
1. Introduction
In 2012, the National Academies challenged climate modelers to address an expanding range of scientific prob-
lems through more accurate projections of environmental conditions (Bretherton et al., 2012). The hydrologic 
community has faced a similar challenge with calls for higher resolution forecasts and projections across increas-
ingly large domains (Archfield et al., 2015; Bierkens, 2015; Wood et al., 2011). These forecasts are not only crit-
ical for enhanced flood prediction and emergency response (Johnson et al., 2018, 2019, 2022; Maidment, 2016; 
Salas et al., 2017) but for seasonal supply forecasts that support agriculture, reservoir operations, and commerce 
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in the face of global change (Hirabayashi et  al.,  2013; Mazrooei et  al.,  2015; Van Loon et  al.,  2016; Wens 

et al., 2019).

Traditionally, the hydrologic modeling community has used catchment and land surface models (LSM) to 

represent the energy and water components of the earth system (Archfield et al., 2015). For example, official 

streamflow forecasts in the U.S. are issued by the 13 river forecasting centers (RFC) across ∼3,600 catchments 

(Adams, 2016; Burnash, 1995; Salas et al., 2017). To increase spatial coverage, many modeling systems use grid 

based LSMs to simulate hydrologic and energy fluxes. The ability for LSMs to provide discretized water balance 

states has long been recognized (Maurer et al., 2001; Nijssen et al., 2001) and many studies have produced reanal-

ysis products and/or evaluated the long-term state of water fluxes in these outputs (Livneh et al., 2013; Maurer 

et al., 2002; Pekel et al., 2016).

While many land surface models (LSMs) can be used for continental-scale hydrologic modeling, they were 

historically built to provide land surface boundary conditions in coupled climate models. In that role, LSMs have 

a stronger focus on closing the energy balance than most catchment models (Archfield et al., 2015). However, 

large-scale LSMs have two primary limitations for producing accurate hydrologic predictions. The first is that 

computing fluxes at a grid scale limits the ability to produce river flow in channels without a separate routing 

model (Li et al., 2016). The second is that when the same models and parameters are applied across the entire 

domain, location-specific performance tends to degrade. For example, Cai, Yang, Xia, et al. (2014) compared 

four LSMs across the continental United States (CONUS) using the North American Land Data Assimilation 

System (NLDAS) test bed (Cai, Yang, Xia, et al., 2014) and in each model, the relative bias in the continen-

tal evaluations were larger than those in regional studies (Abdulla et al., 1996; Cai, Yang, David, et al., 2014; 

Christensen et al., 2004).

Further, as model domains expand, the methods used to evaluate, and synthesis findings become more complex. 

To date, most hydrologic studies focus on a small number of watersheds to provide comprehensive assess-

ments. These localized insights cannot easily inform general hydrologic concepts across diverse regions (Gupta 

et al., 2014; Newman et al., 2015). Because of this, there is a fundamental need to facilitate large-sample hydro-

logic studies with large-sample basin data sets.

In 2016, the NOAA National Weather Service Office of Water Prediction undertook the role of providing 

reach-level forecasts for the entire U.S. steam network to enhance the authoritative forecasts provided by the 

RFCs through the National Water Model (NWM). The WRF-Hydro based NWM provides a continental-scale 

modeling framework that integrates an operational forcing model, a high-resolution land surface model, and 

high-resolution overland flow, shallow subsurface flow, conceptual baseflow, channel routing, and passive reser-

voir routing modules. The resolution of each of these components, paired with the geographic extent, make this 

the only operational model of its class.

Today, the NWM is in its fifth version (v2.2) and some releases include a multi-decade historical simulation 

(NOAA National Water Model CONUS Retrospective Dataset, n.d.). Versions 1.2 and 2.0 of the historical simu-

lations used the NLDAS/NARR meteorological forcings (Cosgrove et al., 2003, 2020; Mitchell et al., 2004; Mo 

et al., 2012) while v2.1 used the Analysis of Record for Calibration data set (H. Kim & Villarini, 2022; Kitzmiller 

et al., 2018). In this study, we evaluate version 2.0 of the NWM, despite the release of a historic simulation asso-

ciated with version of 2.1, given there is a larger community understanding of the NLDAS forcings.

While the NWM historic simulations lack aspects of the operational model, including data assimilation and 

reservoir management, the historical products provide an opportunity to better understand where and why the 

WRF-Hydro implementation of the NWM performs well/poorly to provide guidance on the areas and processes 

that might be prioritized in ongoing model development.

To date, the NWM has seen several regional and CONUS wide evaluations and model intercomparisons. For exam-

ple, Salas et al. evaluated an uncalibrated version of WRF-Hydro for the summer of 2015 at 5,700 gauges, provid-

ing a benchmark for the evolving hydrology program within the National Weather Service (Salas et al., 2017). 

Lin et al. evaluated streamflow prediction in Texas, finding that dry regions are strongly affected by a positive 

bias (Lin et al., 2018). Rojas et al. evaluated NWM v1.0 in Iowa finding performance was linked to the size of 

the contributing basins with the best performance occurring in basins larger than 10,000 km 2 (Rojas et al., 2020). 

Other efforts have focused on addressing a range of model intercomparison questions to identify optimal model 

parametrization, the best performing climate and forcings, and suitable physics formulations (Clark et al., 2015; 
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Eyring et al., 2016; Kollet et al., 2017). In 2021, Tijerina et al. focused on model biases arising from the simulated 

streamflow using Flow-CLM (PF-CONUS) version 1.0 and the NWM version 1.2 configuration of WRF-Hydro. 

Their work highlighted the need for a regionalized modeling framework. Towler et al. (2023) used the National 

Hydrology Model (NHM) v1.0 and NWM v2.1 to evaluate model performance against a climatological bench-

mark that incorporated seasonality, spatial patterns, and human influences. Their proposed climatological bench-

mark offers a framework to screen sites for targeted model application, diagnostics, and development.

Some applications have also focused on using the historical simulations to study issues such as seasonal low flow 

in the Colorado River basin (Hansen et al., 2019), the one-way surface-groundwater flux in the Northern High 

Plains Aquifer during extreme flow events (Jachens et al., 2020), operational flood map generation (Johnson 

et  al.,  2019), cross section representation (Brackins et  al.,  2021), and reservoir inflow performance (Viterbo 

et al., 2020). In the latter, the authors specifically found that NWM inflows in snow-driven basins outperformed 

those in rain-driven and that basin area, upstream management, and calibrated basin area influenced the ability 

to reproduce daily reservoir inflows. Together, these studies highlight the utility of the NWM for operations 

and scientific research, as well as some regional drivers that impact performance. To date, there has been no 

published, CONUS wide, evaluation of the NWM streamflow outputs over the full 26-year record of simulation 

provided by v2.0. Given the attention, funding, and mission of the NWM, our first goal is introducing such an 

evaluation to the literature using a large-sample basin data set.

Looking forward, the NOAA Office of Water Prediction has recognized the limitations of a large scale LSM 

and acknowledged that improvements from calibration alone are beginning to plateau (Ogden et al., 2021). This 

phenomenon is not unique to CONUS and the NWM as there is no single best hydrologic model, or model config-

uration, that can optimize performance across large spatiotemporal domains.

This acknowledgment sparked the NOAA supported Next Generation Water Resource Modeling Framework 

(NextGen) as a means for running heterogenous model formulations in a single application based on an open 

source, standards-based, framework (Blodgett & Dornblut, 2018; Blodgett & Johnson, 2022; Ogden et al., 2021; 

Peckham et  al.,  2013). The NextGen  framework provides an opportunity to regionally configure streamflow 

generation processes but introduces the questions of (a) what regional traits are currently limiting model skill, (b) 

what areas of the country most critically need improvement, and (c) what processes (determined by geophysical 

characteristics) are driving performance and bias. With the increasing advancements of the NextGen Framework, 

there is a need for a comprehensive understanding, along with methods for identifying, the specific regions and 

types of processes where performance is suboptimal.

Our hypothesis is that any model, running a single set of physics, cannot be “properly” calibrated for the range 

of hydroclimatic diversity as seen in the CONUS. However, an evaluation of a model's performance and bias 

in relation to geospatial catchment characteristics can reveal patterns that speak to a given model formulations 

strengths and weaknesses across space.

The role of this paper is three-fold. First it introduces a general, interpretable framework for evaluating hydro-

logic model performance and bias across large basin data sets in relation to catchment characteristics. Second it 

evaluates the full 26-year NWM v2.0 simulation to help the research community better understand the state of 

the current NWM across in relation to these basin characteristics. Lastly, it highlights the role NextGen can play 

in improving model skill, the need for studies like ours to inform the parameterization and selection of heteroge-

neous models and needed areas of research related to the NextGen framework.

2. Data
This section outlines our basin selection, the streamflow records compared, and the creation of catchment 

characteristics.

2.1. Gaging Locations and Streamflow Records

Gage locations were selected from the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) 

data set (Falcone, 2011). One of the GAGES-II goals was to identify watersheds with minimally disturbed hydro-

logic conditions (“reference gages”) within 12 major ecoregions. The classification of reference, or natural, basins 

in the GAGES-II data set goes beyond those in the USGS Hydro-Climatic Data Network, which focused on gages 
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that experienced natural flow regimes at some point in the past (Slack et al., 1993). The USGS site IDs associated 

with these gages were used to collect daily streamflow data from the National Water Information System (NWIS) 

using the dataRetrieval R package (De Cicco et al., 2018) and only those with at least 10 years of daily observed 

flow between 1 January 1993 and 31 December 2018, a total drainage area between 20 and 20,000 km 2, and that 

were completely within CONUS were retained. Figure S1 in Supporting Information S1 shows the locations of 

the controlled and natural basins overlayed on a map of 26-year mean aridity index (AI) values in CONUS.

The historical record for NWM v2.0 is approximately 40 TB in size, 10 TB of which is the channel point files 

containing streamflow. Johnson et al. (2023) restructured this data set to support broad scale applications and the 

data are accessible through the nwmTools R package (Johnson & Blodgett, 2020; Johnson et al., 2023). Hourly 

records were summarized to daily averages to remain consistent with the NWIS observations, and, in total, 4,236 

basins are available for analysis with natural basins making up ∼21% of the data set.

2.2. Basin Characteristics

All physical and machine learning models rely on accurate geospatial data to discretize and parameterize the 

models. High-quality data sets are essential for hydrological modeling and evaluation. The utility of the catchment 

characteristics includes but is not limited to categorizing performance, building statistical and data-driven  models 

(Kratzert et al., 2019), regionalizing parameters from gauged to ungauged basins (Guo et al., 2021), informing 

modeling efforts focusing on the dominant hydrological processes for each landscape and hydroclimate (Jehn 

et al., 2020), better understanding hydrological organization, scaling, and similarity (Peters-Lidard et al., 2017), 

and providing an additional tool to guarantee that the “right answers” are being obtained for the “right reasons” 

(Kirchner, 2006). Here, we define and construct a set of landscape characteristics to help characterize NWM 

performance. Table  1 identifies the catchment characteristics tested and their source, description, range, and 

units.

Name Source Description Range Units

Area USGS Gages-II Drainage Area of Basin 20–19,916 km 2

Mean PPT NLDAS-2 monthly primary forcing “File A” 

data

Monthly total mm, summarized to mean Annual Rainfall 14–399 cm

Mean PET NLDAS-2 monthly primary forcing “File A” 

data

Monthly total potential evaporation (PEVAP), summarized to 

mean Annual Potential evaporation

58–313 cm

Mean Aridity Computed Mean Annual (PET/PPT) 0–19 Unitless

Mean Correlation Computed Mean {cor(PET, PPT)} −1–1 Unitless

Impervious Percent NLCD Impervious 2019 Mean Imperviousness 0–57 %

Water NLCD Landcover 2019 NLCD Class 1 0–100 %

Urban NLCD Landcover 2019 NLCD Class 2 0–99 %

Barren NLCD Landcover 2019 NLCD Class 3 0–99 %

Forest NLCD Landcover 2019 NLCD Class 4 0–99 %

Shrubland NLCD Landcover 2019 NLCD Class 5 0–95 %

Herbaceous NLCD Landcover 2019 NLCD Class 7 0–95 %

Agriculture NLCD Landcover 2019 NLCD Class 8 0–80 %

Wetland NLCD Landcover 2019 NLCD Class 9 0–15 %

Total Dams USACE NID Number of dams in drainage basin 1–2,040 Count

Total Storage USACE NID Sum of maximum storage of all dams in drainage basin 0–149 km 3

Snow Depth Mean NLDAS VIC Land Surface Model L4 Hourly 

0.125° × 0.125° V002

Snowfall (frozen precipitation) (kg/m 2) 0–89 cm

Snow Fraction NLDAS VIC Land Surface Model L4 Hourly 

0.125° × 0.125° V002

Mean Annual Snow Cover Fraction 0–69 %

Table 1 
Catchment Characteristics Evaluated in This Study
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2.2.1. Landscape Characteristics

Noah-MP is a spatially distributed LSM with multiple options for land-atmosphere interaction processes (Niu 

et al., 2011). To determine parameter values for specific computational elements, the model relies heavily on land 

cover and soil inputs. In total, 49 parameters are assigned based off the land cover assigned to a cell using the 

MPTABLE (Barlage, 2017). Noted limitations of this lookup approach are that all pixels with the same vegetation 

have the same parameters, across space and time (except for two cases of climate Seasonality and Asynchrony 

Index (SAI) and Leaf Area Index (LAI) (Barlage, 2017; D. H. D. Kim et al., 2023). To explore the impacts of land 

cover on model performance, the percentage of each Anderson level 1 land cover class (9 in total) from the 2019 

National Land Cover Data set (NLCD) was determined (Anderson, 1976; Homer et al., n.d.; L. Yang et al., 2018). 

The total impervious surface was also determined from the 2019 NLCD Impervious data product.

2.2.2. Meteorological Characteristics

Following Lin's et al. (2018) analysis of the NWM in Texas, Cai, Yang, Xia's, et al. (2014) broad evaluation of 

LSMs, and Peterson's et al. (2012) evaluation of LSM's, we identified several energy and moisture flux variables 

that could influence model performance. These include monthly potential evaporation (PET; 
kg

m2
), precipitation 

(PPT; 
kg

m2
), Aridtiy Index (AI), moisture-and-energy phase correlation, mean snow depth, and mean snow cover-

age fraction. PET and PPT were obtained from the primary forcing data of NLDAS-2 for January 1993 through 

December 2018. For each basin the mean monthly PET and PPT were summarized over the basin area using a 

method that weighted partially covered grid cells by the percentage of containment. AI was calculated as the 

ratio of annual mean PPT to annual mean PET 
(

PET

PPT

)
 to help categorize basins as energy- or moisture-limited, 

where an AI < 0.3 is humid, an AI between 0.3 and 1 is semi-humid, between 1 and 2 temperate, between 2 and 

3 semi-arid, and greater than 3 arid.

The covariability between the monthly cycles of moisture and energy is estimated by the correlation between 

monthly PPT and PET (ρ(PPT,PET)) (Abdulla & Lettenmaier, 1997; Sankarasubramanian & Vogel, 2002). These 

values range from −1 to +1 and when covariability is greater than −0.4 or less than +0.4 there is evidence the 

precipitation and temperature cycles are out-of-phase (Petersen et al., 2012). The Spearman correlation coeffi-

cient was determined for each NLDAS cell using the mean monthly PET and PPT over the 26 years. From this, a 

mean value was determined for each basin. Overall, this term expresses the correlation between the precipitation 

and PET, or the moisture-and-energy phase correlation. From here on out, we refer to this term as the phase 

correlation (see Figure S2 in Supporting Information S1 for more information).

Lastly, snow cover fraction and Water Equivalent of Accumulated Snow Depth (WEASD; kg/m2) were taken 

from the NLDAS-2 Noah Land Surface Model L4 Hourly 0.125° × 0.125° V002 outputs and summarized to a 

mean annual basin value.

2.2.3. Anthropogenic Characteristics

The anthropogenic influence in each basin is approximated by counting the number of 2019 United States Army 

Corp of Engineers National Inventory of Dams (USACE NID; National Inventory of Dams, 2019) in each basin 

as well as the cumulative storage (NID_STORAGE). In total, 3,970 of the 91,457 dams (4.34%) in the USA have 

either 0 or “NA” storage reported. In these cases, these dams did not contribute to the total storage, but were 

included in the total dam count.

3. Methods
3.1. Goodness of Fit Metrics

To assess model performance, we focus on how well the NWMMv2.0 simulations capture the observed USGS 

streamflow at a daily timescale. To do this, the Nash-Sutcliffe Efficiency (NSE) was calculated for each location 

(Equation 1; Nash & Sutcliffe, 1970).

NSE = 1 −

𝑇∑
𝑡=1

(
𝑄

𝑡

𝑚 − 𝑄
𝑡

𝑜

)2

𝑇∑
𝑡=1

(
𝑄

𝑡

𝑜 − mean𝑄
𝑡

𝑜

)2 (1)
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where Qo is the observed and Qm is the modeled streamflow, both at time (t).

An NSE of 1.0 represents perfect agreement between the modeled and observed values and an NSE of 0.0 occurs 

when the modeled error variance is equal to the observed variance from the mean. NSE can become negative 

when the error variance in the modeled record is greater than in the observed record, suggesting the observed 

mean would be a better predictor than the model. Here we chose NSE decomposition over widely used metrics 

(i.e., Kling–Gupta efficiency) as the error decomposition empowers useful and insightful diagnostics.

Subjective NSE thresholds have been suggested by several authors (Criss & Winston, 2008; McCuen et al., 2006; 

Moriasi et al., 2007; Ritter & Muñoz-Carpena, 2013) and we adopt those used for categorizing performance on 

monthly time steps (as there are none for daily steps), stating a NSE greater than 0.75 is “very good,” a NSE 

between 0.65 and 0.75 is “good,” an NSE between 0.5 and 0.65 is “satisfactory,” and those less than 0.5 are 

“unsatisfactory” (Moriasi et al., 2007). These could be considered too strict for the daily evaluation performed 

here, but, they provide a general qualitative categorization.

With more than 4,000 sites being evaluated, the lower NSE limit of −∞ can be problematic and in these cases, 

a Normalized NSE (NNSE) rescaled to the range of {0,1} is computed (Equation 2; Nossent & Bauwens, 2012).

NNSE =
1

2 − NSE
(2)

With this transformation, values of 1 are still interpreted as a perfect fit and values <0.5 represent cases where the 

NSE is less than 0 and the mean of the observed data is better than the model.

To further support evaluation, NSE can be decomposed into components representing the overall agreement of 

the model (A term), as well as conditional (B term) and unconditional (C term) bias making it easier to deter-

mine how different types of error are interrelated and what might cause a particular model—or location—to 

perform well or poorly (Murphy, 1988; Weglarczyk, 1998) (Equations 3–6). This disaggregation is shown in 

Equations 3–6.

NSE = A − B − C (3)

A = 𝑟
2 (4)

B =

(
𝑟 −

𝜎𝑠

𝜎𝑜

)2

(5)

C =

(
(𝜇𝑠 − 𝜇𝑜)

𝜎𝑜

)2

(6)

where r is the Pearson correlation coefficient; σo is the standard deviation of the observed flows; σs is the standard 

deviation of the simulated flows; μo is the mean of the observed flows; and μs is the mean of the simulated flows. 

The relationship among A, B, and C is illustrated in Figure 1.

3.2. Analysis of Variance ANOVA (Type II)

We used a series of analysis of variance (ANOVA) tests to find statistically significant catchment characteristics 

for accurately predicting streamflow. The principal test for ANOVA is the F statistic which is the ratio of variance 

caused by a treatment compared to the variance due to random chance. The ANOVA test assumes independence 

of observations, absence of significant outliers, data normality, and homogeneity of variances. The p-value asso-

ciated with the F statistic can be used to tell if there is a statistically significant difference between the categorical 

groups and the probability of getting a result at least as extreme assuming there is no difference in means.

In practice, a small p-value does not always translate to a practical significance and should be considered along-

side the effect size which represents the magnitude of the difference between groups (Sullivan & Feinn, 2012). 

While a p-value can determine if an effect exists, it will not reveal the size of the effect. Thus, gaging both prac-

tical (effect size) and statistical significance (p-value) is essential. The effect size reported here is the η2 squared.

𝜂
2
=

SSeffect

SStotal
(7)
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where SSeffect is the sum of squares of an effect for one variable and SStotal is the total sum of squares in the 

ANOVA model.

The value for η 2 can range from 0 to 1 and describes the proportion of variance that can be explained by a given 

variable in the model after accounting for variance explained by other variables in the model. A general baseline 

for interpreting η 2 states that (Cohen, 2013):

 η 2 > 0.01 indicates a small effect

 η 2 > 0.06 indicates a medium effect

 η 2 > 0.14 indicates a large effect

For our tests, we run independent ANOVA tests for each catchment characteristic in Table  1, on each NSE 

component, for natural basins and controlled basins (18 characteristics, 3 NSE metrics, 2 groups = 78 tests). Also, 

it should be noted that since multicollinearity is common in earth system models, variance inflation can occur, 

and one can expect the total explained variance from all variables to exceed 1.

Figure 1. Conceptual diagram illustrating how Nash-Sutcliffe Efficiency (NSE)-A, B, and C appear in a scatter plot of 

observed versus simulated flows. The pink trend line represents a perfect simulation while blue trend line represents a 

simulation with error and bias. Panel a shows a perfect simulation where A = 1 and there is no bias (B = C = 0). Panel b 

shows an example where there is no bias (B = C = 0) and high, but imperfect correlation (A < 1). Panel c shows the presence 

of conditional bias illustrated by the rotation of the regression line around the 1:1 plot center, thus B > 0. Panel d shows the 

presence of unconditional bias represented by the offset of the hypothetical regression line from a 1:1 line (C > 0).
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Since all predictor variables are continuous, and ANOVA is based on categorical groupings, we use a Jenks 

natural break classification to identify natural groupings within the complete set of data. Jenks natural breaks is a 

clustering method to determine a predefined number of groups that minimize each group's average deviation from 

the group mean, while maximizing each groups mean deviation from the mean of other classes. For each char-

acteristic, we started with four natural classes; however, in cases where natural groups were formed that resulted 

in any group having less than 10% of the overall population, we decreased the number of classes. In some cases, 

there are literature-driven values that we use in lieu of these clusters. For example, the classification for aridity 

and the Peterson 2012 classification for phase correlation are used.

We chose ANOVA over other statistical methods (e.g., regression) to identify the traits of locations with good/bad 

performance and high/low bias. If we understand where the model does poorly, what causes the poor performance, 

and what similarities systemically poor performing areas have, we can better understand the model and appropri-

ately apply its output. Future work can use this understanding to revise the formulations and parametrizations—

particularly with the advent of the NextGen system, and other efforts could seek to build on this to provide 

regression-based post-processing or error diagnostics. In each of these cases, understanding the most influential 

characteristics will be an advantageous start.

4. Results
4.1. NNSE

To understand the variability in the NWM performance, the NNSE results are visualized in Figure 2.

Figure 2a maps the NWIS gauges, split by controlled and natural categories, and colored by NNSE. On the left, 

the control basins show strong performance in the northeast, east, and south but exhibit weak performance west 

of the 100th meridian. The exception to this is along the western side of the Sierra Nevada Range where the AI is 

lower than the west region at large. In the controlled basins there is a qualitative impact of cities on NWM perfor-

mance, with low skill surrounds the Orlando, Charlotte, New York, Detroit, Chicago, and Nashville metropolitan 

areas in an otherwise well-performing east. In the humid west, the San Francisco Bay Area and Portland also 

underperform compared to their surroundings.

The natural basins demonstrate a more consistent performance east of the 100th meridian, however, performance 

begins to degrade west of this line. The extent of relative performance loss is less than in controlled basins.

In all basins, there are clear systematic drops in performance between the 105th and 95th meridians (see 

Figure  2b). When focusing on the controlled basins, the 50th percentile of locations achieves “satisfactory” 

performance, while west of the 95th meridian, the 75th percentile drops well below this mark. Not only does 

performance drop, but the variability increases as evidenced by the spread between the 25th and 75th percentiles. 

There is a slight recovery in performance starting around the 115th meridian, however variability remains high.

In examining the natural basins, the 75th percentile shows “satisfactory” performance, until the 100th meridian; 

however, the spread in variation is not as large as in controlled basins. West of the 105th meridian, the spread in 

variability increases, but to a lower level than in the controlled basins.

Figure 2c illustrates the empirical cumulative distribution function of NNSE grouped by basin and aridity clas-

sification. In this plot, the ideal curve would stay as low as possible on the y-axis for as long as possible along 

the x-axis. Humid basins outperform arid basins; natural basins outperform controlled basins; and the difference 

between controlled and natural classification is more noticeable in the humid basins. More than 55% of the 

controlled humid basins achieve “satisfactory” or better performance with over 75% of the natural humid basins 

meeting this goal. In the arid regions, approximately 85% of the basins (regardless of classification) exhibit 

“unsatisfactory” performance. Among those with “satisfactory” or better performance, the distinction between 

natural and controlled is non-existent.

4.2. NSE-A: Relative Performance

NSE-A represents the coefficient of determination between observed and simulated streamflow values. NSE-A 

values are mapped in Figure 3a while Figure 3b plots the 25th, 50th, and 75th percentile NSE-A, grouped by 

whole-degree longitude bands smoothed with a 5° rolling mean. Concerning NSE-A, the NWM performs better 

in the eastern part of the CONUS and along the west coast. The variability in NSE-A is greater in the west than in 
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the east, with the exception of natural basins in the humid west coast. Across the CONUS, the variation in NSE-A 

in controlled basins is greater than in natural basins however, the pattern in the longitudinal profiles are largely 

the same. Using the catchment characteristics identified in Table 1, a series of ANOVA tests were conducted to 

examine the effects of each characteristic on NSE-A in natural and controlled basins. Only those tests that yielded 

a statistically (p < 0.05) and practically (η 2 > 0.01) significant result are shown in Figure 3c. In each of these 

panels, a horizontal line is used to mark the mean NSE-A across all basins.

4.2.1. Meteorological Characteristics

We found a significant relationship between AI and NSE-A indicating that basins with lower values of AI 

had higher NSE-A (Figure 3ca). The effect size suggests that 45% of the variance in NSE-A can be explained 

Figure 2. (a) Normalized Nash-Sutcliffe Efficiency (NNSE) mapped by gage location, the midway color aligns with 

“Satisfactory” performance. (b) Shows the 25th, 50th, and 75th percentile NNSE for each band of longitude smoothed 

with a 5° rolling mean. The vertical lines at NNSE = 0.66, 0.74, and 0.80 represent the categories of “Unsatisfactory,” 

“Satisfactory,” “Good,” and “Very Good.” (c) NNSE cumulative distributions grouped by aridity and Geospatial Attributes of 

Gages for Evaluating Streamflow classification. The vertical lines represent the same qualitative groupings as panel b. Here 

red curves represent arid basins (aridity index [AI] > 2), and blue curves represent humid basins (AI < 2).
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Figure 3. (a) Nash-Sutcliffe Efficiency (NSE)-A split by natural and controlled basins. (b) 25th, 50th, and 75th percentile 

NSE-A for each band of longitude smoothed with a 5° rolling mean. (c) Mean NSE-A is plotted by catchment characteristics 

grouped according to Jenks optimization and classified by basin type. Only relationships that were statistically (p > 0.05) 

and practically (η 2 > 0.01) significant are shown. Plots are ordered according to effect size and titles are colored according 

to Cohen's effect size classification where green is a large effect size, orange a medium and red a small. A high value on the 

y-axis indicates better model performance. The black horizontal line across all plots is the mean NSE-A across all basins.
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by the aridity of a basin. In both controlled and natural basins NSE-A decreases by a factor of 2 when compar-

ing very humid to very arid basins. The second and fourth largest effect sizes belong to PPT (Figure 3cb) and 

PET (Figure  3cd), respectively. Naturally, these are highly correlated with aridity,  however, evaluating them 

independently shows that as there is more precipitation, the NWM can better predict streamflow. The contrast 

between dry and wet basins is slightly lower in controlled basins.

Unlike PPT and aridity, which show a steady pattern across groupings, the middle two sections of PET hover 

around the mean NSE-A. This suggests that only “extreme” low PET or “extreme” high PET have a high impact 

on performance. In all but basins with very high PET, natural basins perform better than controlled basins. In 

natural basins, out of phase moisture and energy correspond to better performance. In both controlled and natural 

basins, inphase moisture and energy produce worse performance. With respect to overall variance in NSE-A, PPT 

explains 31%, PET 18%, and mean phase correlation 13%. Lastly, as mean snow coverage (Figure 3ch) increases, 

so does general NSE-A performance.

When mean annual snow depth is between 0 and 10 cm, the NSE-A across all basins is near the overall mean. 

As snow depth increases, relative performance improves, particularly in natural basins. In a broad sense, across 

groupings, more PPT and snow increase model performance, while more PET, aridity, and phase correlation 

decrease model performance. Of course, some of these factors are correlated; for example, snowy basins are 

generally not arid.

4.2.2. Landscape Characteristics

We found a significant relationship between barren land and NSE-A, as higher percentages of barren land had 

higher NSE-A (see Figure 3cc). This relationship is particularly evident in natural basins and the effect size of 

20% highlights the significance of barren land. Imperviousness percentage (Figure 3cj) has the opposite effect 

and is only significant in controlled basins (as expected). When imperviousness is <15%, basins perform at the 

expected NSE-A mean; however, when more than 15% of the basin is impervious, the observed NSE-A perfor-

mance worsens.

The opposite is observed for forest (Figure 3cf) and shrubland (Figure 3cg). As each of these increases, NSE-A 

decreases. Vegetative classes (forests and shrublands) possess significant biomass that respond differently based 

on season and location. These changes impact both PET and actual ET which impacts model performance. In 

this case, we found that increased vegetation coverage in a basin corresponds to lower NSE-A. This effect is 

exacerbated in models where the same parameters (e.g., LAI) are applied to different hydroclimate regions (e.g., 

Arizona and Maine) (Johnson & Clarke, 2021). This pattern is also evident in the herbaceous land cover (grass-

lands, Figure 3ci); however, the effect is smaller, and the pattern differs considerably when comparing controlled 

and natural basins.

Overall, 10 characteristics were statistically and practically significant in describing the variation in relative 

performance. Among these, Aridity, PPT, PET, phase correlation (meteorological factors), barren, forest, and 

shrubland (landscape features) demonstrated a medium or strong relationship with NWM NSE-A.

4.3. NSE-B: Conditional Bias

When comparing the NNSE and NSE-A longitudinal plots (Figures 2b and 3b), NSE-A exhibits a U-shaped 

pattern, indicating model performance recovery west of the 100th meridian, while the NNSE plots so not show 

the same recovery. This suggests there are structured biases in the model—particularly in the west—that yield 

poor overall performance, despite relatively high NSE-A (e.g., Equation 3).

Figure 4 maps NSE-B for the natural and controlled basins. Here, NSE-B values are truncated to 1.0 for visual-

ization purposes, meaning anything listed as 1.0 is ≥1.0. The number of dropped sites is listed in the subtitle of 

each plot. Beneath each map is a longitudinal average smoothed with a 5° rolling mean, developed in the same 

manner as Section 4.1.

Larger NSE-B values are observed in the arid west, and the longitudinal percentile plots indicate the amount and 

variability of NSE-B is nearly zero in natural basins east of the 100th meridian and less than 0.15 in controlled 

basins. In all basins, NSE-B spikes between the 95th and 105th meridians. Natural basins show model recovery 

(less conditional bias) west of the 110th meridian (the Rocky Mountains). In contrast, the controlled basins do 
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Figure 4. (a) Nash-Sutcliffe Efficiency (NSE)-B split by natural and controlled basins. (b) 25th, 50th, and 75th percentile 

NSE-B for each band of longitude smoothed with a 5° rolling mean. (c) Mean NSE-B is plotted by catchment characteristics 

grouped according to Jenks optimization and classified by basin type. Only relationships that were statistically (p > 0.05) and 

practically (η 2 > 0.01) significant are shown. Plots are ordered according to effect size and plot titles are colored according 

to Cohen's effect size classification where green is a large effect size, orange a medium and red a small. The black horizontal 

line across all plots is the mean NSE-B across all basins.
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not recover—and even increase—until the humid west coast is reached. In all basins, variability and conditional 

bias are larger in controlled basins. In the controlled basins, the influence of large cities is evident with deep red 

clusters occurring around Tampa, Atlanta, Columbus, Milwaukee, Denver, San Antonio, Salt Lake, Reno, and 

Missoula among others. While not strictly a quantitative analysis, this high conditional bias near urban centers 

should caution the application of NWM in high-flow forecasting and underscores the need to better represent 

urban, non-riverine hydrology. Figure 4c is arranged in the same way as Figure 3c with the exception that a low 

value on the y-axis is desirable, indicating minimal conditional bias. Again, only statistically significant charac-

teristics are shown in the plots. Across the board, conditional bias is lower in the natural basins, but all basins 

demonstrate the same patterns.

4.3.1. Meteorological Characteristics

Starting with Figures 4ca and 4cb, dry (PPT < 63.5 cm), arid (AI > 3) basins have larger than average conditional 

bias while wet (PPT > 12 cm), humid (AI < 2) basins exhibit less than average conditional bias. The effect of PET 

(Figure 4cg) is only significant in controlled basins when PET exceeds 210 cm/year almost doubling the average 

conditional bias. Conversely, mean phase correlation is significant in basins that are notably out of phase (<−0.4) 

and conditional bias increases by a factor of 1.5. Overall PPT, AI, PET, and phase correlation explain 15%, 12%, 

2%, and 2% of the variance in conditional bias, respectively.

While higher average snow depth is related to higher NSE-A for all basins, it results in greater NSE-B in 

controlled basins highlighting the challenges of modeling diverse snow processes (Figure 4cj). This could also be 

a product of the primary functions of local reservoirs as those in snowy basins may be designed to store runoff 

and snowmelt for the dry season. Snow Fraction (Figure 4cd) also influences NSE-B suggesting that as more of a 

basin is covered with snow more conditional bias can be expected. There is a difference between the natural and 

controlled basins in that even at high levels of snow coverage, natural basins exhibit average conditional bias. In 

contrast, conditional bias increases dramatically as snow coverage increases in controlled basins.

4.3.2. Landscape Characteristics

Forest and herbaceous land covers are the only significant types with respect to NSE-B in controlled basins 

(Figure 4cc). When forest coverage is <15%, conditional bias remains near the overall average. However, when 

coverage exceeds 15%, conditional bias grows by a factor of 2.5. While significant, the influence of barren land is 

less pronounced than the other factors present in Figure 4c. Barren land is only significant in natural basins and there 

is less conditional bias with more barren coverage. A nearly identical pattern exists for herbaceous coverage, except 

its influence is significant in controlled basins. Shrub and urban landscapes are significant in natural basins and when 

they exceed 25% and 35% of the basin respectively, they lead to an almost 1.5 times increase in conditional bias. While 

the idea that urban land cover influences natural basins is at first counter to our expectations, the takeaway is that 

when urbanization appears in what's deemed a natural basin, its impact is high. In basins already deemed controlled, 

the presence of urban land cover is not a significant factor. In cases where large urbanization occurs in natural basins, 

we can assume the basin to be erroneously classified, or, that the basin has been urbanized post GAGES-II creation.

Overall, 11 characteristics were statistically and practically significant in describing the variation in conditional 

bias. Among these, PPT and Aridity were meteorological factors with a medium or larger effect size while forest 

was the only landcover with a medium or larger effect size.

4.4. NSE-C: Unconditional Bias

Figure 5a maps NSE-C (unconditional bias) for the natural and controlled basins where NSE-C values are trun-

cated to 1.0, meaning anything listed as 1.0 is ≥1.0. The number of truncated sites is listed in the subtitle of each 

plot. Beneath each map is a longitudinal average smoothed with a 5° rolling mean developed in the same way as 

Section 4.1. Figure 5c is arranged in the same way as Figure 4c. Across the board, bias in the natural basins is 

lower than in controlled basis and land cover impacts are more prominent in controlled basins while meteorolog-

ical properties influence all basins. When compared to the population mean (the horizontal bar in each panel in 

Figure 5c), natural basins exhibit significantly less unconditional bias than the controlled basins.

4.4.1. Meteorological Characteristics

Higher values of aridity (Figure  5cc) and snow fraction (Figure  5cd) tend to have higher values of NSE-C. 

Equally as PPT (Figure 5cb) and phase correlation (Figure 5cj; only in controlled basins) increase, NSE-C values 
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Figure 5. (a) Nash-Sutcliffe Efficiency (NSE)-C split by natural and controlled basins. (b) 25th, 50th, and 75th percentile 

NSE-C for each band of longitude smoothed with a 5° rolling mean. (c) Mean NSE-C is plotted by catchment characteristics 

grouped according to Jenks optimization and classified by basin type. Only relationships that were statistically (p > 0.05) 

and practically (η 2 > 0.01) significant are shown. Plots are ordered according to effect size and titles are colored according 

to Cohen's effect size classification where green is a large effect size, orange a medium and red a small. The black horizontal 

line across all plots is the mean NSE-C across all basins.
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are lower. In all cases, the worst-performing category (e.g., low PPT) of natural basins results in unconditional 

bias near the population average which then improves in the respective direction of the characteristic. In contrast, 

when looking at controlled basins, the best-performing category (e.g., high PPT) is generally near the population 

average while unconditional bias exponentially increases when moving away from the best-performing category. 

The exception to this pattern is mean snow coverage (Figure 5ci) where unconditional bias in controlled basins 

increases across groupings and remains nearly level for natural basins. The large takeaway is that when looking at 

the unstructured bias in the NWM, the bulk of it is in controlled basins where moisture and energy cycles are out 

of sync, and exhibit low PPT, high aridity, and/or high snow quantities (both mean and fraction).

4.4.2. Landscape Characteristics

In natural basins, urban (Figure 5ch) and barren (Figure 5ce) land cover emerged as the only significant types. 

NSE-C associated with urban coverage increases by a factor of 2 when more than 35% of the basin is urban-

ized. These basins are likely urbanized post GAGES-II classification. In contrast, increasing barren land cover 

(Figure 5ce) results in lower NSE-C in all basin types. In controlled basins, impervious surface (Figure 5cg), 

forest (Figure 5ca) and herbaceous (Figure 5cf) land cover are significant. NSE-C is larger (by a factor of 2) in 

basins with more than 15% impervious/forested while NSE-C is lower when grass coverage exceeds 20%.

Overall, 10 characteristics were statistically and practically significant in describing the variation in uncondi-

tional bias; among these, forest coverage was the only factor with a medium or larger effect size. In summary, 

as basins become more impervious (controlled) and urban (natural), unconditional bias increases. Meanwhile as 

controlled basins become more herbaceous, and all basins become more barren, unconditional bias decreases.

5. Discussion
5.1. Summary

Table  2 shows a broad summary of NWM2.0 performance and bias in the context of significant catchment 

characteristics. The spatial performance of the model is not unusual compared to other large scale streamflow 

simulations. However, the evaluation process used allows us to better understand the drivers behind components 

of NSE with respect to a suite of catchment characteristics.

Variable NSE-A NSE-B NSE-C As “variable” increases, NWM…

Meteorological PPT Controlled, natural Controlled, natural Controlled, natural Performance increases & bias decreases in all basins

PET Controlled, natural Controlled Performance decreases in all basins & bias increases in 

controlled basins

Aridity Controlled, natural Controlled, natural Controlled, natural Performance decreases & bias increases in all basins

Phase Correlation Controlled, natural Controlled Controlled Performance decreases in all basins & bias decreases in 

controlled basins

Snow Coverage Controlled, natural Controlled Controlled, natural Performance increases & bias increases in all basins

Snow Fraction Controlled, natural Controlled, natural Bias increases in all basins

Landscape Impervious Percent Controlled Controlled Performance decreases & bias increases in controlled basins

Urban Natural Natural Bias increases in natural basins

Barren Controlled, natural Natural Controlled, natural Performance increases & bias decreases in all basins

Forest Controlled, natural Controlled Controlled Performance decreases in all basins & bias increases in 

controlled basins

Shrubland Controlled, natural Natural Performance decreases in all basins & bias increases in 

natural basins

Herbaceous Controlled, natural Controlled Controlled Performance decreases in all basins & bias decreases in 

controlled basins

Note. In each cell, the impacted basin class is listed assuming the variable is increasing. Green colors indicate improvement, while red cells show degradation. The last 

column summarizes the overall effect in plain language.

Table 2 
Significant Catchment Characteristics and Their Impact on Model Performance and Bias
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Our results show a clear distinction between natural and controlled basins. Towler et al. (2023) also found that 

most underperforming basins in the NWM and USGS NHM have anthropogenic influences. Some of the chal-

lenge with modeling these systems are a lack of information about human impacts on the water cycle. At the 

drainage basin scale, none of the storage values tested here proved to be a significant indicator of performance.

For the most part, the characteristics impacting NSE-A were the same across controlled and natural basins. The 

exception being impervious percentage which was associated with a decrease in NSE-A in controlled basins.

Concerning bias, catchment characteristics were more closely associated with either natural or controlled basins. 

This suggests one of the principal differentiators in class performance is the bias generated in relation to certain 

characteristics. The exception to this is in Aridity, PPT and Snow Fraction which influence bias across all basin 

types (more on this these below).

A large part of the natural/controlled distinction is exacerbated by the calibration process that typically calibrates 

natural basins and transfers model parameters via receiver-donor relationships. The NWM for example, is cali-

brated to streamflow in a selection of natural GAGES-II basins. One possible solution to this, when focusing on 

continental scale models, is to avoid calibration solely on natural basins.

Initially, one of our hypotheses was that performance would be sensitive to characteristics used to parameterize 

the Land Surface Model. Broadly, highly vegetated surfaces like forests (increase bias) and herbaceous covers 

(decrease bias) showed a relationship with NSE-B/C in controlled basins. Conversely, more sparsely vegetated 

surfaces like urban (increase bias), barren (decrease bias) and shrubland (increase bias) had a relationship with 

NSE-B/C in natural basins.

Although this study did not consider the uncertainty arising from the NLDAS-2 forcings, recent studies have 

emphasized the importance, and sensitivity these have on predictions (Newman et  al.,  2015; Van Beusekom 

et al., 2022). That said, core meteorological characteristics including AI, PPT, and Snow Fraction significantly 

impacted skill and bias across all basin type. We highlighted a drop in NSE-A, and a rise in NSE-B/C in the middle 

of the country starting around the 95th meridian. Towler et al. also reported that sites in the central and mid-western 

regions of the U.S. underperform in both the NHM and NWM and other studies have seen the same behavior in 

models including VIC, ParFlow-CONUS, and SAC-SMA (Ghimire et al., 2023; Newman et al., 2015; Tijerina 

et al., 2021). Further, these limitations are consistent with the evaluation of LSM-driven streamflow by Cai, Yang, 

Xia, et al. (2014) who showed difficulty representing streamflow in the north central region of the country while 

“most models perform well east of the 95th meridian”. The 100th meridian is known as a non-permanent divide 

splitting the continent into an “arid west” and a “humid east,” based on differentiations in terms of vegetation, 

hydrology, crops, and farm economy (Seager et al., 2018) and is indicative of the role of energy, aridity, rainfall, 

and vegetation dynamics have on a model's relative skill and bias. In 2015, Newman et al. used SAC-SMA to eval-

uate 671 basins and found model performance varied regionally with the largest contributing factors being aridity 

and precipitation intermittency, contribution of snowmelt, and runoff seasonality. The similarities between their 

findings, and the influential factors impacting NSE-A, were striking given two different modeling frameworks 

(one physics based and one conceptual). Combined, it provides a signal that modeling communities at large need 

to better understand how to represent these regions more accurately without decreasing the skill achieved in other 

parts of the country. Some of this can be improved through the development of new model formations aimed 

at challenging areas like the Layered Green and Ampt infiltration with Redistribution (LGAR) soils routine for 

arid regions (La Follette et al., 2023). That said, accomplishing this goal will likely require the use of different 

model schemes in various areas of the country, a prospect becoming more promising with the rise of multi-model 

systems like SUMMA, the Unified Forecast System, and the Next Generation Water Prediction Framework.

5.2. A Multi Model Experiment

This study has demonstrated that model skill can be broken down into relative performance (NSE-A) and biases 

(NSE-B, NSE-C). It also showed how each of these components can be better understood in relation to a suite of 

catchment characteristics. Considering how this information can be used to enhance modeling efforts in the U.S., 

we discuss the role of electing spatially appropriate model combinations (Niu et al., 2011; Ogden et al., 2021) and 

explore the potential of hybrid modeling approaches to improve NSE-A while reducing NSE-B and C.

The findings of this paper highlight general reasons for the underperformance of the WRF-Hydro NWM in certain 

regions. Some of these points explicitly at regions characterized by dominant vegetation dynamics, high urbani-

zation, and water limiting climates. The principal driver in all basins was AI, PET, PPT, and forest coverage. Here 
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we showcase how knowledge about the relationship between AI and model skill can help identify more optimal 

models in systems that allow for multiple combination schemes to be used (like NextGen or Noah-MP; Ogden 

et al., 2021; Niu et al., 2011). To highlight this, we selected one of the most biased natural, and arid basins in our 

study (NWIS ID 10244950). This basin presents an AI of 3.86, mean annual PPT of 464.51 mm and total runoff 

that was underestimated by the NWM 2.0 historical simulation (see Figure 6a). In the NWM 2.0 historic record, 

this basin presented an NSE-A of 0.45, an NSE-B of 0.25 and an extreme NSE-C of 7.3.

The NextGen framework was used to simulate streamflow in the basin over a 5-year period using the Conceptual Functional 

Equivalent model with the Xinanjiang rainfall-runoff partitioning module (https://github.com/NOAA-OWP/cfe) and 

six different PET methods including: (a) Noah-OWP-modular (https://github.com/NOAA-OWP/noah-owp-modular), 

(b) energy balance, (c) aerodynamic, (d) combined, (e) Priestley-Taylor, and (f) Penman-Monteith (https://github.

com/NOAA-OWP/evapotranspiration). To identify the “best” of these, the AI of the catchment was compared with 

the AI produced by each simulation over the five year period.

In Figure 6b, the ratio of simulated AI to the long term catchment AI is shown. A ratio close to one indicates 

good agreement, while ratios smaller (larger) than one indicate the NextGen CFE formulation underestimates 

(overestimates) PET. For this basin, the aerodynamic method (green) estimates the AI ratio best while, the 

Noah-OWP-modular method (effectively a modular Noah-MP variant) significantly underpredicts PET.

Figure 6c displays the cumulative discharge from the NWM 2.0, the observed USGS flows, and the NextGen 

simulation showing the tailored model more accurately captured streamflow with a relative performance of 0.73 

Figure 6. (a) A poor performing natural, arid basin in Nevada was selected. (b) 6 simulations were run using NextGen and the ratio of the simulated aridity index (AI) 

to the catchment AI was computed. The red bar approximates what was used in National Water Model (NWM) 2.0 while the ideal aerodynamic method (closest to 1) is 

in green. (c) Cumulative discharge plots of the USGS observations, NWM 2.0, and the aerodynamic NextGen simulation are shown highlighting the power of location 

driven processes.

https://github.com/NOAA-OWP/cfe
https://github.com/NOAA-OWP/noah-owp-modular
https://github.com/NOAA-OWP/evapotranspiration
https://github.com/NOAA-OWP/evapotranspiration


Journal of Geophysical Research: Atmospheres

JOHNSON ET AL.

10.1029/2023JD038534

18 of 21

(compared to 0.45), a conditional bias of 0.0012 (compared to 0.25) and an unconditional bias of 0.0021 (compared 

to 7.3). Thus, one of the basins with the most bias and marginal relative performance was turned into a “good” 

simulation. While one basin does not allow us to draw broad scale conclusions, the potential to enhance a simulation 

by targeting an area with consistently poor performance in many models, is a promising sign for community efforts.

6. Conclusions
The NWM offers an unprecedented step forward in the hydrologic forecasting capabilities of the United States. Its 

innovation lies not only in advancing forecasting operations, but also in the developing an operational, near-real 

time, high-resolution LSM with minimal lag and comparatively sophisticated routing. However, this advancement 

necessitates the evaluation and diagnosis of the model in ways that explain not only how the model is performing 

but why it is performing that way. To achieve this, there must exist a comprehensive set of catchment characteris-

tics that can be used to classify basin types in low and high dimensional space. These types of evaluations provide 

the opportunity to study the limitations of physical model process, identify improved physical representations that 

can be applied heterogeneously, and to explore opportunities for assimilating new data sources and postprocess 

output to enhance forecasts, for the appropriate reasons.

All models have ingrained assumptions (stated or unstated) that influence their performance. Most of these 

models are based on hydrological processes developed for pristine headwater basins in a particular location 

and for a specific event types. These assumptions imply that no single model is best everywhere, or, for all 

types of events. A framework like the one presented here offers a unique way to compare model results (either 

model-to-model or model-to-observation) that directly target questions related to model parametrization; process 

representation; and the presence of conditional and unconditional biases. Future research could use this decom-

position framework to further diagnose error contributions from the entire modeling cycle including forcings, 

parameter estimation, process selection and calibration/regionalization. Moreover, this approach can be applied 

to other model development and intercomparison efforts. Its application to the NWM v2.0 historical data provides 

increased transparency for the public, catering to those seeking to use and improve NWM model outputs.

Data Availability Statement
The GAGES-II data set can be accessed at (Falcone, 2011). All streamflow data can be accessed from the USGS 

NWIS portal (U.S. Geologic Survey, 2023) or the NWM reanalysis archives (Johnson et al., 2023). Land cover 

data is accessed from the Multi Resolution Land Characteristics Consortium (Dewitz, 2021) and NLDAS data 

by NASA EarthData GES DISC service (NASA GES DISC, 2023). The complete data workflow including data 

download, processing, analysis, and image creation can be found on Github and Zenodo (Johnson, 2023).
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Erratum
The originally published version of this article contained errors in the affiliations and the reference list. Authors J. 

Michael Johnson, Arash Modaresi Rad, Luciana Kindl da Cunha, and Keith S. Jennings should be affiliated with 

“NOAA/NWS Office of Water Prediction” in addition to their existing affiliations. The following disclaimer has 

been added: “The views expressed in this article do not necessarily represent the views of NOAA or the United 

States.” The reference for Office of Water Prediction (2022) was updated to the following: Ogden, F., Avant, 

B., Bartel, R., Blodgett, D., Clark, E., Coon, E., et al. (2021). The Next Generation Water Resources Modeling 

Framework: Open Source, Standards Based, Community Accessible, Model Interoperability for Large Scale 

Water Prediction. In AGU Fall Meeting Abstracts (Vol. 2021, pp. H43D-01). In addition, the citations for this 

reference have been updated throughout the article, and it was also added before Peckham et al., 2013 in the first 

sentence of the eleventh paragraph of the Introduction. The errors have been corrected, and this may be consid-

ered the authoritative version of record.
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