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In this opinion piece, the authors, from the fields of artificial intelligence (Al) and psychology, reflect on how
the foundational discoveries of Nobel laureates Hopfield and Hinton have influenced their research. They also
discuss emerging directions in Al and the challenges that lie ahead for neural networks and machine learning.

Introduction

The 2024 Nobel Prize in Physics was
awarded to John H. Hopfield and Geoffrey
E. Hinton for their “foundational discov-
eries and inventions that enable machine
learning with artificial neural networks”
(ANNs). Their contributions have pro-
foundly shaped modern Al, laying the foun-
dations for technologies that are now
embedded in everyday life. Historically,
the Nobel Prize has rarely recognized the
field of computer science or Al, making
this recognition not only a testament to
their work but also a milestone for the
entire computing community. Their work
is also transforming many fields. Notably,
the 2024 Nobel Prize in Chemistry recog-
nized the creators of AlphaFold2, a deep
learning system that has revolutionized
protein structure prediction.

We are grateful for the opportunity to
reflect on how Hopfield and Hinton’s work
has profoundly influenced our research.
Inspired by their contributions, our discus-
sion of emerging opportunities and unre-
solved obstacles in Al, grounded in our
work, aims to further Al's potential to help
address some of society’s most pressing
challenges.

Foundational contributions by
Hopfield and Hinton
Both Hopfield and Hinton have had
extraordinarily productive careers, making
foundational contributions across multiple
fields. Hopfield has significantly impacted
Al, system biology, and physics, while
Hinton’s work spans Al, psychology, and
cognitive science.

Hopfield is best known for inventing the
Hopfield network, an energy-based asso-
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ciative memory model that converges to
stable states through energy minimiza-
tion." This was an early attempt to model
cognitive processes like memory and
pattern recognition and laid the ground-
work for future developments in ANNSs,
influencing modern networks like long
short-term memory (LSTM) networks
and gated recurrent units (GRUs).

Hinton’s key contributions include co-in-
venting Boltzmann machines, which were
an important step in unsupervised learning
and generative models,” and advancing
the backpropagation algorithm, which en-
ables the training of deep ANNs.® His
lab’s work on AlexNet demonstrated the
power of deep learning for large-scale
vision tasks.”

The development of deep learning can
also be attributed to contributions from
many other scientists. For instance, War-
ren McCulloch and Walter Pitts devel-
oped the first mathematical model of a
neuron. Frank Rosenblatt invented the
Perceptron, one of the first models
capable of learning from data. Some of
the earliest attempts to build a multi-layer
neural network were made by Alexey G.
lvakhnenko and Valentin G. Lapa. The
term deep learning was introduced to
the Al community by Rina Dechter.

Personal reflections

James Z. Wang

In my 30-year Al research career, Hopfield
and Hinton’s work has been a consistent
source of inspiration. Although | began in
mathematics, | quickly found my passion
in using mathematics and computing to
explore new possibilities. With guidance
from Gio Wiederhold, | transitioned to the

medical Al PhD program created by Ted
Shortliffe.

In the 1990s, Al was considered a strug-
gling field, often referred to as an “Al
Winter,” because classical approaches,
including early ANNs, couldn’t scale to
real-world problems. ANNs were taught
as historical topics, while methods like
Markov processes, classification trees,
and support vector machines took center
stage. In 2002, we published Automatic
Linguistic Indexing of Pictures (ALIP),
formulating image semantic annotation as
a statistical classification challenge. We
used a multiscale hierarchical hidden Mar-
kov model to demonstrate that computers
couldlearn to annotate images with linguis-
tic terms selected from a pre-defined “dic-
tionary.” Few believed such tasks were
achievable at the time. After optimizing
the algorithm for real-time performance in
2006,° | shifted focus, not anticipating the
breakthroughs that would follow.

Hinton’s lab’s 2012 achievement in im-
age classification” was striking. It defied
the prevailing belief that ANNs couldn’t
handle large, complex problems. Their
use of GPUs to scale ANNs through vec-
torization and parallelism reminded me
of CRAY supercomputers. | was aston-
ished by the model’s accuracy, knowing
firsthand the challenges of image classifi-
cation. Convolutional neural networks,
with their ability to automatically extract
hierarchical features, were pivotal.

Over the past two decades, I've focused
on modeling visual aesthetics, emotion,
and artistic style—areas that remain rela-
tively underexplored.” This interest origi-
nated from my undergraduate research
with Dennis Hejhal, where | used CRAY
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supercomputers to explore Loba-
chevsky space (Figure 1),% sparking
my fascination with the intersection
of mathematics, computing, and
art. While | expected machine
learning to gradually improve logical
problem-solving, | recognized that
aesthetics, emotional intelligence,
and creativity remain largely un-
charted frontiers in Al.

The resurgence of ANNs promp-
ted me to revisit certain ideas and
adopt new methodologies. Collab-
orating with colleagues, we've
made significant progress, utilizing
tools like Transformers, CLIP, and
diffusion models. In addition to
core research areas, we’ve devel-
oped ANN-based methods for
analyzing placenta images to
improve maternal and neonatal
health, diagnosing strokes from pa-
tient videos, and segmenting 3D
images to study drought-resis-
tant crops.

Hinton’s breakthroughs continue
to shape my outlook. Despite sig-
nificant advancements, Al systems
are still far from their full potential.
My collaborators and | are tack-
ling fundamental challenges like
improving explainability in medicine
and reducing the reliance on vast
amounts of training data. In the
following reflection, Wyble will elab-
orate on the latter.

Brad Wyble

In high school, | purchased Explora-
tions in Parallel Distributed Process-
ing, co-authored in part by Hinton.
The idea that computers could learn
using simulated neurons was trans-
formative for me and set the stage for my
interest in Al. However, | entered college
in the early 1990s, a low point for interest
in trained neural networks, and therefore,
| studied biologically inspired neural
networks. My models were hand-tuned to
reflect neurobiological mechanisms and
attractor dynamics, as theorized in Hop-
field networks.

Later, the field of neural networks re-
emerged as a method to understand visual
processingas | discovered inthe early work
of Thomas Serre, who built models of visual
processing that simulated the location-
invariance of neurons within the monkey vi-
sual system. | was captivated by the ability
of such models to classify natural images,
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Figure 1. A visualization of the quantum mechanical
behavior in the Lobachevsky space
Image generated with a CRAY supercomputer in the early
1990s. The research was led by Dennis Hejhal (University of
Minnesota).®

years before Hinton lab’s work on AlexNet
was published.* These models provided
me with a functional intuition for how neu-
rons in my own brain allowed me to recog-
nize objects, a process that | previously
considered cognitively impenetrable.
Hinton and other Al pioneers provided a
way to automate the training of such net-
works at scale, which made them compu-
tationally accessible. Consequently, the
applied and theoretical aspects of deep
learning bloomed in the years that fol-
lowed, and | used deep learning to better
understand how the mind represents vi-
sual information in a distributed manner.
Using backpropagation to train variational
autoencoders simulates how perceptual

Patterns

systems like the human ventral
stream might learn to process visual
stimuli without supervised training.
Our lab built a new theory of human
working memory that used the
layers of such autoencoders as the
computational substrate for mental
representations of visual forms,’
improving on previous models of
working memory that simulated only
individual features such as color
and orientation. The automated and
highly efficient backpropagation al-
gorithms enabled this research by
allowing us to explore the space of
models efficiently.

As impressive as deep learning is,
there still remain stark challenges—
notably the reliance on enormously
large training sets to approximate hu-
man performance, even in core vision
tasks like classification. The appetite
of these models for data, particularly
those trained with unsupervised
contrastive learning, stands in
contrast to the ability of human chil-
dren to learn the visual statistics of
the real world with a fraction of the to-
tal amount of visual input. Recently, |
have been working with the James
Wang lab to improve the efficiency
of training such models by incorpo-
rating environmental context. This
idea is inspired by the observation
that humans perceive the world with
a sense of space around them
whereas deep learning models are
trained without context. Their training
sets are randomly shuffled to remove
spurious correlations between image
sequences, but this shuffling elimi-
nates the possibility of exploiting the
deeper structure that exists from explora-
tions of the natural world. We developed
methods that train better models using
structured datasets acquired from explo-
ration of a virtual environment (Figure 2)."°

Emerging directions and unsolved
challenges in Al

While valid concerns around safety
and unintended consequences have
led many to advocate pausing giant Al
experiments, advancing Al to tackle ur-
gent global challenges—such as climate
change, public health crises, poverty,
food security, environmental degradation,
mental health, population growth, and ed-
ucation—is crucial, provided innovation
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viewing
direction

Figure 2. An illustration of the core idea of our spatial contrastive learning approach, where

an agent navigates a 3D virtual environment

The bottom shows the agent’s trajectory and viewing direction, while the top images represent different
viewpoints captured at various positions. These simulated perspectives provide the spatial context
necessary for training the model in visual pattern recognition.'®

aligns with humanity’s core values. We
see value in remaining cautiously opti-
mistic about our ability to collaborate
effectively with Al.

ANNs excel at identifying patterns in
vast datasets, which explains their effec-
tiveness in language processing and
computer vision tasks involving struc-
tured, low-entropy environments. Howev-
er, the world is filled with subjectivity, am-
biguity, and individual differences. Al's
ability to move beyond task-specific
learning to handle such complexity will
define its future progress.

Hopfield and Hinton demonstrated that
breakthroughs often arise from the conver-
gence of different scientific fields. We
see opportunities for Al to integrate with
other disciplines, which may help over-
come some of its limitations. For instance,
climate modeling demands staggering

amounts of data—from sensors, satellites,
and human activities—across dynamic
temporal scales. Al's ability to handle
such interconnected systems will affect
our ability to predict and mitigate climate
risks. Similarly, Al holds transformative
potential in healthcare, but models—often
trained on healthy populations —must
adapt to the personalized nature of diagno-
ses and treatments to be truly effective.

In biology, Al faces challenges in gener-
alization. Biodiversity encompasses a
vast array of species, genetic diversity,
and ecosystems, yet models trained on
one part of this landscape often fail else-
where. Likewise, Al applications in psy-
chology are complex due to factors like
personality, culture, emotion, and context.
Modeling this richness requires high-qual-
ity data, but the subjective nature of many
aspects, like emotion, complicates data
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collection and interpretation.” Similar is-
sues exist in the arts, where Al's explora-
tion of stylistic patterns inspires innovation.
Art is inherently creative and subjective,
with many unsolved art historical questions
that no single algorithm can address.'"'?
Moreover, art-related research must be
conducted ethically to avoid exploiting
human artists’ work.

Beyond practical applications, Al invites
deeper intellectual exploration. Galileo
described mathematics as the language
in which the universe is written. To genu-
inely test Al's intelligence, we might
wonder whether it's even possible to
train Al to understand the universe beyond
human knowledge, generate original ab-
stract conjectures, or assist in proving
long-standing problems like the Riemann
hypothesis or P vs. NP. As Al surpasses
humans in some areas, philosophical re-
flections become increasingly important.
Advancements may catalyze a societal
shift toward deeper reflection on human
purpose, potentially redefining success to
emphasize spiritual development and con-
nections with oneself and others.

Despite progress, many challenges
persist in Al research. The success of tech-
nologies like ChatGPT and autonomous
vehicles has ignited widespread enthu-
siasm. Scholars, including Hopfield and
Hinton, along with business leaders, have
suggested that Al could surpass human in-
telligence, potentially delivering significant
benefits or catastrophic outcomes.'® How-
ever, we believe Al is unlikely to surpass
human intelligence soon, and it may
never do so. Al's key limitations—lack of
explainability, bias, hallucination, difficulty
handling out-of-distribution data, reliance
on massive datasets, catastrophic forget-
ting, vulnerability to attacks, high computa-
tional costs, and inadequate symbolic
reasoning—are well documented. Ad-
dressing these is essential for responsible
Al development, yet even with improve-
ments, fundamental constraints remain.

Al relies on learning from statistical
patterns, symbolic processing, and opti-
mization, whereas human intelligence is
multidimensional, drawing on imagina-
tion, judgment, emotional intelligence
(EQ), and consciousness.

A significant gap lies in understanding
narratives. Al can list objects in a scene
or describe actions in a video but strug-
gles to grasp deeper meaning or themes
like betrayal, generosity, sacrifice, or
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Figure 3. Automatic brushstroke extraction reveals rhythmic structures in Vincent van

Gogh’s paintings

(A) Red Cabbages and Onions, Paris, 1887, oil on canvas. Image courtesy of the Van Gogh Museum,
Amsterdam, the Netherlands (Vincent van Gogh Foundation).

(B) Brushstrokes are extracted from this painting using a computer algorithm, with random colors as-
signed individually to each brushstroke. Image provided by the James Z. Wang Research Group.'?

seduction. Humans naturally create and
comprehend complex narrative struc-
tures, with thousands of tale-types and al-
lomotifs documented in writing, film, and
folktales within recent history by folklor-
ists like Hans-Jérg Uther.

EQ is another area where Al falls short.
Humans have evolved to manage emo-
tions—both their own and others’—and
studies show EQ often plays a larger role
than 1Q in success.'* While Al has made
progress in emotion recognition,” it lacks
lived experience and cannot truly experi-
ence emotions or apply them in deci-
sion-making. Embodied learning, where
agents interact physically with their
environment, offers some promise but
requires breakthroughs across multiple
disciplines to capture and replicate the
depth of human EQ.

Creativity presents additional chal-
lenges for Al. Humans generate novel
ideas, as evident in mathematics and art.
Throughout history, certain individuals,
often regarded as geniuses, have devel-
oped unique styles or revolutionary ideas
independently. For example, Vincent van
Gogh’s work, which was created over
just a decade, continues to reveal new in-
sights (Figure 3).'? Similarly, John Consta-
ble’s cloud studies reflect early meteoro-
logical understanding.”’ Al lacks the
imagination and cross-disciplinary crea-
tivity necessary for such innovation.

Human intuition and common sense,
which enable quick decision-making
without explicit rules, remain elusive for
Al. Mathematicians may spend hundreds
of pages of logical deductions to prove a
conjecture—a task that would be combi-
natorially infeasible if all possibilities had

4 Patterns 5, November 8, 2024

to be exhaustively tried. Neural Al sys-
tems lack abstract thinking and symbolic
reasoning capabilities.

In ethical and moral reasoning, humans
incorporate complex considerations into
everyday decisions, often instantaneously.
Al, constrained by predefined rules or
learning corpora, struggles with unprece-
dented or morally complex situations,
raising safety concerns about responsible
behavior in unpredictable scenarios.
Another limitation is Al’'s lack of intrinsic
motivation and self-determination. Hu-
mans can devote decades to a goal, driven
by purpose and experience, as exempli-
fied by mathematician Yitang Zhang, who
worked for many years on number theory
problems without recognition.

Human intelligence is broad and adapt-
able, allowing us to integrate various capa-
bilities to tackle complex tasks and make
decisions even in unfamiliar domains.
These competencies have empowered us
to create great works of art, develop
astounding technologies, and explore
the moon and ocean floor. The ultimate
question remains, “can Al truly capture
the complexity of human creativity and
emotional depth?”

Conclusion

The groundbreaking work of Hopfield
and Hinton has revolutionized Al and
will inspire generations. While Al has
achieved significant progress, challenges
remain. The future of Al will depend on its
thoughtful integration into solving global
issues and enriching human life, ensuring
that innovation remains aligned with hu-
man values and advances the well-being
of society.

Patterns

ACKNOWLEDGMENTS

The authors thank their collaborators, advisees,
and past mentors for valuable discussions and
support. J.Z.W.’s research is supported primarily
by the NSF under grant nos. 2015943, 2205004,
2216127, 2234195, and 2327730; the NIH under
grant no. RO1EB03130; the National Endowment
for the Humanities under grant no. HAA-287938-
22; the Amazon Research Awards Program; and
the Burroughs Wellcome Fund. B.W.’s research
is supported primarily by the NSF under grant no.
2216127. The views and conclusions expressed
are those of the authors and do not necessarily
reflect the views of the funding agencies.

DECLARATION OF INTERESTS

J.Z.W. is named as an inventor on patents and
patent applications related to the technologies
discussed in this article. These patents are held
by The Penn State Research Foundation. The opin-
ions expressed here have not been influenced by
these inventions.

DECLARATION OF GENERATIVE Al AND
Al-ASSISTED TECHNOLOGIES IN THE
WRITING PROCESS

During the preparation of this work, the authors
used ChatGPT-40 in order to improve the read-
ability of the manuscript. After using this tool, the
authors reviewed and edited the content as neces-
sary and take full responsibility for the content of
the published article.

REFERENCES

1. Hopfield, J.J. (1982). Neural networks and
physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci.
USA 79, 2554-2558.

2. Ackley, D., Hinton, G., and Sejnowski, T.
(1985). A learning algorithm for Boltzmann ma-
chines. Cogn. Sci. 9, 147-169.

3. Rumelhart, D.E., Hinton, G.E., and Williams,
R.J. (1986). Learning representations by back-
propagating errors. Nature 323, 533-536.

4. Krizhevsky, A., Sutskever, I., and Hinton, G.E.
(2012). ImageNet classification with deep con-
volutional neural networks. Adv. Neural Inf.
Process. Syst. 25.

5. Wang, J.Z., and Li, J. (2002). Learning-based
linguistic indexing of pictures with 2-D
MHMMs. In ACM Int. Conf. Multimed., L.
Rowe, B. Merialdo, M. Muhlhauser, K. Ross,
and N. Dimitrova, eds., pp. 436-445.

6. Li,J.,and Wang, J.Z. (2006). Real-time comput-
erized annotation of pictures. In ACM Int. Conf.
Multimed., K. Nahrstedt, M. Turk, Y. Rui, W.
Klas, and K. Mayer-Patel, eds., pp. 911-920.

7. Wang, J.Z., Zhao, S., Wu, C., Adams, R.B.,
Newman, M.G., Shafir, T., and Tsachor, R.
(2023). Unlocking the Emotional World of
Visual Media: An Overview of the Science,
Research, and Impact of Understanding
Emotion. Proc. IEEE 1711, 1236-1286.

8. Wang, J.Z. (1994). Analytic Number Theory,
Complex Variable, and Supercomputers.
Undergraduate  Thesis in  Mathematics
(University of Minnesota).

9. Hedayati, S., O’'Donnell, R.E., and Wyble, B.
(2022). A model of working memory for


http://refhub.elsevier.com/S2666-3899(24)00266-6/sref1
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref1
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref1
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref1
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref2
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref2
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref2
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref3
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref3
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref3
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref4
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref4
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref4
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref4
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref5
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref5
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref5
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref5
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref5
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref6
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref6
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref6
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref6
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref7
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref7
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref7
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref7
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref7
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref7
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref8
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref8
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref8
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref8
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref9
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref9

doi.org/10.1016/j.patter.2024.101094

Please cite this article in press as: Wang and Wyble, Hopfield and Hinton’s neural network revolution and the future of Al, Patterns (2024), https://

Patterns

latent representations. Nat. Hum. Behav. 6,
709-719.

10. Zhu, L., Wang, J.Z., Lee, W., and Wyble, B.
(2024). Incorporating simulated spatial context
information improves the effectiveness of
contrastive learning models. Patterns 5, 100964.

11. Zhang, Z., Mansfield, E.C., Li, J., Russell, J.,
Young, G.S., Adams, C., Bowley, K.A., and
Wang, J.Z. (2024). A machine learning para-
digm for studying pictorial realism: How accu-
rate are Constable’s clouds? IEEE Trans.
Pattern Anal. Mach. Intell 46, 33-42.

12. Li, J., Yao, L., Hendriks, E., and Wang, J.Z.
(2012). Rhythmic brushstrokes distinguish van
Gogh from his contemporaries: findings via
automated brushstroke extraction. IEEE Trans.
Pattern Anal. Mach. Intell. 34, 1159-1176.

13. Bengio, Y., Hinton, G., Yao, A., Song, D.,
Abbeel, P., Darrell, T., Harari, Y.N., Zhang,
Y.-Q., Xue, L., Shalev-Shwartz, S., et al.
(2024). Managing extreme Al risks amid rapid
progress. Science 384, 842-845.

14. Goleman, D. (1995). Emotional Intelligence:
Why it can matter more than 1Q. Bantam Books.

About the authors

James Z. Wang is a distinguished professor in the
data sciences and artificial intelligence area of the
College of Information Sciences and Technology at
The Pennsylvania State University. He received a
bachelor’s degree in mathematics, summa cum
laude, from the University of Minnesota (1994)
and an MS degree in mathematics (1997), an MS
degree in computer science (1997), and a PhD
in medical information sciences (2000) from

( ‘
i -/
Stanford University. His research interests include
image analysis, affective computing, image
modeling, and image retrieval and their applica-
tions. He was the recipient of an NSF CAREER

Award (2004) and Amazon Research Awards
(2018-2022).

Brad Wyble is a professor at Penn State Univer-
sity in the College of Liberal Arts, where he fo-

¢? CellPress

OPEN ACCESS

cuses on visual cognition, particularly how the
human mind constructs visual representations
and memories. He earned his undergraduate de-
gree in computer science from Brandeis Univer-
sity and a PhD in psychology from Harvard Uni-
versity. His research explores the connection
between attention and memory using a combina-
tion of behavioral and neuroscientific work in
human subjects and computational modeling.
Wyble is also a co-founder of Neuromatch
Academy, which has taught computational
neuroscience, Al, climate science, and deep
learning to thousands of students in over 120
countries.

Patterns 5, November 8, 2024 5



http://refhub.elsevier.com/S2666-3899(24)00266-6/sref9
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref9
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref10
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref10
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref10
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref10
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref11
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref11
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref11
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref11
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref11
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref11
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref12
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref12
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref12
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref12
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref12
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref13
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref13
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref13
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref13
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref13
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref14
http://refhub.elsevier.com/S2666-3899(24)00266-6/sref14

	Hopfield and Hinton’s neural network revolution and the future of AI
	Introduction
	Foundational contributions by Hopfield and Hinton
	Personal reflections
	James Z. Wang
	Brad Wyble

	Emerging directions and unsolved challenges in AI
	Conclusion
	Acknowledgments
	Declaration of interests
	Declaration of generative AI and AI-assisted technologies in the writing process
	References


