). c-d) Comparison of ranking for the 200 MOFs with the highest KNH3 values 

(MOF200KH set emerging from the KNH3 filter in traditional hierarchical 

screening). Spearman ranking correlation coefficient (SRCC) is shown in each 
plot. KNH3 was found capable of broadly discriminating between really good and 

really bad MOFs (a-b), but not of finely discriminating between MOFs with 
similar performance (c,d). 

 

Thus, we calculated KNH3 for the whole MOF database 

and selected the 200 MOFs with the highest KNH3 values (i.e., 

the previously mentioned MOF200KH set), as done in standard 

hierarchical screening. We then calculated the corresponding 

performance metrics for the MOF200KH sets, and again created 

three rankings based on KNH3, NNH3 (for PRS-I) and SNH3 x NNH3 

(for PRS-II), respectively. Within MOF200KH sets, no correlation 

was observed between the ranking based on KNH3 and the 

rankings based on NNH3 and SNH3 x NNH3, respectively (Fig. 

3c,d), reinforcing our concern about the shortcomings of KNH3 

to discriminate between MOFs that are not dramatically 

different in performance. Based on these observations, we 

hypothesized that the MOF200KH set would capture some good-

performing MOFs but was unlikely to closely represent the 

actual top-200 MOFs for PRS-I and PRS-II in the 13,460-MOF 

database. Thus, we decided to use machine learning to find a 

new set of 200 MOFs (i.e., the previously mentioned MOF200ML 

set) that more closely reflects the actual top-200 MOFs for 

PRS-I and PRS-II applications.  

3.2. Iterative machine learning-aided search workflow.  

The workflow for the ML-aided search stage is summarized in 

Fig. 4. The overarching goal of our strategy was to improve the 

MOF200KH set that emerged from traditional hierarchical 

screening, while still avoiding running molecular simulations 

on the full 13,460-MOF database. The fundamental idea was to 

start by initializing ML models to predict NNH3 (for PRS-I) and 

SNH3 x NNH3 (for PRS-II), respectively, leveraging the molecular 
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simulation data already generated for the MOF200R and 

MOF200KH sets. Specifically, the MOF200R set was consistently 

used as a validation set and the MOF200KH set was used as the 

initial training set. We expected this dataset selection strategy 

to make the initial training set imbalanced toward high 

performance MOFs, probably making the initial ML model 

more accurate to predict the metric in high-performing MOFs 

than in low-performing MOFs. However, we considered this 

acceptable since the goal of the model was to accurately identify 

the high-performing MOFs, not necessarily to correctly predict 

the metric in all 13,460 MOFs. 

The initial ML models were then used to make a first 

prediction of NNH3 (for PRS-I) and SNH3 x NNH3 (for PRS-II), 

respectively, on the remaining 13,060 MOFs in the database for 

which molecular simulations had not been done yet. Out of this 

prediction, the 50 highest-performing MOFs according to the 

ML models for PRS-I and PRS-II, respectively, were identified 

and then their metrics evaluated via molecular simulation. We 

then i) identified the new top-200 MOFs by examining all 

MOFs evaluated with molecular simulation (this set constitutes 

the initial MOF200ML set), and ii) “grew” the training dataset by 

adding the new molecular simulation data, and used it to train 

new ML models to predict NNH3 (for PRS-I) and SNH3 x NNH3 

(for PRS-II), respectively.  

The above was the end of the first iteration cycle, and 

subsequent cycles continued by sequentially i) identifying the 

50 highest performing MOFs for PRS-I and PRS-II according 

to the predictions of the respective ML models trained in the 

preceding cycle, among MOFs not yet evaluated by molecular 

simulations, and then evaluating them with molecular 

simulations, ii) updating the MOF200ML set by identifying the 

new top-200 MOFs among all MOFs evaluated with  

 

 
Figure 4. The workflow of the iterative machine learning (ML) pipeline. The 

pie chart illustrates the division of the dataset used in this work. A flow diagram 

is linked to this pie chart illustrating the iterative process of enhancing 
prediction accuracy from the ML model. This process starts with the MOF200KH 

set and finalizes with the selection of the MOF200ML set by updating the initial 

set with MOFs in the eligible set. The ML model integrated into the pipeline 

here is a gradient boosting machine. In the flow diagram, M stands for the 

metric evaluated for each application. 

 

molecular simulation up to that iteration, iii) training new ML 

models to predict the metric for PRS-I and PRS-II, respectively, 

using the larger training dataset resulting from the addition of 

new simulation data to the data collected in previous iterations. 

As we will detail later, to track the progress of the search, we 

determine the differences between the MOF200ML set at a given 

iteration and i) the MOF200KH set and ii) the MOF200ML from the 

preceding iteration.  

3.3. MOF representation by histograms. Adsorption 

loadings depend on the adsorption energies of all potential 

adsorption sites. Thus, towards predicting adsorption loadings 

via ML, some authors have opted to pre-calculate the 

adsorption energy of a given species along a grid of adsorption 

sites within a MOF unit cell, and feed that information to a ML 

model in the form of adsorption energy histograms.58 However, 

energy histograms are a MOF representation that requires 

molecular modeling expertise and is largely specific to the 

species for which the histogram was built. Looking for a more 

accessible and generalizable MOF representation, and 

recognizing that adsorption energies in potential adsorption 

sites largely depend on the force field parameters (i.e., σ and ε 

LJ parameters and charge q) of the corresponding nearest MOF 

atoms (and the distance to them), we opted to develop 2D 

histograms based on the latter information as input for our ML 

model (Fig. 5).  

The first step in generating the histograms is the 

generation of an evenly spaced grid (here using a 1 Å spacing 

between neighbor grid points). The grid symmetry matches the 

symmetry of the MOF unit cell (Fig. 5a). For instance, cubic 

and trigonal unit cells result in grids of cubic and trigonal 

symmetry, respectively. The second step is identifying the 

nearest atom to each grid point (considering periodic boundary 

conditions) (Fig. 5b). To make the identification efficient, 

instead of linear search (which involves measuring the distance 

of a given grid point to every MOF atom), we used space 

partitioning by KD trees, which are commonly used in nearest 

neighbor searches in many fields.59–61 Here, KD trees partition 

the unit cell space into subregions by iteratively bisecting the 

original subregion in which an atom resides into two new 

subregions, each containing half the atoms residing in the 

original subregion. To identify the nearest neighbor atoms for a 

given grid point, first the subregion in which the grid point 

resides is determined. Then, only the distances to the atoms also 

residing in that subregion are calculated, and the nearest atom 

among them is determined. 

Once the nearest atom to a given grid point is 

determined, the grid point is described by its distance d to the 

nearest atom, and the LJ parameters (σ and ε) and charge (q)  

https://sciwheel.com/work/citation?ids=16607422&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16607428,16607432,16607438&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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Figure 5. Steps to convert MOF structures into 2D histograms and then into machine-readable one-dimensional vector representations. a) An evenly spaced grid with 

points separated by 1 Å is created within the MOF unit cell. The symmetry of the grid is consistent with the symmetry of the unit cell. b) A K-Dimensional tree algorithm 
is used to find the nearest MOF atom to each grid point, and the LJ parameters (σ and ε) and charge (q) of this nearest atom are assigned to the grid point. c) The data 

collected of the interaction parameters (σ, ε and q) is collapsed in three 2D histograms per MOF as a function of distance (all distances higher than 20 Å are placed in the 

last bin). d) Each one of the three 2D histograms per MOF is “flattened” and concatenated resulting in a vector with 4440 features. e) Standard deviations for each feature 
across MOFs were evaluated to discard those with negligible differences along the whole dataset (using as threshold a standard deviation per feature <= 0.0025) leading 
to f) a MOF representation with 300 features per MOF to be used as input to the ML model. 

of said nearest atom. Then the frequency (counts) with which 

grid points with particular (σ, d), (ε, d), and (q, d) combinations 

respectively occur is determined and used to build three 2D 

histograms. One for each kind of combination. Thus, the 

number assigned to each 2D histogram bin corresponds to the 

number of grid points falling in that particular bin divided by 

the total number of grid points. Each histogram features 1480 

bins arranged in a 74 x 20 grid (Fig. 5c). The grid size is the 

result of dividing d into 20 bins spanning the 0-20 Å range, and 

σ, ε and q into 74 bins spanning the 0 to 4 Å, 0 to 350 K, and -

3 to 3 e ranges, respectively (see details in Section S3).    

3.4. From MOF histograms to MOF feature vectors. 

Visually, the resulting 2D histogram appears as a characteristic 

heatmap encoding the adsorption environment in a given MOF. 

However, as our envisioned ML model (gradient boosting 

machines) require a 1D vector as input, each 2D histogram was 

“flattened” by stacking their columns back-to-back into a 1,480 

x 1 vector. Then, the three resulting vectors were stacked back-

to-back into a 4,440 x 1 vector (Fig. 5d). Then, to reduce the 

4,400 x 1 feature vector, we sought to eliminate features that 

were expected to correlate poorly with the metrics to be 

predicted, due to the similar values of these features across all 

MOFs. Accordingly, the standard deviations for each feature 

across all 13,460 MOFs were calculated (Fig. 5e), and features 

with standard deviations less or equal to 0.0025 were 

eliminated. Upon completion of this exercise, a 300 x 1 feature 

vector emerged as a representation of the MOF for ML (Fig. 

5f). As apparent from Fig. S4 most of the eliminated features 

correspond to bins for distances beyond 6 – 10 Å (depending on 

σ, ε, q) and/or for q values more negative than –1.03 e and/or σ 

values higher than 4.4 Å.  

3.5. Evolution of ML-aided MOF search. We can think of the 

differences between the evolving MOF200ML set and the 

MOF200KH set as indicative of the extent to which the ML model 

helps identify higher-performing MOFs over traditional 

hierarchical screening. These differences can be quantified 

based on the changes that occur relative to the MOF200KH to 

make the MOF200ML set in each iteration. As it turns out, by the 

20th iteration of the ML-aided search about 80% of the MOFs 

in the MOF200KH were replaced (Fig. 6a) with higher performing 

MOFs, and changes between consecutive MOF200ML sets were 

minimal. The number of MOFs in the MOF200KH that were 

demoted in ranking in each iteration is lower during early and 

late iterations, and higher during middle iterations (Fig. S5a,b). 

The lower demotion rate during early iterations is probably due 

to the early ML models being less accurate (Fig. S6). While 

during late iterations the lower demotion rate is probably due to 

the MOF200ML set converging towards the actual top-200 MOFs 

for each scenario, respectively. 
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The overlap between the actual top-200 MOFs and the 

MOF200ML set cannot be determined without evaluating all 

MOFs in the database with molecular simulation. However, 

there are indications that the overlap is large such as the ranking 

changes between consecutive MOF200ML sets approaching zero 

by the 20th iteration (Fig. S5c-d). Regardless of the above, by 

the 20th iteration, the MOF200ML set clearly outperforms the 

MOF200KH set as evinced by the change in the mean value of 

NNH3 (log(SNH3 x NNH3)) from 7.36 mol/kg (4.87 log(mol/kg)) 

in the MOF200KH set to 13.66 mol/kg (5.81 log(mol/kg)) in the 

MOF200ML set, as shown in Fig. 6b (Fig. 6c). Thus, it is clear 

that the added ML-based search stage identified more 

promising MOFs than the standard hierarchical screening did. 

Remarkably, the significant improvement over the MOF200KH 

set was accomplished with an ML model that ultimately only 

required molecular simulation data for ~10% of the MOF 

database.  

The creation of the MOF200ML set is facilitated by the 

evolving ML model, whose evolving accuracy can be examined 

from the perspective of the training and validation sets. From 

the training set perspective, the prediction mean absolute error 

(MAE) for the PRS-I (log of the PRS-II) metric changed from 

4.39 mol/kg (2.68 log(mol/kg)) to 0.44 mol/kg (0.1 

log(mol/kg)). From the validation set perspective, the 

prediction error for the PRS-I (log of the PRS-II) metric 

changed from 2.05 mol/kg (1.73 log(mol/kg)) to 1.42 mol/kg 

(1.12 log(mol/kg)) (Fig. S8-S9). As a reference, note that the 

mean of the PRS-I (log of the PRS-II) metric in the final training 

set is 13.66 mol/kg (5.81 log(mol/kg)). Inspection of the 

learning curves (Fig. S10-S11) show that the differences in 

MAE between training and validation sets are not due to 

overfitting. Instead, these differences can be explained by the 

anticipated imbalance mismatch between the validation set 

(MOF200R), which is random, and the training set, which is  

 

 
Figure 6. ML-aided MOF search performance across iterations: a) Percentage of MOFs in MOF200KH set (200 initial MOFs chosen based on the Henry constant, KNH3) 

replaced by MOFs with higher metric values during each iteration. b-c) Shift in probability density of MOF performance metric values for PRS-I and for the logarithm 
of the metric for PRS-II, respectively, between zero (MOF200KH set) and twenty iterations (final MOF200ML set). All quantities calculated with NNH3 mol/kg. 

 

biased toward high-performing MOFs. As noted earlier, we 

deemed this anticipated imbalance to be acceptable, under the 

condition that the models could sufficiently predict the metrics 

for the highest-performing MOFs, (Fig. S7), ensuring that their 

ability to correctly rank MOFs (especially high-performing 

ones) was sufficiently high as shown in this work (see 

Spearman ranking correlation coefficients, SRCC, in Fig. S8d, 

S9d). 

3.6. Data-driven MOF design guidelines. A byproduct of 

computational material screening is the emergence of data-

driven structure-property relationships (SPR) that can be 

exploited as guidelines to design materials for the applications 

of choice. These data-driven guidelines allow extracting value 

out of screening studies regardless of material candidate 

identification and experimental testing, which sometimes may 

not occur due to synthesis, stability, cost, or other unforeseen 

challenges. Herein, these relationships could be applicable 

beyond MOFs—as long as the adsorption mechanism is based 

on physisorption—and emerged efficiently as we only ran 

molecular simulations for a fraction of the MOF database. This 

fraction includes the 200 random MOFs in the MOF200R set, 

which allows us to glimpse the overall shape of the relationship, 

whereas the bias of the remaining examined MOFs toward high 

performance allows us to define well the relevant region where 

the metric of interest is optimized. 

Dimensionality reduction techniques such as t-SNE 

clearly shows that optimal materials for PRS-I and PRS-II tend 

not to overlap and demand different properties of the MOFs 

(Fig. S12). For instance, PRS-I tends to demand more porosity 

than PRS-II. Thus, we examine structure-property relationships 

separately. Still, note that there are 29 MOFs appearing in the 

MOF200ML sets for both PRS-I and PRS-II (these sets are 

provided as supplementary info). Specifically, for PRS-I, 

materials with an average pore diameter ~10 Å are better suited 

to maximize the performance metric (NNH3) at the conditions 

that NH3 is synthesized in typical DBD reactors (Fig. 7a). This 
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pore diameter is almost four times the kinetic diameter of NH3 

(2.6 Å), reflecting that an optimal material for PRS-I needs 

sufficient space to accommodate and retain NH3 molecules. As 

pore size correlates inversely with heat of adsorption, there is a 

tradeoff between providing space for NH3 and attracting NH3 

enough to retain it. This tradeoff seems to result in an optimal 

heat of adsorption of 90 kJ/mol (Fig. 7b) for PRS-I. 

For PRS-II, materials with average pore diameters 

~2.75 Å are better suited to maximize the performance metric 

(SNH3 x NNH3) at typical plasma-assisted NH3 synthesis 

conditions (Fig. 7c). This optimal average pore diameter is 

close to the kinetic diameter of NH3 and is a manifestation of 

the known peak in adsorption selectivity S when the adsorbent 

pore diameter is closer to the diameter of the adsorbate of 

interest than to that of the other adsorbates.62 The closeness of 

the optimal pore diameter for PRS-II to the kinetic diameter of 

NH3 also suggests the stronger dominance of S in the SNH3 x 

NNH3 product. The optimal heat of adsorption for PRS-II is 80 

kJ/mol (Fig. 7d). Due to the overall correlation between 

 
Figure 7. The values of the metric for PRS-I (NNH3) and for the logarithm of 
the metric for PRS-II (log(SNH3xNNH3)) from 1,200 MOFs evaluated via 

molecules simulation (200 MOFs from the MOF200R set, and 1,000 MOFs that 

at one point or another belonged to the MOF200ML set) plotted against the 

average value of the pore size distribution (a and c) and the heat of adsorption 

(b and d). The color of each bin represents the average surface area in (b) and 

the fraction of MOFs in the database with a DLPD between 2.6 and 2.9 Å in (c 
and d). The percent transparency of each bin corresponds to the number of 

MOFs each bin contains: 25%, 50%, 75% and 100% for bins with fewer than 2 

MOFs, 2-4 MOFs, 4-6 MOFs, more than 6 MOFs. Red points reference 
simulated values for CC3, which was experimentally tested for PRS-II in the 
literature.15,63  

average pore diameter and diffusion-limiting pore window 

diameter (DLPD), a considerable number of MOFs with high 

SNH3 x NNH3 product also possess a DLPD that lies in between 

the kinetic diameter of NH3 (2.6 Å) and H2 and N2 (2.9 Å and 

3.6 Å, respectively), as shown in Fig. 7c,d. A fact that will be 

leveraged in our selection of MOFs proposed for experimental 

testing later on. 

While aiming for a material design that has specific 

pore dimensions is a tangible task, aiming for a certain heat of 

adsorption is somewhat more abstract. Partly because the heat 

of adsorption correlates inversely with pore diameter but also 

depends on chemistry. Thus, to examine the possibility of 

chemistry-based design rules we conducted one-sided t-tests to 

identify statistically significant differences between the 

compositions of MOFs in the final MOF200ML set and the whole 

database (Table 1). For PRS-I, we find that elements that are 

significantly more abundant in the MOF200ML set, at least with a 

p-value threshold of 0.05, are H, C, and V thus are deemed to 

potentially boost the NNH3 metric for a MOF of a given pore 

structure. By contrast, with the same p-value threshold elements 

such as N, O, F, Si, S, Cl, and Br are found to be  

Table 1. Most statistically significant cases of higher element abundance (+ 

case) or lower element abundance (- case) in the final MOF200ML set than in the 

whole database. Significance was assessed by the p-value from one-sided t-tests 
comparing the average element percentages in the MOF in each set.  

 PRS-I PRS-II 

Element log p-
value (+) 

log p- 
value (-) Element log p-

value (+) 
log p-

value (-) 
 

H -6.8 - O -46.9 -  
V -1.8 - P -6.1 -  
C -1.3 - V -3.8 -  
Li -0.9 - Mo -2.9 -  
Cu -0.9 - Na -2.5 -  
Y -0.9 - Sr -1.8 -  
Pd -0.6 - Y -1.6 -  
In -0.6 - K -1.5 -  

Mo -0.6 - Ru -1.2 -  
Se -0.6 - Se -1 -  
Br - -69 Zn - -55.5  
Cl - -22.7 Br - -35.7  
Cr - -22.7 C - -26  
Al - -18 Cr - -25.4  
S - -11.6 H - -20.6  
Zr - -7.4 Cu - -18.5  
Mn - -6.6 F - -15.8  
Cd - -5.9 Zr - -9.8  
Co - -5.2 Fe - -9.4  

 Zn - -4.1 N - -5.6   

 F - -3.5 Ni - -5.6   

 Fe - -3.4 Co - -3.1   

 Si - -2.3 Cl - -3.1   

 Mg - -2.3 Mn - -1.7   

 O - -1.7 S - -1.4   

 Ni - -1.6 Mg - -1.3   

https://sciwheel.com/work/citation?ids=10883186&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13965154,7706067&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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 N - -1.4 Cd - -1.3   
 

relatively less abundant in the MOF200ML set for PRS-I, and thus 

are considered to be potentially detrimental for NNH3. For PRS-

II, on the other hand, we find O, P and elements like Na, K, V, 

Se, Sr, Y, and Mo to be more abundant in the final MOF200ML 

set than in the database and are good candidates to boost SNH3 x 

NNH3. By contrast, metals such as Mg, Cr, Mn, Fe, Co, Ni, Cu, 

Zn, Zr, Cd, and elements such as H, C, N, F, S, Cl, and Br are 

less abundant in the MOF200ML set than in the entire dataset, 

suggesting these elements to typically hamper SNH3 x NNH3. To 

be sure, the applicability of the above observations is contingent 

on the absence of chemical reactions during NH3 adsorption. 

We discarded the possibility that the seemingly more 

(less) favorable elements for PRS-I and/or PRS-II just 

happened to appear in MOFs featuring textural properties closer 

(farther) to the optimal values discussed in Fig. 7. To achieve 

this, for all MOFs featuring a given element, we created a vector 

containing the normalized average of largest pore diameter 

(LPD), diffusion limiting pore diameter (DLPD), gravimetric 

surface area (GSA), void fraction (Vf) (so that each vector 

component can only vary between 0 and 1), and calculated their 

distance to the vector containing the normalized average of the 

above properties in the corresponding MOF200ML sets. For each 

element X, we call this ∆dtextural-X. We observed no clear direct 

or inverse correlation  

 
Figure 8. Comparison of the median charge (q) of different element groups in 

the whole database (green), the MOF200ML set for NNH3 (blue) and MOF200ML set 

for SNH3 x NNH3 (orange). Each bar indicates the corresponding median, and the 
dashed line indicates the corresponding median absolute error.  
 

between ∆dtextural-X and whether an element was seemingly more 

or less favorable for PRS-I and/or PRS-II (Fig. S15). 

Accordingly, we proceeded to examine potential links between 

element properties and MOF performance, using median 

element charges (Fig. 8) as reference—given the expected role 

played by electrostatics during NH3 adsorption—as well as 

visual inspection of MOFs.   

With almost neutral charge, C and H having above 

(below) average presence in the best MOFs for PRS-I (PRS-II) 

is probably unrelated to their charge. But as C and H constitute 

the backbone of linkers, their above (below) average presence 

likely stems from the longer (shorter) organic linkers required 

to meet the larger (smaller) ideal pore diameter for PRS-I (PRS-

II). Linker length requirements are also probably the primary 

driver of the below (above) average presence of O in the best 

MOFs for PRS-I (PRS-II), as O atoms are typically found 

capping linkers and/or embedded in the inorganic nodes. 

Halogens (F, Cl, Br), which typically appear as part of linker 

functionalization, have negative charges and below average 

presence in the best MOFs for either PRS-I or PRS-II. This 

observation suggests negative charges to be not as well suited 

to attract NH3 as large positive charges. This notion is 

strengthened with S, who is typically bonded to C and has a 

negative charge across the database, but is bonded to O and has 

a positive charge in the best MOFs for PRS-I and PRS-II. Thus, 

its below average presence in the best MOFs reflects S rarely 

featuring the better suited positive charge. 

Note, however, that when accompanied with a nearby 

positively charged element, elements with negative charges can 

create a pattern that reinforces the attraction to NH3 (see Section 

3.8). For instance, O, which was found to typically have a 

nearby H in a node hydroxyl or in a linker, can create such a 

pattern. On the other hand, elements with large positive charges 

and high accessibility seem more capable of attracting NH3 on 

their own (see Section 3.8). For instance, V, which is typically 

a node constituent, emerges as an element with above average 

abundance for both PRS-I and PRS-II due to its high 

accessibility and high positive charge (median q ~1.5e, Fig. 

S16). Indeed, although other node-constituent metals such as Zr 

may have higher charges (median q ~ 2.2e, Fig. S16), they have 

below average presence in the best MOFs because they seldom 

present the necessary accessibility. In contrast, other node-

constituent metals such as Cu, may tend to have high 

accessibility but may also have lower charges (median q ~1.0e, 

Fig. S16), leading to average or below average presence of this 

element in the best MOFs. Overall, the below, around or above 

average presence of an element in the best MOFs is tied to its 

charge and accessibility, with largely positive accessible sites 

being better suited for NH3 adsorption. Note that the exact 

charges assigned to MOF atoms somewhat varies with the 

charge assignment method. The above information could be 

used as an additional early filter to pre-select a smaller set of 

MOFs on which to run simulations if a different charge 

assignment method is used. 

3.7. MOFs proposed for experimental testing. We sought to 

suggest candidate MOFs holistically for experimental testing 

for PRS-I and PRS-II, going beyond simply listing the MOFs 

with the very highest performance metric values. We followed 

a rubric where, given two MOFs of similar performance to 

choose from for either PRS-I or PRS-II, we prefer a i) a 

previously synthesized MOF over a hypothesized one, ii) a 

MOF featuring only one metal type over one featured multiple 

metal types, iii) a MOF featuring an earth-abundant metal over 
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one featuring scarce or rare earth metals, iv) the MOF featuring 

the lowest NH3 heat of adsorption, v) the MOF with the highest 

expected thermal stability. For PRS-II, we further limited our 

selection to MOFs with DLPD between 2.6 and 2.9 Å, as this 

range is conducive to very high diffusion selectivity for NH3 

over H2 and N2 via molecular sieving. The latter complements 

NH3 adsorption selectivity and capacity (i.e., SNH3 x NNH) to 

facilitate fast and selective NH3 permeance for PRS-II MOFs. 

According to the above, while metric values for all 

MOFs in the final MOF200ML sets are provided as 

Supplementary Information, here we suggest three (twenty in 

SI) specific MOFs for PRS-I and PRS-II, respectively, in Fig. 

9 (Table S3-S4). In considering the properties of the suggested 

MOFs, keep in mind that partly due to our additional (post-

screening) selection criteria, their properties are close but not 

exactly equal to the optimal property values brought up in the 

discussion around Fig. 7 (e.g., we traded off somewhat smaller 

performance metric values for more manageable heats of 

adsorption). These MOFs also feature chemical formulas that 

may not always feature elements that tend to be favorable or 

may feature elements that tend not to be favorable for PRS-I or 

PRS-II per the discussion around Table 1. This situation is just 

an indication that while here we suggest promising candidates 

for testing for PRS-I and PRS-II from the 13,460-MOF hybrid 

database, there are likely more optimal combinations of MOF 

chemistry and structure that were not encountered among the 

studied materials. 

The MOF200ML sets are completely dominated by 

structures in the CoRE MOF database, hence the MOFs 

suggested herein for experimental testing are all previously 

synthesized MOFs, whose original publication, presenting their 

synthesis recipe, is provided in Table S3-S4. The thermal 

stability of the MOFs was estimated using an ML model 

developed by Nandy et al.,64 and made available in the 

MOFSimplify website.65 This model consists of a trained 

artificial neural network that uses revised autocorrelation 

(RAC) descriptors and geometric features of the MOFs as 

input,64,65 and was trained using reported thermogravimetric 

analysis (TGA) data for 3,132 MOFs (64% training, 16% 

validation, and 20% testing), with a mean absolute error (MAE) 

of 47 K. All MOFs in Fig. 9 (and Table S3-S4) are predicted to 

have thermal decomposition temperatures (TDecom) exceeding 

500K, which is more than twice the MAE of the model over the 

relevant plasma reactor operating temperature of 400K. Thus, 

the anticipated ease of synthesis and high thermal stability of 

the proposed MOFs makes them highly attractive for 

experimental testing. 

3.8. Adsorption mechanism in MOFs proposed for 

experimental testing. We conclude this work with an 

investigation of the underlying NH3 adsorption mechanism in 

the proposed MOF candidates for PRS-I and PRS-II. To this 

end, we obtained the radial distribution functions (RDFs) of N 

and H atoms in NH3 with respect of key atoms of each MOF, 

and simulated the adsorption isotherms at 400 K at the 

temperature and compositions relevant for each application but 

varying the total pressure from 0.01 to 10 bar (Fig. S17). We 

observed that a different NH3 adsorption mechanism operates 

in MOFs optimal for PRS-I than those optimal for PRS-II (Fig. 

S18).  

 

https://sciwheel.com/work/citation?ids=11932884&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14924605&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14924605,11932884&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Figure 9. The top three holistically chosen MOFs for PRS-I (top) and PRS-II (bottom), which meet the criteria of being made with a single (relatively common) metal, 

having moderate heats of adsorption (Qst), high thermal stability (Tdecom). The CSD codes are CESFIQ (a), ACOCOM (b), LEQBUG (c), ALATAK (d), ZEDRAD (e), 

and FOKZIQ (f). Tdecom, Qst, GSA, DLPD, and Vf represent MOF decomposition temperature, heat of adsorption, gravimetric surface area, diffusion limiting pore diameter, 
and void fraction, respectively, for each MOF. 

 

Generally, MOFs for PRS-II tend to operate closer to 

saturation than MOFs for PRS-I (Fig. 10a,c), which is 

consistent with the typically larger pores required for the latter 

application. For PRS-I, the H atoms in NH3 tend to be closer to 

the MOF O atoms, whereas the N atom in NH3 tends to be closer 

to MOF H atoms (Fig. 10b). This shows an orientation effect 

on NH3 driven by the opposite charge of H (N) in NH3 with 

respect to the charge of the MOF O (H atoms), with the HNH3-

OMOF interaction likely corresponding to OHN hydrogen 

bonds. The further located and not particularly prominent peaks 

for pair interactions involving the MOF metal suggests a 

secondary role for the metal. The latter is consistent with the 

significantly lower than average transition metal charge in top 

MOFs for PRS-I (Fig. 8) and only one metal (V) making the list 

of elements seeming to favor performance for PRS-I (Table 1).  

For PRS-II, the orientation effect in NH3 is preserved 

with respect to the O and H atoms in the MOF. However, 

contrary to the PRS-I cases, it is observed that the N atom of 

NH3 is closer to the metal than the H atoms in NH3 are. Besides, 

the N-metal and H-metal peaks also present a distinctive 

sharpness not found in the PRS-I cases (Fig. 10d, Fig. S18). 

Accordingly, it is likely that NH3 sorption in optimal MOFs for 

PRS-II is mainly driven by strong electrostatic interactions 

between negatively charged N in NH3 and the MOF metal. The 

weak peak for H atoms in NH3 and H atoms in the MOF, which 

are of equal sign charge, can be explained as a consequence of 

the smaller size of H atoms, the MOF operating close to 

saturation, and the N of NH3 attempting to get as close as 

possible to the MOF metal atoms. The latter is consistent with 

the optimal metal charge for PRS-II being generally higher than 

for PRS-I, and the larger number of metals making the list of 

elements to seemingly favor performance for PRS-II (Table 1). 

 

 

Figure 10. Saturation of the selected MOFs under operation conditions (400 K 

and 1 bar) for a) PRS-I, and c) PRS-II. Radial distribution function (RDF) 

between N (solid lines) and H (dashed lines) atoms in NH3 and key atom types 

in a representative MOF for b) PRS-I (CSD code: CESFIQ) and d) PRS-II (CSD 
code: ALATAK). Plots show that for PRS-I MOFs NH3 sorption is driven by 

the interaction of MOF O (H) and with the H (N) of NH3. For PRS-II, NH3 
sorption is driven by the interaction of MOF metal atoms with the N of NH3. 

 

CONCLUSIONS 

A MOF search strategy leveraging an iteratively trained ML 

model was successfully developed to find MOFs with 

promising adsorption properties to potentially enhance plasma 

reactor performance for NH3 synthesis. The MOFs found 

through this method had better predicted performance metrics 

than those of the MOFs that would have been selected using 

traditional hierarchical screening, which usually leverages 

calculation of adsorption Henry’s constants. The iteratively 

trained ML model was found to successfully drive the MOF 

search despite only learning from an imbalanced training 

dataset that was biased toward “high performance” MOFs. The 

resulting MOF search required full examination (i.e., with 

molecular simulation) of only ~10% of a 13,460-MOF hybrid 

database, from which forty MOFs were proposed for 

experimental testing for two separate plasma reactor 

enhancement strategies (twenty for each case). One strategy 

leverages MOFs as catalyst supports while the other leverages 

MOFs as membranes. Selection of these MOFs went beyond 

sole examination of the adsorption metrics and was holistically 

made considering factors such as expected ease of 

synthesizability (e.g., having an existing recipe, being made of 

easily accessible metals, etc), thermal stability, among others. 

For instance, as part of the holistic selection for MOFs for 

plasma membrane reactors, the calculation of diffusion 

coefficients as screening step was bypassed by using an 

additional selection criterion: a diffusion limiting pore window 

size between the kinetic diameter of NH3 and N2/H2. The 

molecular simulation generated data was shown to yield useful 

data-driven structure-property relationships, which could be 

leveraged to guide design porous materials for the plasma 

reactor enhancement strategies described here, even if said 

materials may not necessarily be MOFs. The search strategy 

presented here could be applied to MOF search for other 

applications, or even had the same principles applied to other 

materials and properties. 
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Molecular simulation details; MOF rankings across different 
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the MOF textural space; structure-property and elemental 

composition relationships; top 20 (per application), holistically 
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