Auglets: Intelligent Tutors for Learning Good Coding Practices
by Solving Refactoring Problems

Amruth N. Kumar
Computer Science
Ramapo College of New Jersey
Mahwah, NJ, USA
amruth@ramapo.edu

ABSTRACT

Code quality is of universal concern among educators.
Refactoring code, ie., revising the structure of a program
without changing its behavior is one approach for improving
code quality. Numerous software tools have been created to help
students refactor the code they write. Only a few software tutors
have been reported in literature that help students proactively
learn code quality by solving refactoring problems. But they
suffer false positive and false negative grading issues because
they allow freehand coding. We investigated whether refactoring
tutors that do not allow freehand coding could be used to help
students learn about non-trivial anti-patterns. We developed and
deployed two software tutors for refactoring problems that are
based on the principle of “refactoring without rewriting code”,
and cover a subset of refactoring problems that can be solved
using only deletion, duplication, reordering and token-wise
editing of lines of code. We investigated whether students
needed to learn the anti-patterns covered by the tutors and
whether they benefited from using the tutors. In this experience
report, we start by describing the tutors — the list of refactoring
concepts covered, the user interface, grading, feedback and
usage. We report our experience using the tutors over three
semesters, which confirmed that both introductory and advanced
students needed and benefited from using the tutors despite the
limitations of the tutors’ coverage. We reflect on what worked
and what did not. The tutors currently cover C++, Java and C#.
They are available for free for educational use on the web at
auglets.org.

CCS CONCEPTS

«Social and professional topics~CS1, Computational
Thinking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

© 2024 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 979-8-4007-0598-4/24/12.

https://doi.org/10.1145/3649165.3690119

KEYWORDS

Problem-Solving tutor, Code quality, Refactoring, Anti-patterns,
C++, Java.

ACM Reference format:

Amruth N. Kumar. 2024. Auglets: Intelligent Tutors for Learning Good
Coding Practices by Solving Refactoring Problems. In n Proceedings of the
2024 ACM Virtual Global Computing Education Conference V. 1 (SIGCSE
Virtual 2024), December 5-8, 2024, Virtual Event, NC, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3649165.3690119

1 Introduction

While learning to code is hard, learning to write good code is
imperative [24]: the most significant cost incurred during the
lifecycle of software is for maintenance and enhancement [11]
which are seriously hindered by poorly written code. Good
coding style leads to good software design, which in turn results
in faster software development [7]. Educators are of the
consensus that code quality must be more thoroughly discussed
in courses [3]. Yet, they have found that it is hard to teach good
coding style [12, 16, 41], and frequently advocating the use of
good style in class is insufficient in and of itself [21].

While learning to code, novice students often resort to anti-
patterns [4, 17, 38]: common responses to recurring problems
that are counterproductive because they make the code hard to
read, modify or extend. In most cases, the code is correct. The
code will pass all the test cases specified by the instructor or
used by automated project submission software. So, students
have little or no incentive to revise the code to rid it of anti-
patterns or learn good coding practices.

Several approaches have been tried to help students learn
about code quality. Educators typically mention anti-patterns in
class and/or recommend trade books (e.g., [7, 10, 27, 39]) as
supplementary reading material. But these do not facilitate
active learning. Instructors often read and critique student
programs and encourage students to rewrite their programs. But
this approach does not scale up to larger classes and longer
projects. Some educators have proposed covering a series of
lessons in class on refactoring (e.g., [34, 35, 50]). Others have
found that live coding in class helps students learn anti-patterns
[31, 33] and using a lab- based resource helps them learn anti-
patterns pertaining to if- else statements [23]. These

mailto:amruth@ramapo.edu
mailto:Permissions@acm.org

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

approaches place demands on class time and are therefore,
resource-intensive.

Educators have proposed peer reviews in various forms: peer
code reviews (PCR) [36, 40], pedagogical code reviews [12, 13]
and code reviews [37] — wherein a team of students, often led by
a trained moderator, reviews each other’s code, and discusses
and logs code quality. While these approaches have been found
to be effective, they are resource-intensive. So, researchers have
been developing online software to support code reviews (e.g.,
[11, 14, 40, 52]).

Researchers have used unsupervised machine learning to
provide feedback to students on the quality of code in their
program submissions. In this approach (e.g, Codex [8],
CodeWebs [28], and AutoStyle [5]), code exemplars are extracted
for a problem from a corpus of prior submissions, often based on
minimizing Assignment-Branch-Conditional (ABC) metric [9].
The abstract syntax tree (AST) of a student’s submission is
compared against that of the exemplar(s) to provide style-related
feedback. These approaches have been found to help students
learn anti-patterns (e.g., [42]). A drawback with them is that they
need a large corpus of prior solutions to be able to generate
appropriate feedback. Another is that they are diagnostic, not
instructional in nature, ie., they provide style feedback while
students write code, but are not designed to help students
systematically learn anti-patterns.

Several style checking tools are available such as lint [15, 22],
pylint (pylintorg), PMD (pmd.github.io), checkstyle,
(checkstyle.org), style50 [53], Sprinter [54] and Style++ [1] to
name a few. These tools deal with anti-patterns that are largely
typographical (e.g., indentation, commenting, etc.) or syntactic
(e.g., naming convention).

The tools developed to help students with semantic anti-
patterns [32] - patterns of code that relate to the structure of the
program - include Java Critiquer [30], FrenchPress [2], WebTA
[38], and JDeodorant [25]. All are for Java. Some have been
integrated into IDEs such as Eclipse (e.g., [49]). Similarly,
Litterbox [26] has been developed for Scratch. These tools are
again, diagnostic and reactive, not proactive and instructional in
nature.

Prompt patterns can be used with Large Language Models
(LLMs) to refactor code (e.g., [43, 51]). Similar to the tools
developed to analyze student code, they are diagnostic, not
instructional in nature. They provide the correct solution instead
of helping students learn to solve refactoring problems. With the
correct sequence of prompts, they can be coaxed to explain the
correct solution. But such prompt engineering is ad hoc and not
typically within the skill set of learners.

There is a need for instructional tools to help students
proactively learn good coding style (in addition to reactively
fixing anti-patterns in their code), and in particular, semantic
anti-patterns. Software tutors are a scalable active-learning
instructional tool - students can use them on their own time, at
their own pace, and as often as they please. As per literature
review and systematic literature surveys [6,18,29], software
refactoring tutors have been reported for Java [19, 20, 44], C#
[48] and Python [45]. All these tutors allow freehand coding and

Amruth N. Kumar

are therefore susceptible to false positive and false negative
grading.

We report the development and use of intelligent tutors to
help students proactively learn about anti-patterns - they do not
allow freehand coding. In this experience report, we present
how, even without allowing freehand coding, the tutors cover
non-trivial anti-patterns that students need to learn. Our
experience shows that using the tutors helps students learn
about anti-patterns.

1.1 Novelty of our Approach

In contrast to earlier refactoring tutors [19, 20, 44, 45, 48], our
intelligent tutors target semantic anti-patterns and allow a
limited set of editing operations not including freehand coding.
Therefore, they do not suffer false positive and false negative
grading. The tutors use source code comparison instead of unit
tests [19, 20] to grade student submissions. The tutors can adapt
to the needs of students by presenting problems on only the
anti-patterns that they do not already know [10]. They currently
cover C++, Java and C#.

We will present the design of the tutors, some of the anti-
patterns covered by them, their user interface, typical experience
of a student solving refactoring problems with the tutors, how
the tutors can be used by students and instructors, formative
data collected using the tutors over three semesters, and
reflection on what worked and what did not.

2 The Design of the Tutors

2.1 Topics and Concepts

The tutors cover two topics: selection statements (1 f-else and

switch) and loops. Currently, the tutor on selection statements

covers the following refactoring concepts, all of which can be

solved without any freehand coding:

1. S1: Factor out code common to both if- and else- clauses

2. S2:Delete empty else

3. S3: Remove redundant if statement from else clause when
the condition of if statement is the negation of the
condition of the i f-else statement

4. S4: Combine two or more if-else statements that have
the same condition

5. S5: Invert control structures to minimize duplicate code

6. S6: Do not nest 1 f-else statements whose conditions are
independent

7. S7: Factor out code common to multiple cases in a switch
statement

8. S8: Combine cases with the same code in a switch
statement

The tutor on loops covers the following refactoring concepts

that can be solved without freehand coding:

1. L1: Don’t rig initialization of the loop variable of a while
loop so that the loop iterates at least once

2. L2: Move the code that should be executed after the loop
out of the loop

Auglets: Intelligent Tutors for Learning Good Coding Practices by Solving Refactoring Problems

3. L3: Move computations out of validation loop (loop meant
to check that the input is valid, such as 1-12 only for month)

4. L4: Eliminate redundant post-loop if statement whose
condition is the negation of the loop condition

5. L5: Instead of a do-while loop inside an if statement,
use awhile loop

6. L6: Validate one input per validation loop

All of these are non-trivial semantic anti-patterns [7, 46]

commonly observed in the program submissions of both

introductory and advanced students. Therefore, the tutors can be

beneficial even though they do not allow freehand coding or cover

anti-patterns that require freehand coding.

2.2 Refactoring Problems

The tutors contain 4-5 problems per refactoring concept. Each
refactoring problem contains a complete program designed to
illustrate a single anti-pattern. Students are instructed to refactor
the program for a specific purpose such as better readability,
reduced redundancy, or improved modifiability. Each problem is
designed to have a single correct solution and can be solved
without freehand coding.

A refactoring problem consists of the following components:
1) a statement of the problem for which the program was
written; 2) the program to be refactored; 3) the refactored
version of the program; 4) drill-down instructions to clarify the
purpose of refactoring; and 5) metadata including a unique
problem identifier, the anti-pattern illustrated by the problem
(e.g., S2: “Delete empty else”) and the programming languages
to which the problem is applicable.

In order to deter plagiarism common to software tools [47],
the program to be refactored and its refactored version are
encoded as templates in Backus-Naur Form (BNF), with meta-
variables for data types, literal constants, variable names, etc.
The tutors generate each problem as a randomized instance of a
template by replacing meta-variables in the template with
specific data types, literal constants and variable names. Two
problems generated from a template are similar, but not
identical. So, no two students see identical programs and no
student sees the same program twice.

2.3 User Interface

The layout of the tutors is shown in Figure 1. The layout consists

of the following components:

e Instruction panel I where the problem statement is
presented.

e Problem panel P where the program to be refactored is
presented.

e Refactoring panel R where the purpose of refactoring is
described. Clicking on the Explain button in this panel
produces drill-down instructions at progressively greater
levels of detail. In the final level of detail, the lines that
should be refactored are highlighted in the problem panel P
and students are asked to focus on them.

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

e Solution panel S where a copy of the program from the
problem panel is shown - students refactor this copy while
comparing it with the original code in problem panel.

e Feedback panel F where feedback is displayed after each
refactoring operation and after submission of the solution.
Students’ refactoring operations are also summarized here.

e Trash panel T to which lines of code deleted in the solution
panel S are moved. In addition, if a line of code is edited in
the solution panel S, the original version of the line is
copied to the trash panel T. Lines in the trash panel can be
restored to the solution panel at any chosen location.

e Submit and Bail out buttons at the bottom left are enabled
after students apply at least one refactoring operation to the
program in the solution panel S. If a student bails out, the
problem is marked as not attempted. If a student submits a
solution, feedback is provided in panel F on whether the
solution is correct or incorrect. In either case, the correct
solution is displayed in the problem panel P with all the
correctly refactored lines highlighted (not shown in Figure
1). After students click on Submit or Bail out button, Next
Problem button is enabled so that students can advance to
the next problem.

e Help menu at the top provides the option to get step-by-
step instruction on using the tutor.

e Timer at the bottom right helps keep track of elapsed and
remaining time when the tutors are used for timed
assessments.

During a problem-solving session, students read the problem

statement presented in panel I and the refactoring instructions in

panel R. They refactor the program in panel S - they click on a

line of code to reveal a menu of refactoring operations available

for that line of code, as shown in Figure. 1 The refactoring
operations currently provided by the tutors are:

e Delete a line - the deleted line is moved to the trash panel
T. Students can undo a deletion by clicking on the line in
the trash panel and selecting a line number in the solution
panel S to which to restore it.

e Duplicate a line - a second copy appears within the solution
panel S right after the original line.

e Move a line - students are asked to select the destination to
which to move the line by clicking on a line in the solution
panel S. This interface is shown in Figure 1.

e Edit a line - a dialog box is presented in which students can
delete tokens in the line, such as punctuation characters,
operators, variables, and literal constants. Figure 2 shows an
example of the dialog box — students can click on any of the
toggle buttons to delete/undelete the corresponding token
from the line of code.

Limiting students to these four operations and no freehand

coding brings home the point that refactoring is an exercise in

reorganizing code rather than rewriting it. These four operations
are sufficient to solve problems on the refactoring concepts S1 -

S8 and L1 - L6 listed earlier.

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

Amruth N. Kumar

| £ Selection - O *
Options Help o
If a purchase is a food item, the program calculates tax as 2% of the price. |pyll out code common to both if and else clause R =l
Otherwise, it calculates tax as 6% of the price @ Focus on the lines highlighted in the left panel. Work on them |+ |
i The C++ program i The C++ program =l
#nclude <iostream: #nclude <iostream: -
using namespace std; using namespace std; T
int maing) int maing)
{ {
hool isFood; hool isFood;
float price; float price;
float tax; float tax;
cout =< "Enter whether it is a food item"; cout =< "Enter whether it is a food item";
cin => isFood; ® cin => isFood;
if(isFood) if(isFood)
{ {
C!JUt << ".Enterthe price ", cput I Delete line "
cin == price; cin >
tax = price * 0.02; tax = y Duplicate line
cout << "On food item, " cout << Move line }| Click on the line to which to move
cout << "the tax is " << tax; cout < Edit line =1
1 1
else else
{ {
cout =< "Enter the price "; tax = price * 0.06;
cin == price; cout =< "On non-food item, "; |
_tay = nrice * 0 0F i cout << "the faw is " vt -
Yau qelé@ line L cout << "Enter the price ™, ;ILines deleted/edited so far: o
Deleting line 22 was correct ® = cout << "Enter the price " Q") g
» cin == price; —
You chose a correct line (22) to refactor
vou deleted line 22: cin => price; |
a- S [D] | E
Bail out | Submit Time Elapsed: 200 Remaining: 298:00

Figure 1: The User Interface of the Tutors (© Amruth N. Kumar)

In Figure 1, a student has:
e Repeatedly clicked on Explain button in the refactoring
panel R till the lines of code that must be refactored are
highlighted in the problem panel P.

Deleted lines 22 and 23 in the solution panel S. These lines
appear in the trash panel T. (Both the lines are numbered 22
because once line 22 in the solution panel was deleted, line
23 was renumbered as line 22.) In the feedback panel F,
feedback is provided to confirm that these deletions are
correct.

Clicked on line 14 and is currently contemplating moving
the line. The student would click on line 12 to move line 14
to its correct location in the refactored code.

2.4 Grading and Feedback

After each refactoring operation, the tutors summarize the
operation in the feedback panel. If the operation
unambiguously ~ correct/incorrect, the tutors confirm its
correctness. If an operation is part of a sequence of operations, it
may not be possible to unambiguously determine its correctness.
In such cases, no feedback is provided on the correctness of the
operation.

is

Once students submit a solution, the tutors grade by
comparing the source code of their solution with that of the
correct solution. Since the tutors do not use test cases or execute
code, they can grade even if students’ solution is incomplete or
syntactically incorrect. The tutors also present the correct
solution in problem panel P juxtaposed with students’ solution
in panel S and highlight the refactored lines in the correct
solution so that students can easily compare the two solutions.

|£| Click on the tokens you want te delete and click Submit X
=

Cin == price;

Submit Cancel

Figure 2: The user interface to edit a line one token at a
time (© Amruth N. Kumar)

3 Using the Tutors

The tutors can be used for learning (with feedback turned on) or
assessment (with feedback turned off). They may be used to
learn anti-patterns not covered in lectures or solve problems on

Auglets: Intelligent Tutors for Learning Good Coding Practices by Solving Refactoring Problems

the anti-patterns introduced in lectures. In either case, they
facilitate active learning through problem-solving.

The tutors have a built-in help menu, grade students’
solution, assign credit for concepts learned, sequence problems,
time themselves as necessary, and log usage data on a server.
The user interface is intuitive enough that students can use the
tutors without prior instruction, as has been our experience.
Therefore, the tutors are self-contained and can be used
unsupervised. The tutors are accessible over the web, so,
students can use them on their own time after class just as easily
as they can use them in class. Instructors can use them for after-
class assignments just as easily as for closed-lab exercises. Their
use places minimal demands on resources because instructors do
not have to carve out classroom time for their use.

All of the following can be customized in the tutors: 1) the
anti-patterns covered; 2) the problems presented for each anti-
pattern; 3) the order in which problems are presented; 4)
whether the tutors are set up for learning (with feedback) or
assessment (with grading, but no feedback); and 5) whether the
tutors are set up to present the same problem-solving experience
to everyone or adapt to the needs of the learner.

When the tutors are configured to adapt to the learner’s
needs, they use a pretest-practice-post-test protocol [10]. During
pretest, they present one problem per anti-pattern: the anti-
patterns on which students solve the problem incorrectly are the
ones that they need to learn. During practice, they present
problems on only these anti-patterns until students learn to
correctly solve problems on them. During post-test, they present
a problem on each anti-pattern on which students solved
practice problems. This adaptive mode helps students efficiently
learn new anti-patterns while avoiding solving unnecessary
problems on the concepts they already know [10].

A declarative representation is used in the tutors to catalog
anti-patterns (e.g., S1-S8, L1-L6), so, it is easy to extend the
tutors with additional anti-patterns that can be refactored
without freehand coding, e.g., no need to compare against
Boolean constants in conditions, class variable should be
function/method variable if used in only one function.

Similarly, a declarative representation is used to encode the
five components of each problem (Section 3.2), so, additional
problems can be easily incorporated into the tutors for any
supported anti-pattern. The tutors automatically generate
feedback by comparing students’ solution with the correct
solution. Therefore, feedback need not be individually encoded
for each new problem. This reduces the time and effort needed to
add new problems to the tutors.

3.1 Formative Data

The tutors were formatively evaluated over three semesters: fall
2022 - fall 2023 in two courses taught by the developer at the
host institution: CS1, the first C++ programming course and
Programming Languages (PL), an advanced course taken by
computer science majors in their third or fourth year. Students
used the tutors twice: as an assignment in the last two weeks of
the semester and again as an online exercise immediately after
the final exam. Students solved two problems per concept

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

during the assignment and one problem per concept after the
final exam, all in C++ - neither contributed to the course grade.
They were allowed ample time for completion - 60 minutes for
each assignment and 120 minutes for the online exercise after
the final exam.

Selection tutor: During the assignment, both CS1 (N=32)
and PL (N=64) students scored the lowest (0.26 or less out of 1)
on concepts S5, and S6. CS1 students also scored less than 0.26
on S1. Both the groups scored the highest on S3 and S4 (around
0.6 for CS1, and 0.8 for PL). Paired samples t-test yielded that the
increase in score from the assignment to the final exam was
significant on concepts S1, S2, S4 and S7 for CS1 and concepts
S2, S6 and S8 for PL. The only significant decrease in score was
for concept S3 for PL - a result that merits further investigation.

Loop tutor: The assignment scores were the lowest on
concepts L1, L5 and L6 for both CS1 students (N=31, score < 0.3)
and PL students (N= 64, score < 0.4) Both groups scored the
highest on concepts L3 and L4 (0.6 to 0.69). The score increased
significantly from the assignment to the final exam on concepts
L3 and L6 for CS1 and L6 for PL students. It decreased on
concept L1 for CS1 students and merits further investigation. No
other change from assignment to final exam was statistically
significant.

Assignment scores show that both introductory and advanced
students needed refactoring practice on at least some of the
selection and loop concepts even though these concepts were
covered in class in CS1. This confirmed the need for these
refactoring tutors even when they were limited to anti-patterns
that could be refactored with no freehand coding. Improvement
in score from the assignment to the final exam shows that students
learned refactoring concepts by using the tutors. This confirmed
that both introductory and advanced students benefited from
using the tutors. But the learned concepts differed between the two
groups, as was to be expected.

3.2 Reflections on Usage

Students-both introductory and advanced-needed to learn about

at least some of the anti-patterns covered by the tutors. They

learned at least some anti-patterns by using the tutors. So, the

tutors were useful even though they were limited to anti-

patterns that could be refactored without any freehand coding.

At the end of the assignment, students had the opportunity to

provide open-ended feedback online. The feedback they provided

included suggestions for improvement of the user interface:

e The option to start over is desirable: A button should be
added to the user interface to reset the solution.

e The actions needed to move a line were cumbersome: A
drag-and-drop interface would be better.

e A counter showing the number of problems solved and the
number of problems remaining would be useful.

e The ability to move or delete multiple lines at a time is
desirable.

All of these improvements are currently being undertaken. Some

students thought they could have solved the problems faster if

they had been allowed to retype code in a text editor. But,

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

allowing retyping of code suffers the same pitfalls as freehand
coding - the code would have to be checked for syntax errors;
code may have to be executed to verify correctness; and
therefore, grading could yield false positive and false negative
results.

When source code comparison is used for grading, student
solution must match the correct solution exactly. Some students
felt that they should have received credit when their solution
was not an exact match, but was functionally equivalent instead.
For example, when an input statement is factored out of an i f-
else statement because it appears in both if and else
clauses, it may be moved after or before another independent
input statement. Only one of those locations will be correct
when exact match is used. Either location will be correct if
equivalent match is used. One way to resolve this might be to
favor exact match by also providing a sample run that the
refactored code must produce if executed.

A related issue in designing refactoring problems involves
striking the right balance between detail and pedagogic focus: a
detailed setup can make the code look realistic, but it can also be
distracting, especially to introductory students. Tightly cropped
code can be pedagogically focused, but may make the code look
contrived, especially to advanced students. One solution might
be to present focused problems to introductory students and
detailed problems to advanced students.

3.3 Future Work

Several additional anti-patterns that can be refactored without
freehand coding are planned for inclusion in the two tutors.
Additional tutors are also planned on functions, arrays and
classes. Currently, the tutors cover C++, Java and C#. Extension
to Python is being planned.

In addition to the four refactoring operations already
implemented, a “code transformation” operation is planned that
will enable inclusion of anti-patterns that would otherwise
require freehand coding. Examples of such anti-patterns include
transforming a parameter into a local variable in a function; and
transforming a while loop into a do-while loop. Once this
operation is incorporated, the tutors will be able to cover a wider
range of anti-patterns.

Formative evaluation has shown that students-both
introductory and advanced-learned refactoring concepts by
solving problems using the tutors. In the future, we plan to
investigate whether this improved knowledge translates to
students writing better code in programming projects.

The tutors run on any Java-enabled computer. They are free
for educational use and can be accessed at the web site
auglets.org. Adopters welcome.

ACKNOWLEDGMENTS

Partial support for this work was provided by the National
Science Foundation under grant DUE-2142648.

Amruth N. Kumar

REFERENCES

[1] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting
students in C++ programming courses with automatic program style
assessment. Journal of Information Technology Education: Research 3 (2004),
245-262.

[2] Hannah Blau and]. Eliot B. Moss. 2015. FrenchPress Gives Students
Automated Feedback on Java Program Flaws. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education
(ITiCSE '15). ACM, New York, NY, USA, 15-20.

[3] Jurgen Borstler, Harald Stérrle, Daniel Toll, Jelle van Assema, Rodrigo Duran,
Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie
MacKellar. 2018. “I know it when I see it” Perceptions of Code Quality: ITiCSE
’17 Working Group Report. In Proceedings of the 2017 ITiCSE Conference on
Working Group Reports (ITICSE-WGR ’17). ACM, New York, NY, USA, 70-85.

[4] William]J. Brown, Raphael C. Malveau, HaysW. “Skip” McCormick, and
Thomas J. Mowbray. 1998. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley & Sons.

[5] Rohan Roy Choudhury, HeZheng Yin, and Armando Fox. (2016). Scale-Driven
Automatic Hint Generation for Coding Style. In 13th International Conference
on Intelligent Tutoring Systems (ITS 2016). Zagreb, Croatia.

[6] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
tutoring systems for programming education: a systematic review. In
Proceedings of the 20th Australasian Computing Education Conference (ACE
'18). ACM, New York, NY, USA, 53-62.

[7] Fowler, M., Refactoring: Improving the Design of Existing Code. 2" edition.
2019: Addison Wesley

[8] Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and Michael S.
Bernstein. 2014. Emergent, crowd-scale programming practice in the IDE. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '14). ACM, New York, NY, USA, 2491-2500.

[9] . Fitzpatrick. (2000) Applying the ABC Metric to C, C++, and Java. In More

C++ Gems. Cambridge University Press, New York, NY, 245-264.

Kumar, A. (2006). A Scalable Solution for Adaptive Problem Sequencing and

Its Evaluation. In: Wade, V.P., Ashman, H. Smyth, B. (eds) Adaptive

Hypermedia and Adaptive Web-Based Systems. AH 2006. LNCS vol 4018.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/11768012_18.

Robert L. Glass. 2002. Facts and Fallacies of Software Engineering. Addison-

Wesley Professional.

[12] C. Hundhausen, A. Agrawal, D. Fairbrother, and M. Trevisan, Integrating

pedagogical code reviews into a CS 1 course: an empirical study, in 40th

SIGCSE Technical Symposium. 2009: Chattanooga, TN. p. 291-295.

Christopher D. Hundhausen, Anukrati Agrawal, and Pawan Agarwal. 2013.

Talking about code: Integrating pedagogical code reviews into early

computing courses. ACM Transactions on Computing Education 13, 3, Article

14 (August 2013), 28 pages.

[14] Christopher Hundhausen, Anukrati Agrawal, and Kyle Ryan. 2010. The design
of an online environment to support pedagogical code reviews. In Proceedings
of the 41st ACM technical symposium on Computer science education
(SIGCSE ’10). ACM, New York, NY, USA, 182-186.

[15] S.Johnson. 1977. Lint, a C program checker. Technical Report 65. Bell Labs.

[16] S-N. A. Joni and E. Soloway, “But My Program Runs! Discourse Rules for
Novice Programmers,” Journal of Educational Computing Research, vol. 2, no.
1, pp. 95-125, 1986.

[17] Koenig, Andrew (March-April 1995). "Patterns and Antipatterns". Journal of
Object-Oriented Programming. 8 (1): 46-48.

[18] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren, A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education, 19(1), 2018

[19] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A Tutoring System
to Learn Code Refactoring. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education (SIGCSE '21). ACM, New York,
NY, USA, 562-568.

[20] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student Refactoring
Behaviour in a Programming Tutor. Koli Calling '20: Proceedings of the 20th
Koli Calling International Conference on Computing Education Research.
ACM, New York, NY, USA, Article 4, 1-10.

[21] Xiaosong Li and Christine Prasad. 2005. Effectively teaching coding standards
in programming. In Proceedings of the 6th conference on Information
technology education. ACM, 239-244.

[22] Jin-Su Lim, Jeong-Hoon Ji, Yun-Jung Lee, and Gyun Woo. 2011. Style Avatar:

A Visualization System for Teaching C Coding Style. In Proceedings of the

2011 ACM Symposium on Applied Computing (SAC ’11). ACM, New York,

NY, USA, 1210-1211.

Cruz Izu, Paul Denny, and Sayoni Roy. 2022. A Resource to Support Novices

Refactoring Conditional Statements. In Proceedings of the 27th ACM

Conference on on Innovation and Technology in Computer Science Education

Vol. 1 (ITiCSE '22). ACM, New York, NY, USA, 344-350.

=
=

[11

[13

(23

Auglets: Intelligent Tutors for Learning Good Coding Practices by Solving Refactoring Problems

[24]

[25]

[26]

[38]

Robert C. Martin. 2008. Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall.

Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta.
2016. JDeodorant: clone refactoring. In Proceedings of the 38th International
Conference on Software Engineering Companion (ICSE '16). ACM, New York,
NY, USA, 613-616.

Gordon Fraser, Ute Heuer, Nina Koérber, Florian Obermiiller, and Ewald
Wasmeier. 2021. LitterBox: a linter for scratch programs. In Proceedings of the
43t International Conference on Software Engineering: Joint Track on
Software Engineering Education and Training (ICSE-JSEET '21). IEEE Press,
183-188.

McConnell, S., Code Complete. 2 ed. 2004: Microsoft Press.

Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas Guibas.
2014. Codewebs: scalable homework search for massive open online
programming courses. In Proceedings of the 23rd international conference on
World wide web (WWW '14). ACM, New York, NY, USA, 491-502.
Nguyen-Thinh Le, Sven Strickroth, Sebastian Gross, and Niels Pinkwart. 2013.
A review of Al-supported tutoring approaches for learning programming. In
Advanced Computational Methods for Knowledge Engineering. Springer, 267—
279.

Lin Qiu and Christopher Riesbeck. 2008. An incremental model for developing
educational critiquing systems: experiences with the Java Critiquer. Journal of
Interactive Learning Research 19, 1 (2008), 119-145.

Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Erica
Rosenfeld Halverson. 2018. Role of Live-coding in Learning Introductory
Programming. In Proceedings of the 18th Koli Calling International
Conference on Computing Education Research (Koli Calling *18). ACM, New
York, NY, USA, Article 13, 1-8.

Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe,
and Nasser Giacaman. 2018. Understanding semantic style by analysing
student code. In Proceedings of the 20th Australasian Computing Education
Conference (ACE ’18). ACM, New York, NY, USA, 73-82.

Amy Shannon and Valerie Summet. 2015. Live coding in introductory
computer science courses. J. Comput. Sci. Coll. 31, 2 (December 2015), 158—
164.

Suzanne Smith, Sara Stoecklin, and Catharina Serino. 2006. An innovative
approach to teaching refactoring. In Proc. of the 37th SIGCSE technical
symposium on Computer science education (SIGCSE '06). ACM, New York,
NY, USA, 349-353.

Sara Stoecklin, Suzanne Smith, and Catharina Serino. 2007. Teaching students
to build well formed object-oriented methods through refactoring. In Proc. of
the 38th SIGCSE technical symposium on Computer science education
(SIGCSE '07). ACM, New York, NY, USA, 145-149.

Deborah A. Trytten. 2005. A design for team peer code review. In Proceedings
of the 36th SIGCSE technical symposium on Computer science education
(SIGCSE ’05). ACM, New York, NY, USA, 455-459.

Scott A. Turner, Ricardo Quintana-Castillo, Manuel A. Pérez-Quifiones, and
Stephen H. Edwards. 2008. Misunderstandings about object-oriented design:
experiences using code reviews. In Proceedings of the 39th SIGCSE technical
symposium on Computer science education (SIGCSE ’08). ACM, New York,
NY, USA, 97-101

Leo C. Ureel II and Charles Wallace. 2019. Automated Critique of Early
Programming Antipatterns. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE '19). ACM, New York,
NY, USA, 738-744.

(39]
(40]

[41

SIGCSE Virtual 2024, December 5-8, 2024, Virtual Event, NC, USA

Wake, W.C., Refactoring Workbook. 2004: Pearson Education, Inc.

Yanqing Wang, LI Yijun, Michael Collins, and Peijie LIU. 2008. Process
improvement of peer code review and behavior analysis of its participants. In
Proceedings of the 39th SIGCSE technical symposium on Computer science
education (SIGCSE ’08). ACM, New York, NY, USA, 107-111.

M. Woodley and S. N. Kamin, “Programming studio: A course for improving
programming skills in undergraduates,” in Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE ’07. ACM,
New York, NY, USA, 2007, 531-535.

[42] Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and Armando

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

Fox. 2017. Teaching Students to Recognize and Implement Good Coding Style.
In Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale
(L@S '17). ACM, New York, NY, USA, 41-50.

Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, Douglas C. Schmidt.
(2023) ChatGPT Prompt Patterns for Improving Code Quality, Refactoring,
Requirements Elicitation, and Software Design. arxiv.org.

Thorsten Haendler, Gustaf Neumann and Fiodor Smirnov. (2020). RefacTutor:
An Interactive Tutoring System for Software Refactoring. In: Lane, H.C,
Zvacek, S., Uhomoibhi, J. (eds) Computer Supported Education. CSEDU 2019.
Communications in Computer and Information Science, vol 1220. Springer,
Cham.

Mario Levya. (2023). Refactoring Tutor: An IDE Integrated Tool for Practicing
Key Techniques to Refactor Code. Master's Thesis, Massachusetts Institute of
Technology. hdLhandle.net/1721.1/151544

Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, Yann Gael Gueheneuc.
(2020). Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software Volume 167.
https://doi.org/10.1016/j.jss.2020.110610.

Valerie Barr and Deborah Trytten. 2016. Using turing's craft codelab to
support CS1 students as they learn to program. ACM Inroads 7, 2 (June 2016),
67-175.

Luburi¢, N; Vidakovi¢, D.; Slivka, J.; Proki¢, S.; Gruji¢, K;; Kovacevi¢, A. and
Sladi¢, G. (2022). Clean Code Tutoring: Makings of a Foundation. In
Proceedings of the 14th International Conference on Computer Supported
Education - Volume 1: CSEDU. SciTePress, 137-148.

Sandalski, M., Stoyanova-Doycheva, A., Popchev, L. and Stoyanov, S., 2011.
Development of a refactoring learning environment. Cybernetics and
Information Technologies (CIT), 11(2).

Eman Abdullah Alomar, Mohamed Wiem Mkaouer, and Ali Ouni. 2024.
Automating Source Code Refactoring in the Classroom. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024). ACM, New York, NY, USA, 60-66.

[51] Juliette Woodrow, Ali Malik, and Chris Piech. 2024. Al Teaches the Art of

Elegant Coding: Timely, Fair, and Helpful Style Feedback in a Global Course.
In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024). ACM, New York, NY, USA, 1442-1448.
gerritcodereview.com

github.com/cs50/style50

Francisco Alfredo, André L. Santos, and Nuno Garrido. Sprinter: A Didactic
Linter for Structured Programming. In Third International Computer
Programming Education Conference (ICPEC 2022). Open Access Series in
Informatics (OASIcs), Volume 102, pp. 2:1-2:8, Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik (2022)

https://hdl.handle.net/1721.1/151544
https://doi.org/10.1016/j.jss.2020.110610

