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AbstractÐSatellite-based quantum key distribution (QKD) sys-
tems use constellations of satellites to assist secret key generation
among ground station pairs that are far away from each other.
In this paper, we study satellite scheduling to establish secret
keys among ground station pairs in a fair and efficient manner.
While satellite scheduling has been considered in the past, existing
scheduling algorithms are not for QKD, and have not explicitly
accounted for fairness of resource allocation among ground
station pairs. We propose three satellite scheduling strategies that
have different tradeoffs in fairness and computational overhead.
Using extensive simulation, we evaluate these strategies in a
wide range of settings, while considering realistic environmental
conditions (time-of-day, cloud coverage). Our results demonstrate
that they achieve significantly better fairness at the cost of slightly
lower overall number of keys when compared to a baseline
strategy that has no fairness considerations.

Index TermsÐQuantum key distribution (QKD), Satellite As-
sisted QKD, Satellite scheduling, Fairness

I. INTRODUCTION

Quantum Key Distribution (QKD), where two entities, Al-

ice and Bob, establish secret keys using the principles of

quantum mechanics, is one of the most remarkable quantum

technologies. It achieves information theoretic security [1]±[3],

without relying on computational assumptions, unlike classical

public key cryptographic systems. Long-distance QKD where

Alice and Bob are at locations far away from each other can

be achieved through ground-based fiber connection (with the

aid of a sequence of quantum repeaters) or a satellite-based

system. The latter has the advantage that it leverages free-

space satellite communication that has much lower loss than

fiber channels, and hence is well recognized as one of the most

promising technologies to achieve global-scale QKD [4]±[8].

Indeed, several experimental studies have demonstrated the

technological feasibility of this approach [9]±[12].

In a satellite-based QKD system, a constellation of satel-

lites communicate with ground stations to assist secret key

establishment among the ground stations. While multiple

architectures have been proposed in the literature [8], we

consider dual-downlink entanglement distribution architec-

ture (see §II), where a satellite equipped with entanglement

sources distributes entanglements to a pair of ground stations

simultaneously. This architecture is more efficient than an

uplink-based architecture that suffers from early atmospheric

diffraction [13]. In addition, coupled with entanglement-based

QKD (e.g., E91 [14]), it can be readily used to generate secret

keys between the two ground stations.

In the settings with a constellation of multiple satellites and

a set of ground station pairs, a satellite can be in view of

multiple ground station pairs in a time slot; similarly, a ground

station pair can be in view of multiple satellites. With limited

number of transmitters at each satellite and receivers at each

ground station, satellite scheduling determines which satellite

to serve which ground station pairs in each time slot.

One satellite scheduling strategy is to maximize the total

number of secret keys that are generated among the ground

station pairs in each time slot, similar in spirit to maximizing

the number of entanglements distributed among the ground

station pairs in [15]. Such strategies, however, have no fairness

considerations, and hence can cause some ground station pairs,

particularly those under unfavorable conditions (e.g., those that

are far away from each other), to have low key generation rate.

This is undesirable since for such ground station pairs, it is

particularly important to achieve as high key rate as possible,

because for them the only viable way for performing QKD

may be through the satellite system due to their distance.

In this paper, we consider fair and efficient scheduling for

dual-downlink based satellite-assisted QKD systems. Specif-

ically, our goal is to achieve fair key allocation among the

ground station pairs, while not sacrificing much in terms of the

total number of secret keys. We first propose a fairness index

that considers the different maximum number of keys that can

be generated for each ground station pair. We then propose

three satellite scheduling strategies, slot-based weighted-sum,

slot-based max-min, and window-based max-min, that exhibit

different tradeoffs in terms of fairness and computational

overhead. All the strategies account for the finite resource

constraints of each satellite and ground station, as well as

various dynamics present in satellite-based QKD systems (e.g.,

key rate affected by time of day and weather conditions).

Using extensive simulations, we evaluate these strategies

in a wide range of settings (satellite constellation, satellite

altitude), while considering realistic environmental conditions

(time-of-day, cloud coverage). Our results demonstrate that,



Fig. 1. Dual-downlink satellite-assisted QKD.

compared to a baseline strategy that has no fairness consid-

erations, our proposed strategies achieve significantly better

fairness at the cost of slightly lower overall numbers of keys

over a time period (a day in our simulations). Among the

three proposed strategies, slot-based max-min achieves the

best tradeoffs in terms of total number of secret keys, fairness

index, and computational overhead. The baseline strategy leads

to zero or close to zero fairness index in some cases. For the

rest of the cases, slot-based max-min leads to up to 28.7×
higher fairness index than the baseline strategy, while only up

to 16.9% less secret keys.

The rest of the paper is organized as follows. In Section

II, we present problem setting and background. In Section III,

we present the scheduling framework and three strategies. In

Section IV, we present our evaluation results. In Section V,

we briefly review related work. Last, Section VI concludes the

paper.

II. PROBLEM SETTING AND BACKGROUND

A. Dual-downlink Satellite-assisted QKD

We consider a constellation of satellites that orbit around

the Earth at a certain altitude. Specifically, we consider polar

constellation as shown in the top right of Fig. 1; our approach

can be easily extended to other types of constellation (e.g.,

Polar, Walker, Iridium, Starlink, and Kuiper [4]). We focus

on low-earth-orbit (LEO) satellites, i.e., altitude between 250

to 2000 km. Such LEO satellites benefit from proximity to

Earth’s surface, and their technological feasibility has been

demonstrated experimentally [8], [16], [17]. Each satellite has

photon sources that generate entangled pairs and uses down-

link optical channels to transmit entanglement pairs to a pair

of ground stations simultaneously, as shown in Fig. 1. We

consider a set of ground stations. Each pair of ground stations

run an entanglement based QKD protocol to establish secret

keys between them. We consider one QKD protocol, E91 [14],

in the rest of the paper, though our approach can be applied

to other entanglement based QKD protocols.

In E91, a source (in our case a satellite) prepares entangled

Bell states, sending one qubit to Alice and one qubit to

Bob. Alice and Bob, individually, choose a random basis to

measure their particle in either the computational Z basis or

the Hadamard X basis. This measurement result translates to

a raw key bit for each party: if either party receives a |0⟩ or

|+⟩, this will be considered a raw key bit of zero; otherwise

it will be a raw key bit of one. Clearly, if a true Bell state is

held by Alice and Bob and both parties choose the same basis,

they will have a correlated outcome; otherwise, they will have

a random outcome. The two parties then use an authenticated

classical channel to reveal their basis choice. If their choices

do not match, this round is simply discarded. The process

repeats until the two parties share a suitably large number of

raw keys.

These raw keys produced through the quantum communi-

cation stage of E91 are only partially correlated (there may

be errors, either naturally induced or adversarial) and partially

secret (the adversary Eve may have some information on these

raw key bits). Thus, they must be further processed before they

can be used as a secret key. First, an error correction protocol

is run (which leaks additional information to Eve). Second, a

privacy amplification protocol is run, which essentially hashes

the error corrected raw keys down to a smaller secret key.

Let N denote the number of rounds performed by the QKD

protocol. Let ℓ denote the size of the final secret key (after

error correction and privacy amplification). Then the key rate

is defined to be the ratio: r = ℓ/N . In this paper, we are

interested in asymptotic results, i.e., when N approaches in-

finity. Under these conditions, we use the standard E91/BB84

key-rate expression: r = 1− 2h(Q), where Q is the error rate

in the raw key, and h(x) = −x log x − (1 − x) log(1− x) is

the binary entropy function [18], [19].

B. Entanglement Sources

We assume each satellite utilizes spontaneous parametric

down-conversion (SPDC) based dual-rail polarization entan-

glement sources that are well-studied and widely used [20]±

[22]. In such entanglement sources, a two-qubit entangled Bell

state requires four orthogonal modes (i.e., two pairs of mode)

to encode. The expression of the output is a quantum state as

follows [22], [23]:

∣

∣φ±
〉

= N0

[

√

p(0) |0, 0; 0, 0⟩

+

√

p(1)

2
(|1, 0; 0, 1⟩ ± |0, 1; 1, 0⟩)

+

√

p(2)

3
(|2, 0; 0, 2⟩ ± |1, 1; 1, 1⟩+ |0, 2; 2, 0⟩)

]

,

(1)



where N0 is a normalization factor:

N0 =
1

√

p(0) + p(1) + p(2)
=

(Ns + 1)2
√

6N2
s + 4Ns + 1

(2)

and p(n) is the probability of generating a n-photon term in

each pair of mode, given by

p(n) = (n+ 1)
Nn

s

(Ns + 1)n+2
, (3)

where Ns is pump power, i.e., the mean photon number per

mode. The entangled pair from the SPDC dual-rail polarization

source is

∣

∣Ψ±
〉

=
1√
2
(|1, 0; 0, 1⟩ ± |0, 1; 1, 0⟩) . (4)

The vacuum state is |0, 0; 0, 0⟩, and all the other terms are

spurious two-photon states. In Eq. (1), we assume that Ns is

low (e.g., below 0.2) and hence p(n) for n ≥ 2 is negligible

and is omitted in the quantum state. In our evaluation (§IV),

we set Ns = 0.01.

C. Loss and Noise Models

The satellite quantum communication channel via free space

optical (FSO) transmission must account for the characteristics

of the optical channel in its underlying analysis. Transmission

loss for each qubit (comprising of a pair of modes) scales

quadratically with free space propagation length and expo-

nentially with aerial propagation length [23]. We incorporate

the effect of transmission loss by treating FSO transmission

as a Bosonic pure loss channel acting on each mode of

the quantum state described in Eq. (1). Most generally, the

Bosonic pure loss channel leads to a reduction in the mean

photon number of the input state; additionally an input pure

quantum state becomes a mixed state for non-zero loss. In the

present context, this reduces the probability of successfully

delivering the entangled pairs to both ground stations, as well

as affecting the fidelity (to the ideal Bell state) of the delivered

entangled photons [23]. See more details of the loss model in

[23].

Using MODTRAN (Moderate Spectral Resolution Radiative

Transfer Model) [24] with the assumption of a clear sky with

complete visibility and zero cloud cover, we first compute the

atmospheric transmissivity, denoted as η̂
(a)
s,g (t), for downlink

configuration between satellite s and ground station g at zenith.

We subsequently calculate the actual atmospheric transmissiv-

ity using the following expression [25]

η(a)s,g (t) = η̂(a)s,g (t)
cosec(θs,g(t)) , (5)

where θs,g(t) represents the angle of elevation between satel-

lite s and ground station g at time t.
To investigate the effect of seasonal variations of atmo-

spheric profiles and weather patterns on atmospheric trans-

missivity, we selected a single day from each of four different

months equally distributed throughout a year. Specifically,

using MODTRAN AGT, we generated atmospheric profiles for

various locations for the 15th day of March, June, September

and December respectively. We used weather data from online

resource called Visual Crossing [26], that is widely used for

earth observation and climate studies providing global historic

weather data records. The cloud coverage data of the year

2022, as per the location and time of the day is taken into

account, which is used in our evaluation in §IV. We denote ct,g
as the cloud coverage for ground station g at time t. The value

of ct,g falls within range of [0, 1], where ct,g = 0 indicates

clear sky above ground station g at time t, and ct,g = 1
signifies the opposite (i.e., complete cloud coverage).

In this work, we consider unfiltered background photons

as a source of noise within Atmospheric FSO transmission

channels. The presence of background photons in the channel

impacts the fidelity of entanglement distribution. The back-

ground photon flux varies drastically depending on time of

the day. The level of background photon flux is at its highest

during clear daylight, and at its lowest during clear nighttime.

In our work, we consider four time points throughout the

day, 12:00 AM, 6:00 AM, 12:00 PM, and 6:00 PM, to

measure the background photon flux at each ground station and

compute the fidelity of the generated entangled state between

two ground stations by modeling the arrival of unfiltered

background photons as detector dark click events.

III. SATELLITE SCHEDULING FRAMEWORK AND

STRATEGIES

In this section, we first present a satellite scheduling frame-

work and fairness index, and then present three scheduling

strategies.

A. Scheduling Framework

Let S denote a set of satellites, and G denote a set of

ground stations. Let Ms ≥ 1 denote the number of transmitters

at satellite s and Rg ≥ 1 denote the number of receivers

at ground station g. We consider the problem of scheduling

satellites to ground station pairs in a time period, T (e.g., a

day). The basic time unit for scheduling is a time slot (e.g.,

1 second). The scheduling problem determines, for any slot

t, which satellite s ∈ S will serve a ground station pair,

g, g′ ∈ G so as to optimize an objective function (see below).

Let binary decision variable, xs,g,g′

t , represent the scheduling

decision for satellite s and ground station pair (g, g′) in slot t.

Specifically, xs,g,g′

t = 1 when satellite s serves (g, g′) at time

t, and xs,g,g′

t = 0 otherwise.

Our goal is to find a schedule that maximizes the number

of keys generated, while satisfying fairness among the ground

station pairs. In the following, we define a fairness index

based on key generation demand. Specifically, for a given

satellite constellation, we introduce key generation demand,

dg,g
′

1:T , for ground station pair (g, g′) over time interval [1, T ]
as the maximum number of secret keys that can be generated,

assuming that (g, g′) is the only pair that needs to be served

by the satellite constellation. A satellite scheduling strategy

only needs to consider ground station pairs that have positive

key generation demand; the ground station pairs with zero

demand can be ignored (since no scheduling strategy can lead



to positive key rate for them). For a given satellite scheduling

strategy, let kg,g
′

1:T denote the total number of secret keys

generated for ground station pair (g, g′) during interval [1, T ]
under this strategy. Then the fraction of demand satisfied for

(g, g′) is kg,g
′

1:T /dg,g
′

1:T ∈ [0, 1].
Ideally, we want the ground station pairs to have the same

fraction of demand satisfied. We therefore define a fairness

index, F , as the minimum fraction of demand satisfied across

all ground station pairs with positive demand. That is,

F := min
g,g′∈G,d

g,g′

1:T
>0

(kg,g
′

1:T /dg,g
′

1:T ) (6)

The above fairness index is in [0, 1], and the higher the better.

To determine the satellite schedules for period T , we divide

T into windows, where each window contains L slots, 1 ≤
L ≤ T . When L = 1 slot, we refer to the schedule as slot-

based schedule since it determines the schedule for each slot

individually. When L > 1, we refer to the schedule as window-

based schedule, which considers the slots in a window jointly

to determine the schedule for each slot in the window. As the

window size increases, more constraints are considered jointly,

and hence can potentially lead to better schedules. On the other

hand, larger window size leads to more decision variables and

constraints in an optimization formulation, which can lead to

higher computation overhead.

We assume that the loss and noise characteristics of the

channels from the satellites to the ground stations are known

beforehand. This is a reasonable assumption since short-term

weather and cloud coverage can be predicted accurately (e.g.,

when T is one day). As such, the schedule for all the satellites

will be determined beforehand, and transmitted to the satellites

using classical communication channels before the start of a

scheduling time period.

B. Scheduling Strategies

In the following, we present three scheduling strategies. All

three strategies consider both fairness and total number of

keys generated, and use different designs to trade off these

two metrics. In all the strategies, let λs,g,g′

t denote the number

of entanglements that satellite s distributes to ground station

pair (g, g′) successfully in slot t, and let R
s,g,g′

t denote the

corresponding key-rate. We estimate λs,g,g′

t using the loss

model in §II-C beforehand. Similarly, we estimate R
s,g,g′

t

by estimating the error using the noise model in §II-C and

key rate expression in §II-A beforehand. Let ct,g and ct,g′

denote respectively the cloud coverage for ground station g
and g′ in slot t, which can also be estimated beforehand

based on weather prediction as described in §II-C. Then

we set the cloud coverage for ground station pair (g, g′) as

ct,g,g′ = max(ct,g, ct,g′). Therefore, for slot t, following the

linear approximation in [27], the number of secret keys that

is generated by satellite s serving ground station pair (g, g′)

is (1 − ct,g,g′)λs,g,g′

t R
s,g,g′

t . In the rest of the paper, for ease

of exposition, let ns,g,g′

t := (1 − ct,g,g′)λs,g,g′

t R
s,g,g′

t denote

the number of secret keys that can be generated in slot t for

ground station pair (g, g′) by satellite s.

We next present the three strategies. Two of them are

slot-based with window size L = 1 slot, and the other

is window-based with L > 1 slot. All three strategies are

described as solutions to mixed-integer programming (MIP)

problems, which can be solved using standard MIP solvers

(e.g., CPLEX [28]).

1) Slot-based Weighted-sum: For each slot t and ground

station pair (g, g′), this strategy considers two factors: (i) the

demand dg,g
′

t for slot t, i.e., the maximum number of secret

keys that can be generated for (g, g′) using the satellite con-

stellation assuming no competition with other ground station

pairs, and (ii) estimated number of secret keys that has already

been created for a ground station pair (g, g′) so far (i.e., from

slot 1 to the end of slot t − 1), denoted as kg,g
′

1:t−1. Both of

them can be estimated beforehand using the channel models

and key rate expression in §II; the estimation of kg,g
′

1:t−1 further

uses the scheduling decisions up to slot t− 1.

This strategy takes dg,g
′

t , kg,g
′

1:t−1, ns,g,g′

t as input and max-

imizes a weighted sum, subject to the satellite constraints

(number of transmitters at each satellite) and ground station

constraints (number of receivers at each ground station).

Specifically, the optimization problem for each slot t is

max
∑

s∈S

∑

g,g′∈G

xs,g,g′

t

(

dg,g
′

t

kg,g
′

1:t−1

+
ns,g,g′

t

dg,g
′

t

)

(7)

s.t.
∑

g,g′∈G

xs,g,g′

t ≤ Ms, ∀s ∈ S (8)

∑

s∈S

∑

g′∈G

xs,g,g′

t ≤ Rg, ∀g ∈ G (9)

xs,g,g′

t ∈ {0, 1}, ∀s ∈ S, g, g′ ∈ G (10)

The binary decision variable xs,g,g′

t determines whether satel-

lite s distributes entanglements to ground station pair (g, g′)
in slot t or not, s ∈ S, g, g′ ∈ G. In the objective function, the

first term in the sum, dg,g
′

t /kg,g
′

1:t−1, gives higher weight to a

(g, g′) pair that has received less secret keys. The second term

in the sum, ns,g,g′

t /dg,g
′

t , gives higher weight to scheduling

decisions which satisfy more of the demands in the slot. In

(7), we give the two terms in the sum equal weights, and leave

other forms of weight settings to future work.

Henceforth, we refer to the above strategy as slot-based

weighted-sum. Since the decision for slot t depends on the

decisions in earlier slots (due to kg,g
′

1:t−1), we solve the opti-

mization problem sequentially one slot at a time.

2) Slot-based Max-min: The above weighted-sum formu-

lation does not incorporate the fairness index explicitly. We

next enhances it to incorporate the fairness index explicitly.

Specifically, we set the objective function as

max αΛ +
1− α

γ

∑

s∈S

∑

g,g′∈G

xs,g,g′

t

(

dg,g
′

t

kg,g
′

1:t−1

+
ns,g,g′

t

dg,g
′

t

)

(11)



where α ∈ (0, 1) is a pre-determined constant, and γ is a

normalization term defined as follows, so that the second term

is no more than 1.

γ :=
∑

s∈S

∑

g,g′∈G

(

dg,g
′

t

kg,g
′

1:t−1

+
ns,g,g′

t

dg,g
′

t

)

In (11), α represents the relative weight between the two terms

in the objective function: the first is related to the fairness

index (see below) and the second is the same term in (7). We

use both terms since the first term is only about the the fairness

index, and considering it solely can lead to pessimistic results

in terms of key rate. We use α = 0.9 in our evaluation (see

§IV) to give the first term (on fairness) a higher weight.

The constraints are slot-based, including the constraints on

the number of transmitters for each satellite, the number of

receivers for each ground station, and the binary variable

constraints, the same as in (8)-(10). In addition, we have a

constraint on Λ as the minimum fraction of demands that has

been satisfied until end of slot t (i.e., dg,g
′

1:t ) across all the

ground station pairs, i.e.,

kg,g
′

1:t−1 +
∑

s∈S

xs,g,g′

t ns,g,g′

t ≥ Λdg,g
′

1:t , ∀g, g′ ∈ G s.t. dg,g
′

1:t > 0

Note that the above constraint considers the cumulative de-

mand, dg,g
′

1:t , which differs from the demand in slot t, dg,g
′

t , in

the objective function in (11).

Henceforth, we refer to this strategy as slot-based max-min,

since it aims to maximize the minimum of fraction of demands

that has been satisfied so far in each slot. Again, we solve it

sequentially one slot at a time due to kg,g
′

1:t−1 in the formulation.

3) Window-based Max-min: We next extend the above slot-

based max-min to a window-based strategy, referred to as

window-based max-min. This strategy considers a window of

L slots, and reduces to slot-based max-min when L = 1. In

the following, we present the formulation for the scheduling

for the k-th window, i.e., from slot kL + 1 to (k + 1)L. For

ease of notation, let bk and ek denote the beginning and ending

slot of the k-th window, respectively. Then the formulation is

max αΛ +
1− α

γ

ek
∑

t=bk

∑

s∈S

∑

g,g′∈G

xs,g,g′

t

(

dg,g
′

t

kg,g
′

1:bk−1

+
ns,g,g′

t

dg,g
′

t

)

(12)

s.t.
∑

g,g′∈G

xs,g,g′

t ≤ Ms, ∀s ∈ S, t = bk, . . . , ek (13)

∑

s∈S

∑

g′∈G

xs,g,g′

t ≤ Rg, ∀g ∈ G, t = bk, . . . , ek (14)

kg,g
′

1:bk−1 +

ek
∑

t=bk

∑

s∈S

xs,g,g′

t ns,g,g′

t ≥ Λdg,g
′

1:ek
,

∀g, g′ ∈ G s.t. dg,g
′

bk:ek
> 0 (15)

xs,g,g′

t ∈ {0, 1}, ∀s ∈ S, g, g′ ∈ G, t = bk, . . . , ek (16)
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Fig. 2. (a) Satellite view: for a satellite, the number of ground station
pairs that can potentially be served by the satellite, and (b) ground
station pair (GSP) view: for a GSP, the number of satellites that can
potentially serve it. All the plots are for the day in September.

where as in slot-based max-min, α ∈ (0, 1) is a pre-determined

constant, and γ is a normalization term, defined as

γ :=

ek
∑

t=bk

∑

s∈S

∑

g,g′∈G

(

dg,g
′

t

kg,g
′

1:bk−1

+
ns,g,g′

t

dg,g
′

t

)

The running time of the above formulation increases with

L. For the evaluation settings in §IV, we vary L from 1 to

240 slots; we do not use larger L values due to their higher

computational overhead.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed scheduling strate-

gies using extensive simulations. In the following, we first

describe the evaluation setup and then the results.

A. Evaluation Setup

We consider a polar constellation of LEO satellites in 20

rings, each ring with 20 satellites as in [4], [15]. Let A
denote the attitude of the satellites. We consider three altitudes,

A = 500km, 800km, and 1000km. The orbit time (the amount

of time for a satellite to finish one orbit) is 5668, 6044, and

6298 seconds, for satellite altitudes of 500km, 800km and

1000km, respectively. Each satellite is equipped with a SPDC

entanglement source (see §II-B) that operates at a 1 GHz rate,

i.e., generating 109 entangled photons per second. The pump

power of each source is set to a low value (Ns = 0.01) so that

high-order-photon contributions are negligible. We consider 4

ground stations in North America: New York City (NYC),

Washington D.C. (DC), Toronto, and Houston, forming a total

of 6 ground station pairs. Considering the constraints of the

current technologies, we focus on the setting where each
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Fig. 3. The demand of each ground station pair for each of the four days and three satellite altitudes. Only non-zero demands are plotted.

satellite has a single transmitter and each ground station has a

single receiver, i.e., Ms = 1, Rg = 1. We also explore the case

when each satellite has three transmitters, i.e., Ms = 3; the

results are very close to those when Ms = 1 due to constraints

of the ground stations. Henceforth, we only present the results

when Ms = 1.

As described in §II-C, we consider four days, the 15th

day of March, June, September, and December in 2022, with

channel models following the actual weather and background

photon measurement data. For each day, we obtain the satellite

schedules using our proposed strategies, i.e., T = 1 day. Each

slot is one second. Therefore, T = 86, 400 slots. The elevation

angle threshold is set to 20◦, i.e., a satellite can only serve a

ground station pair when the elevation angles to both ground

stations are larger than 20◦.

We compare our three proposed approaches with a baseline

scheduling strategy that only aims to maximize the total

number of keys in each slot, with no fairness considerations.

Specifically, it differs from slot-based weighted-sum in that the

objective function is maximizing
∑

s∈S

∑

g,g′∈G
xs,g,g′

t ns,g,g′

t .

Henceforth, we refer to this baseline strategy as slot-based

max-key. The solutions of all the strategies are obtained using

CPLEX [28], a widely used MIP solver.

We evaluate the various scheduling strategies using two

performance metrics: (i) total size of received secret keys (i.e.,

number of generated keys through QKD) across all the ground

station pairs at the end of a day, and (ii) fairness index, F , as

defined in (6).

B. Need for Satellite Scheduling

We first show the need for satellite scheduling. Fig. 2a plots

the histogram of the number of pairs that a satellite can choose

to serve in a slot, considering all the satellites and slots in

a day, for A = 500km and the day in September. The y-

axis represents the number of instances, considering all the

20×20 satellites in the constellation and all the slots in a day.

We see a significant number of instances in which a satellite

can choose from two or three ground station pairs to serve

in one slot. Fig. 2b shows the corresponding results from the

perspective of the ground station pairs, i.e., for a ground station

pair, the number of satellites from which it can choose to be

served, considering all the ground station pairs and slots in

a day. We see a significant number of instances in which a

ground station pair can be served by two or three satellites.

Fig. 2c and d show the corresponding results for A = 1000km,

and again for the day in September. We see more choices for

this higher altitude: there are a large number of instances in

which a satellite can choose from 3 or 6 ground station pairs

in a slot, while a ground station pair can choose from up to

8 satellites in a slot. Since a satellite has a single transmitter,

it can choose one ground station pair to serve in a slot; since

a ground station only has a single receiver, it can only be

served by one satellite, and can only be in one pair that is

served. Therefore, a satellite scheduling strategy is needed that

considers the possible set of scheduling choices, and selects

the one that satisfies a certain optimization goal.

C. Demands of Ground Station Pairs

Before presenting the results of the various satellite schedul-

ing strategies, we first present the demand of each ground

station pair under various settings. Recall that the demand of a

ground station pair is the maximum number of secret keys that

can be generated for a ground station pair, assuming that it is

the only pair that is served by the satellite constellation. Fig. 3

shows the demands of the various ground station pairs for

A = 500km, 800km, and 1000km, and each of the four days

that we consider. For each setting, only the pairs with positive

demands are shown in the figure. We see more pairs have

positive demands as the altitude increases since more pairs

can be served by the satellite constellation at higher altitudes.

For a given altitude and ground station pair, the demand of

the ground station pair can vary significantly across the days

due to different weather conditions (solar radiance and cloud

coverage). The demand for the day in December is particularly

low due to high cloud coverage (sometimes close to full cloud

coverage in an entire day). In contrast, the demand for the

day in September tends to be higher than the other three days.

We also observe that for a given ground station pair and day,

the demand is lower for a higher altitude, even though more

satellites are in view of this ground station pair as altitude

increases. This is due to the higher loss and noises for higher

altitudes.

Four pairs, (NYC, DC), (Toronto, NYC), (Toronto, DC),

and (DC, Houston), have positive demands in most cases for
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Fig. 4. Performance comparison: the three proposed scheduling strategies vs. the baseline max-key strategy. For window-based max-min,
L = 240 slots.

all altitudes (A = 500km, 800km and 1000km). Due to close

geography distance, (NYC, DC) pair tends to have the highest

demand, except for December due to high cloud coverage. Two

other close-by pairs, (Toronto, NYC) and (Toronto, DC), also

tend to have high demands. One special case is (Toronto, DC)

in the December day for all altitudes, where the maximum

cloud coverage of the two ground stations is one for all the

time periods, leading to zero demand for the day (i.e., no

key can be generated). The pair (DC, Houston) has much

lower demand than the above three pairs. The remaining two

pairs, (NYC, Houston) and (DC, Houston), only have positive

demand when the altitude is 800km or 1000km.

Since the demand for a ground station pair represents the

maximum number of keys that can be generated for the pair, if

the goal of satellite scheduling is simply to maximize the total

number of keys, the pairs with lower demand will be served at

lower priority. Therefore, for better fairness, it is important to

take demands into consideration, and serve the ground station

pairs with lower demand with higher priority.

D. Evaluation Results

Fig. 4 compares the performance of our proposed scheduling

strategies and the baseline slot-based max-key strategy in all

the settings of satellite altitudes and days. The performance of

window-based max-min depends on the window size L. The

results below are for L = 240 slots; the impact of window size

L on the performance of window-based max-min is deferred

to §IV-F.

The top row of Fig. 4 shows the total size of secret keys

across the ground station pairs in a day. For all the schemes,

we see that, consistent with the results for demands (see

§IV-C), the total size of secret keys decreases with increasing

altitude, even though more pairs can be served by the satellite

constellation at a higher altitude. In addition, for a given

altitude, the total size of secret keys is the highest for the day

in September and lowest for the day in December, consistent

with the demands for these two days.

For each setting, as expected, the slot-based max-key strat-

egy leads to more secret keys than our proposed strategies,

since its optimization goal is maximizing the total number

of secret keys. For the three strategies that we propose, in

most cases, slot-based weighted-sum leads to slightly (up to

3.0%) more keys than slot-based max-min strategy, while slot-

based max-min leads to slightly (up to 7.2%) more keys

than window-based max-min. across the various settings, the

baseline max-key strategy leads to 0.02% to 43.0% more keys

than slot-based weighted-sum strategy.

The bottom row of Fig. 4 shows the fairness index. We

see that the max-key strategy leads to significantly lower

fairness index than our proposed strategies in all the settings.

For our proposed strategies, slot-based max-min leads to

slightly higher (up to 4.0% higher) fairness index than slot-

based weighted-sum, while window-based max-min leads to

slightly higher (up to 13.4% higher) fairness index than slot-

based max-min in most cases, except for two cases when

A = 500km, a point that we will return to in §IV-F.

In the bottom row of Fig. 4, the baseline max-key strategy

leads to zero or close-to-zero fairness index in four setting

(A = 800km and 1000km, and the days in June and Decem-

ber). For the rest of the eight settings, slot-based max-min

leads to up to 28.7× higher fairness index than the max-key

strategy, while only up to 16.9% less keys (the reduction in

number of keys is up to 39.9% considering all the twelve

settings).



Summarizing the above results, slot-based max-min might

be a preferred strategy in balancing the two performance

metrics (fairness index and number of secret keys) and com-

putational overhead. Compared to slot-based weighted-sum, it

leads to slightly higher fairness index at the cost of slightly

less secret keys. Compared to window-based max-min, it

can lead to more secret keys, slightly lower fairness index,

and significantly lower computational overhead (see more

discussion in §IV-F).

E. Secret Keys across Ground Station Pairs

In the above, the fairness index is the minimum of the

fraction of demand satisfied across all the ground station pairs.

We next show the key distribution across the ground station

pairs, i.e., the fraction of demand satisfied for each ground

station pair with positive demand, in various settings under

our proposed strategies. Fig. 5 shows the results, where each

row corresponds to a strategy. Comparing the first and second

rows of Fig. 5, we see that the results for slot-based weighted-

sum and max-min are similar, while slot-based max-min leads

to slightly more uniform distribution of keys than slot-based

weighted-sum (e.g., when A = 500km). Comparing the second

and third rows of Fig. 5, we further see that window-based

max-min leads to more uniform distribution of keys than slot-

based max-min.

The more uniform distribution of keys in window-based

max-min compared to slot-based max-min is because it con-

siders the slots in a window jointly. To gain more insights

into the scheduling strategies, Fig. 6 presents a time series

plot that shows the ratio of the number of received keys over

the demand for each hour for the three strategies (each column

corresponds to a strategy). It is for two settings, A = 500km

and 1000km, both for the day in March. When A = 500km,

while the decisions of the three strategies are similar for

two pairs, (DC, Houston) and (NYC, DC), i.e., the two

pairs with the minimum and maximum demands, respectively,

their decisions for the other two pairs, (Toronto, NYC) and

(Toronto, DC), are clearly different: in window-based max-

min, their ratios are smooth over time and almost overlap with

each other; while they interleave in slot-based max-min, and

in slot-based weighted sum, one pair has consistently higher

ratio than the other. When A = 1000km, we again see four

pairs have very similar ratio over time, while their differences

is larger in slot-based max-min, and even larger in slot-based

weighted-sum.

F. Impact of Window Size on Window-based Max-min

Last, we evaluate the impact of window size on performance

in window-based max-min strategy. Fig. 7 shows the two

performance metrics for various settings with the window size

L varies from 1 to 240 slots (seconds), where the case when

L = 1 corresponds to slot-based max-min. In general, we

see that increasing L leads to less secret keys, while higher

fairness index. Two exceptions are A = 500km, for the days in

June and September, where L = 1 has slightly higher fairness

index than L = 240. For all the other settings, the fairness

index of L = 240 is higher (0.3% to 13.4% higher) than

that of L = 1. The computational overhead increases with

L, and when L = 240s, it already leads to more than 10

times more running time than when L = 1 in some settings

(e.g., for A = 1000km and the day in September) due to more

decision variables and constraints in the optimization problem.

The running time will be even larger for a larger number of

satellites and ground station pairs. Therefore, considering both

performance and computational overhead, slot-based max-min

(i.e., L = 1) might be a preferred strategy in practice.

V. RELATED WORK

There are several proposals for design considerations and

component specifications of a quantum satellite network [29]±

[31]. In particular, authors in [31] proposed the use of quantum

memory equipped satellites for memory assisted QKD systems

to enhance the key rates. Authors in [32] quantified the per-

formance limits of satellite QKD systems, examining factors

such as link efficiency, background light, and source quality

while considering finite-block size effects. These studies do

not explore the scheduling aspect of quantum satellite com-

munication.

The study in [4] studied several satellite configurations to

minimize the number of satellites and maximize the overall

entanglement generation rate in a polar satellite constellation.

The work that is closest to ours is [15] where the authors

designed satellite scheduling algorithms for entanglement dis-

tribution in dual-downlink settings. The authors proposed an

optimization approach to maximize entanglement distribution

in each slot considering the constraints at the satellites and

ground stations. Their scheduling algorithm is for entangle-

ment distribution, not for QKD. In addition, their design

assigns weights to different ground station pairs, unlike our

design that aims to optimize the fairness metric and the total

number of received keys.

The study in [27] schedules a single satellite to serve

multiple ground stations. While the authors also formulated

optimization problems, their study differs from ours in two

important aspects. First, they consider a single satellite, un-

like satellite constellation in our study. Second, the satellite

performs QKD with each ground station individually, instead

of with a ground station pair as in dual-downlink architecture

as in this study.

VI. CONCLUSION

We studied satellite scheduling to establish secret keys

among ground station pairs in a fair and efficient manner.

We proposed three satellite scheduling strategies that have

different tradeoffs in fairness and computational overhead.

Using extensive simulations, we evaluate these three strategies

in a wide range of settings, while considering realistic environ-

mental conditions (time-of-day, cloud coverage). Our results

demonstrate that they achieve significantly better fairness at

the cost of slightly lower overall number of keys when com-

pared to a baseline strategy that has no fairness considerations.
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Fig. 5. Fraction of demand satisfied for the various settings. The three rows compare the results from the three strategies that we propose.
For window-based max-min, L = 240 slots.
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Fig. 7. Impact of window size on performance in window-based max-min strategy; L varies from 1 to 240 slots.


