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ABSTRACT
Because high-quality data is like oxygen for AI systems, effectively
eliciting information from crowdsourcing workers has become a
first-order problem for developing high-performancemachine learn-
ing algorithms. Two prevalent paradigms, spot-checking and peer
prediction, enable the design of mechanisms to evaluate and in-
centivize high-quality data from human labelers. So far, at least
three metrics have been proposed to compare the performances of
these techniques [2, 6, 31]. However, different metrics lead to di-
vergent and even contradictory results in various contexts. In this
paper, we harmonize these divergent stories, showing that two of
these metrics are actually the same within certain contexts and ex-
plain the divergence of the third. Moreover, we unify these differ-
ent contexts by introducing Spot Check Equivalence, which offers
an interpretable metric for the effectiveness of a peer prediction
mechanism. Finally, we present two approaches to compute spot
check equivalence in various contexts, where simulation results
verify the effectiveness of our proposed metric.

CCS CONCEPTS
• Theory of computation→ Algorithmic game theory and mech-
anism design.
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1 INTRODUCTION
Eliciting precise and valuable information from individuals is be-
coming paramount, especially with the rising demands for data la-
beling in the realms of AI and machine learning. Recent advance-
ments, such as Large Language Models (LLMs), have proven the
value of high-quality human-labeled data. For example, Meta is es-
timated to have invested upward of 25 million dollars in collect-
ing preference data from human labelers to align Llama 2 with
human preferences [17]. This raises a pressing question: How can
human agents be incentivized to provide high-quality information.
E.g., without the proper incentives, human labelers for LLM align-
ment may not exert effort to distinguish between truthful LLM re-
sponses and merely authoritative-sounding responses (i.e. halluci-
nations), even when truthfulness is important for the task at hand.

Research from Amazon reveals that monetary compensation is
the principal motivator for Amazon Mechanical Turk workers [3],
and indeed the primary solution is to monetarily reward agents in
exchange for effortful and truthful labeling. Two distinct compen-
sation strategies, spot-checking [10] and peer prediction [19], each
rate the quality of user feedback with a score. This score can then
be transformed into a payment for an agent.

Spot-checking mechanisms reward agents by comparing their
reports with the ground truth on a small fraction of gold stan-
dard questions. When the ground truth information is expensive
or even infeasible to obtain, peer prediction mechanisms are pro-
posed, which reward an agent based on the correlation between
her reports and the reports of other agents.

To understand and compare the performance of mechanisms de-
veloped from these paradigms, there is a need for standard met-
rics similar to accuracy, recall, and F1 score used in supervised
learning. Notice that all these metrics range from 0 to 1 where 1
is good/perfect and 0 is bad. While several studies have proposed
methods for comparing these mechanisms [2, 6, 31], there remains
a conspicuous gap for both a unified understanding of how these
metrics relate, and, if possible, a unified interpretable metric.

To this end, we introduce the concept of Spot Check Equiva-
lence (SCE), which uses a spot-checking mechanism as a bench-
mark to quantify the motivational proficiency of an arbitrary in-
centivemechanism. As introduced in Zhang and Schoenebeck [31],
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the motivational proficiency is the minimum cost of budget to in-
duce a desired effort level in a symmetric equilibrium. Then, a SCE
of 1 will indicate that a mechanism does as well as a certain spot-
checkingmechanism doeswhen the spot-checkingmechanism has
access to the ground truth of every task. A SCE of 0 will indicate
that a mechanism does as well as this same spot-checking mech-
anism when it has no access to the ground truth of any task (es-
sentially, it is paying agents randomly). Note that accessing the
ground truthmight be costly, e.g., hiring an expert to get the ground
truthmight bemuchmore expensive than hiring several non-expert
crowd workers. Thus, SCE can quantify the considerable cost sav-
ings that might be achieved by employing a peer prediction mech-
anism over a straightforward spot-checking mechanism.

By sufficiently harshly punishing the agents for the checked
low-quality reports, spot-checkingmechanisms can effectivelymo-
tivate effort, evenwhen only a small fraction of the tasks are checked.
However, inmost real applications, the payoff should be non-negative
which precludes this approach.

Gao et al. [6, 7] study a peer grading setting where agents are
modeled as having a binary choice for the effort to exert: low ver-
sus high. In their setting, the goal is to minimize the fraction of
random questions that must be spot-checked to incentivize agents
to exert high effort (make choosing high effort a Nash equilibrium).
They find that, in their model, combining spot-checking with peer
prediction does not help reduce the spot-checking ratio required to
achieve the desired incentive properties, i.e. peer prediction makes
things worse. However, their results rest on several assumptions,
which we will discuss later in Section 6.

Burrell and Schoenebeck [2] propose a metric called Measure-
ment Integrity to quantify the ex-post fairness of a peer predic-
tion mechanism. Mechanisms with high Measurement Integrity
can produce payments that are strongly correlated with the qual-
ity of the agents’ reports. Their motivation and definitions look
beyond incentives to fairness. They do not study spot-checking
mechanisms, but it is clear that the more agents are spot-checked
the more accurately their scores will reflect their true quality. For
example, with ground truth for all the tasks, an agent’s score could
exactly reflect the true quality of her responses. Moreover, they
model continuous effort but do not establish a clear link between
Measurement Integrity and the ability to incentivize effort.

Zhang and Schoenebeck [31] study incentivizing effort in a crowd-
sourcing setting where agents can choose their effort from a con-
tinuum. Their goal is to maximize the motivational proficiency by
rescaling the scores output by the incentive mechanism into practi-
cal payments. They suggest a tournament-based payment scheme:
first rank the agents based on their scores output by an incentive
mechanism, and then pay a predetermined reward for each rank-
ing. Under the tournament setting, they further propose a suffi-
cient statistic of a mechanism’s motivational proficiency, called
the Sensitivity. Intuitively, the Sensitivity measures how respon-
sive a score is to changes in an agent’s effort. For example, a spot-
checking mechanism that checks a larger fraction of tasks is more
sensitive to changes in an agent’s effort (intuitively, it has more
chances to detect a change), and thus has a larger motivational
proficiency. However, there is a lack of discussions on how to es-
timate Sensitivity in practice.

An apparent contradiction arises. Zhang and Schoenebeck [31]
empirically show that when agents exert a reasonably high effort,
peer predictionmechanisms have Sensitivity competitivewith spot-
checking mechanisms that randomly check 20% of the tasks. How-
ever, the aforementioned implication of Gao et al. [6, 7] would
seem to predict that the spot-checking mechanisms are always su-
perior to peer-prediction mechanisms.

Our contributions. First, we propose Spot Check Equivalencewhich
uses the equivalent spot-checking ratio as an interpretable way to
measure an information elicitation mechanism’s performance un-
der specified information elicitation contexts. We study the Spot
Check Equivalence based on Measurement Integrity and Sensitiv-
ity, and demonstrate its effectiveness as a metric for motivational
proficiency both theoretically and empirically.

Second, we unify Measurement Integrity (the metric for ex-post
fairness) and Sensitivity (the metric that serves as a proxy for mo-
tivational proficiency). In particular, we prove that Spot Check
Equivalence based on Measurement Integrity and Sensitivity are
sometimes exactly the same. We also show why these results dif-
fer somuch fromGao et al. [6, 7], and thus refute, or at least qualify,
the titular statement that “Peer-prediction makes things worse.”

Third, we present two approaches to compute Spot Check Equiv-
alence, which are suitable for settings with and without ground
truth data, respectively. Our method enables the comparison of
the motivational proficiency of different mechanisms across vari-
ous information elicitation contexts. Furthermore, our simulation
results show that both approaches result in similar estimations of
SCE, which implies the robustness of our methods.

2 MODEL
In this section, we will give a formal definition of the information
elicitation context (Figure 1), and then formally define the Spot
Check Equivalence.

Figure 1: Information Elicitation Context

2.1 Information Elicitation Context
Formally, as shown in Figure 1, an information elicitation context
(IEC) is defined as a tuple:

Information Elicitation Context (𝐼𝐸𝐶) := (𝐴𝑔𝑒𝑛𝑡,𝐴𝑝𝑝,𝑀𝑒𝑐ℎ)
where 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e) represents the agents and their proper-
ties, 𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷) represents an information elicitation
application abstraction, and 𝑀𝑒𝑐ℎ = (𝑀, 𝑃) represents a mecha-
nism. We assume that the information elicitation context is com-
mon knowledge for all the agents.
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Agent. In 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e): 𝐼 is the set of agents; e = [𝑒𝑖 ]𝑖∈𝐼 ∈
[0, 1] |𝐼 | represents all agents’ effort levels. the cost function 𝑐 :
[0, 1] → R+∪{0}maps an effort level to a non-negative, increasing,
and convex cost. Notice agents are homogeneous and share the
same cost function.

Application Abstraction. 𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷) comprises the
task set 𝐽 , the ground truth space GT , the prior of the ground
truth𝜔 = ΔGT , the signal space Σ, and the data-generating process
𝐷 = (𝐷𝑎𝑠𝑠𝑖𝑔𝑛, 𝐷𝑠𝑖𝑔𝑛𝑎𝑙 ).

𝐷𝑎𝑠𝑠𝑖𝑔𝑛 describes how the tasks are assigned to the agents.
𝐷𝑎𝑠𝑠𝑖𝑔𝑛 : ΔG

whereG represents the space over𝐺 , and𝐺 = (𝐼∪𝐽 , 𝐸𝐺 ) represents
a bipartite graph between 𝐼 and 𝐽 , indicating how the tasks are
assigned to the agents.

𝐷𝑠𝑖𝑔𝑛𝑎𝑙 describes how the signals are generated: the distribution
of agent 𝑖’s signal on task 𝑗 conditioned on the effort 𝑒𝑖 ∈ [0, 1] and
task 𝑗 ’s ground truth 𝑔 𝑗 ∈ GT , given the edge (𝑖, 𝑗) ∈ 𝐸𝐺 :

𝐷𝑠𝑖𝑔𝑛𝑎𝑙 : [0, 1] × GT → ΔΣ

Agents’ Report. We assume agents truthfully report the signals
they obtain from the application abstraction conditioned on their
effort levels. Further discussion will be provided in Appendix B.
And we denote the agent 𝑖’s report on task 𝑗 as 𝑟𝑖 𝑗 ∈ Σ.

Application Instance. With the specified 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e) and
𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷), we can generate an instance representing
a realized information elicitation application:
• For the given 𝐼 , 𝐽 , we sample an assignment graph𝐺 accord-

ing to 𝐷𝑎𝑠𝑠𝑖𝑔𝑛 .
• For each task 𝑗 ∈ 𝐽 , we independently sample its ground

truth 𝑔 𝑗 from the prior 𝜔 .
• For each pair (𝑖, 𝑗) ∈ 𝐸𝐺 , we independently sample agent
𝑖’s signal on task 𝑗 from the distribution 𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (𝑒𝑖 , 𝑔 𝑗 ), de-
noted as 𝑜𝑖 𝑗 ∈ Σ.
• For each pair (𝑖, 𝑗) ∈ 𝐸𝐺 , as we assumed, the agent 𝑖’s report
𝑟𝑖 𝑗 = 𝑜𝑖 𝑗 .

The mechanism takes the application instance as input.

Performance Measurement. The performance measurement𝑀 is
a component of the mechanism𝑀𝑒𝑐ℎ = (𝑀, 𝑃). It maps the agents’
reports to their performance scores. Formally,

(Peer Prediction) 𝑀 : Σ |𝐸𝐺 | →𝑟𝑎𝑛𝑑𝑜𝑚 R
|𝐼 |

(Spot-checking) 𝑀 : Σ |𝐸𝐺 | × GT | 𝐽checked | →𝑟𝑎𝑛𝑑𝑜𝑚 R
|𝐼 |

Note that the spot-checking performance measurement can access
the ground truth of the checked tasks 𝐽checked ⊆ 𝐽 .

We use 𝑠𝑖 ∈ R to denote agent 𝑖’s score, and s = [𝑠𝑖 ]𝑖∈𝐼 to denote
the vector of all agents’ scores.

Payment Scheme. The payment scheme 𝑃 is the other compo-
nent of the mechanism. It maps the agents’ performance scores to
the payoffs, which are directly related to their utilities. Formally,

(Payment Scheme) 𝑃 : R |𝐼 | →
(
R∗ ∪ {0}

) |𝐼 |
Weuse 𝑝𝑖 ∈ R∗∪{0} to denote payoff of agent 𝑖 , and 𝛽 =

∑
𝑖∈𝐼 𝑝𝑖

to denote the total payment among all the agents. And we denote
the vector of all the agents’ payoffs as p = [𝑝𝑖 ]𝑖∈𝐼 .

For intuition, we give two examples of payment schemes:

Definition 2.1 (LineaR Payment Scheme). A linear payment
scheme pays a payoff 𝑝𝑖 = 𝑎 · 𝑠𝑖 +𝑏 to each agent 𝑖 , where 𝑎, 𝑏 are the
constant parameters.

Definition 2.2 (TouRnament Payment Scheme). A tournament
payment scheme ranks the agents according to their scores and pays
the 𝑖-th ranked agent 𝑝𝑖 , where 𝑝1, 𝑝2, ..., ˆ𝑝 |𝐼 | are constant parameters
thatmonotonically decreasing, i.e., 𝑝𝑖 ≥ 𝑝𝑖′ when 𝑖 ≤ 𝑖′. Without loss
of generality, we assume 𝑠1 ≥ 𝑠2 ≥ ... ≥ 𝑠 |𝐼 | , and thus 𝑝𝑖 = 𝑝𝑖 .

Report quality. Given an instance, we can define the quality of
an agent’s report. The quality function 𝑄 for one report is a deter-
ministic loss function:

(Quality Function) 𝑄 : Σ × GT → R
Agent 𝑖’s overall report quality 𝑞𝑖 is defined as the average of her
reports’ qualities, i.e. 𝑞𝑖 =

∑
𝑗 | (𝑖, 𝑗 ) ∈𝐺 𝑄 (𝑟𝑖 𝑗 , 𝑔 𝑗 ). We denote the vec-

tor of all the agents’ qualities as q = [𝑞𝑖 ]𝑖∈𝐼 .

Equilibrium. We assume that the agents choose their effort level
according to the following equilibrium.

Definition 2.3 (SymmetRic local eilibRium). Given an IEC
where all the agents exert effort 𝑒𝑖 = 𝜉 and E[∑𝑖∈𝐼 𝑝𝑖 ] ≥ |𝐼 | · 𝑐 (𝜉)
(Individual Rationality is satisfied), we say it is a symmetric local
equilibrium if the derivative of every agent’s utility is 0, i.e.

𝜕

𝜕𝑒𝑖
𝑢 (𝑒𝑖 , 𝑒−𝑖 = 𝜉) |𝑒𝑖=𝜉 = 0

Note that, at this equilibrium, 𝜕
𝜕𝑒𝑖

𝑢 (𝑒𝑖 , 𝑒−𝑖 = 𝜉) |𝑒𝑖=𝜉 = 0 is a
necessary condition for 𝜉 being a Nash equilibrium. Zhang and
Schoenebeck [31] show empirical evidence that a local equilibrium
is very likely to be a Nash equilibrium in the model we mainly
discuss in our paper. In the rest of our paper, our discussion will
focus on this equilibrium.

2.2 Motivational Proficiency
The motivational proficiency of a component (a mechanism, a per-
formance measurement, or a payment scheme) within an informa-
tion elicitation context 𝐼𝐸𝐶 represents its ability to incentivize ef-
fort. To quantify it, we fix all the other components of the 𝐼𝐸𝐶 and
quantify the expected total payment for eliciting a fixed effort level
at the equilibrium (Definition 2.3), lower expected total payment
implies higher motivational proficiency.

Definition 2.4 (Motivational pRoficiency). Wedefine themo-
tivational proficiency of a component (𝑀𝑒𝑐ℎ, 𝑀 , or 𝑃 ) within an in-
formation elicitation context 𝐼𝐸𝐶 where all the agents exert effort
level 𝜉 as the negative expected total payment needed to realize the
symmetric local equilibrium (Definition 2.3) at effort level 𝜉 when
substituting the component into the information elicitation context.

As we discussed in the introduction, Zhang and Schoenebeck
[31] show that tournament payment schemes have higher motiva-
tional proficiency compared to linear payment schemes in certain
settings where limited liability is needed. Therefore, in the follow-
ing discussion, wewill focus on themotivational proficiency of per-
formance measurements in information elicitation contexts with
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a tournament payment scheme. In Section 5, we quantify the to-
tal payment in an information elicitation context with tournament
payment. A simple example (Example A) in Appendix A illustrates
the intuition behind motivational proficiency and many other con-
cepts of this paper.

2.3 Measure of Performance Measurements
In addition to motivational proficiency, there are other measures
of performancemeasurements, as we discussed in the introduction,
including Sensitivity [31] and Measurement Integrity [2]. We now
propose the general definition.

Definition 2.5 (MeasuRe of PeRfoRmanceMeasuRement). A
measure 𝑓 of performance measurement 𝑀 within information elic-
itation context 𝐼𝐸𝐶 maps the 𝐼𝐸𝐶 with 𝑀 to a real number, denoted
as 𝑓 (𝐼𝐸𝐶 ← 𝑀) ∈ R, where the leftarrow means we apply 𝑀 in the
information elicitation context 𝐼𝐸𝐶 .

We now show the two examples of measure 𝑓 , Sensitivity [31]
and Measurement Integrity [2].

Sensitivity. Zhang and Schoenebeck [31] propose the Sensitiv-
ity as a proxy of the motivational proficiency of a performance
measurement. They show that the motivational proficiency highly
depends on the Sensitivity (Definition 2.6, Lemma 2.7), which mea-
sures how an agent’s performance score changes when she devi-
ates from the equilibrium effort level 𝜉 . When all other agents exert
effort 𝜉 , we denote the mean of agent 𝑖’s score as 𝜇𝑠 (𝑒𝑖 ), and the
standard deviation as 𝜎𝑠 (𝑒𝑖 ).

Definition 2.6 (Sensitivity [31]). The Sensitivity of a perfor-
mance measurement within an information elicitation context 𝐼𝐸𝐶
at equilibrium effort level 𝜉 is defined as

Sensitivity(𝐼𝐸𝐶 ← 𝑀) = 𝛿 (𝜉) =
𝜕
𝜕𝑒𝑖

𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉
𝜎𝑠 (𝜉)

Lemma 2.7 (PRoposition 4.8 in Zhang and SchoenebecK [31]).
If the agent 𝑖’s score 𝑠𝑖 follows a normal distribution𝑁 (𝜇𝑠 (𝑒𝑖 ), 𝜎𝑠 (𝑒𝑖 )2),
the expected total payment to elicit effort 𝜉 will (weakly) decrease in
the Sensitivity 𝛿 (𝜉) in a specific information elicitation context with
any tournament payment scheme.

Measurement Integrity. To measure the ex-post fairness of a per-
formance measurement, Burrell and Schoenebeck [2] propose the
Measurement Integrity, which is defined as the expected correla-
tion between the quality of the agents’ reports and their perfor-
mance scores.

Definition 2.8 (MeasuRement IntegRity [2]). Formally, the
Measurement Integrity of a performance measurement 𝑀 with re-
spect to a quality function 𝑄 and a correlation function corr, within
an information elicitation context 𝐼𝐸𝐶 is

MI
𝑄,corr

(𝐼𝐸𝐶 ← 𝑀) = E𝐼𝐸𝐶 [corr (s, q)]

2.4 Using Spot-checking as Reference: Spot
Check Equivalence

Even thoughwe havemetricswhich can compare two performance
measurements, there is still a need for a metric for a performance
measurement whose value is per se. Our idea is to take any metric

of performancemeasurements, 𝑓 , and convert it to an interpretable
metric as follows: instead of using the actual value of 𝑓 applied to
some performance measurement, instead use the checking ratio of
the spot-checking performancemeasurement who, when also eval-
uated by 𝑓 , yields a value equivalent to that of the performance
measurement.

First, we adopt the definition of spot-checking performancemea-
surement from Gao et al. [6], and assume it can access the ground
truth, thus, it is an idealized spot-checking. Given that we exclu-
sively focus on this particular spot-checking, we might omit the
term ’idealized’ in subsequent discussions for brevity.

Definition 2.9 (Spot-checKing peRfoRmance measuRement
(idealized)). An (idealized) spot-checking performancemeasurement
is denoted as a tuple 𝑆𝐶 := (𝑋, 𝑆,𝐶), which checks 𝑋 percent of all
the tasks u.a.r.; then scores the agent 𝑖 with 𝑆 (𝑟𝑖 𝑗 , 𝑔 𝑗 ) for each checked
task 𝑗 , and score 𝐶 ∈ R for each of the unchecked tasks.

Intuitively, a higher checking ratio leads to less noise, so high
effort is easier to notice, which is beneficial for both motivational
proficiency and ex-post fairness. Thus, we can use the equivalent
spot-checking ratio as a metric for both motivational proficiency
and ex-post fairness of a performance measurement.

Formally, we can define the Spot Check Equivalence as follows.

Definition 2.10 (SpotChecK Eivalence). For a performance
measurement 𝑀 within an information elicitation context 𝐼𝐸𝐶 =
(𝐴𝑔𝑒𝑛𝑡,𝐴𝑝𝑝,𝑀𝑒𝑐ℎ), at the symmetric local equilibrium e = 𝜉 , given
a measure of performance measurements 𝑓 (Definition⁇), we define
the Spot Check Equivalence 𝑆𝐶𝐸 of𝑀 , with respect to a spot-checking
mechanism 𝑆𝐶 as

𝑆𝐶𝐸 (𝐼𝐸𝐶 ← 𝑀) = sup𝑋 {𝑓 (𝐼𝐸𝐶 ← 𝑀) ≥ 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋, 𝑆,𝐶))}

In our following discussion, to make the spot-checking mech-
anism 𝑆𝐶 (𝑋, 𝑆,𝐶) non-trivial1, we use a quality function to score
the agents for checked tasks, i.e. 𝑆 = 𝑄 . And since we will apply
a payment scheme after the performance measurement, the value
of the constant score 𝐶 for unchecked tasks does not matter, thus,
we set 𝐶 = 0. We then use 𝑆𝐶 (𝑋 ) to denote 𝑆𝐶 (𝑋, 𝑆 = 𝑄,𝐶 = 0).

In the next section, we will theoretically prove the unification
of Sensitivity and Measurement Integrity in certain settings, and
consequently, we can show that the Spot Check Equivalence based
on the Sensitivity or Measurement Integrity can be used as an in-
terpretable metric for the motivation proficiency of an informa-
tion elicitation performance measurement. We will showmore em-
pirical evidence in our agent-based model simulations (Section 5)
when relaxing the theoretical assumptions.

3 UNIFICATION OF SENSITIVITY AND
MEASUREMENT INTEGRITY

In this section, we formally prove that the Spot Check Equiva-
lence based on Sensitivity or Measurement Integrity can be used
as a proxy for Spot Check Equivalence based on motivational pro-
ficiency in certain settings. Given that computing these three mea-
sures has different requirements, the unification allows us to com-
pute Spot Check Equivalence and consequently, measure the mo-
tivational proficiency in more scenarios.
1An example of a trivial spot-checking mechanism is 𝑆 (𝑟𝑖 𝑗 , 𝑔𝑗 ) ≡ 0 and𝐶 ≡ 0.
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We formally propose and prove the unification of Measurement
Integrity and Sensitivity in our main theorem (Theorem 3.4). Re-
call that Zhang and Schoenebeck [31] have shown that, within
certain settings, high Sensitivity leads to low expected total pay-
ment (Lemma 2.7) when applying a tournament payment scheme.
Putting these together, we have that the Spot Check Equivalence
based on motivational proficiency, Sensitivity, and Measurement
Integrity are equal.

Figure 2: Theoretical Analysis Overview

Since the Sensitivity relies on the distribution of the performance
score, we make the following assumptions about the distributions
of the quantities in our model, similar to prior work [31].

Assumption 3.1 (The Gaussian assumption foR the al-
ity). Given effort level 𝑒𝑖 , the quality 𝑞𝑖 follows a normal distribu-
tion 𝑁 (𝑒𝑖 , 𝜎𝑞 (𝑒𝑖 )2). And we further assume that 𝜎′𝑞 (𝑒𝑖 ) << 𝜎𝑞 (𝑒𝑖 ).

Assumption 3.2 (The Gaussian assumption foR the scoRe).
Given the report quality 𝑞𝑖 , the score 𝑠𝑖 follows a normal distribution
𝑁 (𝜇𝑠 |𝑞 (𝑞𝑖 ), 𝜎𝑠 |𝑞 (𝑞𝑖 )2).

Assumption 3.3 (The independent assumption foR scoRe).
When all agents have the same effort level 𝑒𝑖 = 𝜉 and the number
of agents |𝐼 | goes to infinity, the agents’ performance scores are inde-
pendent.

TheoRem 3.4 (Main TheoRem). For a given performance mea-
surement𝑀 within an information elicitation context 𝐼𝐸𝐶 where ev-
ery agent exert effort level 𝜉 , when Assumption 3.1 3.2 and 3.3 are sat-
isfied, there exists a linear bijection between theMI𝑄,corr (𝐼𝐸𝐶 ← 𝑀)
and the Sensitivity 𝛿 (𝜉), where corr is the sample Pearson correlation
coefficient and the number of agents goes to infinity.

We further discuss the reasonability of the assumptions and the
proof of our main theorem in our arXiv version.

Note that our main theorem (Theorem 3.4) relies on Assump-
tion 3.1, 3.2, and 3.3, thus, it is important to examine whether the
unification of motivational proficiency, Sensitivity, and Measure-
ment Integrity is still true with real scores calculated by various
performancemeasurements. In Section 5, wewill demonstrate some
positive evidence from our agent-based model experiment, where
Assumption 3.1, 3.2, and 3.3 are relaxed.

4 COMPUTING SPOT CHECK EQUIVALENCE
Given the unification of Sensitivity and Measurement Integrity, if
we can compute the Sensitivity or Measurement Integrity of a per-
formance measurement, we can get the Sensitivity-based or Mea-
surement Integrity-based Spot Check Equivalence respectively.

If the measure 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋 )) is monotonic, we can use a
binary search algorithm (Algorithm 2 in Appendix C) to compute
the Spot Check Equivalence.

4.1 Computation with Ground Truth
We first propose a workflow to compute the Spot Check Equiva-
lence with the ground truth of the tasks. The Spot Check Equiv-
alence is like accuracy, recall, and F1 score in machine learning,
which can only be calculated on training or testing datasets rather
than real applications. Similarly, it is reasonable to create datasets
to evaluate the information elicitation performancemeasurements,
get a good sense of their motivational proficiency, and then decide
which performance measurement to apply in real applications.

With the ground truth of the tasks, we can calculate the quality
of the reports, and then, use the correlation between the agents’
scores and qualities to estimate the measurement integrity of the
performance measurement 𝑀 and 𝑆𝐶 (𝑋 ).

Intuitively, as more tasks are checked, the score 𝑠𝑖 will be more
correlated to the quality 𝑞𝑖 . Our agent-based model experiment
also shows that theMeasurement Integritymonotonically increases
with the spot-checking ratio (Section 5.2). Therefore, we can apply
Algorithm 2 to estimate the Spot Check Equivalence based onMea-
surement Integrity.

4.2 Computation without Ground Truth
Considering the current lack of information elicitation dataset, we
propose another method to estimate the Spot Check Equivalence
without the ground truth.

Recall the definition of Sensitivity (Definition 2.6), both the de-
rivative of the performance score 𝜕

𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉 and the standard

deviation 𝜎𝑠 (𝜉) do not require access to the ground truth.The stan-
dard deviation 𝜎𝑠 (𝜉) can be estimated by the standard deviation of
{𝑠𝑖 } given that all the agents are homogeneous. However, in real
data, to estimate 𝜕

𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉 is tricky because the score after

deviating from 𝜉 is not accessible.
We adopt the idea of bootstrap sampling: we randomly select

an agent 𝑖 , and if we know how the effort impacts the report, we
can randomly manipulate her report as an intentional degradation
of her effort by some 𝜀. We then compute the mean difference be-
tween all selected agents’ scores before and after the manipulation,
denoted as Δ𝜇. Note that the mean difference Δ𝜇 can be regarded
as an estimation of 𝜀 · 𝜕

𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉 , and consequently, Δ𝜇/𝜎𝑠 is

proportional to the Sensitivity. For example, if decreasing the ef-
fort brings uniform noise, we get the Algorithm 1. In Section ⁇,
we present evidence demonstrating that Algorithm 1 works in our
agent-based model simulation.

5 EFFECTIVENESS OF THE SPOT CHECK
EQUIVALENCE: AGENT-BASED MODEL
EXPERIMENT

In this section, we present the results of agent-based model (ABM)
experiments to evaluate the effectiveness of the Spot Check Equiva-
lence based onMeasurement Integrity and Sensitivity inmeasuring
the motivational proficiency, without the assumptions we made
in our theoretical proof. We then further compare different peer
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Algorithm 1: Estimate SCE without Ground Truth
Input: Information Elicitation Context 𝐼𝐸𝐶 , Performance

Measurement 𝑀 , Iteration Times 𝑇
Output: Spot Check Equivalence 𝑆𝐶𝐸
Function Estimate Δ𝜇 (𝐼𝐸𝐶 ← 𝑀):

Δ𝜇 = 0
for 𝑡 = 1 to 𝑇 do

Choose 𝑖 ∈ 𝐼 u.a.r.
Compute score 𝑠𝑖 with 𝑀

for (𝑖, 𝑗) ∈ G do
if random(0, 1) > 𝜀 then

Choose 𝑟𝑖 𝑗 ∈ GT u.a.r.
end

end
Compute score 𝑠′𝑖 with 𝑀

Δ𝜇 = Δ𝜇 + (𝑠′𝑖 − 𝑠𝑖 )/𝑇
end
return Δ𝜇

𝑆𝐶𝐸 = BinarySearchSCE(𝑀, 𝑓 = Δ𝜇/𝜎𝑠)

prediction performance measurements with spot-checking perfor-
mance measurements in different information elicitation contexts.

5.1 Model Setup
We first briefly introduce our agent-based model setup. The de-
tailed setup is discussed in our arXiv version. According to the
definition of the information elicitation context in Section 2, our
agent-based model contains the following components:

Agents. We consider a population of |𝐼 | = 50 agents. Each agent
𝑖 has an effort level 𝑒𝑖 = 𝜉 ∈ [0, 1] with an associated cost function
𝑐 (𝑒𝑖 ) = 𝑒2𝑖 .

Data-generating Process (for Application Instance). We consider
a context with |𝐽 | = 500 tasks. Each agent is assigned to 50 tasks,
while each task is assigned to 5 agents.

We adopt a generalizedDawid-Skenemodel from previouswork
[31].The ground truth𝑔 𝑗 ∈ GT of task 𝑗 is independently sampled
from a discrete prior distribution 𝜔 learned from a dataset of a
crowdsourcing task on Amazon Mechanical Turk [25, 31], where
GT is a finite set including all possible ground truths.

The agent 𝑖 will receive a signal 𝑜𝑖 𝑗 ∈ Σ on task 𝑗 given her
effort level and the task’s ground truth. In our experiment, we as-
sume that Σ = GT . Then, we can define two |GT | × |Σ| confusion
matrices, Γ𝑤𝑜𝑟𝑘 and Γ𝑠ℎ𝑖𝑟𝑘 .The (𝑟𝑜𝑤, 𝑐𝑜𝑙) entry of Γ𝑤𝑜𝑟𝑘 and Γ𝑠ℎ𝑖𝑟𝑘
represents the probability of getting the 𝑟𝑜𝑤-th signal conditioned
on the 𝑐𝑜𝑙-th ground truth when the agent exerts effort level 1 and
0 respectively. When the agent 𝑖 exert 𝑒𝑖 effort, the confusion ma-
trix is

Γ𝑖 = 𝑒𝑖 ∗ Γ𝑤𝑜𝑟𝑘 + (1 − 𝑒𝑖 ) ∗ Γ𝑠ℎ𝑖𝑟𝑘
where the confusion matrix Γ𝑤𝑜𝑟𝑘 is also learned from the above
dataset [25, 31], and we set Γ𝑠ℎ𝑖𝑟𝑘 as a matrix representing a uni-
form distribution.

Performance Measurement. We implement several peer predic-
tion mechanisms, including Output Agreement (OA) [26–28], Peer
Truth Serum (PTS) [5], Correlated Agreement (CA) [24], 𝑓 -Mutual
Information (𝑓 -MI) [15, 16], and Determinant-based Mutual Infor-
mation (DMI)2 [12], which yield different Spot Check Equivalences
within the above information elicitation context.

Payment Scheme. We now introduce the tournament payment
scheme we use in our simulation.

Borda-count payment scheme. A very intuitive way to pay an
agent according to her ranking is to pay her how many agents she
beats. When there is a draw, we split the payoff evenly. Formally,
we have

𝑝𝑖 = 𝐶 · #beaten = 𝐶
∑

𝑖′∈ |𝐼 |,𝑖′≠𝑖

(
1[𝑠𝑖 > 𝑠𝑖′ ] +

1
2
1[𝑠𝑖 = 𝑠𝑖′ ]

)
where𝐶 is a constant parameter and the total payment is𝐶 ×

( |𝐼 |
2

)
.

To calculate the total payment3 in the Borda-count scheme for
a specific performance measurement 𝑀 for the symmetric local
equilibrium where every agent exerts 𝑒𝑖 = 𝜉 effort. We let the de-
rivative of the agent 𝑖’s expected payoff equal to 0, which implies
the parameter 𝐶 should be

𝐶 =
𝜕
𝜕𝑒𝑖
E[#beaten|𝑒𝑖 , 𝑒−𝑖 = 𝜉] |𝑒𝑖=𝜉

𝜕
𝜕𝑒𝑖

𝑐 (𝑒𝑖 ) |𝑒𝑖=𝜉
Note that to guarantee Individual Rationality (The agents’ ex-

pected utility is non-negative), when the calculated optimal pay-
ment is less than the total cost of all the agents, we set the total
payment as the total cost. We assume that if a payment scheme
can incentivize effort level 𝜉 using the optimal payment, it can also
incentivize the same effort when the total payment is greater than
the optimal payment.

5.2 Measurement-Integrity-based Spot Check
Equivalence.

We examine whether the Spot Check Equivalence based on Mea-
surement Integrity can indicate a performance measurement’s mo-
tivational proficiency. Recall that the motivational proficiency of
a performance measurement could be quantified by the amount of
the expected total payment we need to elicit a fixed effort level in
an information elicitation context. Thus, in the experiment exam-
ining the effectiveness, we mainly investigate the relationship be-
tween the Measurement Integrity and the expected total payment.

For several fixed effort levels, we apply all the performance mea-
surements and estimate their Measurement Integrity and the total
payment needed to elicit that equilibrium with the Borda-count
payment scheme by iterating the data-generating process 5000 times.

Recall that to satisfy Individual Rationality, the total payment
needs to be at least the agents’ cost to exert the effort. Since the
minimal payment is the same for all performance measurements

2Note that even though DMI demonstrates impressive theoretical properties, it per-
form badly in our simulation due to the considerable noise of its score (Figure 5).Thus,
we do not show it in the other figures.
3Note that the total payment of Borda-count is deterministic, thus, we use “total pay-
ment” in the rest of this section instead of “expected total payment”.
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when the effort level is the same, we visualize that as a horizontal
line in our result.

Figure 3: Measurement Integrity v.s Total Payment of Borda-
count payment scheme at effort level 0.6.4 The 𝑥-axis is the
Measurement Integrity and the 𝑦-axis is the total payment
needed to elicit that equilibriumwithin the tournament pay-
ment scheme. The horizontal line shows the agents’ cost to
exert the effort level, which implies the minimal payment
to satisfy the Individual Rationality.

With the results in Figure 3, we can observe that:
(1) The Measurement Integrity monotonically increases with

the spot-checking ratio.
(2) The Measurement Integrity and the total payment are sig-

nificantly negatively correlated.
This implies that, at a symmetric equilibrium, if a performance

measurement𝑀 hasMeasurement Integrity equal to spot-checking
𝑆𝐶𝐸%, then it has a similar motivational proficiency, i.e. similar
total payment, to that spot-checking performance measurement
within a tournament payment scheme. Therefore, a higher Spot
Check Equivalence indicates higher motivational proficiency.

Note that, even if considering IR, the motivational proficiency
is still monotonically increasing with the Spot Check Equivalence,
however, when IR is binding, more spot-checking does not further
decrease the total payment.

5.2.1 Measurement Integrity is a computationally efficient proxy.
In addition, we find that the Measurement Integrity converges sig-
nificantly faster than the total payment.The detailed result is demon-
strated in Appendix D and Figure 7. This suggests that even when
it’s possible to compute the expected total payment (e.g. with agent-
basedmodel simulation), utilizingMeasurement Integrity as a proxy
offers better computational efficiency.

5.3 Sensitivity-based Spot Check Equivalence
We now examine the effectiveness of the Spot Check Equivalence
based on Sensitivity as a metric of motivational proficiency. Here,
when estimating Δ𝜇/𝜎 (which is proportional to the Sensitivity),

4The figures for other effort levels are shown in our arXiv version.

we consider a more realistic scenario where there is only one sam-
ple from the data generating process and no ground truth. We esti-
mate Δ𝜇/𝜎 for each performance measurement according to Algo-
rithm 1 with𝑇 = 5000 iterations. We then compare the Δ𝜇/𝜎 with
the total payment estimated in the same way as in the previous
subsection. The results are shown in Figure 4.

Figure 4: Sensitivity v.s Total Payment of Borda-count pay-
ment scheme at effort level 0.6.4 The 𝑥-axis is the Δ𝜇/𝜎 and
the 𝑦-axis is the total payment needed to elicit that equilib-
rium within the tournament payment scheme.

Similarly, with the results in Figure 4, we can observe that: (1)
The Sensitivity monotonically increases with the spot-checking ra-
tio. (2) The Sensitivity and the total payment are significantly neg-
atively correlated. This observation implies that the Spot Check
Equivalence based on Sensitivity can be used as a metric of moti-
vational proficiency

5.4 Spot Check Equivalence of Peer Prediction
5.4.1 Peer Prediction works better to elicit high effort. We apply
the workflow in our agent-based model experiment to further com-
pare the Spot Check Equivalence of different performance mea-
surements in various contexts. Previous works [2, 6, 31] conduct
comparisons of certainmetrics in specific contexts. To further study
the motivational proficiency of the performance measurements,
we calculate the Spot Check Equivalence across various informa-
tion elicitation contexts.

We then enumerate the effort levels and calculate the Spot Check
Equivalence via the Measurement Integrity of each performance
measurement (Figure 5).

We find that when eliciting a low-effort equilibrium the Spot-
Checking Equivalence of peer prediction performance metrics is
low, however, the relative motivational proficiency of peer predic-
tion increases fast. That is because a peer prediction performance
measurement scores an agent according to the correlation between
her report and her peers’, when every agent exerts a low effort, her
peers’ reports are noisy so the score is quite noisy.

5.4.2 Mutual-information-basedmechanismswork better when #tasks
per agent increases. As the number of tasks per agent increases,
the SCE of OA and PTS remains the same, while for the mutual-
information-based mechanisms (CA, 𝑓 -MI), the Spot Check Equiv-
alence significantly increases. As the #tasks per agent increases,
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Figure 5: Spot Check Equivalence on different effort levels

the estimation of the joint distribution of two agents’ reports will
be more accurate, which leads to a more accurate score.

(a) effort level 0.5 (b) effort level 0.7

(c) effort level 0.9

Figure 6: #tasks per agent vs. the Spot Check Equivalence
based onMeasurement Integrity: the 𝑥-axis is the number of
tasks assigned to each agent and the𝑦-axis is the Spot Check
Equivalence calculated by Measurement Integrity.

6 DOES PEER PREDICTION MAKE THINGS
WORSE?

We now delve into the results of Gao et al. [6], especially their
assertion that “peer prediction makes things worse”, a claim which
contradicts other studies. Aswe discussed in Section 1, their results
rely on some restrictive assumptions.

First, they assume that payments are additive across tasks. In
contrast, Zhang and Schoenebeck [31] uses tournaments, which
are not linear and typically have much better motivational profi-
ciency.

Second, they assume a fixed payment function 𝑓 for each task.
However, as we have seen, a decrease in the spot-checking ratio
can be offset by scaling payments.

Finally, themodel of Gao et al. [6] assumes ”cheap signals”, which
are signals that agents can coordinate on more easily than the sig-
nal the mechanism really desires. For example, when peer review-
ing an article, it is much easier to assess quality from the author
list than by meticulously reading the article to asses the quality
of its argument. By reporting this “cheap signal” instead of the in-
formation desired by the mechanism agents can coordinate more
with less effort and defeat certain peer-prediction mechanisms.

In response to this analysis, subsequent research has proposed
peer-prediction mechanisms that aim to be robust against “cheap”
signals Kong and Schoenebeck [14]. The essential idea is to ask
the agents to additionally provide the cheap signals, and then pay
them for coordination in addition to these signals.

A more thorough explanation is provided in Appendix E.

7 RELATED WORK
Besides the theoretical literature discussing peer prediction mech-
anisms, as highlighted in Section 5, there are empirical studies that
validate these mechanisms. For instance, Radanovic et al. [21] ex-
perimentally tested their peer prediction mechanism in both peer
grading and crowdsourcing scenarios to validate its theoretical prop-
erties. Shnayder et al. [24] employed peer grading data from the
edX MOOC platform to assess the performance of their proposed
mechanisms. Spot checking in peer grading scenarios has already
been empirically examined in works such as [29, 30]. Additionally,
Goel and Faltings [8] study combining peer prediction and spot-
checking, and introduce the Deep Bayesian Trust Mechanism that
utilizes peer reports to reduce the need for spot-checking.

Furthermore, in forecasting contexts where agents are rewarded
afterward based on the agreement between their forecasts and the
outcomes, i.e. the ground truth is accessible for little or no cost,
Hartline et al. [9], Li et al. [18], Neyman et al. [20] study how
to optimize proper scoring rules to incentivize effort, and conse-
quently, elicit high-quality information. These works suggest the
possibility of optimizing the spot-checking mechanisms by scor-
ing the checked tasks according to the optimal proper score rules,
which indicates possible direction for future research.

8 CONCLUSION AND DISCUSSION
In summary, our research provides a methodology for understand-
ing the performance, especially motivational proficiency, of infor-
mation elicitation mechanisms in various contexts, the Spot Check
Equivalence, and consequently offers valuable insights for the de-
sign of effective and efficient incentive mechanisms that promote
the acquisition of high-quality information.

Future research might be conducted to investigate motivational
proficiency in a non-monetary setting, e.g. in peer grading, we care
about how to elicit agents’ effort with the bounded individual pay-
off, since the students’ grades could only be A, B, C, F, etc. Another
future direction might be to study motivational proficiency in a
more sophisticated model where the agents have heterogeneous
cost functions.
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A ILLUSTRATIVE EXAMPLE
We provide a simple example that illustrates the calculation of ex-
pected total payment in an information elicitation context with
a winner-take-all tournament payment scheme. In the next sec-
tion, we then demonstrate the Sensitivity and the Measurement
Integrity in this example.

Example A.1. Consider a simple case where there are two agents
(1 and 2) working on a large number of tasks. Each agent 𝑖 ∈ {1, 2}
can choose to exert a non-negative effort level 𝑒𝑖 , which incurs a cost
𝑐 (𝑒𝑖 ). And we use a quadratic cost function, 𝑐 (𝑒𝑖 ) = 𝑒2𝑖 , which is
one of the simplest functions that satisfies all the properties of a cost
function.

Since the signals are independent conditioning on an agent’s effort
level and the spot-checking performance measurement checks each
task u.a.r., we use normal distributions to approximate the quality
and performance score: Agent 𝑖’s report quality is 𝑞𝑖 ∼ 𝑁 (𝑒𝑖 , 1), and
the performance score is 𝑠𝑖 ∼ 𝑁 (𝑞𝑖 , 𝜎2), where 𝜎 is monotonically
decreasing with the spot-checking ratio. Consequently, we have that
𝑠𝑖 ∼ 𝑁 (𝑒𝑖 , 𝜎2 + 1)

The expected utility of agent 𝑖 is

𝑢𝑖 (𝑒𝑖 ) = Pr[𝑖 wins the tournament] · payoff −𝑐 (𝑒𝑖 )
Pr[𝑖 wins the tournament] = Pr[𝑠𝑖 − 𝑠−𝑖 ≥ 0], where −𝑖 denotes

the other agent. Notice that (𝑠𝑖 − 𝑠−𝑖 ) ∼ 𝑁 (𝑒𝑖 − 𝑒−𝑖 , 2𝜎2 + 2) be-
cause the difference of two normal random variables is also a normal
random variable where the variances add. Therefore, we have

Pr[𝑖 wins the tournament] = 𝐶𝐷𝐹𝑁 (𝑒−𝑖 ,2𝜎2+2) (𝑒𝑖 )
where𝐶𝐷𝐹𝑁 (𝑒−𝑖 ,2𝜎2+2) is the cumulative distribution function of the
normal distribution 𝑁 (𝑒−𝑖 , 2𝜎2 + 2).

To achieve the symmetric local equilibrium at effort level 𝜉 , we let
the derivative of agent 𝑖’s expected utility at 𝑒𝑖 = 𝜉 equal to 0.

𝜕

𝜕𝜉
𝑢𝑖 (𝜉) = 𝑝𝑑 𝑓𝑁 (𝜉,2𝜎2+2) (𝜉) · payoff −2𝜉 = 0

where 𝑝𝑑 𝑓𝑁 (𝜉,2𝜎2+2) is the probability density function of the normal
distribution 𝑁 (𝜉, 2𝜎2 + 2), which is the derivative of Pr[𝑖 wins the
tournament] at 𝑒𝑖 = 𝜉 . By simplification, we get, 𝑝𝑑 𝑓𝑁 (𝜉,2𝜎2+2) (𝜉) =

1
2
√
𝜋 · (𝜎2+1)

. Solving for the payoff, we have

payoff = 4𝜉 ·
√
𝜋 · (𝜎2 + 1)

In addition, we need to keep Individual Rationality, i.e. the ex-
pected utility for each agent should not be negative so that ratio-
nal agents will not leave, which implies the total payoff to all agents
should cover the total cost of all agents, i.e., payoff ≥ 2𝑐 (𝜉) = 2𝜉2.
Putting these together, the payoff should be

payoff = max
(
2𝜉2, 4

√
𝜋 · (𝜎2 + 1) · 𝜉

)
In the above example, we note that, 𝜎 monotonically decreases

with the spot-checking ratio, and the total payoff monotonically
increases with 𝜎 when IR is not binding. Therefore, we can see
that a higher spot-checking ratio leads to a lower total payment
when IR is not binding, and consequently, a higher motivational
proficiency.

Sensitivity in Example A.1. Recall that Zhang and Schoenebeck
[31] propose the Sensitivity, whichmeasures how sensitive the per-
formance score is to the effort change. They show that the total
payoff for eliciting effort level 𝜉 is monotonically decreasing with
Sensitivity (Lemma 2.7). Here, we show the Sensitivity 𝛿 (𝜉) in the
above example.

𝛿 (𝜉) =
𝜕
𝜕𝑒𝑖

𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉
𝜎𝑠 (𝜉)

=
1

√
𝜎2 + 1

Measurement Integrity in Example A.1. In Example A.1, we can
see that the motivational proficiency highly depends on how an
agent’s performance score correlates with his report quality. In the
example, the Pearson correlation coefficient between the agent i’s
report quality and score is as follows.

𝜌 (𝑞𝑖 , 𝑠𝑖 ) =
E[𝑞𝑖 · 𝑠𝑖 ] − E[𝑞𝑖 ]E[𝑠𝑖 ]

𝜎𝑞𝑖 · 𝜎𝑠𝑖
=

1
√
𝜎2 + 1

Note that the total payment is inversely proportional to the Pear-
son correlation coefficient! And the Sensitivity has the same form
as the correlation in this example.

This example shows intuitions that the correlation between the
agents’ report qualities and scores can be a proxy for a perfor-
mance measurement’s motivational proficiency. And both the re-
port quality and score are accessible in real data.

Therefore, we employ Measurement Integrity [2] as our proxy,
which measures the expected correlation between the agents’ re-
port qualities and the performance scores in a specific model.

B DISCUSSION OF THE TRUTHFUL REPORT
ASSUMPTION.

In our Section 2, we assume that the agents will truthfully report
their signal. This assumption is reasonable when applying a lin-
ear payment scheme given the performance measurement is truth-
ful under certain settings. In particular, Dasgupta and Ghosh [4]
propose the first multi-task peer prediction mechanism. Later on,
the CA mechanism [24] and 𝑓 -MI mechanism [16] are proposed to
generalize Dasgupta and Ghosh [4]’s mechanism from binary sig-
nal space to finite signal space, the MA mechanism [32] general-
izes CA to address task-dependent strategies, the DMI mechanism
[11] aims to reduce the required number of tasks, Schoenebeck and
Yu [22] handle continuous signals with a learning-based mecha-
nism, Agarwal et al. [1] deal with the heterogeneous agents, and
Schoenebeck et al. [23] address adversarial attacks in peer predic-
tion.

Furthermore, Burrell and Schoenebeck [2] examine the robust-
ness of the truth-telling equilibrium with agent-based model ex-
periments. However, when applying a non-linear payment scheme,
the agents may have the incentive to strategically report their sig-
nal, e.g. increasing the variance of their score to get a higher prob-
ability of being the winner. Zhang and Schoenebeck [31] propose
a truthful winner-take-all payment scheme by adding noise to the
agents’ score which may hurt the incentive for effort. However,
further study needs to be conducted to study the robustness of dif-
ferent performance measurements against strategic reports with
other non-linear payment schemes. This gap indicates another po-
tential future direction of our research.
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C COMPUTE SPOT CHECK EQUIVALENCE
In this section, we present the detailed algorithm to compute the
Spot Check Equivalence when the measure 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋 )) is
monotonic with respect to 𝑋 .

Algorithm 2: Binary Search algorithm for 𝑆𝐶𝐸
Input: Information Elicitation Context 𝐼𝐸𝐶 , Performance

Measurement 𝑀 , step size 𝜖
Output: Spot Check Equivalence 𝑆𝐶𝐸
Function BinarySearchSCE(𝑀, 𝑓 ):

low = 0, high = ⌊100/𝜖⌋
while low ≤ high do

mid =
⌊
low+high

2

⌋
if 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋 = mid ∗ 𝜖)) < 𝑓 (𝐼𝐸𝐶 ← 𝑀) then

ans = mid
low = mid + 1

end
else

high = mid − 1
end

end
return ans

Furthermore, a linear combination of the two spot-checking ra-
tios which has adjacent measure 𝑓 may be applied for a better ap-
proximation.

𝑆𝐶𝐸 = ans + 𝜖 · 𝑓 (𝐼𝐸𝐶 ← 𝑀) − 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (ans))
𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (ans + 𝜖)) − 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (ans))

D ADDITIONAL RESULTS
Measurement Integrity is a computationally efficient proxy. Fig-

ure 7 illustrates the variation in both the Measurement Integrity
and total payment as the number of iterations goes up.

(a) Measurement Integrity (b) Total payment of Borda-count

Figure 7: Convergence speed of the Measurement Integrity
and the total payment: the 𝑥-axis is the number of the sam-
ples, and the 𝑦-axis is the estimated Measurement Integrity
and the estimated total payment of the Borda-count pay-
ment scheme at effort level 𝜉 = 0.6 respectively.

In the previous results of Figure 3 (b), we find that when elic-
iting effort level of 𝜉 = 0.6, the 𝑓 -MI(kl), 𝑓 -MI(𝐻2) and CA per-
formance measurements have a little less motivational proficiency
comparable to 50% spot-checking. Meanwhile, the OA and PTS per-
formance measurements are better than 60% spot-checking.

Figure 7 demonstrates that achieving the same outcome requires
significantly fewer iterations for the calculation of Measurement
Integrity compared to the total payment.

E DOES PEER PREDICTION MAKE THINGS
WORSE?

In this section, we provide a detailed discussion about why Gao
et al. [6, 7] have the result that “peer predictionmakes thingsworse”
which contradicts the other literature [31] and our main results
that show peer-prediction mechanisms can have non-zero Spot
Check Equivalence.

We first introduce the Information Elicitation Context in their
paper.

Agent. 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e). The agent can choose a binary effort
𝑒 ∈ {0, 1}, where exerting high effort has a cost 𝑐 (1) = 𝑐𝐸 and
exerting no effort has a cost 𝑐 (0) = 0.

Application Abstraction. In 𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷), they also
model signal generation as a random function:

𝐷𝑠𝑖𝑔𝑛𝑎𝑙 : {0, 1} × GT → ΔΣ

however, importantly, the signals of agents are not i.i.d. across
agents. When the agent exerts high effort, she will get a high-
quality signal, which is drawn from a distribution conditional on
the task’s ground truth. When the agent exerts no effort, she will
get a low-quality signal that is uncorrelated with the task’s ground
truth, but, crucially, the no-effort signals are perfectly correlated
across no-effort agents—they all receive the same signal.

Performance Measurement. Firstly, they assume that the scoring
function in the spot-checking performance measurement (Defini-
tion 2.9) can effectively incentivize high effort, i.e.

E
[
𝑆
(
𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (1, 𝑔 𝑗 ), 𝑔 𝑗

)]
− 𝑐𝐸 > E

[
𝑆
(
𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (0, 𝑔 𝑗 ), 𝑔 𝑗

)]
In addition to the spot-checking performancemeasurement (Def-

inition 2.9), they propose a spot-checking peer-prediction perfor-
mance measurement, where for the unchecked tasks, they apply a
peer-prediction performance measurement to score the agents.

Payment Scheme. They fix a function 𝑓 : GT × Σ → R∗. The
payment scheme is additive across tasks and pays agents according
to 𝑓 for answering spot-checked tasks, and according to a peer-
prediction mechanism for tasks that are not spot-checked.

Agent reports. They allow the agents to strategically report their
signals.

Equilibrium. They focus on two possible equilibria. In the no-
effort equilibrium, each agent exerts no effort and uses the same
strategy to report her signal. In the truthful equilibrium, each agent
exerts high effort and truthfully reports her signal.
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E.1 Comparing Spot-checking Mechanisms and
Spot-checking Peer-prediction Mechanisms

Notice that, by assumption, with enough spot-checking, you will
get the truthful equilibrium.They use the minimum spot-checking
ratio that ensures the truthful strategy profile is an equilibrium
as a measure of the mechanisms’ performance. Formally, they use
𝑝𝑃𝑎𝑟𝑒𝑡𝑜 to denote theminimum spot-checking ratiowhere the truth-
ful equilibrium Pareto dominates the no-effort equilibrium when
applying the hybrid peer-prediction/spot-checkingmechanism.They
use 𝑝𝑑𝑠 to denote the minimum spot-checking ratio where the
truthful strategy profile is a dominant strategy in spot-checking
mechanism.

Then they propose a theorem for comparing the spot-checking
mechanism and the spot-checking peer-prediction mechanism:

TheoRem E.1 (Section 5 TheoRem 3 in Gao et al. [6]). For
any spot-checking peer-prediction mechanism, if the no-effort equi-
librium exists and Pareto dominates the truthful equilibrium when
the cost of effort is 0 (𝑐𝐸 = 0) and no task is checked (𝑝 = 0), then
𝑝𝑃𝑎𝑟𝑒𝑡𝑜 ≥ 𝑝𝑑𝑠 for any 𝑐𝐸 ≥ 0.

There are three differences between the models in Gao et al. [6]
and Zhang and Schoenebeck [31] that account for this stark differ-
ence.

The most obvious difference is that the payments in Gao et al.
[6] are restricted to be additive across tasks. This is rather simi-
lar to assuming a linear payment rule when the score is additive
across tasks. However, Zhang and Schoenebeck [31] use tourna-
ments, which are not linear and typically have much better moti-
vational proficiency.

Second, Gao et al. [6]’s assumption of a fixed payment function
𝑓 is extremely restrictive. As we discussed in Section 1, when the
spot-checking ratio decreases, it is possible to maintain the same
incentive properties by simply scaling up the payment function.
Thus, if we scale up 𝑓 , we can make 𝑝𝑑𝑠 arbitrarily small, and, con-
versely, by scaling down 𝑓 , we can make 𝑝𝑑𝑠 arbitrarily close to 1.
On the other hand, in Zhang and Schoenebeck [31] the mechanism
is defined as a performance measurement and a payment scheme,
and the payment scheme is optimized to work with the scoring
function, rather than being artificially fixed.

Finally, Gao et al. [6]’ make a key assumption on the no-effort
signals being perfectly correlated. For example, in peer grading,
the writing and formatting quality is a signal that can be accessed
with very little effort while assessing the correctness both requires
more effort and will likely lead to less agreement.

Notice that the premise of Theorem E.1 is that when the cost
of effort is 0 (𝑐𝐸 = 0) and no task is checked (𝑝 = 0), the equilib-
rium where agents exert no effort Pareto dominates the truthful
equilibrium.

Let’s zoom in on this. First, consider the case where the cost
of the high effort signal 𝑐𝐸 = 0. Notice that any spot-checking
mechanism that checks any positive ratio of tasks will have the
high-effort profile as an equilibrium because agents will receive
some positive payoff, but have 0 cost.

Next, consider a peer-prediction mechanism (e.g. a hybrid peer-
prediction/spot-checking mechanism with spot-checking ratio 0).
Again, the theorem is vacuously true, unless the profile in which
no agent exerts effort Pareto dominates the high-effort equilibrium
because, in the former, all agents agree and receive a maximal pay-
off5, but, in the latter, they do not all agree.

Together, this shows that any peer prediction mechanisms will
have a Spot Check Equivalence of 0, since in this case, any spot-
checking ratio that is greater than 0 will inevitably lead to the
truthful equilibrium given that the effort cost is nonexistent.

Because having a Spot Check Equivalence of 0 is an assumption
of the theorem, it is no wonder that such peer-prediction mecha-
nisms do not help!

However, this still potentiallymakes for a very strong critique of
peer-prediction mechanisms because in many real-world settings,
there exist cheap signals. For example, as mentioned in the intro-
duction, when humans are labeling LLM responses, it is much eas-
ier to judge them on how authoritative-sounding the responses are
than on how truthful the responses are. However, such labels may
encourage hallucinations.

Indeed, Gao et al. [6] led to several papers trying to create peer-
prediction mechanisms that are robust against “cheap” signals (i.e.
the no-effort/low-effort signals that can bring higher agreement
than the high-effort signals).

Kong and Schoenebeck [14] propose a peer prediction mech-
anism called Hierarchical Mutual Information Paradigm (HMIP),
assuming a hierarchical information structure where high-effort
(or higher expertise) agents have access to the information of low-
effort (or lower expertise) agents. HMIP encourages agents to in-
vest effort and incentivizes truthful reporting by paying the high-
effort agents for correctly predicting the “cheap” signals from the
low-effort agents. Additionally, a human subject experiment [13]
shows evidence of a hierarchical information structure among the
participants.
5They are assuming here that complete agreement brings a maximum payoff.
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