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In this opinion piece, the authors, from the fields of artificial intelligence (AI) and psychology, reflect on how
the foundational discoveries of Nobel laureates Hopfield and Hinton have influenced their research. They also
discuss emerging directions in AI and the challenges that lie ahead for neural networks andmachine learning.
Introduction
The 2024 Nobel Prize in Physics was

awarded to John H. Hopfield and Geoffrey

E. Hinton for their ‘‘foundational discov-

eries and inventions that enable machine

learning with artificial neural networks’’

(ANNs). Their contributions have pro-

foundly shapedmodernAI, laying the foun-

dations for technologies that are now

embedded in everyday life. Historically,

the Nobel Prize has rarely recognized the

field of computer science or AI, making

this recognition not only a testament to

their work but also a milestone for the

entire computing community. Their work

is also transforming many fields. Notably,

the 2024 Nobel Prize in Chemistry recog-

nized the creators of AlphaFold2, a deep

learning system that has revolutionized

protein structure prediction.

We are grateful for the opportunity to

reflect on how Hopfield and Hinton’s work

has profoundly influenced our research.

Inspired by their contributions, our discus-

sion of emerging opportunities and unre-

solved obstacles in AI, grounded in our

work, aims to further AI’s potential to help

address some of society’s most pressing

challenges.

Foundational contributions by
Hopfield and Hinton
Both Hopfield and Hinton have had

extraordinarily productive careers, making

foundational contributions across multiple

fields. Hopfield has significantly impacted

AI, system biology, and physics, while

Hinton’s work spans AI, psychology, and

cognitive science.

Hopfield is best known for inventing the

Hopfield network, an energy-based asso-
This is an open a
ciative memory model that converges to

stable states through energy minimiza-

tion.1 This was an early attempt to model

cognitive processes like memory and

pattern recognition and laid the ground-

work for future developments in ANNs,

influencing modern networks like long

short-term memory (LSTM) networks

and gated recurrent units (GRUs).

Hinton’s key contributions include co-in-

venting Boltzmann machines, which were

an important step in unsupervised learning

and generative models,2 and advancing

the backpropagation algorithm, which en-

ables the training of deep ANNs.3 His

lab’s work on AlexNet demonstrated the

power of deep learning for large-scale

vision tasks.4

The development of deep learning can

also be attributed to contributions from

many other scientists. For instance, War-

ren McCulloch and Walter Pitts devel-

oped the first mathematical model of a

neuron. Frank Rosenblatt invented the

Perceptron, one of the first models

capable of learning from data. Some of

the earliest attempts to build a multi-layer

neural network were made by Alexey G.

Ivakhnenko and Valentin G. Lapa. The

term deep learning was introduced to

the AI community by Rina Dechter.

Personal reflections
James Z. Wang

In my 30-year AI research career, Hopfield

and Hinton’s work has been a consistent

source of inspiration. Although I began in

mathematics, I quickly found my passion

in using mathematics and computing to

explore new possibilities. With guidance

from Gio Wiederhold, I transitioned to the
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Shortliffe.

In the 1990s, AI was considered a strug-

gling field, often referred to as an ‘‘AI

Winter,’’ because classical approaches,

including early ANNs, couldn’t scale to

real-world problems. ANNs were taught

as historical topics, while methods like

Markov processes, classification trees,

and support vector machines took center

stage. In 2002, we published Automatic

Linguistic Indexing of Pictures (ALIP),

formulating image semantic annotation as

a statistical classification challenge. We

used a multiscale hierarchical hidden Mar-

kov model to demonstrate that computers

could learn toannotate imageswith linguis-

tic terms selected from a pre-defined ‘‘dic-

tionary.’’5 Few believed such tasks were

achievable at the time. After optimizing

the algorithm for real-time performance in

2006,6 I shifted focus, not anticipating the

breakthroughs that would follow.

Hinton’s lab’s 2012 achievement in im-

age classification4 was striking. It defied

the prevailing belief that ANNs couldn’t

handle large, complex problems. Their

use of GPUs to scale ANNs through vec-

torization and parallelism reminded me

of CRAY supercomputers. I was aston-

ished by the model’s accuracy, knowing

firsthand the challenges of image classifi-

cation. Convolutional neural networks,

with their ability to automatically extract

hierarchical features, were pivotal.

Over the past two decades, I’ve focused

on modeling visual aesthetics, emotion,

and artistic style—areas that remain rela-

tively underexplored.7 This interest origi-

nated from my undergraduate research

with Dennis Hejhal, where I used CRAY
e Author(s). Published by Elsevier Inc. 1
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Figure 1. A visualization of the quantum mechanical
behavior in the Lobachevsky space
Image generated with a CRAY supercomputer in the early
1990s. The research was led by Dennis Hejhal (University of
Minnesota).8
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supercomputers to explore Loba-

chevsky space (Figure 1),8 sparking

my fascination with the intersection

of mathematics, computing, and

art. While I expected machine

learning to gradually improve logical

problem-solving, I recognized that

aesthetics, emotional intelligence,

and creativity remain largely un-

charted frontiers in AI.

The resurgence of ANNs promp-

ted me to revisit certain ideas and

adopt new methodologies. Collab-

orating with colleagues, we’ve

made significant progress, utilizing

tools like Transformers, CLIP, and

diffusion models. In addition to

core research areas, we’ve devel-

oped ANN-based methods for

analyzing placenta images to

improve maternal and neonatal

health, diagnosing strokes from pa-

tient videos, and segmenting 3D

images to study drought-resis-

tant crops.

Hinton’s breakthroughs continue

to shape my outlook. Despite sig-

nificant advancements, AI systems

are still far from their full potential.

My collaborators and I are tack-

ling fundamental challenges like

improving explainability inmedicine

and reducing the reliance on vast

amounts of training data. In the

following reflection,Wyble will elab-

orate on the latter.

Brad Wyble

In high school, I purchased Explora-

tions in Parallel Distributed Process-

ing, co-authored in part by Hinton.

The idea that computers could learn

using simulated neurons was trans-
formative for me and set the stage for my

interest in AI. However, I entered college

in the early 1990s, a low point for interest

in trained neural networks, and therefore,

I studied biologically inspired neural

networks. My models were hand-tuned to

reflect neurobiological mechanisms and

attractor dynamics, as theorized in Hop-

field networks.

Later, the field of neural networks re-

emerged as amethod to understand visual

processingas Idiscovered in theearlywork

ofThomasSerre,whobuiltmodelsof visual

processing that simulated the location-

invarianceof neuronswithin themonkey vi-

sual system. I was captivated by the ability

of such models to classify natural images,
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years before Hinton lab’s work on AlexNet

was published.4 These models provided

me with a functional intuition for how neu-

rons in my own brain allowed me to recog-

nize objects, a process that I previously

considered cognitively impenetrable.

Hinton and other AI pioneers provided a

way to automate the training of such net-

works at scale, which made them compu-

tationally accessible. Consequently, the

applied and theoretical aspects of deep

learning bloomed in the years that fol-

lowed, and I used deep learning to better

understand how the mind represents vi-

sual information in a distributed manner.

Using backpropagation to train variational

autoencoders simulates how perceptual
systems like the human ventral

stream might learn to process visual

stimuli without supervised training.

Our lab built a new theory of human

working memory that used the

layers of such autoencoders as the

computational substrate for mental

representations of visual forms,9

improving on previous models of

working memory that simulated only

individual features such as color

and orientation. The automated and

highly efficient backpropagation al-

gorithms enabled this research by

allowing us to explore the space of

models efficiently.

As impressive as deep learning is,

there still remain stark challenges—

notably the reliance on enormously

large training sets to approximate hu-

man performance, even in core vision

tasks like classification. The appetite

of these models for data, particularly

those trained with unsupervised

contrastive learning, stands in

contrast to the ability of human chil-

dren to learn the visual statistics of

the real world with a fraction of the to-

tal amount of visual input. Recently, I

have been working with the James

Wang lab to improve the efficiency

of training such models by incorpo-

rating environmental context. This

idea is inspired by the observation

that humans perceive the world with

a sense of space around them

whereas deep learning models are

trained without context. Their training

sets are randomly shuffled to remove

spurious correlations between image

sequences, but this shuffling elimi-

nates the possibility of exploiting the
deeper structure that exists from explora-

tions of the natural world. We developed

methods that train better models using

structured datasets acquired from explo-

ration of a virtual environment (Figure 2).10

Emerging directions and unsolved
challenges in AI
While valid concerns around safety

and unintended consequences have

led many to advocate pausing giant AI

experiments, advancing AI to tackle ur-

gent global challenges—such as climate

change, public health crises, poverty,

food security, environmental degradation,

mental health, population growth, and ed-

ucation—is crucial, provided innovation



Figure 2. An illustration of the core idea of our spatial contrastive learning approach, where
an agent navigates a 3D virtual environment
The bottom shows the agent’s trajectory and viewing direction, while the top images represent different
viewpoints captured at various positions. These simulated perspectives provide the spatial context
necessary for training the model in visual pattern recognition.10
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aligns with humanity’s core values. We

see value in remaining cautiously opti-

mistic about our ability to collaborate

effectively with AI.

ANNs excel at identifying patterns in

vast datasets, which explains their effec-

tiveness in language processing and

computer vision tasks involving struc-

tured, low-entropy environments. Howev-

er, the world is filled with subjectivity, am-

biguity, and individual differences. AI’s

ability to move beyond task-specific

learning to handle such complexity will

define its future progress.

Hopfield and Hinton demonstrated that

breakthroughs often arise from the conver-

gence of different scientific fields. We

see opportunities for AI to integrate with

other disciplines, which may help over-

come some of its limitations. For instance,

climate modeling demands staggering
amounts of data—from sensors, satellites,

and human activities—across dynamic

temporal scales. AI’s ability to handle

such interconnected systems will affect

our ability to predict and mitigate climate

risks. Similarly, AI holds transformative

potential in healthcare, but models—often

trained on healthy populations—must

adapt to the personalizednatureofdiagno-

ses and treatments to be truly effective.

In biology, AI faces challenges in gener-

alization. Biodiversity encompasses a

vast array of species, genetic diversity,

and ecosystems, yet models trained on

one part of this landscape often fail else-

where. Likewise, AI applications in psy-

chology are complex due to factors like

personality, culture, emotion, and context.

Modeling this richness requires high-qual-

ity data, but the subjective nature of many

aspects, like emotion, complicates data
collection and interpretation.7 Similar is-

sues exist in the arts, where AI’s explora-

tion of stylistic patterns inspires innovation.

Art is inherently creative and subjective,

withmanyunsolvedart historical questions

that no single algorithm can address.11,12

Moreover, art-related research must be

conducted ethically to avoid exploiting

human artists’ work.

Beyond practical applications, AI invites

deeper intellectual exploration. Galileo

described mathematics as the language

in which the universe is written. To genu-

inely test AI’s intelligence, we might

wonder whether it’s even possible to

train AI to understand the universe beyond

human knowledge, generate original ab-

stract conjectures, or assist in proving

long-standing problems like the Riemann

hypothesis or P vs. NP. As AI surpasses

humans in some areas, philosophical re-

flections become increasingly important.

Advancements may catalyze a societal

shift toward deeper reflection on human

purpose, potentially redefining success to

emphasize spiritual development and con-

nections with oneself and others.

Despite progress, many challenges

persist in AI research. The success of tech-

nologies like ChatGPT and autonomous

vehicles has ignited widespread enthu-

siasm. Scholars, including Hopfield and

Hinton, along with business leaders, have

suggested that AI could surpass human in-

telligence, potentially delivering significant

benefits or catastrophicoutcomes.13How-

ever, we believe AI is unlikely to surpass

human intelligence soon, and it may

never do so. AI’s key limitations—lack of

explainability, bias, hallucination, difficulty

handling out-of-distribution data, reliance

on massive datasets, catastrophic forget-

ting, vulnerability toattacks, highcomputa-

tional costs, and inadequate symbolic

reasoning—are well documented. Ad-

dressing these is essential for responsible

AI development, yet even with improve-

ments, fundamental constraints remain.

AI relies on learning from statistical

patterns, symbolic processing, and opti-

mization, whereas human intelligence is

multidimensional, drawing on imagina-

tion, judgment, emotional intelligence

(EQ), and consciousness.

A significant gap lies in understanding

narratives. AI can list objects in a scene

or describe actions in a video but strug-

gles to grasp deeper meaning or themes

like betrayal, generosity, sacrifice, or
Patterns 5, November 8, 2024 3



Figure 3. Automatic brushstroke extraction reveals rhythmic structures in Vincent van
Gogh’s paintings
(A) Red Cabbages and Onions, Paris, 1887, oil on canvas. Image courtesy of the Van Gogh Museum,
Amsterdam, the Netherlands (Vincent van Gogh Foundation).
(B) Brushstrokes are extracted from this painting using a computer algorithm, with random colors as-
signed individually to each brushstroke. Image provided by the James Z. Wang Research Group.12
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seduction. Humans naturally create and

comprehend complex narrative struc-

tures, with thousands of tale-types and al-

lomotifs documented in writing, film, and

folktales within recent history by folklor-

ists like Hans-Jörg Uther.

EQ is another area where AI falls short.

Humans have evolved to manage emo-

tions—both their own and others’—and

studies show EQ often plays a larger role

than IQ in success.14 While AI has made

progress in emotion recognition,7 it lacks

lived experience and cannot truly experi-

ence emotions or apply them in deci-

sion-making. Embodied learning, where

agents interact physically with their

environment, offers some promise but

requires breakthroughs across multiple

disciplines to capture and replicate the

depth of human EQ.

Creativity presents additional chal-

lenges for AI. Humans generate novel

ideas, as evident in mathematics and art.

Throughout history, certain individuals,

often regarded as geniuses, have devel-

oped unique styles or revolutionary ideas

independently. For example, Vincent van

Gogh’s work, which was created over

just a decade, continues to reveal new in-

sights (Figure 3).12 Similarly, JohnConsta-

ble’s cloud studies reflect early meteoro-

logical understanding.11 AI lacks the

imagination and cross-disciplinary crea-

tivity necessary for such innovation.

Human intuition and common sense,

which enable quick decision-making

without explicit rules, remain elusive for

AI. Mathematicians may spend hundreds

of pages of logical deductions to prove a

conjecture—a task that would be combi-

natorially infeasible if all possibilities had
4 Patterns 5, November 8, 2024
to be exhaustively tried. Neural AI sys-

tems lack abstract thinking and symbolic

reasoning capabilities.

In ethical and moral reasoning, humans

incorporate complex considerations into

everyday decisions, often instantaneously.

AI, constrained by predefined rules or

learning corpora, struggles with unprece-

dented or morally complex situations,

raising safety concerns about responsible

behavior in unpredictable scenarios.

Another limitation is AI’s lack of intrinsic

motivation and self-determination. Hu-

mans can devote decades to a goal, driven

by purpose and experience, as exempli-

fied by mathematician Yitang Zhang, who

worked for many years on number theory

problems without recognition.

Human intelligence is broad and adapt-

able, allowing us to integrate various capa-

bilities to tackle complex tasks and make

decisions even in unfamiliar domains.

These competencies have empowered us

to create great works of art, develop

astounding technologies, and explore

the moon and ocean floor. The ultimate

question remains, ‘‘can AI truly capture

the complexity of human creativity and

emotional depth?’’

Conclusion
The groundbreaking work of Hopfield

and Hinton has revolutionized AI and

will inspire generations. While AI has

achieved significant progress, challenges

remain. The future of AI will depend on its

thoughtful integration into solving global

issues and enriching human life, ensuring

that innovation remains aligned with hu-

man values and advances the well-being

of society.
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