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Abstract—This paper focuses on designing a privacy-preserving
Machine Learning (ML) inference protocol for a hierarchical
setup, where clients own/generate data, model owners (cloud
servers) have a pre-trained ML model, and edge servers perform
ML inference on clients’ data using the cloud server’s ML
model. Our goal is to speed up ML inference while providing
privacy to both data and the ML model. Our approach (i)
uses model-distributed inference (model parallelization) at the
edge servers and (ii) reduces the amount of communication
to/from the cloud server. Our privacy-preserving hierarchical
model-distributed inference, privateMDI design uses additive
secret sharing and linearly homomorphic encryption to handle
linear calculations in the ML inference, and garbled circuit
and a novel three-party oblivious transfer are used to handle
non-linear functions. privateMDI consists of offline and online
phases. We designed these phases in a way that most of the data
exchange is done in the offline phase while the communication
overhead of the online phase is reduced. In particular, there is
no communication to/from the cloud server in the online phase,
and the amount of communication between the client and edge
servers is minimized. The experimental results demonstrate that
privateMDI significantly reduces the ML inference time as
compared to the baselines.

I. INTRODUCTION

Machine learning (ML) has become a powerful tool for
supporting applications such as mobile healthcare, self-driving
cars, finance, marketing, agriculture, etc. These applications
generate vast amounts of data at the edge, requiring swift
processing for timely responses. On the other hand, ML
models are getting more complex and larger, so they require
higher computation, storage, and memory, which are typically
constrained in edge networks but abundant in the cloud. Thus,
the typical scenario is that the data owner (at the edge) is
geographically separated from the model owner (in the cloud).

The geographically separated nature of data and model
owners poses challenges for ML inference as a service. We
can naturally use a client/server-based approach where the data
owner (client) sends its data to the model owner (cloud server)
for ML inference. This approach violates data privacy and in-
troduces communication overhead between the data and model
owners, which is usually considered a bottleneck link in today’s
systems. Very promising privacy-preserving mechanisms have
been investigated in the literature [1]-[3], which preserve the
privacy of data in the client/server ML inference setup, but
still suffer from high communication costs between data and

This work was supported in parts by the Army Research Of-
fice (W911NF2410049), the National Science Foundation (CCF-1942878,
CNS-2148182, CNS-2112471, CNS-1801708), and Seagate Technology
(00118496.0).

Yasaman Keshtkarjahromi
Seagate Technology
yasaman.keshtkarjahromi @seagate.com

Hulya Seferoglu
University of Illinois Chicago
hulya@uic.edu

Cloud Server
(Model Owner)

J

( /

5 =
= =l =
= =21 =

=3 (Compute Nodes)

Client
(Data 700 (Data
Owner) Owner)

Fig. 1: Hierarchical ML inference.
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model owners. Such high communication cost undermines the
effectiveness of ML inference applications that require less
latency and real-time response.

A promising solution is a hierarchical setup, where clients
own/generate data, model owners (cloud servers) have a pre-
trained ML model, and compute nodes (edge servers) perform
ML inference on clients’ data using the cloud server’s ML
model, Fig. 1. This approach advocates that edge servers
perform ML inference by preserving the privacy of data from
the client’s perspective and ML model from the cloud server’s
perspective [4]-[6]. Hierarchical ML inference is promising
to reduce the communication overhead between the client and
cloud server by confining the communication cost between the
client and edge servers.

Despite the promise, the potential of hierarchical ML in-
ference has not yet been fully explored in terms of utilizing
available resources in edge servers. In this work, we consider (i)
model-distributed inference (model parallelization) at the edge
servers to speed up ML inference and (ii) reducing the amount
of communication to/from the cloud server while preserving
the privacy of both data and model.

Model-distributed inference is emerging as a promising
solution [7], [8], where an ML model is distributed across edge
servers, Fig. 2. The client transmits its data to an edge server,
which processes a few layers of an ML model and transmits
the feature vector of its last layer/block to the next edge server.
Each edge server that receives a feature vector processes the
layers that are assigned to it. The edge server that calculates the
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Fig. 2: Model-distributed inference.

last layers of the ML model obtains and sends the output back
to the client. We note that the edge servers perform parallel
processing by data pipelining, so ML inference becomes faster.
We consider that the edge servers in Fig. 1 could employ model
parallelization for faster ML inference, but the crucial question
of how to provide privacy to both data and the model should
be addressed, which is the focus of this paper.

In this paper, we design a privacy-preserving hierar-
chical model-distributed inference, privateMDI protocol.
privateMDI uses hierarchical ML inference demonstrated
in Fig. 1. Similar work has been explored in the literature [4]—
[6] but did not consider model-distributed inference, which is
one of our novelties. Furthermore, we structure privateMDI
in two phases: offline and online. The offline and online
phases are designed in a way that the communication overhead
of the online phase is small. Indeed, the communication
cost of the online phase to/from the cloud server is zero in
privateMDI. This significantly reduces the ML inference
time of privateMDI. Our privateMDI design uses ad-
ditive secret sharing and linearly homomorphic encryption to
handle linear calculations in the ML inference, and garbled
circuit and three-party oblivious transfer are used to handle
non-linear functions (such as ReLU). The following are our
contributions.

o We design an ML inference protocol privateMDI that
uses model-distributed inference to speed up ML inference
and employs a hierarchical setup to reduce the commu-
nication overhead while providing privacy to both data
and model. To the best of our knowledge, privateMDI
is the first privacy-preserving model-distributed inference
protocol in a hierarchical ML setup.

e privateMDI consists of offline and online phases. We
designed these phases in a way that most of the data
exchange (hence communication) is done in the offline
phase, which is done anytime before the online phase as
it is independent of the client’s data. Thus, the commu-
nication overhead of the online phase is reduced. Indeed,
there is no communication to/from the cloud server in the
online phase, and the amount of communication between
the client and edge servers is minimized.

e Our privateMDI design uses additive secret sharing
and linearly homomorphic encryption to handle linear
calculations in the ML inference, and garbled circuit

and three-party oblivious transfer are used to handle
non-linear functions. privateMDI uses additive secret
sharing with homomorphic encryption in the offline phase,
which reduces the number of computations in the online
phase significantly. Our novel three-party OT design,
inspired by PROXY-OT protocol from [9], reduces the
complexity of the existing OT protocols [3], [10] and
provides information-theoretic security.

¢ We implemented privateMDI as well as baselines
using ACCESS computing platform [11] and our in-
lab computers. The experimental results demonstrate that
privateMDI significantly improves the ML inference
time as compared to the baselines.

II. RELATED WORK

Privacy-preserving ML inference protocols can be roughly
classified into two categories; (i) client/server protocols and (ii)
hierarchical protocols as in Fig. 1.

Client/server protocols. CryptoNets [12] pioneered the
client/server protocols by using leveled homomorphic encryp-
tion (HE) and polynomial approximations for activation func-
tions. CryptoDL [13] improved upon CryptoNets with better
function approximations, while LoLa [14] focused on reducing
latency in HE-based inference. In contrast, nGraph-HE [15]
avoids such approximations by passing feature maps to the
data owner for clear text processing, raising concerns about
ML model parameter privacy.

To address the challenges of ML model exposure and using
approximation for the activation functions, subsequent studies
combine HE with multi-party computation (MPC) techniques
like oblivious transfer (OT), garbled circuits (GC), and secret
sharing. For instance, MiniONN [1] and CrypTFlow2 [16]
integrate HE with MPC to enhance performance and accuracy.
CrypTFlow?2 uses OT or HE for linear layers and specialized
MPC protocols for ReLU and Maxpool to handle non-linear
activation functions. Similarly, Gazelle [2], Delphi [3], Auto-
Privacy [17], and MP2ML [18] employ a combination of HE
and garbled circuits to optimize both computational efficiency
and privacy, using secret sharing for linear layers and GC
for non-linear layers. Meanwhile, Cheetah [19] streamlines the
process by eliminating costly HE operations, such as rotations
in linear layer evaluations, and instead uses efficient OT-based
protocols for handling non-linearities.

In parallel, a growing body of work aims to sidestep the
high complexity of traditional cryptographic techniques like
HE and GC by discretizing DNNs [20], [21]. For example,
XONN [21] simplifies the secure computation landscape by
leveraging binary neural networks (BNNs), which operate on
binary values (+1 or -1). This approach significantly reduces
the cryptographic burden by focusing primarily on efficient
XNOR operations. Similarly, COINN [22] utilizes advanced
quantization techniques to lower both communication and
computational overhead at the expense of accuracy loss.

Despite these advancements, client/server models often en-
counter high latency issues due to the bottleneck between
the client and cloud server, especially when the participating



parties are geographically distant—a common scenario in real-
world applications. This latency can significantly affect the
performance and feasibility of ML inference. Thus, we consider
a hierarchical model in our setup, which differentiates us from
client/server protocols. SECO [23] builds upon Delphi and
splits an ML model into two parts, where one of them is
processed at the client while the other part is processed at
the cloud server, but it does not support model splitting and
distribution over multiple (edge) servers.

Hierarchical protocols: Hierarchical protocols for ML in-
ference with the participation of three or more parties have been
explored in [4], [5], [10], [24] usually assuming that a client
has data and multiple servers (edge and cloud) privately access
or hold the ML model. ABY? [24] is a three-party framework
that efficiently transitions between arithmetic, binary, and Yao’s
three-party computation (3PC), using a three-server model
that tolerates a single compromised server. Cryptflow [25]
introduces a three-party protocol built upon SecureNN [5],
tolerating one corruption and optimizing convolution for re-
duced communication in non-linear layers. Falcon [6] combines
techniques from SecureNN and ABY? to improve protocol
efficiency. SSNet [26] introduces a private inference protocol
using Shamir’s secret sharing.

Our work in perspective. As compared to existing hier-
archical protocols summarized above, our approach (i) uses
additive secret sharing with HE to provide privacy for ML
model parameters, which reduces the number of computations
in the online phase significantly (for example, as compared
to SSNet [26]); (ii) eliminates the need for continuous and
interactive communication with the client during the online
phase, thus reducing the communication overhead; (iii) uses
model-distributed inference, which enables full utilization of
available edge servers and their computing power, and (iv)
works with any non-linear ML inference functions.

III. SYSTEM MODEL & PRELIMINARIES

Notations. We define Z, as a finite field of size ¢, and x €
Z;‘ as a vector of size n over the field Z,. Similarly, x €
{0,1}™ is defined as a binary vector of length n. We will
denote vectors by bold lowercase letters, while matrices are
denoted by bold uppercase letters.

Setup. We consider a three-party ML inference, which
includes a cloud server (model owner), client (data owner), and
edge servers (compute nodes), Fig. 1. Clients and edge servers
are directly connected, where high-speed device-to-device links
can be used. Client and cloud servers can also communicate
using infrastructure-based links such as Wi-Fi or cellular, which
is typically considered a bottleneck in today’s communication
networks. This paper aims to reduce the communication cost
between clients and the remote cloud server.

Our system supports multiple clients, as shown in Fig. 1,
but we will focus on only one client in the rest of the paper
for the sake of clarity and as the multiple client extension
is straightforward. The edge servers are divided into clusters.
Each cluster consists of 7"+ 2 edge servers, two of which are
garbler and evaluator servers, which are needed to implement
the garbled circuit operations, detailed later in this section.

Each cluster is responsible for processing a set of layers
according to model-distributed inference (model-distribution
algorithm), i.e., each cluster (1" + 2 edge servers) computes
a part of the model. We will present the details of cluster
operation in Section IV.

Threat Model. We consider that all the participants are
semi-honest, i.e., they follow the protocols, but they are cu-
rious. Edge servers in each cluster may collude; we consider
that maximum 7" edge servers (out of 7'+ 2) collude to obtain
data. We assume that the evaluator and the garbler servers do
not collude. Also, clients, edge servers, and the cloud server do
not collude. Our aim is to design a privacy-preserving model
distributed inference mechanism at the edge servers where (i)
the client and edge servers do not learn anything about the
model' and (ii) the cloud server and edge servers do not learn
anything about the client’s data.

ML Model and Model-Distribution. We consider that the
cloud server stores a pre-trained ML model. We assume that
the ML model can be partitioned, which applies to most of
the ML models used in today’s ML applications [8]. The ML
model could have any linear and/or non-linear operations. Our
mechanism is designed to work with any such operations.

Different clusters of edge servers may have different and
time-varying computational capacities. Thus, a cluster with
higher computing power should process more layers than the
others. We follow a similar approach of AR-MDI proposed in
[8] to achieve such an adaptive model-distributed inference.
AR-MDI [8] is an ML allocation mechanism that determines
the set of layers A, (k) that should be activated at edge server
n for processing data A;. AR-MDI allocates |p, (k)] layers
to edge server n for data Ay, where |.] rounds p,(k) to
the closest integer that is a feasible layer allocation. AR-MDI

determines p, (k) as pp(k) = W%, where W is
the total number of parameters in the ML model, Yn(k) is

the per parameter computing delay. AR-MDI performs layer
allocation decentralized as each worker can determine their
share of layers by calculating |p,(k)]. The per parameter
computing delay ~, (k) can be measured by each worker and
shared with other workers. We note that we will use the AR-
MDI’s model allocation mechanism over our clusters of edge
servers and by providing privacy for both data and model.

Three-Party Oblivious Transfer. Oblivious Transfer (OT)
protocols [27], [28] typically consider two-party setup with a
“sender” and “receiver”. The idea is that the sender has two
binary string inputs kg and k;, and the receiver would like to
learn k;, i € {0,1}, but (i) the sender should not learn which
input is selected, and (ii) the receiver learns only k; and gains
no information about k;_;. In our privateMDI design, we
need to use three-party OT [9] as detailed in Section IV.

In particular, we design a novel three-party OT inspired by
PROXY-OT introduced in [9] providing information-theoretic
privacy. In our three-party protocol shown in Fig. 3, the three

'We note that the client knows the number of non-linear layers and their
dimensions in the ML mode, which is needed in our privateMDI design,
but not the whole architecture of the ML model, nor the specific weights of
the ML model.



parties are the client, evaluator server, and garbler server. The
client has a one-bit input 7, and the garbler server has the
input labels k( and k;. Additionally, the evaluator server and
the client generate random sample b using a pseudorandom
generator with the same seed, and the evaluator and garbler
server generate random samples ug and u; similarly. Here,
b,i € {0,1},u;,k; € {0,1}",5 = 0, 1. First, the client sends
its masked input 7 & b to the garbler server. Next, the garbler
server sends the masked labels to the client. The client sends
k; ®u, to the evaluator server. The evaluator server can unmask
the received label to obtain k;. The privacy proof of our three-
party OT protocol is provided in Appendix A of [29].

Evaluator Server Garbler Server Client
up,u, b ko, k1, up,u; i,b
iDb
ko @ u;gp
k; ®up k1&g

Fig. 3: Our novel three-party OT protocol.

Garbled Circuit. Garbled Circuit (GC) is a technique for
encoding a boolean circuit C' and its inputs x and y in a
way that allows an evaluator to compute the output C(x,y)
without revealing any information about C' or x and y other
than the output itself. This process involves a garbling scheme
consisting of algorithms for encoding and evaluating the circuit,
ensuring completeness (the output matches the actual compu-
tation) and privacy (the evaluator learns nothing beyond the
output and the size of the circuit).

A garbling scheme [30], [31] is a tuple of algorithms GS =
(Garble, Eval) with the following syntax:

. (C, {k),k1}jei2n)) < GS.Garble(1*,C). Given a se-
curity parameter A and a boolean circuit C' as input,
Garble produces a garbled circuit C' and a set of labels
{k{.k{}jci2n)- Here, k! represents assigning the value
i € {0,1} to the j-th input label.

o Given a garbled circuit C' and labels {kZ(j }iemm) corre-
sponding to an input x € {0, 1}", and labels {ky*+/};c ()
corresponding to an input y € {0,1}"”, Eval outputs a
string C'(x,y).

Correctness: For correctness, we require that for
every circuit C and inputs x,y €  {0,1}" the
output of Eval must equal C(x,y). Formally,
P[C(xy) =Bval (€, Kt e )] = 1.

Security: For security, we require that a simulator Sgs exists
such that for any circuit C' and inputs x,y € {0, 1}", we have

(Ca {kg(J s k;j”}geh]) e SGS (lAa 1|C‘ ) C(Xa y))
Our privateMDI design involves three parties: the garbler
with input x, the evaluator without any input, and the client

with input y. For the evaluator to compute C(x,y) without
any party gaining information about other parties’ inputs,

conventional two-party OT is substituted with our three-party
OT protocol.

Linearly Homomorphic Encryption. We use Linearly ho-
momorphic encryption (LHE) in our privateMDI design,
which enables certain computations on encrypted data without
the need for decryption [32], [33]. In LHE, operations on
ciphertexts correspond to linear operations on the plaintexts
they encrypt. A linearly homomorphic encryption scheme is
characterized by four algorithms, collectively denoted as HE
= (KeyGen, Enc,Dec,Eval), which can be described as

e HE.KeyGen is an algorithm that generates a public key
pk and a secret key sk pair.

e HE.Enc (pk,m) encrypts the message m using the
public key pk and outputs a ciphertext ct. The message
space is a finite field Z,.

e HE.Dec (sk,ct) decrypts the ciphertext ct using the
secret key sk and outputs the message m.

e HE.Eval (pk,cty,cty, f) outputs the encrypted
f(mi,mz) using the public key pk on the two
ciphertexts ct; and cto encrypting messages mi and ma,
where f is a linear function.

Let ¢ty = HE.Enc(pk,mi), cta = HE.Enc(pk,maz),
ct’ = HE.Eval(pk,cty, cta, f). We require HE to satisfy the
following properties:

e Correctness: HE .Dec outputs m using sk and a cipher-
text ct = HE.Enc (pk, m).

o Homomorphism: HE.Dec outputs f(mq, mg) using sk
and a ciphertext ct’ = HE . Eval(pk, ctq, cta, f).

o Semantic security: Given a ciphertext ct and two messages
of the same length, no attacker should be able to tell which
message was encrypted in ct.

o Function privacy: Given a ciphertext ct, no attacker can
tell what homomorphic operations led to ct. Formally,
(Ctly Ct27 Ct/) e SFP(l)\a myi,ma, f(m17 m2))

Additive Secret Sharing. An m-of-m additive secret shar-
ing scheme over a finite field Z,, splits a secret x € Z,
into a m-element vector ([x]1,...,[x];n) € Z". The scheme
consists of a pair of algorithms ADD = (Shr,Re), where
Shr corresponds to share, and Re refers to reconstruct;

e (ai,...,ay) < ADD.Shr(x,m). On inputs a secret x €
Zg and number of shares m, Shr samples (m — 1) values
m—1
ai,...,a,,_1 and computes a,, = x — Zj:l a;. Then
it outputs the shares (ag,...,a.;,).
o The ADD.Re algorithm on input a sharing (aj,...,a.),

computes and outputs x = Z;nzl aj.

Correctness: Let x € Z; be a secret. Then:
ADD.Re(ADD.Shr(x)) = x.

Security: Let (al,...,al)) < ADD.Shr(x;,m) and
(a?,...,a%) <« ADD.Shr(xa,m) be the secret shares of

two secrets, x; and xo, respectively. Here, the j-th party

possesses the shares a! and a2. For any j, the shares al

J J J
and a? are identically distributed. Consequently, each share
is indistinguishable from a random value to the j-th party,

ensuring no information about x; or x is leaked.



IV. PRIVACY-PRESERVING MODEL-DISTRIBUTED
INFERENCE (privateMDI) DESIGN

The objective of our privateMDI protocol is to compute
the inference result of the client’s input data x € Zj using an
ML model M(.) and give output M(x) in a privacy-preserving
manner. The ML model consists of L layers and is represented
by M = (My,...,M}) by abuse of notation.

Algorithm 1 Offline privateMDI operation
Input: The cloud server has the ML model parameters M =
(My,...,Mp).
1: The client generates (pk, sk) using HE .KeyGen.
2: The client generates random sample r; over Z', and sends
HE.Enc (pk,r;) to the cloud server.

3: The cloud server initializes c¢{"¢ <— HE.Enc (pk, ry).

4 for je[l,...,P]do

5: for l e [l),rsr-. ., 00, do

6: Cloud server generates random sample s; € Z7,
secret shares ([M]1,..., [M;]r+1) ¢ ADD.Shr (M;, T+
1) and ([sy]1, ..., [St]7+1) < ADD.Shr(s;, T + 1).

7: The cloud server sends [M;], and [s;], to the edge
server v, v € [v],..., 07 4]

8: The cloud server encrypts: M7"™¢ —
HE.Enc (pk, M), s <= HE.Enc (pk, s;) .

9: The cloud server computes M7 - cf™¢ 4- s7"¢.

10: if [ only has linear operations then

11: The cloud server determines cf}'] < Mj"® -
Clenc + slenc.

12: else

13: The cloud server sends Mj"¢ - ¢ + s{"¢ to
the client.

14: The client sends HE.Enc (pk,r;11) to the
cloud server.

15: The cloud server determines cf}{ <«
HE.Enc (pk, ri41).

16: The client, garbler, and evaluator server run
Algorithm 2.

17: end if

18: end for

19: end for

20: if L only has linear operations then

21: The cloud server sends ¢7" to the client.

22: end if

Our privateMDI protocol is divided into two phases:
offline and online, similar to some previous work [1]-[4],
[10], [24]. The goal behind having two phases is to move
the computationally intensive aspects to the offline phase and
make the online phase, which calculates the ML model output,
faster. Also, the offline phase is designed to minimize the
communication overhead between the client and the cloud
server, which is the bottleneck link in the online phase. The
offline phase (i) exchanges keys between the client and cloud
server, (ii) shares the secret ML model with the edge servers,

and (iii) exchanges the garbled circuits and two out of three
inputs of the garbled circuits labels. We note that the offline
phase does not use and is independent of the client’s data x, but
makes the system ready for the online phase, i.e., computing
the ML inference M(x).

We note that an ML model consists of linear and non-linear
layers. In our privateMDI design, we use additive secret
sharing, linear homomorphic encryption for linear operations,
garbled circuit, and three-party oblivious transfer for non-linear
operations. As we mentioned earlier, our privateMDI design
is generic enough to work with any non-linear functions. Next,
we will describe the details of the offline and online parts of
the privateMDI.

A. Offline privateMDI

In this section, we describe the details of the offline
privateMDI protocol. The overall operation is summarized
in Algorithm 1.

The cloud server has the ML model parameters M =
(Mi,...,Mp). In the initialization phase of the algorithm
(lines 1-2), the client generates a pair of (pk,sk) using
HE.KeyGen and a random sample r; over Zf}, and sends
HE.Enc (pk,r1) to the cloud server. We note that r;,s; € ZZL
are random samples of length n generated by the client and
cloud server for ML model layer [, respectively. The cloud
server initializes c{"¢ with the received ciphertext r; from the
client according to c{"¢ <— HE.Enc (pk,r1).

Next, the offline protocol shares encrypted model parameters
and keys (garbles circuit labels) for each cluster of edges,
where there are P clusters. We note that there are T+ 2 edge
servers in each cluster. Each cluster j processes the set of layers
[ earss-- 12,4 that are assigned to cluster j employing the
adaptive model-distribution algorithm AR-MDI described in
Section III, where 7, ., and I/, , are the first and last assigned

star
layers to cluster j.

Algorithm 2 Garbled circuit and oblivious transfer operation
in a cluster in the offline phase.
Input: Circuit C.
1: The garbler server runs the GS.Garble algorithm on
circuit C' and outputs C' and the garbled labels.
2: The garbler server sends C to the evaluator server.
3: The garbler server, evaluator server, and client run the
three-party OT algorithm.
4: The evaluator server receives the garbled labels of M -
c;+s;and ry4q.

The cloud server generates random sample s; over Zj,
calculates 7'+ 1 additive secret shares of the model parameters
M, and the random samples s; (line 6). We note that s;
provides privacy for the ML model parameters against client
and edge servers. Then, it sends each share ([M;], and [s;],,)
to the edge server v of cluster j (line 7). We note that v
is any edge server in cluster j such that v € [v],..., v}, ]
excluding the evaluator server. The cloud server encrypts
M, and s; and determines the enycrpted versions Mj™¢ <



HE.Enc (pk, M;), sj"® <= HE.Enc (pk,s;) (line 8). The
cloud server computes M7"™¢ - cf"¢ + s by executing the
HE.Eval algorithm on Mj"¢, ¢{™¢, and s7"¢ (line 9).

Next, the offline privateMDI determines cfﬁf, which
is a secret share needed in the online part. Depending on
whether a layer of the ML model has only linear or non-
linear components, the calculation of cj}'{ differs. If a layer
only has linear components, the cloud server determines
ey < My - ¢ + s (line 11).

The following steps (lines 13-16) are performed if layer [ has
non-linear components. First, the cloud server sends IMj™¢ -
c{™¢ + s7"¢, computed in the linear part, to the client. Then
the client sends a new random sample HE .Enc (pk, r;41) to
the cloud server, and the cloud server determines cfﬁ with
HE.Enc (pk,r;41). Finally, the garbled circuit is used to
compute the non-linear activation function privately.

In particular, cluster j’s garbler and evaluator servers and the
client run Algorithm 2. Using this algorithm, the garbler server
in the cluster runs the GS.Garble algorithm on the input
circuit C' and sends the output to the evaluator server (lines
1-2 of Algorithm 2). Next, the client, garbler, and evaluator
server run the three-party OT algorithm described in Section
IIT (line 3 of Algorithm 2). At the end, the evaluator receives
the labels corresponding to M - ¢; 4+ s; and r;41, two out of
three inputs of the garbled circuit, where M; - ¢; + s; is the
decrypted value of M7"¢ - ¢y +s7"¢. Note that the circuit C'
is a boolean circuit. Assuming that the non-linearity is due to
the ReLU function as an example (noting that our algorithm
works with any non-linear functions), the circuit C' computes
the results in the following order.

D M, -x; = (M;-c;+s;) + (M(x; — ¢;) — s;), where
the second term (i.e., (M;(x; — ¢;) — s;)) is calculated
in the online phase.

2) Xi+1 = ReLU(Ml . Xl).

3) xXpp1 — Tt

In the last step of Algorithm 1, the cloud server sends the
ciphertext c7"¢ to the client (line 21) if the last layer is linear,
as it’s needed for the client in the online phase to decrypt the
inference result. If the last layer is non-linear, the client already
possesses the decrypted ¢, according to line 14.

B. Online privateMDI

The online phase of privateMDI is responsible for com-
puting the ML inference function M(x) given the client’s
data x. We note that there is no communication between
edge servers and the cloud server or the client, except for the
beginning of the algorithm, when the client sends the input data
to the first cluster to start the process, and at the end when the
last cluster sends the result of the inference to the client. The
online phase is summarized in Algorithm 3.

First, the client sends a secret share of its input x masked by
its random sample r; to the garbler server of the first cluster,
denoted as x; — ¢y, where x; < x and c¢; < ry (line 1).
Then, each layer [ assigned to cluster j is processed with input
x; — ¢, where ¢; is the decrypted value of cj"¢, determined
in the offline phase. We note that the input of every layer is

denoted by x; — ¢;, where x; is the output of the previous [ —1
layers.

The cluster j performs linear computations of layer [ (if there
is any) on input x; — ¢; to produce the output M;(x; —¢;) —s;.

First, the garbler server sends the input of the current layer
X; — ¢; to the other T' computing edge servers. Next, each
computing edge server v, including the garbler server, uses
[M;], and [s;], and computes [M;],(x; — ¢;) — [si],. Note
that each computing edge server makes its output private from
the garbler server by adding [s;], to its computation. Then,
the garbler server runs the ADD . Re algorithm on the T secret
shares received from the computing edge servers and its own
share [MZ]T+1 (Xl —Cl) — [SZ]T+1’ and obtains M (Xl — Cl) —Si,
which is the input of the next layer, denoted as x;411 — ¢;41.

Note that for a purely linear layer, if we expand M;(x; —
c)—s;, we get: My -x;—M;-¢;—s; = M;-x;— (M -¢;+s)).
According to the definitions of x;; and c;4;, we have:
Mi(xi—c;)—s; =M;-x; — (M- ¢ +81) = Xy41 — €141,
which represents the input of the next layer, layer [ + 1.

Algorithm 3 Online privateMDI operation.

Input: The client’s input data x and the cloud server’s model
parameters M.

1: The client sends a secret share of its input x masked by its
random share r; to the garbler server of the first cluster,
denoted as x; — ¢q, where x; < x and ¢; < ry.

2. for je[l,...,Pldo

: forle [y, .. 10 ] do
4: The cluster j performs linear operations on x; — ¢;
and determines M, (x; — ¢;) — s;
if [ has non-linear components then
The garbler and evaluator server run Algorithm
4, and outputs X;41 — ¢;41, where ¢; 11 =141.
end if
end for
9: The garbler server sends x;;; — c;4; to the garbler
server of the next cluster.

10: end for

11: The garbler server of the last cluster sends X741 — Ccr41
to the client.

12: The client unmasks the above secret share and obtains the
inference result M(x) = x7,41.

Output: Result of the inference M(x) on the client side.

If [ has non-linear components, the garbler and evaluator
server run Algorithm 4. This algorithm requires three sets of
inputs: M;(x; — ¢;) — s, calculated by the garbler server, r; 1,
a random sample generated by the client to ensure the layer
output’s privacy, and M; -c; +s;, calculated by the cloud server
and sent to the client in the offline phase.

The evaluator server obtains two sets of labels in the offline
phase via the three-party OT protocol in Fig. 3. The garbler
server sends the last set of labels corresponding to its output
in the linear part, denoted as M;(x; — ¢;) — s; (line 1 of
Algorithm 4). We don’t need OT to exchange the labels of this



input. This justifies the garbler server’s choice as the cluster’s
head server, responsible for communicating with the other
edge servers of the cluster. Otherwise, it would increase the
amount of communication. Then, with all the required labels
and circuits, the evaluator server runs the GS.Eval algorithm
and calculates C' (M - x;) —r;11, denoted by x;41 —r;41 (line
2 of Algorithm 4). Finally, the evaluator server sends the result
(X741 — Iry+1) back to the garbler server (line 3 of Algorithm
4).

Algorithm 4 Handling non-linearity in the online phase.
Input: The garbled labels of M; - ¢; + s; and r;4; stored by
the evaluator server.
1: The garbler server sends the corresponding labels of the
input M, (x; — ¢;) — s; to the evaluator server.
2: The evaluator server runs GS .Eval and calculates C'(M;-
X;) — ri+1, denoted by x;41 — ry41.
3: The evaluator server sends the result back to the garbler
server.
Output: x;11 — 1471

Cluster j performs all the linear and non-linear parts of all
the layers assigned to it in Algorithm 3. Ultimately, the garbler
server forwards the cluster’s result either to the next cluster if
lin 4 1s the final layer allocated to cluster j (line 9) or the client
(line 11) if I, is the ML model’s final layer L, i.e., I’ , = L.
Finally, the client unmasks the secret share x74; — cr4+1 and
obtains the inference result M(x) = xr,1.

V. PRIVACY AND COMMUNICATION ANALYSIS

In this section, we analyze privateMDI in terms of its
privacy guarantee and communication overhead.

A. Privacy

Definition 1. A cryptographic inference protocol 11 involves a
cloud server with model parameters M = (M1, Ma, ..., M;),
a client with an input vector X, and P clusters, each containing
T computing edge servers, a garbler server, and an evaluator
server. The protocol is considered secure if it satisfies the
following conditions:

Correctness: The protocol ensures that for any given set of
model parameters M held by the cloud server and any input
vector X provided by the client, the client receives the correct
prediction M(xX) after executing the protocol.

Security: Consider the following scenarios:

Compromised cloud server: A semi-honest cloud server, even
if partially compromised, should not learn the client’s private
input x. This is formally captured by the existence of an
efficient simulator Scs such that Viewgs ~. Scs(M), where
Viewcns denotes the cloud server’s view during the protocol
execution.

Compromised client: A semi-honest client, even if compro-
mised, should not learn the cloud server’s model parameters
M. This is formally captured by the existence of an efficient
simulator Sc such that Viewss =, Sc(X,y), where Views de-
notes the client’s view during the protocol execution, including

the input, randomness, and protocol transcript, and y is the
output of the inference.

Compromised edge server: Semi-honest edge servers within
a cluster should not gain information about the client’s input
X or the cloud server’s model parameters VM. This is formally
captured by the existence of an efficient simulator Sgs for each
edge server 1, such that Viewgs,i ~. Sgs,, where View}%yi
denotes the view of the edge server during the protocol
execution. The edge server can be a computing edge server,
a garbler server, or an evaluator server, i < C, G, E.

Theorem 1. privateMDI is secure according to Definition
I assuming the use of secure garbled circuits, linearly homo-
morphic encryption, and three-party OT.

Proof. We use simulation-based, hybrid arguments to prove
Theorem 1 as detailed in Appendix B of [29]. 0

B. Communication Overhead

We analyze the communication overhead of privateMDI
as compared to Delphi [3], SecureNN [5], and Falcon [6] as
summarized in Table L. In this context, T" represents the number
of colluding edge servers in a cluster, N is the number of bits in
a single input data x € Zg, ~ denotes the length of the garbled
circuit labels, N, is the number of bits in homomorphically
encrypted data, and |GC| indicates the number of bits required
to transmit the garbled circuits. Additionally, & denotes the
dimension of the square input matrix to a layer, g is the
dimension of the kernel corresponding to the layer, and ¢ and o
represent the number of input and output channels, respectively.
p is the smaller field size in SecureNN [5].

Each row in Table I shows the number of communication
rounds and the amount of data (bits) exchanged between the
following pairs: the cloud server and the client, the client
and the edge server, and two edge servers. We exclude the
communication overhead between the cloud server and edge
servers, as they are usually connected via high-speed links. The
critical insight from this table is that privateMDI offloads
as much communication as possible to the edge servers in the
offline phase. In contrast to Delphi, which follows a client-
server model, privateMDI shifts the bottleneck (sending the
GCs) to the edge servers and eliminates online phase commu-
nication between the client and the cloud server. SecureNN
does not separate the protocol into online and offline phases
and has high communication overhead. Only Falcon has better
communication overhead as compared to privateMDI, but
it is limited in the sense that it (i) only supports a few non-
linear functions, (ii) has higher linear computation overhead,
(iii) does not support model-distributed inference, and (iv)
cannot tolerate collusion among multiple parties due its use
of replicated secret sharing. Section VI confirms our analysis
and shows that privateMDI reduces ML inference time as
compared to Delphi, SecureNN, and Falcon. More details are
provided in Appendix C of [29].

VI. EVALUATION

In this section, we evaluate the performance of our protocol
privateMDI in a real testbed. We will first describe our
experimental setup and then provide our results.



TABLE I: Communication overhead analysis. CS: Cloud Server (Model Owner), C: Client (Data Owner), and ES: Edge Server

Delphi Offline Delphi Online SecureNN Falcon privateMDI Offline privateMDI Online
Layer Component
Rds. Comm. Rds. Comm. Rds. Comm. Rds. Comm. Rds. Comm. Rds. Comm.
Cs-C linear 2 2Nene 2 2N - - - - 2 2Nene - -
non-linear 3 |GC| + 2Nk 1 Nk - - - - - - - -
linear - - - - - - - - - -
C-ES non-linear - - - - - - 6 2N (26 +1) - -
(h2g%i +
linear - - - - 2 2g20i + 1 (h?0)N 2 (h?%i+h%0)N
ES-ES h20)N
. (8logp + 5+ ) .
non-linear - - - - 10 24)N log N 0.5N 1 |GC| 1 Nk

Experimental Setup. To run our experiments, we used a
desktop computer with an Intel Core i7-8700 CPU at 3.20GHz
with 16GB of RAM as the cloud server and different instances
of Jetstream2 [34] from ACCESS [11] as the edge servers
and the client. Specifically, for the first four clusters (of
edge servers) of privateMDI, we used m3.quad as the
computing edge server, m3.x1 as the garbler server, and
m3.2x1 as the evaluator server. For clusters 4 to 6, we used
m3.quad as the computing edge server, m3.large as the
garbler server, and m3.x1 as the evaluator server. For clusters
7 and 8, we used m3.quad as the computing edge server,
m3.medium as the garbler server, and m3.large as the
evaluator server. We used an instance of m3.medium as the
client. All the devices are connected via TCP connections. We
compare privateMDI with baselines Delphi [3], SecureNN
[5], and Falcon [6].

To ensure a fair comparison with Delphi, we utilized the
same instance types for the client (m3.medium on Jetstream?2)
and the cloud server (a desktop computer equipped with an
Intel Core i7-8700 CPU at 3.20 GHz with 16 GB of RAM)
as described in the privateMDI setup. Additionally, we
conducted experiments with various Jetstream?2 instance types
to verify that Delphi’s computational setup does not negatively
impact their latency. For our comparison with Falcon, we
employed three m3.2x1 instances on Jetstream?2.

We used the following ML architectures and datasets to run
the experiments: (i) The ML model in Figure 13 of MiniONN
[1] on the CIFAR-10 dataset; (ii) ResNet32 model introduced
in [35] with CIFAR-100 dataset; (iii) The ML model in Figure
12 of MiniONN [1] on MNIST dataset, with Maxpool being
replaced by Meanpool; and (iv) VGG16 model introduced in
[36] on Tiny ImageNet dataset.

Results. Fig. 4 presents the ML inference time of
privateMDI as compared to Delphi in both offline and
online phases. Fig. 4(a) shows the delay of the offline pro-
tocols for both privateMDI and Delphi for the CIFAR-
10 dataset on MiniONN architecture. As seen, privateMDI
significantly improves the offline delay as compared to Delphi,
thanks to reducing the communication overhead. As seen, the
increasing number of clusters does not affect the offline delay
in privateMDI, because model-distributed inference only
affects the delay in the online phase. Indeed, Fig. 4(b) shows
that the ML inference time of privateMDI is significantly
lower than Delphi in the same setup and decreases with the
increasing number of clusters thanks to model distribution.

MiniONN on CIFAR-10 dataset MiniONN on CIFAR-10 dataset

RN AN S AN N L e
hd a2 > » o' © A’ @ ~ '

(a) Offline. CIFAR-10 on MiniONN (b) Online. CIFAR-10 on MiniONN

ResNet32 on CIFAR-100 dataset ResNet32 on CIFAR-100 dataset

nce Time (secfimage)

(c) Offline. CIFAR-100 on ResNet32 (d) Online. CIFAR-100 on ResNet32

Fig. 4: ML inference time of privateMDI in online and
offline phases with increasing number of clusters.

Fig. 4(c) and (d) show the ML inference time in the offline
and online phases for the CIFAR-100 dataset and ResNet32
architecture. As seen, the improvement of privateMDI as
compared to Delphi is more pronounced in this setup as
the dataset and the ML model are larger in this setup, and
privateMDI performs better in this setup, thanks to model
parallelization and reducing communication overhead.

TABLE II: ML inference time of privateMDI in the online
phase as compared to Falcon and SecureNN.

MiniONN AlexNet VGGI16

privateMDI 0.09 s 273 s 3.63s

Falcon 0.02 s 2.11s 5.12s
SecureNN 044 s -

Table II shows the ML inference time of privateMDI in
the online phase as compared to SecureNN and Falcon for
MiniONN, AlexNet, and VGG16 architectures. MNIST dataset
is used with the MiniONN, and Tiny ImageNet dataset is used
with the AlexNet and VGG16. privateMDI has 8 clusters
for AlexNet and VGGI16 and 7 clusters for MiniONN. As
seen, privateMDI improves over SecureNN in MiniONN.
However, Falcon’s improved communication cost, as discussed
in Section V-B, gives it an edge over smaller ML models
like MiniONN. As the models grow larger, the performance



gap narrows. While privateMDI shows improvements but
does not outperform Falcon in AlexNet, it demonstrates sig-
nificant improvement in the VGG16 setup due to the bene-
fits of model-distributed inference, which become more pro-
nounced with larger ML models and datasets. Further results of
privateMDI on the VGG16 ML model for different numbers
of clusters are provided in Appendix D of [29].

VII. CONCLUSION

This paper designed privacy-preserving hierarchical model-
distributed inference, privateMDI protocol to speed up ML
inference in a hierarchical setup while providing privacy to both
data and ML model. Our privateMDTI design (i) uses model-
distributed inference at the edge servers, (ii) reduces the amount
of communication to/from the cloud server to reduce ML
inference time, and (iii) uses additive secret sharing with HE,
which reduces the number of computations. The experimental
results demonstrated that privateMDI significantly reduced
the ML inference time as compared to the baselines.
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