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Many aerospace engineering design problems require efficient solutions of unsteady
flow and adjoint equations. Implicit Runge–Kutta (IRK) is an efficient temporal
discretization scheme for unsteady flow solutions because it allows high order accuracy
and relaxed Courant numbers. However, existing IRK studies mostly focused on fully
coupled solvers for compressible flow. In this paper, we develop an IRK-PIMPLE
method using the two-stage Gauss scheme for segregated flow solvers, along with the
Gauss IRK-adjoint formulation for efficient gradient computations. We modify the
standard iterative PIMPLE method with block Gauss-Seidel sweeps to work with the
two-stage Gauss scheme, and we also simplify the Gauss IRK-adjoint formulation to an
easy-to-evaluate form. We validate the proposed IRK-PIMPLE method by simulating
unsteady flow over a ramp geometry and comparing the resulting flow field against the
second-order backward scheme reference. We implement the Gauss IRK-adjoint for the
scalar transport problem, and the adjoint derivative agrees reasonably well with the
finite difference reference. The proposed IRK-PIMPLE and its corresponding adjoint
solver have the potential to significantly reduce the computation cost for time-resolved
unsteady optimization using segregated flow solvers.

I. Introduction
In many aerospace design problems, one needs to consider time-resolved unsteady flow characteristics that

can not be assumed to be steady-state or periodic. For example, during the transition from vertical take-off
to horizontal cruise for urban air mobility aircraft, one is interested in the temporal evolution of aircraft
aerodynamics. For hypersonic reentry vehicles, heat would accumulate throughout the entire flight path;
therefore, a steady-state or periodic assumption may not be applicable. Gradient-based optimization has been
widely used for large-scale design problems in aerospace engineering that involve lots of design variables. The
adjoint method is usually chosen for gradient computation because its computational cost is independent of the
number of design variables [1, 2].

While the use of gradient-based optimization and the adjoint method has been a common practice for
steady-state aerodynamic optimization problems, it remains a major challenge for unsteady problems due to the
high computational cost. With the commonly used time-marching method and a finite difference-based temporal
scheme, the primal solution process for an unsteady problem marches forward through possibly tens of thousands
of time steps, which is primarily limited by the Courant–Friedrichs–Lewy CFL number for numerical stability.
Once the time-marching primal solution is done, the adjoint equations need to be repeatedly solved in reverse
order from the last time instance so that the gradient can then be computed. Therefore, the computational cost for
conducting an unsteady optimization can become prohibitive due to the large number of time steps. In previous
work [3, 4], we developed fixed-point and Krylov-based adjoint solvers for the PIMPLE algorithm that allows for
a relaxed CFL number (>10) so that fewer time steps can be used without endangering stability. However, using
a relatively large time step for unsteady flow simulations may compromise the temporal discretization accuracy.

One approach to alleviating the high computational cost for unsteady optimization while maintaining temporal
accuracy is to use the time-spectral method [5, 6]. The time-spectral method can be advantageous in terms of
computational cost because it has spectral convergence, which means that it can achieve a high level of accuracy
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with only a few or a dozen modes or collocation points, contrary to the time-marching method that would require
tens of thousands of time steps. For aerodynamic design optimization problems that involve periodic flow, He
et al. [7] developed a Fourier-based time-spectral method to solve both the primal flow problem and the adjoint
equations. Then, He and Martins [8] proposed a hybrid time-spectral method that uses the time-marching method
for the primal solution to ensure robustness and uses the time-spectral method to solve the adjoint equations to
save computational cost. For general unsteady flow that is not necessarily periodic, Im et al. [9] proposed a
mapped Chebyshev pseudospectral method that bypasses the ill-conditioning of the standard Chebyshev points
and accurately predicted the flow around an oscillating airfoil. Prasad et al. [10] also developed the adjoint solver
for the standard Chebyshev pseudospectral method. The major downside for the time-spectral approach is that a
more complex unsteady flow problem usually requires a higher number of modes or collocation points, which
inevitably leads to a highly complex fully coupled system that is hard to converge efficiently and robustly.

An alternative approach is to use higher-order implicit Runge-Kutta (IRK) schemes for the time-marching
method to significantly reduce the required number of time steps. With an IRK scheme that has a higher order of
accuracy than the commonly used backward difference scheme, the CFL number can be relaxed to a large value
without compromising stability or temporal accuracy. Jameson [11] has evaluated the Gauss and Radau schemes
and proposed a dual time stepping procedure to solve the resulting fully coupled system. Franco et al. [12]
implemented the Radau schemes for a compressible flow solver, developed the corresponding discrete adjoint
solver, and successfully performed optimizations of a 2D airfoil. The Gauss and Radau IRK schemes have
also been widely used in the optimal control community under the name of the pseudospectral or collocation
methods [13]. The Radau scheme and its corresponding adjoint capacity have been implemented in a popular
trajectory optimization package called Dymos [14].

The aforementioned IRK schemes can also be interpreted as applying the time-spectral method to local time
steps to achieve higher-order accuracy. Therefore, they can be viewed as a hybrid approach that combines the
time-marching method and the time-spectral method. For each time step, an IRK scheme couples all stage values
together and produces a fully coupled system whose complexity increases as the stage order goes up. As a result,
unlike the commonly used temporal schemes based on finite difference, the implementation of an IRK scheme is
not straightforward and requires special consideration. A suitable iterative method needs to be deployed together
with the IRK scheme to efficiently solve the fully-couple system for each time step.

Previous work on IRK schemes for fluid problems has mostly focused on fully coupled solvers for compressible
flow. To the best of our knowledge, the application of IRK schemes to segregated solvers widely used for
incompressible flow is yet to be established, and corresponding adjoint solvers for the IRK schemes are also
much needed. In this work, we develop a higher-order-accurate IRK-PIMPLE method for segregated flow solvers.
We modify the standard PIMPLE algorithm with block Gauss-Seidel sweeps to work with the two-stage Gauss
scheme. We also derive the discrete adjoint formulation for the Gauss IRK scheme with special consideration
for the proposed IRK-PIMPLE method, and we evaluate the adjoint gradient accuracy with the scalar transport
problem. We are working on the implementation of the Gauss IRK-adjoint solver for the IRK-PIMPLE method,
and we will investigate the Radau scheme and IRK schemes of higher-stage orders in future work.

The rest of the paper is organized as follows. In Section II, we describe the mathematical background of the
proposed IRK-PIMPLE method and the Gauss IRK-adjoint formulation. The IRK-PIMPLE flow simulation
results and the adjoint gradient verification are presented in Section III, and we summarize our findings in
Section IV.

II. Method
In this section, we first elaborate on the standard PIMPLE algorithm for a temporal scheme based on finite

difference. Then, we explain the unsteady scalar transport problem that we use as the testbed for the IRK
schemes and the corresponding adjoint method. We derive the Gauss IRK scheme from the point of view of the
collocation method, and demostrate how we solve the fully coupled systems for each time step with block Gauss
Seidel sweeps. We then proceed to derive the adjoint formulation for the two-stage Gauss IRK scheme with
special consideration for a segregated solver such as PIMPLE.
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A. PIMPLE method for unsteady flow simulation
We consider incompressible, unsteady laminar flow governed by the N-S equations:

∇ ·𝑼 = 0, (1)
𝜕𝑼

𝜕𝑡
+ (𝑼 · ∇)𝑼 + ∇𝑝 − ∇ · 𝜈(∇𝑼 + [∇𝑼]𝑇 ) = 0, (2)

where 𝑡 is the time, 𝑝 is the pressure, 𝑼 is the velocity vector 𝑼 = [𝑢, 𝑣, 𝑤], and 𝜈 is the kinematic eddy viscosity,
respectively.

As mentioned above, we solve the above N-S equations using the PIMPLE method, which is a combination
of the PISO and SIMPLE algorithms. The steps are briefly summarized as follows.

First, the momentum equation is discretized, and an intermediate velocity field is solved using the pressure
field obtained from the previous iteration (𝑝𝑡−Δ𝑡 ) or an initial guess. Without loss of generality, we assume the
first-order Euler scheme is used for temporal discretization.

𝑎𝑃𝑼
𝑡
𝑃 = −

∑︁
𝑁

𝑎𝑁𝑼
𝑡
𝑁 +

𝑼𝑡−Δ𝑡
𝑃

Δ𝑡
− ∇𝑝𝑡−Δ𝑡 = 𝑯(𝑼) − ∇𝑝𝑡−Δ𝑡 , (3)

where 𝑎 is the coefficient resulting from the finite-volume discretization, subscripts 𝑃 and 𝑁 denote the control
volume cell and all of its neighboring cells, respectively, 𝑼𝑡−Δ𝑡 is the velocity from the previous time step, and

𝑯(𝑼) = −
∑︁
𝑁

𝑎𝑁𝑼
𝑡
𝑁 +

𝑼𝑡−Δ𝑡
𝑃

Δ𝑡
(4)

represents the influence of velocity from all the neighboring cells and from the previous iteration. A new variable
𝜙 (face flux) is introduced to linearize the convective term:∫

𝑆

𝑼𝑼 · d𝑺 =
∑︁
𝑓

𝑼 𝑓𝑼 𝑓 · 𝑺 𝑓 =
∑︁
𝑓

𝜙𝑼 𝑓 , (5)

where the subscript 𝑓 denotes the cell face. 𝜙 can be obtained from the previous iteration or an initial guess.
Solving the momentum equation (3), we obtain an intermediate velocity field that does not yet satisfy the
continuity equation.

Next, the continuity equation is coupled with the momentum equation to construct a pressure Poisson
equation, and a new pressure field is computed. The discretized form of the continuity equation is∫

𝑆

𝑼 · d𝑺 =
∑︁
𝑓

𝑼 𝑓 · 𝑺 𝑓 = 0. (6)

Instead of using a simple linear interpolation, 𝑼 𝑓 in this equation is computed by interpolating the cell-centered
velocity 𝑼𝑃—obtained from the discretized momentum equation (3)—onto the cell face as follows:

𝑼 𝑓 =

(
𝑯(𝑼)
𝑎𝑃

)
𝑓

−
(

1
𝑎𝑃

)
𝑓

(∇𝑝) 𝑓 . (7)

This idea of momentum interpolation was initially proposed by Rhie and Chow [15] and is effective in
mitigating the oscillating pressure (checkerboard) issue resulting from the collocated mesh configuration.
Substituting Eq. (7) into Eq. (6), we obtain the pressure Poisson equation:

∇ ·
(

1
𝑎𝑃

∇𝑝
)
= ∇ ·

(
𝑯(𝑼)
𝑎𝑃

)
. (8)

Solving Eq. (8), we obtain an updated pressure field 𝑝𝑡 . Then, the new pressure field 𝑝𝑡 is used to correct the
face flux

𝜙𝑡 = 𝑼 𝑓 · 𝑺 𝑓 =
[(

𝑯(𝑼)
𝑎𝑃

)
𝑓

−
(

1
𝑎𝑃

)
𝑓

(∇𝑝𝑡 ) 𝑓

]
· 𝑺 𝑓 , (9)
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and velocity field

𝑼𝑡 =
1
𝑎𝑃

[𝑯(𝑼) − ∇𝑝𝑡 ] . (10)

The 𝑯(𝑼) term depends on 𝑼 but has not been updated so far. To account for this, we need to repeatedly
solve the Eqs. (4) to (10) (PISO corrector loop). We use two PISO corrector loops in this paper.

In addition to the PISO corrector loop mentioned above, the PIMPLE algorithm repeatedly solves Eqs. (3)
to (10) multiple times until all the flow residuals are small (PIMPLE corrector loop). To ensure the PIMPLE
stability, we need to under-relax the momentum equation (3) solution and the pressure update after solving the
pressure Poisson equation (8), except for the last PIMPLE corrector loop. We use Eqs. (3), (8), and (9) for the
residuals of velocity, pressure, and face flux, respectively.

We choose the iterative method PIMPLE over the popular non-iterative method PISO for the following
reasons:

1) The IRK schemes couple all stage values together, which breaks the non-iterative nature of the PISO
algorithm. The PIMPLE algorithm, on the other hand, can be readily modified to solve the fully coupled
system produced by the IRK schemes.

2) The PISO algorithm requires a small time step size (CFL<1) in order to be stable, but the PIMPLE
method allows us to use a relatively large time step size (CFL>1) while still maintaining stability. With a
commonly used up-to-second-order accurate temporal scheme based on finite difference, a larger time
step may compromise temporal accuracy, and we address this issue by incorporating the IRK schemes
that have higher-order accuracy.

3) The PIMPLE algorithm as an iterative method provides a clearly defined residual function at each time
step for the purpose of adjoint formulation. The PISO algorithm, on the other hand, is non-iterative and
needs to be treated as explicit forward marching in order to derive its corresponding adjoint solver. This
means that all intermediate calculations during the PISO loops need to be viewed as state variables, which
exacerbates the already high computational cost and makes the file I/O potentially prohibitive.

In this work, for the benchmark flow simulation that uses the second-order backward scheme, we run the
PIMPLE correctors to converge the flow residuals by 6 orders of magnitude or a maximum of 20 PIMPLE
corrector loops.

B. Unsteady scalar transport equation
The governing equation for the scalar transport equation is as follows.

𝜕𝑇

𝜕𝑡
+ (𝑼 · ∇)𝑇 − 𝛼∇2𝑇 = 0, (11)

where 𝑇 is the temperature, 𝑡 is the time,𝑈 is the velocity, and 𝛼 is the thermal diffusivity. The convective term
can be written as:

(𝑼 · ∇)𝑇 = ∇ · (𝜙,𝑇), (12)
where 𝜙 is the face flux and is fixed during the simulation.

Without loss of generality, we express the fully discretized scalar transport equation with the first-order Euler
scheme:

𝑻𝑛 − 𝑻𝑛−1

Δ𝑡
+ 𝑨𝑇𝑻

𝑛 = 𝒃𝑇 , (13)

where the left-hand side 𝑨𝑇 and the right-hand side 𝒃𝑇 arise from the spatial discretization and boundary
conditions. Then, Eq. (13) can be solved with any iterative linear solver for each time step.

C. Implicit Runge-Kutta scheme as a collocation method
We now derive the Gauss implicit Runge-Kutta scheme for a general semi-discrete problem from the

perspective of the collocation method:
d𝒖
d𝑡

+ 𝑹(𝒖) = 0, (14)
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where 𝒖 is the discretized state vector.
We discretize the time domain [0, 𝑇] using 𝐾 time steps as 0 = 𝑡10 < 𝑡

2
0 < ... < 𝑡

𝐾
0 < 𝑡𝐾+1

0 = 𝑇 . For the 𝑖-th
time step, its size is Δ𝑡𝑖 = 𝑡𝑖+1

0 − 𝑡𝑖0. We transform linearly 𝑡 ∈ [𝑡𝑖0, 𝑡
𝑖+1
0 ] to 𝜂 ∈ [−1, 1] using:

𝑡 =
𝑡𝑖+1
0 − 𝑡𝑖0

2
𝜂 +

𝑡𝑖+1
0 + 𝑡𝑖0

2
. (15)

We denote 𝜂1, 𝜂2, ... 𝜂𝑁 as the roots of the 𝑁-th order Legendre polynomial lying in [−1, 1], and their
corresponding collocation points in [𝑡𝑖0, 𝑡

𝑖+1
0 ] determined through Eq. (15) are 𝑡𝑖1, 𝑡𝑖2, ... 𝑡𝑖

𝑁
. We denote

𝒖𝑖𝑛 = 𝒖(𝑡𝑖𝑛), 1 ≤ 𝑛 ≤ 𝑁; they are the collocation states in the 𝑖-th time step, also known as the stage values from
the Runge-Kutta perspective.

Within the 𝑖-th time step, we can then approximate the true solution 𝒖 as a Lagrangian polynomial interpolated
at 𝑡𝑖0, 𝑡𝑖1, ..., 𝑡𝑖

𝑁
, i.e. the starting point and the 𝑁 collocation points of the local time step. That is:

𝒖𝑖 (𝜂) =
𝑁∑︁
𝑛=0

𝒖𝑖𝑛𝐿𝑛 (𝜂), (16)

where 𝐿0, 𝐿1, ... 𝐿𝑁 are the Lagrangian basis:

𝐿𝑛 (𝜂) =
∏
𝑘≠𝑛

(𝜂 − 𝜂𝑘)
(𝜂𝑛 − 𝜂𝑘)

, 0 ≤ 𝑛 ≤ 𝑁. (17)

Due to the chain rule d𝒖/d𝑡 = d𝒖/d𝜂 · d𝜂/d𝑡, the approximated time derivative of 𝒖 is:

d𝒖𝑖

d𝑡
=

2
Δ𝑡𝑖

𝑁∑︁
𝑛=0

𝒖𝑖𝑛𝐿
′
𝑛 (𝜂). (18)

With Eq. (18) we enforce Eq. (14) at the collocation points:

𝑹𝑖𝑗 (𝒖𝑖0, 𝒖
𝑖
1, ..., 𝒖

𝑖
𝑁 , 𝒙) =

2
Δ𝑡𝑖

𝑁∑︁
𝑛=0

𝒖𝑖𝑛𝐿
′
𝑛 (𝜂 𝑗 ) + 𝑹

𝑖

𝑗 = 0, 1 ≤ 𝑗 ≤ 𝑁, (19)

where 𝑹
𝑖

𝑗 = 𝑹(𝒖𝑖
𝑗
, 𝒙). After we solve for 𝒖𝑖1, 𝒖𝑖2, ... 𝒖𝑖

𝑁
in Eq. (19), we numerically integrate Eq. (14) over

𝑡 ∈ [𝑡𝑖0, 𝑡
𝑖+1
0 ] using Gauss Quadrature and get:

𝒖𝑖+1
0 = 𝒖𝑖0 −

Δ𝑡𝑖

2

𝑁∑︁
𝑛=1

𝜔𝑛𝑹
𝑖

𝑛, (20)

where 𝜔𝑛, 1 ≤ 𝑛 ≤ 𝑁 , are the weights for Gauss Quadrature. We repeatedly apply Eq. (19) and Eq. (20) to solve
for the whole time domain.

In the current work, we use the second-order Legendre-Gauss collocation method as the temporal scheme.
That is, we choose 𝑁 = 2 in Eq. (19) and Eq. (20):

𝑹𝑖1 =
2
Δ𝑡𝑖

(
𝐷10𝒖

𝑖
0 + 𝐷11𝒖

𝑖
1 + 𝐷12𝒖

𝑖
2
)
+ 𝑹

𝑖

1 = 0,

𝑹𝑖2 =
2
Δ𝑡𝑖

(
𝐷20𝒖

𝑖
0 + 𝐷21𝒖

𝑖
1 + 𝐷22𝒖

𝑖
2
)
+ 𝑹

𝑖

2 = 0,

𝒖𝑖+1
0 = 𝒖𝑖0 −

Δ𝑡𝑖

2

(
𝑹
𝑖

1 + 𝑹
𝑖

2

)
,

(21)

where the coefficient matrix 𝑫 is:

𝑫 =

[
−
√

3 1.5 −1.5 +
√

3√
3 −1.5 −

√
3 1.5

]
. (22)
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Note that the two-stage Gauss implicit Runge-Kutta scheme for Eq. (14) is:

𝒖𝑖1 = 𝒖𝑖0 − Δ𝑡𝑖
(
𝐴11𝑹

𝑖

1 + 𝐴12𝑹
𝑖

2

)
,

𝒖𝑖2 = 𝒖𝑖0 − Δ𝑡𝑖
(
𝐴21𝑹

𝑖

1 + 𝐴22𝑹
𝑖

2

)
,

𝒖𝑖+1
0 = 𝒖𝑖0 −

Δ𝑡𝑖

2

(
𝑹
𝑖

1 + 𝑹
𝑖

2

)
,

(23)

where the coefficient matrix 𝑨 is:

𝑨 =

[
1
4

1
4 −

√
3

6
1
4 +

√
3

6
1
4

]
. (24)

By rearranging terms, we can see that the second-order Legendre-Gauss collocation method in Eq. (21) is
equivalent to the two-stage Gauss implicit Runge-Kutta scheme in Eq. (23), and therefore it is fourth order
accurate.

Note that when implemented for a segregated incompressible solver, such as the PIMPLE algorithm in this
study, Eq. (21) is only applicable to the velocity equations. Other state variables, namely pressure and face flux,
do not have time derivative terms in their respective equations, and they are coupled with velocity at both stages.
We will elaborate on how to solve such a fully coupled system in the next subsection.

D. Iterative methods for fully coupled implicit Runge-Kutta schemes
We propose the use of block Gauss-Seidel sweeps with under-relaxation to solve the fully coupled system in

Eq. (21).
For the scalar transport problem, the fully coupled system for each time step takes the block matrix form:[

2𝐷11
Δ𝑡

𝑰 + 𝑨𝑇1
2𝐷12
Δ𝑡

𝑰
2𝐷21
Δ𝑡

𝑰 2𝐷22
Δ𝑡

𝑰 + 𝑨𝑇2

] [
𝑻1

𝑻2

]
=

[
𝒃𝑇1 −

2𝐷10
Δ𝑡

𝑻0

𝒃𝑇2 −
2𝐷20
Δ𝑡

𝑻0

]
, (25)

where 𝑻0 is the old time step value, 𝑻1 and 𝑻2 are the two-stage values, and 𝑰 is the identity matrix. The
left-hand side 𝑨𝑇1 and 𝑨𝑇2 as well as the right-hand side 𝒃𝑇1 and 𝒃𝑇2 arise from the spatial discretization and
boundary conditions. Note that Eq. (25) is simply Eq. (13) modified with the two-stage Gauss scheme equivalent
in Eq. (21). We iteratively solve the fully coupled system in Eq. (25) with block Gauss-Seidel sweeps with
appropriate under-relaxation.

For the IRK-PIMPLE algorithm, we perform block Gauss-Seidel sweeps on the PIMPLE loops of the
two-stage values with appropriate under-relaxation:

1) We first solve the modified intermediate velocity equation for the first stage according to Eq. (21):

2𝐷11
Δ𝑡

𝑼∗
1 + 𝑨𝑈1𝑼

∗
1 = 𝒃𝑈1 −

2𝐷10
Δ𝑡

𝑼0 −
2𝐷12
Δ𝑡

𝑼2, (26)

where 𝑼0 is the old time step velocity, 𝑼∗
1 is the intermediate velocity for the first stage, and 𝑼2 is the

velocity for the second stage. The left-hand side 𝑨𝑈1 and the right-hand side 𝒃𝑈1 arise from the spatial
discretization and boundary conditions.

2) We solve for the updated pressure field, correct the face flux, and correct the velocity field according to
Eqs. (4) to (10) (PISO corrector loop) for the first stage. We repeat the PISO corrector loop two times to
obtain the first stage value 𝑼1, 𝒑1 and 𝝓1.

3) We then solve the modified intermediate velocity equation for the second stage according to Eq. (21):

2𝐷22
Δ𝑡

𝑼∗
2 + 𝑨𝑈2𝑼

∗
2 = 𝒃𝑈2 −

2𝐷20
Δ𝑡

𝑼0 −
2𝐷21
Δ𝑡

𝑼1, (27)

where 𝑼∗
2 is the intermediate velocity for the second stage. Similarly, 𝑨𝑈2 and 𝒃𝑈2 arise from the spatial

discretization and boundary conditions for the second stage.
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4) We repeat the PISO corrector loop two times for the second stage and obtain 𝑼2, 𝒑2 and 𝝓2.
5) We repeat all steps above until the desired level of convergence is reached for both stages.
In this work, for both the IRK scalar transport simulation and the IRK-PIMPLE flow simulation, we perform

10 block Gauss-Seidel sweeps with all variables under-relaxed by 0.8. The residuals at both stages are converged
by 4 to 6 orders of magnitude.

E. Gauss IRK-adjoint formulation
As discussed previously, the IRK-PIMPLE primal solver with the two-stage Gauss scheme converges the

fully coupled system of the stage values for each time step, then it updates the velocity field of the new time step
explicitly. Therefore, the time-marching primal solution process can be viewed as:

𝑹(𝒘, 𝒙) =


𝑹1 (𝒘1,𝑼1

0, 𝒙)
𝑹2 (𝒘2,𝑼2

0, 𝒙)
...

𝑹𝐾 (𝒘𝐾 ,𝑼𝐾0 , 𝒙)


= 0, (28)

𝑼𝑖+1
0 = 𝑼𝑖0 −

Δ𝑡𝑖

2
(𝜔1𝑹𝑈

𝑖

1 + 𝜔2𝑹𝑈
𝑖

2), 1 ≤ 𝑖 ≤ 𝐾, (29)

where a superscript denotes the time step index with 𝐾 being the total number of time steps, a subscript denotes
the stage index with 0 indicting the old time step, and 𝒙 ∈ R𝑛𝑥 is the design variable vector. For each time
step, 𝒘𝑖 ∈ R2𝑛𝑤 consists of velocity, pressure, and face flux for both stages; 𝑼𝑖0 is the old time step velocity,
and 𝑹𝑖 ∈ R2𝑛𝑤 is the flow residual vector of the fully coupled system for the two-stage values. 𝑹𝑈 is the
non-time-derivative portion of the velocity residual function. The weights are 𝜔1 = 𝜔2 = 1 for the two-stage
Gauss scheme. Note that 𝑼1

0, 𝑼2
0, ..., 𝑼𝐾0 are not state variables. 𝑼1

0 is a part of the initial condition; 𝑼2
0, 𝑼3

0, ...,
𝑼𝐾0 are determined explicitly through Eq. (29) and they are not unknowns solved in Eq. (28).

The objective function F depends on both the design variables 𝒙 and the state variable vector 𝒘 solved
through Eq. (28) and Eq. (29), and in many applications, including this study, the objective function F is derived
from a time-averaged value with respect to continuous time. Then it can be expressed as the weighted summation
of a time series through Gauss quadrature:

𝐹 (𝒘, 𝒙) = 1
𝑇

∫ 𝑇

0
𝑓 𝑑𝑡

=
1
𝑇

𝐾∑︁
𝑖=1

∫ 𝑡𝑖+1
0

𝑡𝑖0

𝑓 𝑑𝑡

≈
𝐾∑︁
𝑖=1

Δ𝑡𝑖

2𝑇
(
𝜔1 𝑓

𝑖
1 (𝒘

𝑖
1, 𝒙) + 𝜔2 𝑓

𝑖
2 (𝒘

𝑖
2, 𝒙)

)︸                                      ︷︷                                      ︸
𝑓 𝑖 (𝒘𝑖 ,𝒙)

,

(30)

Then, the partial derivative 𝜕𝐹/𝜕𝒘 can be simplified as:

𝜕𝐹

𝜕𝒘︸︷︷︸
1×2𝐾𝑛𝑤

= [ 𝜕 𝑓
1

𝜕𝒘1︸︷︷︸
1×2𝑛𝑤

,
𝜕 𝑓 2

𝜕𝒘2︸︷︷︸
1×2𝑛𝑤

, · · · , 𝜕 𝑓
𝐾

𝜕𝒘𝐾︸︷︷︸
1×2𝑛𝑤

], (31)

and for each time step:
𝜕 𝑓 𝑖

𝜕𝒘𝑖︸︷︷︸
1×2𝑛𝑤

=
Δ𝑡𝑖

2𝑇
[𝜔1

𝜕 𝑓 𝑖1
𝜕𝒘𝑖1︸︷︷︸
1×𝑛𝑤

, 𝜔2
𝜕 𝑓 𝑖2
𝜕𝒘𝑖2︸︷︷︸
1×𝑛𝑤

], 1 ≤ 𝑖 ≤ 𝐾. (32)
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To obtain the total derivative d𝐹/d𝒙 for gradient-based optimization, we apply the chain rule as follows:

d𝐹
d𝒙︸︷︷︸

1×𝑛𝑥

=
𝜕𝐹

𝜕𝒙︸︷︷︸
1×𝑛𝑥

+ 𝜕𝐹

𝜕𝒘︸︷︷︸
1×2𝐾𝑛𝑤

d𝒘
d𝒙︸︷︷︸

2𝐾𝑛𝑤×𝑛𝑥

, (33)

where the partial derivatives 𝜕𝐹/𝜕𝒙 and 𝜕𝐹/𝜕𝒘 are relatively cheap to evaluate because they only involve
explicit computations. The total derivative d𝒘/d𝒙 matrix, on the other hand, is expensive, because 𝒘 and 𝒙 are
implicitly linked by the residual equations 𝑹(𝒘, 𝒙) = 0.

To solve for d𝒘/d𝒙, we can apply the chain rule for 𝑹. We then use the fact that the governing equations
should always hold, independent of the values of design variables 𝒙. Therefore, the total derivative d𝑹/d𝒙 must
be zero:

d𝑹
d𝒙

=
𝜕𝑹

𝜕𝒙
+ 𝜕𝑹
𝜕𝒘

d𝒘
d𝒙

= 0. (34)

Rearranging the above equation, we get the linear system

𝜕𝑹

𝜕𝒘︸︷︷︸
2𝐾𝑛𝑤×2𝐾𝑛𝑤

· d𝒘
d𝒙︸︷︷︸

2𝐾𝑛𝑤×𝑛𝑥

= − 𝜕𝑹

𝜕𝒙︸︷︷︸
2𝐾𝑛𝑤×𝑛𝑥

. (35)

We can then substitute the solution for d𝒘/d𝒙 from Eq. (35) into Eq. (33) to get

d𝐹
d𝒙︸︷︷︸

1×𝑛𝑥

=
𝜕𝐹

𝜕𝒙︸︷︷︸
1×𝑛𝑥

−

𝝍𝑇︷                  ︸︸                  ︷
𝜕𝐹

𝜕𝒘︸︷︷︸
1×2𝐾𝑛𝑤

𝜕𝑹

𝜕𝒘

−1

︸︷︷︸
2𝐾𝑛𝑤×2𝐾𝑛𝑤

𝜕𝑹

𝜕𝒙︸︷︷︸
2𝐾𝑛𝑤×𝑛𝑥

. (36)

Now we can transpose the Jacobian and solve with [𝜕𝐹/𝜕𝒘]𝑇 as the right-hand side, which yields the adjoint
equation,

𝜕𝑹

𝜕𝒘

𝑇

︸︷︷︸
2𝐾𝑛𝑤×2𝐾𝑛𝑤

· 𝝍︸︷︷︸
2𝐾𝑛𝑤×1

=
𝜕𝐹

𝜕𝒘

𝑇

︸︷︷︸
2𝐾𝑛𝑤×1

, (37)

where 𝝍 is the adjoint vector. Then, we can compute the total derivative by substituting the adjoint vector into
Eq. (36):

d𝐹
d𝒙

=
𝜕𝐹

𝜕𝒙
− 𝝍𝑇

𝜕𝑹

𝜕𝒙
. (38)

Since the design variables are not explicitly present in Eq. (37), we need to solve the adjoint equation
only once for each objective function. Therefore, the computational cost is independent of the number of
design variables but proportional to the number of objective functions. This approach of computing derivatives
introduced so far is also known as the adjoint method. It is advantageous for optimization problems in Aerospace
Engineering because typically, there is only one objective function, but hundreds or thousands of design variables
may be used.

The adjoint equation in Eq. (37) can be expressed in a block-structured matter with respect to the time
segments: 

𝜕𝑹1

𝜕𝒘1

𝑇
𝜕𝑹2

𝜕𝒘1

𝑇
𝜕𝑹3

𝜕𝒘1

𝑇
. . . 𝜕𝑹𝐾

𝜕𝒘1

𝑇

𝜕𝑹2

𝜕𝒘2

𝑇
𝜕𝑹3

𝜕𝒘2

𝑇
. . . 𝜕𝑹𝐾

𝜕𝒘2

𝑇

. . .
. . .

...

𝜕𝑹𝐾−1

𝜕𝒘𝐾−1

𝑇
𝜕𝑹𝐾

𝜕𝒘𝐾−1

𝑇

𝜕𝑹𝐾

𝜕𝒘𝐾

𝑇





𝝍1

𝝍2

...

𝝍𝐾−1

𝝍𝐾


=



𝜕 𝑓 1

𝜕𝒘1

𝑇

𝜕 𝑓 2

𝜕𝒘2

𝑇

...

𝜕 𝑓 𝐾−1

𝜕𝒘𝐾−1

𝑇

𝜕 𝑓 𝐾

𝜕𝒘𝐾

𝑇


, (39)
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where the adjoint vector 𝝍 ∈ R2𝐾𝑛𝑤 is broken down into 𝐾 parts that correspond to the time segments, i.e.,
𝝍1,𝝍2, . . . ,𝝍𝐾 ∈ R2𝑛𝑤 . For each 1 ≤ 𝑖 ≤ 𝐾, 𝝍𝑖 consists of 𝝍𝑖1 and 𝝍𝑖2 ∈ R𝑛𝑤 which correspond to the two
stages of the time step. The left-hand side of Eq. (39) has an upper-triangular block structure because the residual
function for any time step has no dependency on future states. As indicated in Eq. (28), for any 2 ≤ 𝑖 ≤ 𝐾 , 𝑹𝑖
explicitly depends on a state variable 𝒘𝑖 and a non-state intermediate variable 𝑼𝑖0, and through Eq. (29), 𝑹𝑖 also
has explicit dependency on 𝒘1, 𝒘2, ..., 𝒘𝑖−1. Therefore, the upper off-diagonal blocks on the left-hand side of
Eq. (39) are always non-zero. Then, Eq. (39) can be solved sequentially in a backward fashion as:

𝜕𝑹𝐾

𝜕𝒘𝐾

𝑇

· 𝝍𝐾 =
𝜕 𝑓 𝐾

𝜕𝒘𝐾

𝑇

,

𝜕𝑹𝑖

𝜕𝒘𝑖

𝑇

· 𝝍𝑖 = 𝜕 𝑓 𝑖

𝜕𝒘𝑖

𝑇

−
𝐾∑︁

𝑚=𝑖+1

𝜕𝑹𝑚

𝜕𝒘𝑖

𝑇

· 𝝍𝑚︸                   ︷︷                   ︸
𝑺𝑖

, 𝐾 − 1 ≥ 𝑖 ≥ 1, (40)

where the right-hand side [𝜕 𝑓 𝑖/𝜕𝒘𝑖]𝑇 expressed in Eq. (32) can be efficiently evaluated with reverse-mode
automatic differentiation (AD), and the underbraced term 𝑺𝑖 requires further simplification so that it can
computed efficiently.

We now simplify the above right-hand side term 𝑺𝑖 in Eq. (40). We first deploy the chain rule:

𝜕𝑹𝑚

𝜕𝒘𝑖
=
𝜕𝑹𝑚

𝜕𝑼𝑚0

𝜕𝑼𝑚0
𝜕𝒘𝑖

, 1 ≤ 𝑖 < 𝑚 ≤ 𝐾. (41)

Therefore, the expression for 𝑺𝑖 becomes:

𝑺𝑖 = −
𝐾∑︁

𝑚=𝑖+1

𝜕𝑼𝑚0
𝜕𝒘𝑖

𝑇

·
(
𝜕𝑹𝑚

𝜕𝑼𝑚0

𝑇

· 𝝍𝑚
)
, 𝐾 − 1 ≥ 𝑖 ≥ 1. (42)

We then sum Eq. (29) over the index 𝑖 and get:

𝑼𝑚0 = 𝑼1
0 −

𝑚−1∑︁
𝑖=1

Δ𝑡𝑖

2
(𝜔1𝑹𝑈

𝑖

1 + 𝜔2𝑹𝑈
𝑖

2), 2 ≤ 𝑚 ≤ 𝐾, (43)

which leads to:

𝜕𝑼𝑚0
𝜕𝒘𝑖

=



𝜕𝑼𝑚0
𝜕𝒘𝑖1

𝜕𝑼𝑚0
𝜕𝒘𝑖2


= −Δ𝑡𝑖

2


𝜔1
𝜕𝑹𝑈

𝑖

1
𝜕𝒘𝑖1

𝜔2
𝜕𝑹𝑈

𝑖

2
𝜕𝒘𝑖2


, 1 ≤ 𝑖 < 𝑚 ≤ 𝐾, (44)

where the expression for 𝜕𝑼𝑚0 /𝜕𝒘𝑖 no longer involves the index 𝑚. Therefore, the expression for 𝑺𝑖 becomes:

𝑺𝑖 =
Δ𝑡𝑖

2



𝜔1
𝜕𝑹𝑈

𝑖

1
𝜕𝒘𝑖1

𝑇

𝜔2
𝜕𝑹𝑈

𝑖

2
𝜕𝒘𝑖2

𝑇


·
(

𝐾∑︁
𝑚=𝑖+1

𝜕𝑹𝑚

𝜕𝑼𝑚0

𝑇

· 𝝍𝑚
)

︸                    ︷︷                    ︸
𝝃𝑖

, 𝐾 − 1 ≥ 𝑖 ≥ 1. (45)
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𝝃𝑖 in Eq. (45) can be calculated accumulatively as:

𝝃𝐾−1 =
𝜕𝑹𝐾1
𝜕𝑼𝐾0

𝑇

· 𝝍𝐾1 +
𝜕𝑹𝐾2
𝜕𝑼𝐾0

𝑇

· 𝝍𝐾2 ,

𝝃𝑖−1 = 𝝃𝑖 +
(
𝜕𝑹𝑖1
𝜕𝑼𝑖0

𝑇

· 𝝍𝑖1 +
𝜕𝑹𝑖2
𝜕𝑼𝑖0

𝑇

· 𝝍𝑖2

)
, 𝐾 − 1 ≥ 𝑖 ≥ 1,

(46)

and then 𝑺𝑖 is calculated as:

𝑺𝑖 =
Δ𝑡𝑖

2



𝜔1
𝜕𝑹𝑈

𝑖

1
𝜕𝒘𝑖1

𝑇

· 𝝃𝑖

𝜔2
𝜕𝑹𝑈

𝑖

2
𝜕𝒘𝑖2

𝑇

· 𝝃𝑖


, 𝐾 − 1 ≥ 𝑖 ≥ 1. (47)

Note that the right-hand side matrix-transpose-vector products in Eq. (46) and Eq. (47) can also be efficiently
evaluated with reverse-mode AD, and each evaluation only involves the states and residuals of one local time
step.

As indicated in Eq. (30), the objective function F is of the summation type. Therefore, the total derivative
d𝐹/d𝒙 in Eq. (38) also becomes a summation of a time series:

d𝐹
d𝒙

=

𝐾∑︁
𝑖=1

(
𝜕 𝑓 𝑖

𝜕𝒙
− 𝝍𝑖

𝑇 ( 𝜕𝑹
𝑖

𝜕𝒙
+ 𝜕𝑹𝑖

𝜕𝑼𝑖0

𝜕𝑼𝑖0
𝜕𝒙

)
)

=

𝐾∑︁
𝑖=1

(
𝜕 𝑓 𝑖

𝜕𝒙
− 𝝍𝑖

𝑇 𝜕𝑹𝑖

𝜕𝒙

)
−

𝐾∑︁
𝑖=1

𝝍𝑖
𝑇 𝜕𝑹𝑖

𝜕𝑼𝑖0

𝜕𝑼𝑖0
𝜕𝒙︸                   ︷︷                   ︸

𝑴𝑇

.
(48)

Note that 𝑹𝑖 depends on the intermediate variable 𝑼𝑖0, which leads to the underbraced term 𝑴𝑇 in Eq. (48) that
requires further simplification. With Eq. (43) 𝑴 becomes:

𝑴 = −
𝐾∑︁
𝑖=1

𝜕𝑼1
0

𝜕𝒙

𝑇
𝜕𝑹𝑖

𝜕𝑼𝑖0

𝑇

𝝍𝑖 +
𝐾∑︁
𝑖=2

𝑖−1∑︁
𝑚=1

Δ𝑡𝑚

2
(𝜔1

𝜕𝑹𝑈
𝑚

1
𝜕𝒙

𝑇

+ 𝜔2
𝜕𝑹𝑈

𝑚

2
𝜕𝒙

𝑇

) 𝜕𝑹
𝑖

𝜕𝑼𝑖0

𝑇

𝝍𝑖

= −
𝜕𝑼1

0
𝜕𝒙

𝑇 𝐾∑︁
𝑖=1

𝜕𝑹𝑖

𝜕𝑼𝑖0

𝑇

𝝍𝑖 +
𝐾−1∑︁
𝑖=1

Δ𝑡𝑖

2
(𝜔1

𝜕𝑹𝑈
𝑖

1
𝜕𝒙

𝑇

+ 𝜔2
𝜕𝑹𝑈

𝑖

2
𝜕𝒙

𝑇

)
(

𝐾∑︁
𝑚=𝑖+1

𝜕𝑹𝑚

𝜕𝑼𝑚0

𝑇

𝝍𝑚

)
= −

𝜕𝑼1
0

𝜕𝒙

𝑇

𝝃0 +
𝐾−1∑︁
𝑖=1

Δ𝑡𝑖

2
(𝜔1

𝜕𝑹𝑈
𝑖

1
𝜕𝒙

𝑇

+ 𝜔2
𝜕𝑹𝑈

𝑖

2
𝜕𝒙

𝑇

)𝝃𝑖 .

(49)

For most design optimization problems, the initial flow field has no dependency on the design variables, and the
term involving 𝜕𝑼1

0/𝜕𝒙 in Eq. (49) can often be omitted. Eq. (48) and Eq. (49) indicate that the total derivative
d𝐹/d𝒙 can be efficiently calculated on the fly as we sequentially solve the adjoint equations, and each required
reverse-mode AD tape only involves one local time step. This is desirable because we do not need to access all
state variables in the memory, nor do we need to save the adjoint vectors for all time steps to the disk.

Note that the Gauss IRK-adjoint formulation derived here is also compatible with a fully coupled primal
solver. For example, for the scalar transport problem considered in this study, we can simply replace the state
variables with 𝑻𝑖1 and 𝑻𝑖2, and the intermediate variables with 𝑻𝑖0. Some partial derivatives can also be reduced
to constant coefficients.

In this work, we solve the fully coupled IRK-adjoint equation at each step through block Gauss-Seidel sweeps
with under-relaxation, which is similar to that of the IRK primal solution process. The Gauss IRK-adjoint solver

10

D
ow

nl
oa

de
d 

by
 Io

w
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

Fe
br

ua
ry

 2
0,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

25
-0

57
7 



is implemented for the scalar transport problem and we are working on its implementation for the IRK-PIMPLE
method.

III. Results
In this section, we first use the two-stage Gauss IRK-PIMPLE solver to simulate unsteady laminar flow

over a ramp. We compare the resulting flow field to that obtained from the standard PIMPLE solver with
the second-order backward scheme. Then, we evaluate the adjoint gradient accuracy for the proposed Gauss
IRK-adjoint formulation using the scalar transport problem.

A. IRK-PIMPLE simulation for unsteady laminar flow over a 45-degree ramp
As mentioned above, this subsection considers unsteady laminar flow over a 45-degree ramp. The flow is

from left to right. The incoming flow velocity is 5 m/s at the inlet. The channel height at the outlet is 1 m, and
the channel length is 3 m. The viscosity is 10−3 and the Reynolds number based on the channel height at the
outlet is 5000. We generated a structured mesh with 3000 cells and the average 𝑦+ is about 1.3. We first develop
the initial flow field by marching from a uniform flow field of 5 m/s for 0.02 s with the standard PIMPLE solver
and the second-order backward scheme. We use this spun-up flow field as the initial condition for the flow
simulations in this study.

We then use the IRK-PIMPLE solver with the two-stage Gauss scheme to simulate the unsteady flow
up to 𝑡 = 1 s and verify the resulting flow field against that obtained from the standard PIMPLE solver and
the second-order backward scheme. For the two-stage Gauss scheme, the time step size is 0.02 s and the
corresponding CFL number is about 7. For the second-order backward scheme, the time step size is 0.002 s and
the corresponding CFL number is about 0.6. We normalize the velocity field error by the incoming flow velocity
5 m/s. At 𝑡 = 1 s, the infinity-norm error for the IRK-PIMPLE velocity field is about 3.3%, and the normalized
L2-norm error is about 0.3%. As shown in Figure 1, the resulting velocity fields are visually identical. Therefore,
we can conclude that the proposed IRK-PIMPLE is working as intended.

Fig. 1 Velocity field comparison for an 45-degree ramp geometry at 𝑡 = 1 s. Top: standard PIMPLE
with the second-order backward scheme; bottom: IRK-PIMPLE with the two-stage Gauss scheme. The
resulting flow fields are visually identical.
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B. IRK-adjoint gradient accuracy evaluation with the unsteady scalar transport problem
We verify the Gauss IRK-adjoint formulation with the scalar transport problem using a channel flow problem.

The flow goes from left to right. The temperature is 1.0 at the channel inlet, 1.2 at the upper wall, and 0.3 at
the lower wall. The velocity field is prescribed and not coupled with temperature. We first develop the initial
temperature field by marching from a uniform all-zero field for 10−4 s with the standard scalar transport solver
and the second-order backward scheme. We use this spun-up temperature field as the initial condition for the
scalar transport simulations in this study.

We run the Gauss IRK scalar transport solver up to 𝑡 = 0.5 s and verify the temperature field against that
obtained from the standard scalar transport solver and the second-order backward scheme. The time step size is
10−3 s for the two-stage Gauss scheme, and 2 × 10−6 for the backward scheme. At 𝑡 = 0.5 s, the infinity-norm
error for the IRK-PIMPLE velocity field is about 2.8 × 10−5, and the normalized L2-norm error is about
5.2 × 10−6. As shown in Figure 2, the resulting temperature fields are visually identical. Therefore, we can
conclude that the proposed IRK scalar transport primal solver is working as intended.

We evaluate the adjoint gradient using a one-time-step setup. The objective function is the time-averaged
cell-wise mean temperature of the whole domain. The design variable is the inlet temperature. The reference
value of the derivative obtained through central difference is 8.086 × 10−4, and the derivative calculated by the
proposed Gauss IRK-adjoint method is 8.170 × 10−4. The relative error is about 1%, and we are working on
improving the derivative accuracy.

Fig. 2 Temperature field comparison for the channel flow scalar transport problem at 𝑡 = 0.5 s. Top:
standard scalar transport solver with the second-order backward scheme; bottom: IRK scalar transport
solver with the two-stage Gauss scheme. The resulting temperature fields are visually identical.

Table 1 Verification of the adjoint gradient accuracy for the scalar transport problem. The derivative
values are in units of 10−4.

Adjoint FD-Ref Error
𝑑𝑇/𝑑𝑈in 8.170 8.086 1.0%

IV. Conclusion
In this paper, we propose the higher-order-accurate IRK-PIMPLE method for segregated flow solvers. We

modify the standard PIMPLE algorithm and perform block Gauss-Seidel sweeps with under-relaxation to solve
the coupled systems produced by the Gauss IRK scheme. We derive the Gauss IRK-adjoint formulation that
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is compatible with a segregated flow solver such as the proposed IRK-PIMPLE. We validate the proposed
IRK-PIMPLE method by simulating unsteady flow over a ramp geometry and comparing the resulting flow
field against the second-order backward scheme reference. We implement the Gauss IRK-adjoint for the scalar
transport problem and evaluate the adjoint gradient. The adjoint derivative shows about 1% error compared
with the finite difference reference. The proposed IRK-PIMPLE and its corresponding adjoint solver have the
potential to significantly reduce the computation cost for time-resolved unsteady optimization using segregated
flow solvers. In the future, we will implement the Gauss IRK-adjoint solver corresponding to the proposed
IRK-PIMPLE and improve the adjoint accuracy. We will also investigate the Radau scheme and IRK schemes of
higher-stage orders in future work.
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