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Abstract
Purpose: To improve liver proton density fat fraction (PDFF) and R∗

2 quantifica-
tion at 0.55 T by systematically validating the acquisition parameter choices and
investigating the performance of locally low-rank denoising methods.
Methods: A Monte Carlo simulation was conducted to design a protocol for
PDFF and R∗

2 mapping at 0.55 T. Using this proposed protocol, we investigated
the performance of robust locally low-rank (RLLR) and random matrix theory
(RMT) denoising. In a reference phantom, we assessed quantification accu-
racy (concordance correlation coefficient [𝜌c] vs. reference values) and precision
(using SD) across scan repetitions. We performed in vivo liver scans (11 sub-
jects) and used regions of interest to compare means and SDs of PDFF and R∗

2
measurements. Kruskal–Wallis andWilcoxon signed-rank tests were performed
(p< 0.05 considered significant).
Results: In the phantom, RLLR and RMT denoising improved accuracy in
PDFF and R∗

2 with 𝜌c >0.992 and improved precision with >67% decrease in SD
across 50 scan repetitions versus conventional reconstruction (i.e., no denois-
ing). For in vivo liver scans, the mean PDFF and mean R∗

2 were not significantly
different between the three methods (conventional reconstruction; RLLR and
RMT denoising). Without denoising, the SDs of PDFF and R∗

2 were 8.80% and
14.17 s−1. RLLR denoising significantly reduced the values to 1.79% and 5.31 s−1

(p< 0.001); RMTdenoising significantly reduced the values to 2.00% and 4.81 s−1

(p< 0.001).
Conclusion: We validated an acquisition protocol for improved PDFF and R∗

2
quantification at 0.55 T. Both RLLR and RMT denoising improved the accuracy
and precision of PDFF and R∗

2 measurements.
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1 INTRODUCTION

Proton density fat fraction (PDFF)1 and R∗
2
2 are power-

ful noninvasive MRI biomarkers for liver fat and iron
accumulation, respectively. These two parameters can be
quantified simultaneously usingmulti-echo gradient-echo
DixonMRI sequences followed by signal fitting to a model
that resolves different confounding factors.3–5 SeveralMRI
sequences and signal fitting approaches have been devel-
oped and validated at 1.5 and 3T.3–10 Recently, MRI field
strengths<1.5 T are being explored due to advantages such
as reduced hardware and siting costs and reduction of arti-
facts in certain applications.11–14 A lower-fieldMRI system
with a larger bore diameter may also improve comfort15
for populations with obesity and at risk for fatty liver dis-
ease. In addition, decreased R∗

2 at lower fields can enable
more accurate R∗

2 quantification in patients with high iron
overload.16

Most existing scan protocols for joint PDFF and R∗
2

quantification have been designed and validated at 1.5
and/or 3 T. Adaptation to lower field strengths such as
0.55 T requires careful investigation into the trade-offs
associated with acquisition parameter choices. There are
several important considerations. First, lower B0 field
strengths result in lower equilibrium polarization, which
reduces the SNR.11–14 This is exacerbatedwhen a small flip
angle (FA) is used to reduce T1-related bias in PDFF quan-
tification.17 Low SNR can degrade image quality and affect
accuracy and precision of quantitative biomarkers.18–20
Second, the smaller fat–water frequency difference at
lower fields results in longer out-of-phase (TEop = 6.47ms)
and in-phase (TEin = 12.94ms) TEs. This increases scan
time and limits sequence parameter choices. Increasing
the number of scan repetitions to improve SNR, a common
strategy, may be infeasible in breath-holding abdominal
scans. Compromises in imaging parameters such as reduc-
ing image resolution and restricting volumetric coverage
can reduce diagnostic quality.

Locally low-rank principal component analysis
(PCA)–based denoising is one popular approach to sup-
press noise in multi-contrast MR images. By suppressing
principal components associatedwith smaller coefficients,
noise can be reduced, whereas signal can be largely pre-
served. Difficulties in this type of method involve how to
accurately estimate the signal rank and suppress the noise
without removing the desired signal. Different approaches
have been proposed to objectively estimate the noise level
for effective noise suppression. One method, termed as
robust locally low-rank denoising (RLLR) technique,21
has been proposed. Using samples of random matrices
from a known Gaussian distribution, the noise level in
the multi-echo images can be estimated. Based on Stein’s
unbiased risk estimate,22,23 the singular value threshold

can be objectively obtained for noise suppression. RLLR
has been shown to improve image quality for PDFF and R∗

2
quantification at 3 T,24 but it has not been studied at lower
field strengths. On the other hand, random matrix the-
ory (RMT)–based denoising25–27 can accurately estimate
noise level and remove the noise components by leverag-
ing the spectral properties of random Gaussian matrices
predicted by the Marchenko–Pastur Law.28 This approach
has shown promising noise suppression results, especially
in diffusion MRI where many contrasts (i.e., multiple
b-values andmultiple directions) are available to construct
locally low-rank patches.25–27,29–31 There are initial studies
applying RMT-based denoising for lower-field MRI,31 but
this has not yet been well studied for the application of
PDFF and R∗

2 mapping.
In this study, our objective is to improve liver PDFF

and R∗
2 quantification accuracy and precision at 0.55 T by

(1) systematically refining and validating the acquisition
parameter choices, and (2) investigating the performance
of two locally low-rank PCA-based denoising methods:
RLLR and RMT denoising. First, we performed a Monte
Carlo simulation to investigate the impact of acquisition
parameter choices on the accuracy and precision of PDFF
and R∗

2 mapping at 0.55 T. Second, we used the proposed
acquisition protocol informed by simulation results and
performed experiments in a reference phantom. Third,
we evaluated the denoising performance in the pelvis,
where high-SNR reference images can be obtained with-
out breath-hold limitations. Fourth, we conducted exper-
iments with breath-holding liver scans and compared the
performance of PDFF and R∗

2 quantification with different
reconstruction/denoising algorithms.

2 METHODS

2.1 Acquisition protocol for PDFF
and R∗

2 quantification at 0.55T

The choice of TEs and FA in the 3D multi-echo
gradient-echo Dixon sequence affects PDFF and R∗

2 quan-
tification accuracy.32–34 A common choice at 3 T is six
echoes at either out-of-phase or in-phase TEs and a low
FA of 3◦ to 5◦ for reducing the T1-related bias in PDFF
estimation.5 Due to the longer out-of-phase and in-phase
TEs at 0.55 T, this strategy would lead to longer TEs and
TR that prolong acquisition beyond the acceptable time for
one breath-hold. On the other hand, the T1-related bias is
reduced at 0.55 T because of the shortened T1 values and
the increased TR. A larger FA that balances between SNR
and the T1-related bias may be considered. Because the R∗

2
values changewith the field strength,16 TEs for accurateR∗

2
quantification should also be reconsidered. Therefore, we



1350 SHIH et al.

conducted a Monte Carlo simulation to investigate differ-
ent choices of FA, the first TE, and the echo spacing (ΔTE)
with a range of reference PDFF and R∗

2 values at 0.55 T.
We limited our simulation to six echoes. This considera-
tion was to maintain a balance between sufficient number
of echoes for quantification and reasonable scan time.

The signal s(tm) at them-th TEwas simulated using the
signal model:

s(tm) = M

(
(1 − F) + F ×

( 7∑
𝑗=1

a𝑗 × ei2𝜋f𝑗 tm
))

× e−R∗
2 tm × e−i2𝜋𝜑tm + n, (1)

whereM represents the steady-state magnetization signal
dependent on the TE, TR, T1, and FA; F represents the
PDFF value; a𝑗 and f𝑗 represent the relative amplitudes
and frequencies for a seven-peak fat spectrum35; 𝜑 repre-
sents the frequency shift due to B0 field inhomogeneity;
and n represents the complex-valued Gaussian noise.

We used T1 of 339 and 187ms for water and fat protons
in the liver, respectively, based on previous work that mea-
sured in vivo relaxation times at 0.55 T.36 The simulated FA
were in the range of 2◦ to 20◦ . The simulated first TEs and
ΔTE were both in the range of 1.2 to 2.8ms, considering
hardware specifications of the 0.55 T scanner and reason-
able acquisition time of one breath-hold. The TR was set
to include all the echoes and the spoiler gradient. When
investigating PDFF accuracy and precision in the range of
0% to 40% (a range that covers most of the biopsy-proven
metabolic dysfunction–associated steatotic liver disease
patients with histologic steatosis grade 0 to 337), the refer-
enceR∗

2 value was fixed at 30 s
−1 (R∗

2 value at 0.55 Twith no
iron overload16). When investigating R∗

2 accuracy and pre-
cision in the range of 20 to 90 s−1 (a range that covers mild,
moderate, and no iron overload at 0.55 T16), the reference
PDFF value was fixed at 5% (close to the common cutoff
value for metabolic dysfunction–associated steatotic liver
disease diagnosis38).

For each combination of parameters (FA, first TE,
ΔTE, reference PDFF, and reference R∗

2), 500 simu-
lated instances were generated. For each instance, 𝜑

was randomly drawn from a range of (−100, 100) Hz.
The complex-valued noise was modeled as n = nr + i ⋅ ni,
where nr and ni were independently drawn from a Gaus-
sian distribution with the same variance 𝜎2. The value of
𝜎
2 was set to be similar to the noise level in actual in
vivo liver scans at 0.55 T. To be more specific, the result-
ing apparent SNR (aSNR), defined as signal mean divided
by noise SD, equaled 10 when PDFF= 5%, R∗

2 = 25 s
−1, and

flip angle= 8◦ in our Monte Carlo simulation.
All the simulated instances were fitted to a seven-peak

fat model35 with a single R∗
2 decay term using a multi-step

adaptive approach.5 We measured the quantification
accuracy by reporting the mean difference (MD) across
instances of fitted PDFF andR∗

2 versus the reference values
(i.e., the bias) at different parameter settings.Wemeasured
the quantification precision by reporting the SD across
instances of fitted PDFF and R∗

2 at different parameter
settings.

2.2 Locally low-rank PCA-based
denoising

Here, we briefly summarize the two techniques that were
investigated in this work, RLLR and RMT denoising
(Figure 1), and describe howwe adapt them to our specific
application. More technical details can be found in pre-
vious works.21,25 In the following paragraphs, we use px,
py, and pz to represent the patch size in the three image
dimensions, and useNe andNc to represent the number of
echoes and number of coil channels, respectively.

The RLLR denoising method constructs a 2D low-rank
complex valued matrix Mn with dimensions [px × py × pz
byNe] from the coil-combinedmulti-echo images. Assum-
ing the signal rank of Mn is smaller than Ne, the compo-
nent associated with the smallest singular value is mainly
noise. Before noise reduction, 2D randomGaussianmatrix
samples with dimensions [px × py × pz by Ne] were gener-
ated using a predetermined variance 𝜎2s . Themedian of the
smallest singular values of these matrix samples, denoted
as 𝜆m, is calculated. By comparing the smallest singular
value of Mn to 𝜆m, the noise variance 𝜎2n can be estimated
using

𝜎
2
n =

P(Mn)
𝜆m

× 𝜎
2
s , (2)

while P(⋅) extracts the smallest singular values of its argu-
ment. After estimating 𝜎2n, RLLR denoising finds the opti-
mal value for singular value soft-thresholding by mini-
mizing Stein’s unbiased risk estimate23 and obtaining the
denoised matrix. All the overlapping local patches (with
stride= 1 along three spatial dimensions) are denoised
using the same method and averaged to generate the final
denoised images. Please note that previous works applied
RLLR denoising on PDFF and R∗

2 mapping at 3 T and only
used a 2D low-rank matrix constructed from two image
dimensions.21,24 In this work, we extended the method to
include the slice dimension.

The RMT denoising method relies on the
Marchenko–Pastur law.28 Let us consider a 2D random
matrix X with dimensions [p by q] (p ≤ q) whose entries
are drawn from a Gaussian distribution of mean 0 and
variance 𝜎2. The probability density function of the eigen-
values 𝜆 of the matrix Y = 1

q
XXT can be described by the
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F I GURE 1 Reconstruction pipelines of the two locally low-rank principal component analysis–based denoising methods used in this
work. RLLR denoising was applied on coil-combined multi-contrast images, whereas RMT denoising was applied on the multi-coil
multi-contrast images. Both RLLR and RMT denoising methods needed to accurately estimate noise variance before performing singular
value thresholding or shrinkage to suppress Gaussian noise. PDFF, proton density fat fraction; RLLR, robust locally low-rank; RMT, random
matrix theory; SVD, singular value decomposition; SURE, Stein’s unbiased risk estimate.

Marchenko–Pastur distribution:

p
(
𝜆|𝜎2, 𝛾) =

⎧⎪⎨⎪⎩
√
(𝜆+−𝜆)(𝜆−𝜆−)
2𝜋𝛾𝜆𝜎2

if 𝜆− ≤ 𝜆 ≤ 𝜆
+

0 otherwise
, (3)

where 𝜆
+ = 𝜎

2(1 +
√
𝛾), 𝜆− = 𝜎

2(1 −
√
𝛾), 𝛾 = p∕q. After

constructing a low-rank matrix from local image patches,
noise variance 𝜎2 can be estimated by comparing the dis-
tribution of the singular values of the low-rank matrix to
the Marchenko–Pastur distribution. Because it requires a
sufficient number of eigenvalues/singular values for accu-
rate estimation of the noise variance, we use both echo and
coil dimensions to construct low-rank matrices. The real
and imaginary components from themulti-coilmulti-echo
complex data are then concatenated to form a matrix with
dimensions [px × py × pz by 2 × Ne × Nc]. Once the
noise variance is estimated, optimal singular value shrink-
age based on Frobenius norm minimization39 is used. All

the overlapping local patches are denoised using the same
method and averaged to generate the denoised multi-coil
multi-echo images. Coil combination40 is performed after
RMT denoising.

Both denoising methods assume the noise is
Gaussian-distributed. Therefore, the reconstruction
pipeline includes coil decorrelation41 and requires g-factor
correction42 for parallel imaging (PI)-accelerated data
before denoising (Figure 1).

2.3 PDFF and R∗
2 phantom imaging

We validated the PDFF and R∗
2 quantification accuracy

using a reference phantom (Calimetrix, Madison, WI)
with seven PDFF-only vials (0% to 100%, reference val-
ues provided by the vendor) and 10 R∗

2-only vials (17.7
to 1009.5 s−1 measured at 1.5 T, provided by the vendor).
The PDFF-only vials did not have controlled R∗

2 values,
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and the R∗
2-only vials had no fat content. Scans were

performed using a whole-body 0.55 T MRI system (proto-
typeMAGNETOMAera, Siemens Healthineers, Erlangen,
Germany) equipped with high-performance shielded gra-
dients (45 mT/m maximum amplitude, 200 T/m/s slew
rate). Phased-array receiver coils (18-channel spine array
and six-channel body array) were used, and there were
Nc = 12 activated coil channels during the scans. To
acquire phantom images with similar SNR as in the in vivo
liver scans, we placed pads between phantom vials and
the coils such that the space between the body array coil
and the spine array coil was similar to the volume of an
adult abdomen. We acquired data using a 3D multi-echo
gradient-echo Dixon MRI research application sequence.5
Key sequence parameters, based on findings from our
Monte Carlo simulation, includedNe = 6 with TEs= (2.16,
4.32, 6.48, 8.64, 10.8, 12.96) ms, TR= 14.7ms, FA= 8◦ ,
FOV= 300× 300mm2, matrix size= 192× 192, and slice
thickness= 5mm. PI with acceleration factor (R) of 2 was
used. The scan was repeated 50 times without reposition-
ing. Detailed sequence parameters are reported in Table 1.
Each scan repetition was reconstructed individually, using
three reconstruction methods: (1) conventional recon-
struction with only PI reconstruction (GRAPPA) without
any denoising, (2) PI reconstruction and RLLR denoising
with an image patch size (px, py, pz) = (5, 5, 5), and (3) PI
reconstruction and RMT denoising with an image patch
size (5, 5, 5). The reconstructed images were fitted with
a multi-step adaptive approach5 accounting for fat model
complexity35 and single R∗

2 decay to generate PDFF and R
∗
2

maps. For a fair comparison, all the reconstruction results
presented in this work were reconstructed offline with
the same GRAPPA algorithm and the same fat–water-R∗

2
fitting method.

The analysis consisted of two parts. First, we assessed
the agreement of PDFF andR∗

2 values fromdifferent recon-
struction methods versus the reference for the evaluation
of accuracy. In this part, results from one scan repetition
were used. We placed a region of interest (ROI) in each
vial and calculated the mean PDFF and R∗

2. PDFF val-
ues provided by the phantom vendor were used as the
reference. To obtain the reference R∗

2 values at 0.55 T, a
single-slice 12-echo gradient-echo sequence was scanned
and the images were fitted to amono-exponential model.16
Two R∗

2 vials had R
∗
2 > 250 s

−1 (T∗
2 < 4ms) at 0.55 T, which

could not be reliably fitted using the specified protocol and
were not included in the quantitative analysis. The phan-
tom vials analyzed spanned the entire PDFF range (0% to
100%) and containedR∗

2 values that are consistentwith val-
ues reported in subjects without iron overload (R∗

2 < 45 s
−1

from previous work16) and with mild liver iron overload
(45 s−1 <R∗

2 < 91 s
−1 from previous work16). The MD and

the concordance correlation coefficient (𝜌c)43 between the

measured PDFF and R∗
2 values versus the reference were

calculated to assess agreement. Linear regression was also
performed. Second, we evaluated the precision by calcu-
lating the SD of quantitative measurements in each voxel
across scan repetitions. The mean values of the change in
PDFF and R∗

2 SDs between different reconstruction meth-
ods were reported.

2.4 In vivo pelvic imaging

Quantitatively assessing denoising performance in liver
scans can be challenging due to the difficulty to obtain ref-
erence high-SNR images from multiple scan repetitions.
The liver position can vary across multiple breath-holds,
leading to artifacts after averaging. Therefore, we per-
formed an experiment in the pelvis to quantify accuracy
and precision of in vivo PDFF andR∗

2 mapping. The experi-
ment contained two analyses: (1) to investigate the denois-
ing performance and the quantification accuracy under
different noise levels, and (2) to investigate the quantifica-
tion precision by calculating the SDs of PDFF and R∗

2 mea-
surements across scan repetitions. All in vivo experiments
in this work were conducted under a Health Insurance
Portability and Accountability Act–compliant study proto-
col approved by the institutional review board. All subjects
were scanned after providing written informed consent.

For the first analysis, we scanned a healthy vol-
unteer (29-year-old male with body-mass index [BMI]
26.4 kg/m2) using the 3D multi-echo gradient-echo Dixon
MRI research application sequence5 with 30 scan repeti-
tions (no repositioning). Key parameters were the same as
the phantom scans except for the FOV and the in-plane
resolution. We averaged the multi-coil multi-echo k-space
data across the 30 repetitions to generate the “reference”
k-space data. We then added complex-valued random
Gaussian noise with different variances to the reference
k-space data to generate synthetic pelvis datasets with
different noise levels. We chose the noise variances so
that the synthetic images after GRAPPA reconstruction
(without any denoising) had aSNR ranging from 3 to 15
(whereas the original reference image had aSNR= 95).
Here, aSNR was measured by the signal mean in a mus-
cle ROI divided by background noise SD in coil-combined
echo 3 (out-of-phase) images. We performed RLLR and
RMT denoising on the synthetic images after GRAPPA
reconstruction. PDFF and R∗

2 maps were reconstructed
using the same signal fitting method described earlier.
We placed three ROIs, each with a size of 5mm2, in the
subcutaneous fat tissue and in the muscle. Quantifica-
tion accuracy was assessed by comparing mean PDFF and
R∗
2 in these ROIs versus the quantification results in the

reference data (from 30 repetitions).



SHIH et al. 1353

TABLE 1 Sequence parameters for phantom, in vivo pelvis, and in vivo liver MRI scans at 0.55 T.

Phantom In vivo pelvis In vivo liver
2D multi-echo
gradient echo

3Dmulti-echo
Dixon

3Dmulti-echo
Dixon

3Dmulti-echo
Dixon

Acquisition orientation Axial Axial Axial Axial

FOV (mm×mm) 300× 300 300× 300 400× 400 380× 380

TE (ms) 1.35, 3.5, 5.8, 8.0,
10.3, 12.6, 14.8,
17.1, 19.3, 21.6,
23.9, 26.1

2.16, 4.32, 6.48
(OP), 8.64, 10.8,
12.96 (IP)

2.16, 4.32, 6.48
(OP), 8.64, 10.8,
12.96 (IP)

2.16, 4.32, 6.48
(OP), 8.64, 10.8,
12.96 (IP)

TR (ms) 35 14.7 14.7 14.7

Matrix size 160× 160 192× 192 192× 192 192× 192

In-plane resolution (mm×mm) 1.9× 1.9 1.6× 1.6 2.1× 2.1 2.0× 2.0

Number of slices 1 8 8 8

Slice oversampling N/A 20% 20% 20%

Slice thickness (mm) 5 5 5 5

Flip angle (◦ ) 15 8 8 8

Bandwidth (Hz/px) 1565 590 590 590

Parallel imaging No GRAPPA (R= 2) GRAPPA (R= 2) GRAPPA (R= 2)

Averages 2 1 1 1

Scan time (min:s) 0:12 0:19 0:19 0:19 (breath-hold)

N/A, not applicable. OP, out of phase. IP, in phase.

For the second analysis, we scanned three healthy
volunteers (3 males, age: 29.7± 0.6 years, BMI:
24.5± 2.6 kg/m2) using the same sequence, each with 15
scan repetitions. Each repetition was reconstructed indi-
vidually using three different methods: (1) conventional
reconstruction without denoising, (2) RLLR denoising
with a patch size (5, 5, 5), and (3) RMT denoising with a
patch size (5, 5, 5). PDFF and R∗

2 maps were calculated
using the same signal fitting approach. To assess precision,
we calculated pixel-wise SDs of PDFF and R∗

2 values across
15 scan repetitions. We further calculated the percentage
of voxels, which had reduced SDs of PDFF and R∗

2 (mean-
ing improved precision) in denoised results compared to
conventional reconstruction results.

2.5 In vivo liver imaging

Eleven subjects (three females and eight males, age:
39.5± 14.3 years, BMI: 26.3± 4.0 kg/m2) were recruited
and scanned. Four of the subjects (one female and three
males, age: 49.5± 16.8 years, BMI: 29.9± 2.9 kg/m2)
had known fatty liver. All the subjects were scanned
using the 3D multi-echo gradient-echo Dixon research

application sequences5 (Table 1) within a single
breath-hold. Conventional reconstruction (no denoising,
only GRAPPA) and reconstruction with the two denois-
ing methods were performed. The same signal fitting
approach was used to generate PDFF and R∗

2 maps.
For each subject, three circular ROIs, each with a

size of 5mm2, were placed on three different axial slices
in the liver while avoiding large vessels.7 Mean and
SD of the PDFF and R∗

2 values within each ROI were
recorded. Bland–Altman analysis was performed to ana-
lyze the agreement of the quantification results between
the conventional reconstruction and two different denois-
ing methods.

We performed Kruskal–Wallis tests to investigate if
there were any differences in PDFFmean, R∗

2 mean, PDFF
SD, and R∗

2 SD in liver ROIs among the three recon-
struction methods. p< 0.05 was considered significant. If
the Kruskal–Wallis tests indicated significant differences,
additional pair-wise Wilcoxon signed rank tests with Bon-
ferroni correction for the p-values (p< 0.05/3= 0.017 con-
sidered significant) were used to evaluate if there was
significant difference between a pair of two reconstruction
methods. For all the statistical tests, only one liver ROI
measurement in the mid-slice from each subject was used.
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3 RESULTS

3.1 Monte Carlo simulation results

The Monte Carlo simulation results from FA= 8◦ are in
Figure 2 (complete results from different FA in Figure S1).
A larger FA results in larger biases in PDFF due to T1
differences between fat and water. In contrast, a smaller

FA results in less precise PDFF and R∗
2 due to lower SNR.

Shorter TEs and less T∗
2 weighting in the multi-echo sig-

nal also results in less precise PDFF and R∗
2. Considering

the quantification accuracy and precision across a range
of relevant PDFF and R∗

2 values, we chose FA= 8◦ , first
TE= 2.16ms, and ΔTE= 2.16ms as the preferred setting.
In this design, the third TE and the sixth TE corresponded
to out-of-phase and in-phase TEs at 0.55 T, respectively.

F IGURE 2 Monte Carlo simulation results of FA= 8◦ regarding the accuracy and precision for (A,B,C) PDFF and (D,E) R∗
2 mapping

using different first TE and ΔTE at 0.55 T. Complete results from different FA can be found in Figure S1. The PDFF bias and SD were
reported in absolute units. To balance between accuracy and precision of parameter quantification and breath-holding scan time, we chose
first TE= 2.16ms and ΔTE= 2.16ms as indicated by the stars. FA, flip angle.
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Based on the simulation results at a representative
aSNR level, our selected acquisition protocol achieved
PDFF biases of 0.2% to 2% and PDFF SDs of 5.4% to 7.2%
for reference PDFF values ranging from 0% to 40%. The
PDFF bias and SD are reported with absolute units here
and throughout this work. At the same time, our selected
acquisition protocol yielded R∗

2 biases of 0.2 to 2.2 s
−1 and

R∗
2 SDs of 10.5 to 17.7 s

−1 for reference R∗
2 values ranging

from 20 to 90 s−1. Please note that these simulation results
did not consider any denoising.

3.2 PDFF and R∗
2 phantom imaging

results

The signal difference between denoised and non-denoised
images showedminimal structured signals, demonstrating
effective noise suppression without removing desired sig-
nal (Figure S2). Figure 3A,C shows quantitativemaps from
one scan repetition. Without denoising, large PDFF errors
and noisy PDFF and R∗

2 measurements were observed.
Both denoising methods improved the visual quality
of PDFF and R∗

2 maps with reduced inhomogeneity.
Figure 3B,D showsmaps of pixel-wise SDs of PDFF and R∗

2

values from 50 scan repetitions. Compared with conven-
tional reconstruction, RLLR denoising showed an average
of 86% and 77% decrease in PDFF and R∗

2 SDs, respec-
tively; RMT denoising showed an average of 77% and 67%
decrease in PDFF and R∗

2 SDs, respectively.
Compared with the reference, the MD (i.e., bias)

of PDFF was 8.03% for conventional reconstruction,
0.51% for RLLR denoising, and 0.77% for RMT denois-
ing. Compared with the reference, the MD (i.e., bias) of
R∗
2 was 2.08 s

−1 for conventional reconstruction, 2.76 s−1
for RLLR denoising, and 3.48 s−1 for RMT denoising.
Figure 4A,B shows the correlation plots of PDFF and R∗

2
measurements between different methods and the ref-
erence. Conventional reconstruction had 𝜌c = 0.845 in
PDFF and 𝜌c = 0.984 in R∗

2 when compared with the ref-
erence. Compared with reference PDFF, RLLR denoising
had 𝜌c = 0.997 with regression result y= 0.956x+ 2.059,
and RMT denoising had 𝜌c = 0.997 with regression
result y= 0.949x+ 2.022. Compared with reference R∗

2,
RLLR denoising had 𝜌c = 0.992 with regression result
y= 1.020x+ 2.550, and RMT denoising had 𝜌c = 0.994
with regression result y= 1.028x+ 1.523. Both denoising
methods achieved close PDFF and R∗

2 agreement with the
reference.

F IGURE 3 (A) PDFF quantification results in the phantom from one scan repetition. (B) Maps showing the pixelwise SD of PDFF
across 50 scan repetitions. (C) R∗

2 quantification results in the phantom from one scan repetition. (D) Maps showing the pixelwise SD of R∗
2

across 50 scan repetitions. Numbers above each phantom vial show the measured mean value in that specific vial using a circular ROI. For
example, the highest PDFF vial in the conventional reconstruction result had a mean PDFF of 79.7% and a SD of 44.4% in the circular ROI.
ROI, region of interest.
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F IGURE 4 Correlation plots that compare (A) the mean PDFF measurements and (B) the mean R∗
2 measurements from one scan

repetition with respect to the reference values. The linear regression results and the concordance correlation coefficients (𝜌c) for each
comparison are shown.

3.3 In vivo pelvic imaging results

Figure 5A shows the reference images (aSNR= 95) and
synthetic images with aSNR= 8 reconstructed with dif-
ferent methods. Both denoising methods reduced PDFF
quantification error and provided less noisy R∗

2 measure-
ments. Without denoising, larger PDFF quantification
errors were observed near the center of the body. This
is consistent with the fact that the center of the body
is farther away from the coil elements and the central
region in the FOV has a higher g-factor and more noise
amplification.

Figure 5B compares quantification results in three
ROIs across different aSNR levels. Different ROIs exhib-
ited different levels of sensitivity to aSNR. This can be
due to differences in signal intensity magnitudes and the

underlying PDFF and R∗
2 values in different types of tis-

sue. Both denoisingmethods reduced PDFF and R∗
2 errors.

However, for images with aSNR less than 6, a PDFF bias
of 1% to 2% still existed in two ROIs after denoising.

Figure 6 shows representative pelvis MRI reconstruc-
tion results and SDs of PDFF and R∗

2 measurements across
15 scan repetitions. Compared to conventional reconstruc-
tion, both denoising methods improved PDFF and R∗

2
precision in terms of smaller SDs. Figure 6B,D show the
scatter plots of PDFF and R∗

2 SDs from one representa-
tive slice. Across all the subjects in RLLR-denoised results,
the percentage of voxels with decreased PDFF and R∗

2 SDs
were 97.5%± 0.3% and 98.9%± 0.4%. Across all the sub-
jects in RMT-denoised results, the percentage of voxels
with decreased PDFF and R∗

2 SDs were 96.9%± 0.4% and
98.9%± 0.5%.
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F I GURE 5 (A) Comparison of coil-combined images and quantitative maps in the synthetic pelvis dataset (aSNR= 8) reconstructed
with different methods. (B) PDFF and R∗

2 measurements in three ROIs (locations depicted in [A]) across different aSNR levels. Both RLLR
and RMT denoising achieved better quantification accuracy (closer agreement with reference results) for PDFF and R∗

2 than conventional
reconstruction. aSNR, apparent SNR.

3.4 In vivo liver imaging results

Figure 7 shows representative results from a fatty liver sub-
ject (45-year-old male, BMI= 31.6 kg/m2). Noisy images

from conventional reconstruction led to PDFF quantifica-
tion error andnoisyR∗

2 measurements. After RLLRorRMT
denoising, vessels in the liver becamemore discernible and
the PDFF and R∗

2 maps were less noisy.
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F IGURE 6 (A) Representative PDFF map and corresponding voxel-wise PDFF SD map for different methods. (B) Scatter plot of PDFF
SD in all voxels (background voxels excluded). (C) Representative R∗

2 map and corresponding pixel-wise R
∗
2 SD map for different methods. (D)

Scatter plot of R∗
2 SD in all voxels (background voxels excluded).

Figure 8 shows Bland–Altman plots comparing liver
PDFF and R∗

2 values from two denoising methods ver-
sus using conventional reconstruction. For PDFF, RLLR
and RMT denoising showed a MD of −0.96% and −0.82%,
respectively, when compared with conventional recon-
struction. This is consistent with previous findings44 that
noise would lead to a positive PDFF bias (i.e., reducing
noise can reduce the bias). On the other hand, the MD
in R∗

2 between denoised and non-denoised results were
small, with values of 0.50 s−1 between RLLR denoising and
conventional reconstruction and 0.55 s−1 between RMT
denoising and conventional reconstruction.

Figure 9 shows scatter plots of PDFF and R∗
2 SDs in

liver ROIs from two denoising methods versus conven-
tional reconstruction. The mean value of PDFF SDs in
liver ROIs was 8.80% for conventional reconstruction and
was reduced to 1.79% and 2.00% after RLLR and RMT

denoising, respectively. The mean value of R∗
2 SDs in liver

ROIs was 14.17 s−1 for conventional reconstruction, and
was reduced to 5.31 and 4.81 s−1 after RLLR and RMT
denoising, respectively.

The Kruskal–Wallis (p< 0.05 considered significant)
tests did not indicate significant differences inmean PDFF
(p= 0.209) and mean R∗

2 (p= 0.846) among three recon-
struction methods. On the other hand, the Kruskal–Wallis
tests found significant differences in PDFF SDs (p< 0.001)
and R∗

2 SDs (p< 0.001) among three reconstruction meth-
ods. In pair-wise Wilcoxon tests, both RLLR denois-
ing and RMT denoising had significant differences in
PDFF SDs and R∗

2 SDs when compared with conventional
reconstruction (p< 0.001 for all comparisons). There was
no significant difference in PDFF SDs (p= 0.083) and
R∗
2 SDs (p= 0.577) between RLLR denoising and RMT

denoising.
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F I GURE 7
Representative result of (A)
coil-combined echo 3
out-of-phase image, (B) signal
difference in echo 3 image, (C)
PDFF map, and (D) R∗

2 map
from a fatty liver subject
(45-year-old male,
BMI= 31.6 kg/m2). The signal
difference between
conventional reconstructed
and denoised images showed
minimal tissue structures,
demonstrating effective noise
removal. Both RLLR and RMT
denoising reduced PDFF
quantification errors and
provided less noisy R∗

2 maps.
BMI, body mass index.

4 DISCUSSION

In this work, we refined and validated the acquisition
parameter choices for PDFFandR∗

2 quantification at 0.55 T
and investigated the performance of two denoising meth-
ods to improve the quantification accuracy and precision.
Based on the Monte Carlo simulation, we designed a
six-echo protocol for quantifying liver PDFF and R∗

2 at
0.55 T. Even with our careful design of acquisition param-
eters at 0.55 T, the resulting biases and appreciable SDs
of PDFF and R∗

2 underscored the importance and need
of denoising algorithms. Using the proposed protocol in
phantom and pelvis scans, we demonstrated that both
RLLR and RMT denoising improved quantification accu-
racy in terms of close agreements with the reference and
improved quantification precision in terms of reduced SDs
across scan repetitions. In a cohort of 11 subjects, RLLR
and RMT denoising significantly reduced SDs of PDFF
and R∗

2 measurements in the liver ROIs when compared to
conventional reconstruction.

To determine an acquisition protocol that can esti-
mate PDFF and R∗

2 values in a range that is relevant for
patient cohorts, we focused on PDFF values from 0% to
40% and R∗

2 values from 20 to 90 s−1. Although this range
covers PDFF in fatty liver patients and mild iron overload
(45 s−1 <R∗

2 < 91 s
−1 from previous work16), higher R∗

2 in
patients with severe iron might not be robustly estimated
using the proposed protocol. Whereas longer TEs with

more fat–water phase difference is beneficial for fat–water
separation, quantifying higher R∗

2 requires more echoes
placed at shorter TEs. For these cases, the Monte Carlo
simulation approach used in this work can be extended to
include more relevant parameters and help design dedi-
cated acquisition protocols.

In a previous multi-center multi-vendor PDFF phan-
tom study,45 the slope of the regression line is in the range
of 0.86 to 1.02 at 1.5 T and 0.91 to 1.01 at 3 T using vendor
protocols. The intercept of the regression line was in the
range of −0.65% to 0.18% at 1.5 T and−0.78% to −0.21% at
3 T. In our phantom experiment at 0.55 T, the slopes of the
regression line were 0.956 and 0.949 after RLLR and RMT
denoising, demonstrating similar PDFF linearity to that at
1.5 and 3 T. The intercepts of the regression linewere 2.06%
and 2.02% after denoising. Even though RLLR and RMT
denoising can effectively reduce the noise, a higher posi-
tive bias in PDFF is still observed at 0.55 T compared with
results from 1.5 and 3T.

From theMonte Carlo simulation and the pelvis exper-
iment, we observed that PDFF and R∗

2 accuracy can be lim-
ited when the SNR is too low. This is consistent with pre-
vious findings that noise effect can lead to PDFF bias.18,32
It is also known that noise can bias R∗

2 estimation if the
signal in later echoes is close to the noise floor.46 Whereas
denoising generally improves precision without impact-
ing accuracy, denoising may reduce quantification bias in
cases when original image SNR is relatively low. In the
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F IGURE 8 (A) Bland–Altman plots comparing mean liver PDFF measurements in results using RLLR and RMT denoising versus
conventional reconstruction. (B) Bland–Altman plots comparing mean liver R∗

2 measurements in results using RLLR and RMT denoising
versus conventional reconstruction. Three ROIs were placed in every subject, and ROIs from the same subject were color-coded with the
same color. LoA, 95% limits of agreement.

pelvis experiment, we found the denoising performance
of RLLR and RMT is dependent on the original image
SNR, which is affected by different factors including tis-
sue types, acquisition parameters, proximity to the coils,
and g-factor distribution if PI is used. Therefore, future
improvements such as better surface coils with more ele-
ments or sampling patterns with reduced g-factor penalty
are also important to further improve PDFF and R∗

2 quan-
tification at 0.55 T. We also found PDFF and R∗

2 had differ-
ent sensitivities to noise. Without denoising, PDFF in liver
ROIs showed larger bias. On the other hand, the mean R∗

2
values in liver ROIs were rather consistent with or with-
out denoising. Nevertheless, both denoising methods can
provide less noisyR∗

2 maps formore precisemeasurements
and better diagnostic quality.

The computational bottlenecks for both denoising
methods were the calculations of singular value decom-
position. In our 3D liver dataset, the average computa-
tional time for the denoising step (excluding PI recon-
struction and signal fitting) was 1min 10 s for RLLR
denoising and 3min 30 s for RMT denoising, using aMAT-
LAB script with MATLAB Parallel Computing Toolbox
(R2023a, MathWorks, Natick, MA) running on a 64-Core
2.7GHz CPU (AMD Ryzen Threadripper PRO 5995WX,
Santa Clara, CA). RMT denoising had longer computa-
tional time because the singular value decomposition was
applied on larger 2D matrices. For both methods, compu-
tational time can be further reduced by optimizing the soft-
ware implementation and running on high-performance
hardware.
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F I GURE 9 (A) Scatter plots comparing liver PDFF SD in results using RLLR and RMT denoising versus conventional reconstruction.
(B) Scatter plots comparing liver R∗

2 SD in results using RLLR and RMT denoising versus conventional reconstruction. Both denoising
methods greatly reduced SDs of PDFF and R∗

2 measurements in liver ROIs. Three ROIs were placed in every subject, and ROIs from the same
subject were color-coded with the same color.

Both RLLR and RMT denoising rely on two assump-
tions: (1) the underlying noise is Gaussian-distributed, and
(2) the low-rank property exists in local image patches.
These requirements are typicallymet inmulti-contrastMR
images after noise statistics are carefully corrected. There-
fore, both denoising methods can be potentially applied in
many other lower-field or higher-fieldMRI applications in

which low SNR is a problem. Even though the noise vari-
ance can be objectively estimated using these two meth-
ods, the choice of patch size is dependent on the effective
signal rank and is usually based on empirical results, as
used in this work and in previous locally low-rank denois-
ing works.21,25–27 One might need to adjust the patch size
for optimal denoising performance for different datasets.
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We achieved promising RMT denoising performance
in our dataset by using both echo and coil dimensions to
construct low-rank patches. However, this approach can
be dependent on the coil configuration and should be
used with caution in different datasets or scan setups. For
example, if there are limited overlapping coil sensitivities
in local regions, the constructed local patches may contain
noise-only columns. The desired signal components there-
fore have a higher risk of being “drowned” in the sea of
noise-related singular value components.47 This can result
in losing the desired signal components and lead to errors
in final quantitative maps.

Deep learning–based methods are another promis-
ing approach for noise suppression.48 Many deep
learning–based denoising methods for lower-field MRI
rely on supervised learning that requires a database of
training data.49,50 However, obtaining high-SNR refer-
ence training data from multiple scan repetitions may
be difficult for abdominal scans due to breath-holding
requirements. For these cases, the denoising methods
investigated in this work can be used to generate training
data. Another approach to improve the inherent SNR is
to use non-Cartesian MRI sequences, such as radial MRI,
with free-breathing acquisitions.51–53 These techniques
usually require longer scan times but can also provide
robust PDFF and R∗

2 quantification. Because of the higher
inherent SNR, there can be more flexibility in the choice
of acquisition parameters. A suitable scan protocol using
non-Cartesian sequences can also be designed with the
Monte Carlo simulation used in this work.

This study has limitations. First, our studied cohort
had a limited size, and none of the subjects had liver
iron overload (T∗

2 > 45ms at 0.55 T
16). Scans in subjects

with high liver iron content should be conducted in future
works, and the denoising performance should be further
validated. Second, our phantom analysis only included
fat-only andR∗

2-only vials, whichmay not reflect the actual
in vivo environments in the liver, where both fat and iron
may be present, although this condition is rare. Further
experiments should be done in phantoms with different
combinations of PDFF, R∗

2, and T1 values
54 to investigate

the denoising performance and the limitations.

5 CONCLUSION

We used a Monte Carlo simulation to design an acquisi-
tion protocol for PDFF andR∗

2 quantification at 0.55 Twith
validation in phantom experiments. We showed that both
RLLR and RMT denoising improved quantification accu-
racy in terms of closer agreement with the reference, and
improved quantification precision in terms of reduced SDs
across scan repetitions. In a cohort with healthy volunteers

and fatty liver subjects, RLLR and RMT denoising both
improved quantitative maps in terms of the significant
decrease of PDFF andR∗

2 SDs in liver ROIswhen compared
with conventional reconstruction.
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Figure S1. Monte Carlo simulation results regarding the
accuracy and precision for PDFF and R∗

2 mapping using
different flip angles (FA), first echo time (TE), and ΔTE
at 0.55 T. To balance between accuracy and precision of
parameter quantification and breath-holding scan time,
we chose first FA= 8◦ , TE= 2.16ms, andΔTE= 2.16ms as
indicated by the stars.
Figure S2. Comparison of (a) coil-combined echo 3
(out-of-phase) and (b) coil-combined echo 6 (in-phase)
images from different reconstruction methods All the
images are displayed using the same window/level.

How to cite this article: Shih S-F, Tasdelen B,
Yagiz E, et al. Improved liver fat and R2
quantification at 0.55 T using locally
low-rank denoising.Magn Reson Med.
2025;93:1348-1364. doi: 10.1002/mrm.30324


	Improved liver fat and R2* quantification at 0.55[[thinsp]]T using locally low-rank denoising 
	1 INTRODUCTION
	2 METHODS
	2.1 Acquisition protocol for PDFF and R2* quantification at 0.55[[thinsp]]T
	2.2 Locally low-rank PCA-based denoising
	2.3 PDFF and R2* phantom imaging
	2.4 In vivo pelvic imaging
	2.5 In vivo liver imaging

	3 RESULTS
	3.1 Monte Carlo simulation results
	3.2 PDFF and R2* phantom imaging results
	3.3 In vivo pelvic imaging results
	3.4 In vivo liver imaging results

	4 DISCUSSION
	5 CONCLUSION

	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	TWITTER
	REFERENCES
	Supporting Information

