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Abstract

In the setting of conference peer review, the conference aims
to accept high-quality papers and reject low-quality papers
based on noisy review scores. A recent work proposes the
isotonic mechanism, which can elicit the ranking of paper
qualities from an author with multiple submissions to help
improve the conference’s decisions. However, the isotonic
mechanism relies on the assumption that the author’s utility
is both an increasing and a convex function with respect to
the review score, which is often violated in realistic settings
(e.g. when authors aim to maximize the number of accepted
papers). In this paper, we propose a sequential review mech-
anism that can truthfully elicit the ranking information from
authors while only assuming the agent’s utility is increasing
with respect to the true quality of her accepted papers. The
key idea is to review the papers of an author in a sequence
based on the provided ranking and conditioning the review of
the next paper on the review scores of the previous papers.
Advantages of the sequential review mechanism include: 1)
eliciting truthful ranking information in a more realistic set-
ting than prior work; 2) reducing the reviewing workload and
increasing the average quality of papers being reviewed; 3)
incentivizing authors to write fewer papers of higher quality.

1 Introduction

Peer review, the process of evaluating scientific research by
volunteered experts, undergirds the success of a conference
by ensuring the accepted papers are of high quality. How-
ever, the reliability of peer review (especially for large com-
puter science conferences) has raised significant concerns.
In a NeurIPS experiment conducted in 2014 (Lawrence and
Cortes 2014), it was shown that within the set of papers rec-
ommended for acceptance by two independent committees,
the disagreement rate was as high as 50%. This result was
further confirmed in the repeated experiment conducted in
2021 (Cortes and Lawrence 2021). Even worse, the rapid
growth of the reviewing workload and the shortage of qual-
ified reviewers, have posed unprecedented challenges to our
review system (Sculley, Snoek, and Wiltschko 2018).

This leads to the dilemma of conference peer review: the
conference’s objective of accepting only high-quality papers

“The full version of this paper is available on Arxiv (Zhang,
Schoenebeck, and Su 2023).
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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(from a large set of submissions) clashes with the shortage of
reliable peer reviews upon which the conference must base
its decisions. To mitigate this issue, we introduce a novel
review mechanism called the sequential review mechanism
that can 1) solicit high-quality information from authors to
assist the acceptance/rejection decisions, 2) reduce the re-
viewing workload and 3) incentivize authors to write high-
quality papers.

The main challenge is how to elicit useful information
from the authors who have conflicting interests with the con-
ference. For instance, authors may desire to have more pub-
lications, leading them to seek acceptance for more papers,
regardless of the papers’ quality. In this case, although au-
thors possess the best signals of their own papers’ quality
compared with any reviewer, they may prefer not to disclose
this information truthfully to the conference. For example,
while being asked to report the true quality of their papers,
authors may be inclined to inflate scores in order to increase
the chance of acceptance.

Fortunately, positive results exist. Su (2021) shows that it
is possible to elicit truthful rankings of paper quality from an
author with multiple submissions. The main idea of the pro-
posed isotonic mechanism is to shift the noisy review scores
by running an isotonic regression based on the author’s re-
ported ranking. It is shown that reporting the ranking of pa-
pers truthfully is the best response for an author. Unfortu-
nately, this result only holds when the agent’s utility for each
paper is an increasing and convex function of the review
score and additive across papers. However, the assumption
of convex utility is strong and likely violated in the setting
of conference peer review. For example, this assumption is
violated when an author aims to maximize the number of her
accepted papers. Moreover, in this case, the isotonic mecha-
nism can be gamed in a rather straightforward manner. Sup-
pose such an author has several borderline papers and one
outstanding paper to submit. Under the isotonic mechanism,
her best response is nonetheless to rank the outstanding pa-
per at the bottom such that the review scores of all borderline
papers will be shifted up after the isotonic regression, which
will almost certainly lead to the acceptance of all papers.!

In this work, we build on the idea of eliciting the author’s

'For an introduction of the isotonic mechanism and a careful
illustration of this example, please refer the full version.
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ranking information from the previous work and primarily
focus on addressing the incentive issue discussed above. We
propose the sequential review mechanism in a natural con-
ference review model. Our method can elicit the true ranking
information as long as the author’s utility is additive in terms
of the rewards of all accepted papers, where the reward is a
non-decreasing function of the accepted papers’ qualities.
The sequential review mechanism works by reviewing an
author’s submissions in sequence. In particular, papers with
higher reported rankings are reviewed with priority, while
papers with lower reported rankings will be conditionally re-
viewed depending on the review scores of the higher-ranked
papers from the same author. If the review process termi-
nates, e.g. due to a notably low review score of a paper,
any remaining unreviewed papers will be rejected without
further assessment. Intuitively, under the sequential review
mechanism, any misreporting of the true ranking of the pa-
pers will result in an earlier termination of the review pro-
cess, which penalizes dishonest behaviors.2

1.1 Contributions and Results

Our main contribution is a framework for designing theo-
retically robust mechanisms, with the potential to improve
conference peer review in practice. The proposed sequential
review mechanism not only addresses a key incentive issue
that plagues prior work but also exhibits many additional
appealing properties. Due to space limitations, please refer
to our full version (Zhang, Schoenebeck, and Su 2023) for
proofs, details of experiments, and additional results.

Truthful sequential review mechanisms. Under the se-
quential review mechanism framework, we first identify a
sufficient constraint that ensures a sequential review mech-
anism to be truthful (i.e. reporting the true ranking of the
paper quality is the best response for any author). While not
necessary, this constraint provides a large space of truthful
sequential review mechanisms. To show the effectiveness
of our framework, we introduce two practical mechanisms
as examples: the memoryless coin-flip mechanism that re-
views the ¢ 4 1th ranked paper with a probability determined
by the review score of the ith ranked paper; and the credit
pool mechanism, which counts the cumulative review scores
(positive or negative) of the reviewed papers and terminates
the review process when the “credit pool” is empty.

Conference utility and review burden. The sequential
review mechanism utilizes the authors’ information to pri-
oritize the review of high-quality papers. Therefore, it can
improve the conference’s utility (as low-quality papers are
less likely to be accepted), while reducing the review bur-
den by reallocating more review resources to papers deemed
likely to be of higher quality. To evaluate the performance of
the sequential review mechanism, we use the parallel review

2One may be concerned that the sequential review mechanism
will result in a significant delay in the review process. However,
note that the mechanism works exactly the same if all papers are
simultaneously reviewed or reviewed in batches, as long as the ac-
ceptance/rejection decisions are made in sequence. See more in
Section 7.
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mechanism as the baseline which unconditionally reviews all
papers. We further use the isotonic mechanism with oracle
access to the true ranking information as an upper bound.?

Our simulation results suggest that compared with the
baseline, the sequential review mechanism can improve the
conference utility towards the upper bound by over 40%
when the author submits more than three papers. This ef-
fect is even more significant when 1) each author has more
papers, 2) papers are more likely to be of low quality and 3)
reviewers are more noisy. Moreover, we empirically investi-
gate the number of reviews that a sequential review mecha-
nism can save while achieving the same conference utility as
the parallel review mechanism. We employ the ICLR Open-
Review datasets spanning recent years and develop a more
realistic review model. Our results indicate that about 20%
of the review burden can be saved when utilizing the se-
quential review mechanism. Furthermore, this number will
increase over time if the trend of a growing number of sub-
missions per author continues.

Endogenous paper quality. In the setting where authors
can choose the effort they exert on each of their papers, we
show that compared with the parallel review mechanism, the
sequential review mechanism always provides a stronger in-
centive for writing (fewer) papers of higher quality instead
of (more) papers of low quality. This is because the sequen-
tial review mechanism decreases the marginal return of pro-
ducing lower-quality papers by penalizing bottom-ranked
papers with lower probabilities of being reviewed. We view
this property particularly valuable, especially in light of the
prevailing trend where authors submit an increasingly large
number of papers to conferences, sometimes disregarding
their inherent quality.

2 Related Works

Other than the isotonic mechanism (Su 2021), several at-
tempts exist aiming to improve the peer review system with
a focus on dealing with strategic interactions between con-
ferences and authors. In a setting where authors can strategi-
cally decide the venues to submit their papers, Zhang et al.
(2022) show how to design the review mechanism to achieve
the Pareto optimal tradeoff between the conference quality
and the review burden. In a recent work, Srinivasan and Mor-
genstern (2021) propose the idea of using the VCG mecha-
nism to elicit bids from authors and using peer prediction
mechanisms to evaluate reviews and reward the reviewers
(with virtual money). In dealing with the malicious bid-
ding problem, a stream of literature focuses on designing
and optimizing the paper-reviewer assignment mechanism
to guarantee strategyproofness (Aziz et al. 2019; Jecmen
et al. 2020; Dhull et al. 2022; Xu et al. 2018).

Our work is also related to the impartial peer selection
problem, where self-interested agents assess one another in
such a way that none of them has an incentive to misrep-
resent their evaluation. A famous example is the NSF ex-
periment, where each PI was asked to rank seven propos-
als from other PIs (Naghizadeh and Liu 2013). The primary

3The isotonic mechanism is not truthful in our setting but we
nonetheless provide oracle access to the true ranking to it.
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goal of the peer selection literature is to improve the ac-
curacy of assessments while guaranteeing strategyproofness
(Naghizadeh and Liu 2013; Aziz et al. 2019; De Clippel,
Moulin, and Tideman 2008). However, these investigations
differ from our problem since we focus on eliciting evalua-
tions of multiple items held by a single agent directly from
the agent itself, rather than from the peers.

Additionally, there exists a considerable body of litera-
ture that aims to improve peer review from the reviewer’s
perspective. This includes investigations into single versus
double blind reviewing (Blank 1991; Snodgrass 2006; Bazi
2020), assigning versus bidding papers (Cabanac and Preuss
2013; Meir et al. 2021), review scale and miscalibration
(Siegelman 1991; Wang and Shah 2018; Spalvieri et al.
2014), and dishonest behaviors (Cohen et al. 2016; Fanelli
2009; Littman 2021). A recent survey by Shah (2022) pro-
vides additional contexts and perspectives on the problems
of peer review.

3 Model

We view the peer review mechanism as an individual con-
tract. That is, each paper is reviewed independently based
on its review scores. Therefore, while reasoning about an
agent’s best response (Section 4 and 6), it is sufficient to as-
sume that there is only one agent with n papers. When we
investigate the optimization of a review mechanism (Sec-
tion 5.3), we assume authors are drawn from a distribution.

Throughout the paper, we will use [n] to denote the set
{1,2,...,n} and use [n]o to denote {0, 1,...,n}. Suppose
an author has n submissions indexed by i € [n], each with
a quality of ¢; € R. Suppose without loss of generality that
q1 > g2 > ---q,. We name each paper by its true ranking,
e.g. paper 1 is the paper with the highest quality. To better
present our results, unless otherwise specified, we assume
that the author knows the true qualities of all her papers.
Nonetheless, we note that our theoretical results can easily
be generalized to the setting where the author observes a
noisy signal s; = g; + &; for each of her papers where &; are
i.i.d. sampled from some distribution (see Section 4.2).

The conference decides whether to accept or to reject
each of the n submissions based on its review score. Given
the true quality ¢;, the paper’s review score is observed by
adding an error term, i.e. r; = q; + €;, where ¢; is i.i.d. sam-
pled from some distribution. The conference commits to an
acceptance policy such that a paper with review score r (if
it is reviewed) is accepted with probability P,..(r). For ex-
ample, for a threshold acceptance policy, Py (r) = 1 if
r > Tuee and O otherwise, where 7,.. € R is a thresh-
old. We assume that the utility of the conference is the sum
of the accepted papers’ quality, i.e. Uc(M) = 37,0, ¢ -
1 [paper i is accepted under mechanism M].

In addition to soliciting review scores, the conference can
solicit a ranking of the author’s submissions. That is, the au-
thor reports a permutation 7 of her papers, where 7(4) is
the rank of paper ¢ after the permutation. The truthful re-
port is the original ranking, i.e. 7*(i) = i. We assume that
the author’s utility is the sum of the rewards of her accepted
papers: each paper’s reward is zero if rejected and wu(g;)
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if accepted, where u, is a non-negative and non-decreasing
reward function. For example, if u,(¢) = 1 for any ¢, the au-
thor’s goal is to maximize the expected number of accepted
papers. The author can strategically report a ranking 7 so as
to maximize its expected utility. Let U, () be the expected
author utility under the permutation 7, where the random-
ness is with respect to the review noise and the mechanism.

4 Truthful Sequential Review Mechanisms

This section presents a framework for designing truthful re-
view mechanisms. In particular, we introduce the sequential
review mechanism framework and show a sufficient condi-
tion for a sequential review mechanism to be truthful. We
further provide two concrete and practical truthful sequen-
tial review mechanisms under this framework as examples.

4.1 The Sequential Review Mechanism
Framework

We first introduce the naive sequential review mechanism as
an illustrative example of the more general sequential review
mechanism framework.

Definition 4.1. Given an author with n papers and a ranking
of these papers, the naive sequential review mechanism re-
views one paper at a time based on the order of the reported
ranking. The first paper is always reviewed. For ¢ ranging
from 2 to n, the paper ranked in the ith place is reviewed if
and only if the paper ranked in 7 — 1st place is accepted.

Intuitively, the naive sequential review mechanism incen-
tivizes truth-telling because any manipulation of the true
ranking will more likely result in an early stop of the review
process which harms the author. However, the naive mecha-
nism can be too stringent in reality, especially when authors
are likely to produce good papers. To address this, we gener-
alize this idea and present the sequential review mechanism
framework. This framework offers a large set of mechanisms
that can be fine-tuned to optimize performance in various
settings.

At a high level, the idea is to condition the review of
lower-ranked papers on the acceptance (and thus the review
score) of the higher-ranked papers. If the mechanism decides
not to review the paper in round ¢, any paper in round j > ¢
will be rejected without review. We then say that the mecha-
nism terminates in round ¢. Now, we formally introduce the
sequential review mechanism framework.

Definition 4.2. A sequential review mechanism M, =
(Pace, Prev, 1) has three components:

* An acceptance policy P, that maps from a review score
to a probability of accepting the corresponding paper.

* A review policy P, that maps from a review state in
round ¢ to a probability of reviewing the paper in round
i+1,fori€[n—1]p*

* A state transition mapping ji; that maps from a review
state in round ¢ and the review score of the paper in round
i + 1 to a distribution of states in round ¢ + 1, for i €
[n —1o.

“Here, we assume 7 < n because there is no need to discuss the
review policy in round n.
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In the above definition, a review state in round ¢, denoted
as ¢; € ®,, is sufficient to determine the probability that the
paper in round ¢ + 1 will be reviewed, where ®; is the space
of review states in round ¢. Specifically, ® is the space of
initial states before the review of the first paper. The review
states are weakly ordered such that the author always prefers
to be in a higher-ordered state. That is, for each pair of states
in round ¢, one must have a (weakly) higher order than the
other, denoted as ¢; > ¢; for every ¢}, ¢; € ®; and every
i € [n—1]o. We use ¢ > ¢, to represent the strict ordering.
Furthermore, if the author is indifferent between two states,
we say ¢, ~ ¢;. When comparing two vectors of states, we
use the same notations to indicate term-wise preference. For
example, if ¢, ¢’ € O™, ¢’ = ¢ implies that ¢, > ¢, for
any 1 <1¢ < m.

Taking the naive sequential review mechanism as an ex-
ample, the review state is ¢; = 1 if the paper in round ¢ is
accepted and 0 otherwise. In round 0, ¢g = 1. Then, the
review policy is P3t4(1) = 1 and P54(0) = 0 for any
round. The state transition mapping of the naive sequential
review mechanism is that p$*4(1,7;) = 1 with probability
Pace(74), 15t (1,7;) = 0 with probability 1 — Pyec(r;), and
©3t4(0, ) = 0 with probability 1 for any .

We further note that by our definition, the acceptance pol-
icy is assumed to be memoryless, where the acceptance of
a paper only depends on its own review score. However,
the review policy can have memory such that previous re-
view scores may affect the distribution of the review state in
round ¢ which affects the probability of the paper in round
1 + 1 being reviewed.

4.2 A Sufficient Condition For Truthfulness

Now, we investigate what conditions on Py, Py and p are
sufficient for a sequential review mechanism to be truth-
ful. At a high level, we need both policies to be monotone
which rewards higher review scores and punishes lower re-
view scores.

Definition 4.3. An acceptance policy is monotone if P, is
(weakly) increasing, i.e. Pyec(1’) > Pyec(r) for any ' > 7.

Definition 4.4. A review policy is monotone if Py (¢}) >
Prey(¢s) for every ¢ = ;.

A monotone acceptance policy rewards a paper with a
higher review score by accepting it with a higher probability,
while a monotone review policy rewards a higher-ordered
review state with an increased probability of reviewing the
paper in the next round. However, the requirements for the
state transition mapping are more complicated, where we
use the concept of stochastic dominance.

Definition 4.5. Let X and Y be two m-dimension random
vectors of review states X,Y € ®™ for some review state
space ®. We say X first-order stochastic dominates Y if
Pr(X = ¢) > Pr(Y > ¢) forany ¢ € &™.

For simplicity, let /i(r1,72|¢:) = piy1(pi(di,r1),r2) be
the state distribution in round ¢ 4+ 1 conditioned on having
review state ¢; in round ¢ — 1, and having review scores 71
and 75 in round ¢ and round ¢ + 1 respectively.
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Definition 4.6. We say the state transition mapping g is
monotone if for any review round i € [n — 1]y

1. it is monotone in score: For any state ¢; € ®;, p;(¢, ")

first-order stochastic dominates p;(¢, r) for any r' > r;

it is monotone in state: For any review score 7, ;(¢’,r)

first-order stochastic dominates p;(¢,r) for any state

¢ = b

3. it is monotone in ordering: For any state ¢; € ®; and
review scores ' > r, (r’',r|¢;) first-order stochas-
tic dominates fi(r,7’|¢;). Furthermore, for any r; <
ro < rg3 < r4 such that 1 + r4 = ro + r3, let
X ~ i(ra,ri|di), Y ~ flra, r3|di), X7 ~ fi(r1,7a]éi)
and Y/ ~ f[(rs,ral¢;). Let Z = max(X,Y), Z =

2.

min(X,Y), Z' = max(X',Y’), Z' = min(X',Y").
Then, (Z,Z) first-order stochastic dominates (2, Z').

The monotonicities in score and state suggest that the state
transition mapping results in a better state when the review
score is higher and the review state is higher ordered, respec-
tively. The monotonicity in ordering deals with the cases
where the review scores in two rounds are swapped. First, it
requires the review state distribution to be better if the higher
review score is put earlier. Furthermore, supposing there are
four ordered review scores, it compares the distribution of a
pair of review states. In particular, putting the largest score
r4 earlier in round ¢ with the lowest score 1 in round 7 + 1
and putting 73 in round ¢ with 73 in round 74-1 should lead to
a better distribution of a pair of review states than swapping
the review scores in round ¢ and 7 + 1.

We are ready to present the main theorem.

Theorem 4.7. The sequential review mechanism M?
(Pace, Prev, ) is truthful if Pyee, Pry and p are monotone.

At a high level, the proof follows by coupling the real-
izations of review noises. Then, due to the monotonicity of
Pice, Prev, and p, flipping the true order of any two papers
will result in a review state that is always dominated by
truthful reporting.

Remark 4.8 (Noisy Authors). Although the proof of The-
orem 4.7 assumes that the author perfectly knows her paper
qualities, we emphasize that it can be straightforwardly gen-
eralized to the setting where the author observes a signal
s; = q; + & with i.i.d. noise term &; for every paper <. Intu-
itively, this works because the author’s noise affects her rea-
soning about the ranking of papers in the exactly same way
as the review noise. Let €; = ¢; —&; such thatr; = s;+¢;.In
this way, by coupling the new noise term ¢€;, the same proof
can be used to show that the author will truthfully rank her
papers based on her signals.

4.3 The Memoryless Coin-Flip Mechanism

Here, we provide an example of how to use our framework
to design a truthful sequential review mechanism. In this ex-
ample, the acceptance of a paper in round ¢ will guarantee
the review of the paper in the next round; while if a paper
is rejected, the mechanism will review the paper in round

SHere, the max and min function select the higher-ordered state
and the lower-ordered state respectively.
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i + 1 with probability p(r;) determined by the review score
of the paper in round ¢. Furthermore, the mechanism always
reviews the first paper. We call this mechanism the memory-
less coin-flip mechanism.

We show that the memoryless coin-flip mechanism is
truthful by mapping it to the sufficient conditions of truth-
fulness as shown in Theorem 4.7. The following proposition
states our result.

Proposition 4.9. The memoryless coin-flip mechanism is
truthful if P,.. is monotone and p is increasing.

4.4 The Credit Pool Mechanism

Another example of the sequential reviewing framework im-
plements the idea of a reputation system. Suppose the con-
ference keeps a record of a credit pool, which is initialized at
By > 0. For every reviewed paper, the mechanism will in-
crease (or decrease) the credit pool by a credit score which is
determined by the review of that paper. Let 3 : R — R be a
credit function which maps from a review score to a review
credit. Note that 3 can be negative, indicating a punishment
of papers with low review scores. The credit pool mecha-
nism reviews the paper in round ¢ + 1 if and only if B; > 0.
Therefore, Bi+1 = Bi + B(Ti) if B,L > 0 and Bi+1 = Bi
otherwise. We present the following result.

Proposition 4.10. The credit pool mechanism is truthful if
P, is monotone and 3 is increasing and convex.

Intuitively, the credit pool mechanism is truthful because
any untruthful permutation is more likely to result in an ear-
lier termination of the review process.

5 Evaluating Sequential Review Mechanisms

We evaluate a mechanism from two dimensions: confer-
ence utility and review burden. The former is measured by
the sum of accepted papers’ quality, and the latter quan-
tifies the number of reviewed papers, while both are nor-
malized by the total number of submitted papers. For both
computational and practical considerations, we focus on the
threshold sequential review mechanism, a special case of the
memoryless coin-flip mechanism. In comparison, we use the
threshold parallel review mechanism as a baseline and the
threshold isotonic mechanism with the underlying ranking
information as an unreachable upper bound.

We conduct experiments on both a simple model with
Gaussian review noise and a more complicated real-data es-
timated model where each paper has multiple integer-valued
review scores. Our results suggest that the sequential review
mechanism can achieve conference utility that is competi-
tive compared to the upper bound and can significantly re-
duce the review burden. Moreover, in the real-data estimated
model, we show that the sequential review mechanism can
save more than 20% review burden compared with the base-
line conditioned on a weakly better conference utility.

5.1 Mechanisms of Comparison

Here, we introduce how we implement and optimize the
three types of mechanisms in our experiments. For both
computational and practical considerations, we focus on the
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threshold acceptance policy, i.e. a paper is accepted if and
only if its (modified) review score is larger than a threshold.

The threshold sequential review mechanism. The
threshold sequential review mechanism is a memoryless
coin-flip mechanism with P,.. and p being threshold func-
tions: Pyc(r) = 1if r > 75, and 0 otherwise; p(r) = 1
if » > 77,, and O otherwise. Furthermore, 7.°,, < 77... In
words, the threshold sequential review mechanism accepts a
paper, conditioned on it being reviewed, if its review score
is larger than a threshold 7;..; and it reviews the next paper

if the review score is larger than a lower threshold 7%,

The threshold parallel review mechanism. The paral-
lel review mechanism, which operates without soliciting
the ranking information from authors, guarantees to inde-
pendently review all papers. The threshold parallel review
mechanism is characterized by the acceptance threshold 72,
where papers are accepted if and only if their review scores
are no less than 72, . Note that the threshold parallel review
mechanism is a special case of the threshold sequential re-
view mechanism by setting 7’ —00.

rev

The threshold isotonic mechanism with true ranking
information. In general, the isotonic mechanism cannot
truthfully elicit the ranking information from authors in our
setting where the author’s utility is not convex with respect
to the review score. However, we assume the author still re-
ports the ranking of their papers’ quality truthfully and uses
the isotonic mechanism with this information as the upper
bound. The isotonic mechanism modifies the original review
scores by solving the isotonic regression conditioned on the
author’s ranking. Then, a threshold acceptance policy is ap-
plied to the modified review scores such that the paper with
score 7 is accepted if and only if r > 7¢__.

To emphasize the importance of truthfulness, we note that
in the absence of truthful ranking information, the isotonic
mechanism can yield a conference utility that is even worse
than the baseline.

5.2 Gaussian Review Noise

We first introduce a simple yet intuitive model where each
paper is associated with a single review score, which is the
true quality plus an additive Gaussian review noise. The sim-
plicity of this model offers computational convenience, en-
abling us to efficiently explore the parameter space. Note
that under this simple model, we again assume that there is
only one author. Furthermore, we note that in the rest of this
section, when we mention a mechanism, we are referring to
its threshold implementation.

Model and Experiment Setup Now, we introduce the
parametric setting that is used to generate synthetic data for
our experiments. First, suppose the author draws n i.i.d. pa-
per qualities from N (pq, o). Then, the conference observes
the true ranking of these samples. Let g be the ordered vec-
tor of paper qualities from high to low. Next, the conference
draws an i.i.d. review noise ¢; ~ N (0, ;) for each i € [n].
Finally, review scores are observed: r; = q; +¢€;. The param-
eters (n, itq, 0q, o) defines a Gaussian review model .
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Given ¢, and a mechanism M, we use the Monte-Carlo
method with 10, 000 samples of g to estimate the expected
conference utility. We refer the details of this estimation to
the full version. For each parameter setting, we further opti-
mize the threshold(s) of the three types of mechanisms using
stochastic gradient descent. Again, the gradient function can
be estimated using a Monte Carlo method.

Results We first define two dimensions of our evaluations.

Definition 5.1. Let U?, U$, and U be the expected con-
ference utility under the parallel review mechanism, the se-
quential review mechanism, and the isotonic mechanism
with the optimized thresholds, respectively. The relative
conference utility is defined as U = (US —UP) /(U —UP).

That is, the relative conference utility is the conference
utility of the threshold sequential review mechanism while
normalizing the conference utility of the baseline to 0 and
normalizing that of the upper bound to 1.

Definition 5.2. Let B? and B® be the review burden of the
parallel review mechanism and the sequential review mech-
anism respectively. The relative review burden is defined as

B? = B?®/BP conditioned on achieving the same confer-
ence utility.

Note that by the design of mechanisms, B” n and
B?® < 1. Thus, 0 < Bs < 1 and a smaller relative review
burden imply that the sequential review mechanism can save
more reviews compared with the parallel review mechanism
without harming the conference utility.

In Fig. 1, we observe that the sequential review mecha-
nism exhibits a significant improvement over the baseline
on both dimensions: over 40% improvement on the relative
conference utility and 10 — 30% reduction on review burden
even when n = 2. Furthermore, we observe that the sequen-
tial review mechanism can significantly improve the average
quality of the reviewed papers, as bottom-ranked low-quality
papers are more likely to be rejected without review.

In addition, we observe that the sequential review mech-
anism is particularly more effective when 1) the author is
more likely to write low-quality papers (u, is smaller), 2)
the author has more papers (n is larger) and 3) reviews are
noisier (o, is larger). The intuition behind these observations
is that the number of papers that are rejected by the sequen-
tial review mechanism but are mistakenly accepted by the
parallel review mechanism increases in these three cases.

5.3 Softmax Review Noise With Real Data

The real review data has two features that are not adequately
addressed by the Gaussian noise model. First, review scores
are integers, not continuous real values. Second, each paper
has multiple independent review scores, rather than a single
score. To incorporate these distinctions, we present a more
fine-grained model, wherein the review score is character-
ized by a softmax function. Furthermore, in this section, we
optimize the mechanisms for the entire population, rather
than an individual agent, based on the empirical quality dis-
tribution estimated from real data.

Another challenge of fitting the model with real data is the
coauthorship problem. Our solution is to assign each paper
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Figure 1: The relative conference utility and relative review
burden under different parameter settings. The parameter
setting is ¢4 = (n = *, iy = *, 04 = 2,0, = 1). The error
bars are particularly large for small n and large 1, because
in these cases the difference between the performances of
three mechanisms is small.

to one of its authors. That is, we iteratively find the author
with the largest number of papers, assign those papers to that
author, and remove the author and the assigned papers until
every paper is paired with one author.

We defer the detailed discussion of the softmax review
model and how we fit it with ICLR OpenReview datasets to
the full version while highlighting some key takeaways.

First, we observe a consistent increase in both the total
number of papers and the average number of papers per au-
thor, where the latter increases from 1.81 to 1.93 over three
years. Second, we find that the relative review burden of the
threshold sequential review mechanism is around 0.8 for all
three tested years, indicating a potential reduction of 20% in
review burden while using the sequential review mechanism.
Furthermore, this effect has become more pronounced over
the years as more and more authors submit multiple papers
to the same conference.

6 Endogenous Paper Quality

This section considers the setting where authors have the
choice of the quality of papers they write. Papers of higher
quality have a higher probability of being accepted and bring
higher rewards to the author if accepted. However, produc-
ing a high-quality paper usually requires greater effort and
time from the author. The main result in this section suggests
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that compared with the parallel review mechanism, the naive
sequential review mechanism can better incentivize authors
to improve the quality of papers instead of producing more
papers with lower quality. In this section, we assume that the
author reports the ranking truthfully.

We first consider a binary effort setting as a toy example.

Suppose the author can either exert a high effort to write
a high-quality paper with an acceptance probability pj or
exert a low effort to write a low-quality paper with an ac-
ceptance probability p; < pj. Furthermore, the acceptance
of a low-quality paper gives the author a reward of u; while
the acceptance of a high-quality paper brings a reward of
up, > uy. Let UZ(np,ny) and UP(np,n;) be the expected
utility of writing nj, high-quality papers and n; low-quality
papers under naive sequential review mechanism and the
parallel review mechanism respectively.

Theorem 6.1. For any nj,n;,n},n; € No such that

n;L > ny and ng > ny, if UP(n),,n) > UP(np,n)),

Us(ni,ny) > US(np,n)). Furthermore, there exist set-
a\'""h a l

tings where US(n),,ny) > UZ(np,ny), but UL (nj,n;) <

Uff(nhanf)

In words, Theorem 6.1 shows that whenever the author
wants to write Anj, = nj, — nj, more high-quality papers
compared with writing An; = nj — n; more low-quality
papers under the parallel review mechanism, she is always
willing to do so under the naive sequential review mecha-
nism. However, the opposite is not true.

We defer the proof of Theorem 6.1 and the generalization
to the finite effort setting to our full version.

7 Limitations, Discussions and Future Work

Here, we discuss the limitations of our analysis and how to
possibly implement the proposed method in practice. How-
ever, the implementation details can likely be further im-
proved by future work.

Coauthorship We assume that every paper has only one
author. However, in practice, coauthorship is an inevitable
issue for the implementation of our method. A straightfor-
ward solution is to assign each paper to one of its authors
and only solicit the ranking information from that author.
For example, in Section 5.3, we greedily assign each paper
to the author with the largest number of submissions. In a
recent work (Wu et al. 2023), it is shown that this greedy
assignment is truthful and has appealing robust approxima-
tion guarantees for the isotonic mechanism. Alternatively,
we can assign each paper only to its first author, driven by
the notion that the first author may possess the most accurate
insight into the paper’s quality. However, this assignment
weakens the sequential review mechanism, as many first au-
thors have fewer than three submissions to their name.

The trade-off between review burden and delay One
way to implement the sequential review mechanism is to di-
vide the review process into n phases, where n is the maxi-
mum number of papers owned by any single author. In each
phase ¢, the ith ranked paper (if any) for all authors is re-
viewed, and in phase ¢ + 1 the sequential review mechanism
is applied to determine which papers (if any) necessitate
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review. This implementation minimizes the review burden
but significantly delays the review process. Alternatively, we
can have only one review phase where all the papers are si-
multaneously reviewed. Then, for each author, the accep-
tance/rejection decision is made in sequence based on the
sequential review mechanism. This implementation benefits
the conference utility and does not delay the review process,
but it does not help with the review burden.

In reality, perhaps a two-phase implementation of the se-
quential review mechanism can achieve a desirable trade-
off. For example, some conferences such as AAAI and EC
are already implementing a two-phase review mechanism:
all papers are assigned with two reviews in the first phase
and only papers with at least one good review will enter the
second phase where two more reviews are assigned. We can
integrate the sequential review mechanism with this frame-
work. In the first phase, the top min(3, |n;/2]) ranked pa-
pers of each author with n; papers are assigned with two
reviews, and the remaining papers are assigned with one re-
view (so that no paper is rejected without reviewing). Then,
any paper with two negative reviews and those papers that
are ranked lower than them by authors are rejected with no
further review. The surviving papers enter the second phase,
wherein they are assigned additional reviews to reach a total
of four reviews each and a sequential review mechanism is
implemented. The advantage of this implementation is that
the author’s information can be leveraged to prioritize the
reviewing of high-quality papers.

An interesting future work lies in optimizing the trade-
off between the review burden, conference utility, and fair-
ness in a two-phase review mechanism involving multiple
reviews per paper while guaranteeing truthfulness.

Broader Applications The insights in this paper can be
potentially applied to address general principal-agent prob-
lems where decisions rely on noisy evaluations. For ex-
ample, on content-recommendation platforms, the designer
can solicit a ranking of the quality of content from pro-
ducers and use this information to provide better recom-
mendations. Additional applications suitable for our method
include employee recruitment, Wikipedia article review-
ing, and second-hand product trading markets. Nonetheless,
adapting our method to various applications requires further
in-depth modeling and analysis.

8 Conclusion

In the setting of (conference) peer review, we study the prob-
lem of how to elicit honest information from authors, who
themselves are interested in the outcome. Our main con-
tribution is a framework for designing mechanisms capa-
ble of eliciting quality rankings from authors with multiple
submissions. Compared with the previous isotonic mecha-
nism, our mechanism works within a more realistic utility
model for peer review and addresses a key incentive issue
that plagued the previous method. We further investigate the
advantages of our mechanism from the aspects of reducing
reviewing workload, improving the average quality of the
reviewed papers, and incentivizing authors to focus more on
the quality of papers rather than the quantity.
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