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Abstract— Distributed stochastic non-convex optimization prob-

lems have recently received attention due to the growing interest of

signal processing, computer vision, and natural language process-

ing communities in applications deployed over distributed learning

systems (e.g., federated learning). We study the setting where the

data is distributed across the nodes of a time-varying directed net-

work, a topology suitable for modeling dynamic networks experienc-

ing communication delays and straggler effects. The network nodes,

which can access only their local objectives and query a stochas-

tic first-order oracle to obtain gradient estimates, collaborate to

minimize a global objective function by exchanging messages with

their neighbors. We propose an algorithm, novel to this setting, that

leverages stochastic gradient descent with momentum and gradient

tracking to solve distributed non-convex optimization problems

over time-varying networks. To analyze the algorithm, we tackle the

challenges that arise when analyzing dynamic network systems

which communicate gradient acceleration components. We prove

that the algorithm’s oracle complexity is O(1/ω1.5), and that under

Polyak-!ojasiewicz condition the algorithm converges linearly to

a steady error state. The proposed scheme is tested on several

learning tasks: a non-convex logistic regression experiment on the

MNIST dataset, an image classification task on the CIFAR-10 dataset,

and an NLP classification test on the IMDB dataset. We further

present numerical simulations with an objective that satisfies the

PL condition. The results demonstrate superior performance of the

proposed framework compared to the existing related methods.

Index Terms— decentralized non-convex optimization,

stochastic non-convex optimization, time-varying directed

network

I. INTRODUCTION

We study distributed non-convex optimization problems encountered
in a variety of applications in machine learning (ML), signal
processing, and control [2, 3, 4]. Distributed learning frameworks
aim to address limitations of centralized methods including the
potentially high cost of communicating data to a central location,
privacy and latency concerns, and data storage constraints [5]. We
model a distributed computing system via a time-varying directed
network G(t) = (V, E(t)), where V = {1, · · · , n} denotes the set of
n nodes and E(t) is the collection of directed edges (i, j), i, j → V ,
connecting the nodes at time t. In particular, if (i, j) → E(t), there
exists an edge from node i to node j, and thus node i can send
messages to node j at time t. Node i has access only to its local data
and the local loss function. The goal of the nodes in the network is
to collaboratively minimize a global loss function, i.e., solve

min
x→Rd

[
f(x) :=

1
n

n∑

i=1

fi(x)

]
, (1)

where fi(x) : Rd
↑ R for i → [n] := {1, ..., n} denotes the non-

convex objective that the device at node i minimizes locally; in the
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machine learning context, this describes the setting where each node
trains a local model by optimizing a cost function with d parameters
and collaborates with other nodes to find the global model.

In a departure from the existing work focused on undirected
networks [6, 7, 8, 9], we study distributed non-convex optimization
over time-varying directed networks where each node minimizes its
local objective utilizing a stochastic gradient obtained by querying a
local stochastic first-order oracle, i.e., the nodes use noisy estimates
of the local gradient at the query point. Unlike undirected networks,
directed communication topologies take into account a number of
practical considerations including asymmetry in the communication
links (e.g., in the multi-agent applications) and the straggler effects
stemming from imposing synchronized communication. Furthermore,
time-varying networks characterize the communication link delay or
failure in real-world applications.

A. Related work and significance

Decentralized non-convex optimization problems with stochastic
first-order oracles have been extensively studied in the context of
undirected networks, where doubly stochastic weight matrices lead
to convergence guarantees. Those studies include the decentralized
stochastic gradient descent (DSGD) and its variants, [14, 15, 6], which
combine decentralized average consensus with local gradient updates.
Although DSGD is often effective and relatively simple to implement,
it is unstable in settings that involve heterogeneous data [7]. This
has motivated the search for more robust schemes which combine
decentralized bias-correction techniques, gradient tracking, and primal-
dual methods [16, 10, 9, 17]. Building on top of such techniques,
GT-HSGD [8] leverages SARAH-type variance reduction schemes
(see, e.g., [18, 19]) to further reduce oracle complexities under the
so-called mean-squared smoothness [20]. However, GT-HSGD still
relies on doubly stochastic weight matrices hindering its practical
feasibility in applications involving asymmetric communication.

While there has been extensive prior work on distributed op-
timization over the family of networks characterized by doubly-
stochastic mixing matrix, e.g., undirected networks and some special
cases of directed networks, practical systems experience transmission
failures and/or bandwidth limitations which imply asymmetric or uni-
directional communication between network nodes. In such scenarios,
more general directed graphs that do not satisfy doubly-stochastic
property are a better-suited network model [5]; however, the design
of convergent algorithms for distributed optimization over general
directed graphs brings forth new challenges. In particular, we recall
that to ensure convergence of the algorithms for decentralized opti-
mization over undirected networks, the weight (mixing) matrix Wm

should be symmetric and doubly stochastic. Indeed, mixing matrix
characterizes communication over a network: when doubly stochastic,
the decentralized algorithm reaches the average consensus model since
limT↑↓ !T

t=1Wm = 11T

n . When a network is directed, however,
the communication links are asymmetric and the corresponding
mixing matrix is generally not doubly stochastic. There, it holds
that limT↑↓ !T

t=1Wm = ω1T but unlike the undirected network
scenario ωi ↓=

1
n , which implies convergence to a biased weighted

average of local models. As a remedy, distributed optimization schemes
for directed networks often deploy auxiliary variables to help deal

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3479888

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 20,2025 at 17:53:23 UTC from IEEE Xplore.  Restrictions apply. 



2

TABLE I
A COMPARISON OF ALGORITHMS FOR DECENTRALIZED OPTIMIZATION OVER DIRECTED GRAPHS. SFO AND IFO STAND FOR STOCHASTIC AND

INCREMENTAL FIRST-ORDER ORACLES, RESPECTIVELY. SGP RELIES ON A BOUNDED DISSIMILARITY ASSUMPTION TO OBTAIN THE STATED RESULT.
GT-HSGD UTILIZES THE NON-STANDARD DOUBLY-STOCHASTIC REQUIREMENT FOR THE WEIGHT MATRIX. THE STATED RESULTS FOR SGP AND

GT-HSGD ARE SEMI-ASYMPTOTIC, MEANING THEY REQUIRE A LARGE NUMBER OF ITERATIONS TO ACHIEVE THE STATED CONVERGENCE BOUNDS.
DOUBLE-STOCHASTICITY IS SATISFIED BY ALL UNDIRECTED NETWORKS AND A SMALL COLLECTION OF DIRECTED NETWORKS; ’DYNAMIC NETWORK’

REFERS TO TIME-VARYING NETWORKS, I.E., INDICATES THAT THE NETWORK IS CHANGING OVER TIME.

Algorithm Double-stochasticity Dynamic network Oracle Complexity Remarks

SGP/Push-SGD [5] No Yes O( 1
nω2

)
SFO, bounded dissimilarity

only for large T

Push-DIGing [10] No Yes O(ln 1
ω )

deterministic
Strong convexity, smoothness

Di-CS-SVRG [11] No Yes O(ln 1
ω )

IFO, strong convexity
smoothness

Push-SAGA [12] No No O(ln 1
ω )

IFO, strong convexity
smoothness

S-ADDOPT [13] No No O( 1ω )
SFO, strong convexity

smoothness

GT-HSGD [8] Yes No O( 1
nω1.5

)
SFO, mean-squared smoothness
doubly stochastic weight matrix

only for large T

Push-ASGD (This work) No Yes O( 1
ω1.5

) SFO, mean-squared smoothness

Push-ASGD (This work) No Yes O(ln 1
ω )

SFO, mean-squared smoothness,
PL condition

with the communication asymmetry. For instance, frequently used
subgradient-push algorithm [2, 21] and its variants [13], which operates
on column-stochastic mixing matrices, introduces local normalization
scalars to de-bias the weighted average and thus ensure convergence.
In another line of related work, [22, 23] introduce auxiliary variables
of the same dimension as the local model parameters to keep track
of the local parameter variations and avoid division (a nonlinear
operation) deployed by the subgradient-push algorithm. When the
objective is smooth and strongly convex, a linear rate can be achieved
by using constant step size [10, 24, 11, 25]. Further acceleration of the
convergence rate can be achieved adopting momentum-based methods
[26].

Distributed, stochastic non-convex optimization over directed time-
varying graphs has received relatively little attention [5]. Even
though some of the above optimization algorithms (developed with
convex objectives in mind) can be applied to distributed non-convex
optimization problems, they either converge at a slow rate or apply
without any theoretical guarantees. Aiming to achieve robust and
provably fast performance, we present and analyze an algorithm that
relies on gradient-push, global gradient tracking, and a local hybrid
gradient estimator with momentum to solve distributed, stochastic
non-convex optimization problems that arise in modern distributed
ML tasks. Our contributions are summarized as follows:

1. We study (to our knowledge, previously not pursued in literature)
the problem of distributed non-convex optimization under a stochastic
first-order oracle (SFO) over directed time-varying networks. We
propose for this setting novel variance-reduced algorithm, Push-ASGD,
which leverages gradient-push, global gradient tracking, and hybrid
gradient estimation methods. In particular, we devise a new stochastic
gradient estimator used locally by each node, and design a framework
that operates with column stochastic weight matrices.

2. To analyze convergence of Push-ASGD, we address challenges
brought forward by the exchange of gradient acceleration components

across directed time-varying networks. We prove that, under the mean-
squared smoothness, the algorithm attains an ε-accurate first-order
stationary solution with an oracle complexity of O(1/ε1.5). To our
knowledge, this is the first algorithm to come with such guarantees
in the context of stochastic nonconvex optimization over directed
networks. We further show that for objective functions satisfying
Polyak-!ojasiewicz (PL) condition, when using constant step size the
algorithm converges linearly to a steady state with small error.

3. We validate the proposed algorithm on various distributed learning
problems including image classification and natural language process-
ing via deep learning, demonstrating its superior accuracy/convergence
compared to relevant existing techniques. We also test its performance
in simulations involving an objective function that satisfies the PL
condition. The results demonstrate superior accuracy/convergence of
Push-ASGD compared to the relevant benchmarking algorithms.

II. PRELIMINARIES

Assume that n nodes are collaboratively solving the decentralized
non-convex optimization problem (1) while communicating over a
time-varying directed network. Each node i in the network trains a
local model and computes a sequence of local model estimates {xi

t}

towards a first-order stationary point of the global objective f , starting
from a pre-specified initialization point xi

0. To update its local model
estimate, node i accesses a random local data point ϑit and queries
stochastic first-order oracle for a stochastic gradient, ↔fi(x, ϑ

i
t), given

the input x. To characterize the sequence of random local data points,
we consider the filtration induced by the data points of all the nodes
in the network,

F0 = {”,ϖ}, Ft = ϱ({ϑi0, ϑ
i
1, · · · , ϑ

i
t↔1, i → V}), ↗t ↘ 1, (2)

where ϖ is the empty set and {Ft} is an increasing family of ϱ-
algebras. The input vector x at iteration t is Ft-measurable. We
denote the probability space by {”,P,F}. We make the following
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assumptions on the stochastic first-order oracles, the global objective,
and the communication network.

Assumption 1. For all i → V and all t ↘ 0, we assume:
1. Unbiasedness of the conditional expectation

E[↔fi(x, ϑ
i
t)|Ft] = ↔fi(x).

2. Bounded variance of the estimated gradient,

E≃↔fi(x, ϑ
i
t)⇐↔fi(x)≃

2
⇒ ς

2
i .

It will be convenient to introduce ς̄
2 = 1

n

∑n
i=1 ς

2
i .

3. Independent random selection, i.e., the random vectors
{ϑ

i
0, ϑ

i
1, · · · , ϑ

i
t↔1}, i → V , are independent.

4. The mean-squared smoothness,

E≃↔fi(x, ϑ
i
t)⇐↔fi(y, ϑ

i
t)≃

2
⇒ L

2E≃x⇐ y≃2.

The first three assumptions are widely used in the analysis of
stochastic first-order optimization algorithms [27]. The last assumption
requires L-smoothness of the stochastic gradient on average with
respect to any two inputs. The mean-squared smoothness further
implies smoothness of each local objective fi, and consequently
implies L-smoothness of the global objective [20, 28].

Assumption 2. The global objective is lower bounded,

f
↗ = inf

x
f(x) > ⇐⇑.

Assumption 3. The network is directed and time-varying. At time t,
the network is strongly-connected with a column stochastic weight
matrix W

(t)
m .

The above assumption on network topology is standard in distributed
optimization [10] and more general than the static network assumption
in [5]. Elaborating on Assumption 3, let us consider the mixing matrix
W

(t)
m := [w

(t)
ij ] which captures properties of the communication links

in the network; w
(t)
ij = 1

dout,tj +1
> 0 if and only if (j, i) → E(t)

or i = j, where d
out,t
j is the out-degree of agent j at time t. We

assume that node i knows which nodes it sends messages to, i.e., the
i-th column of W

(t)
m are known to node i. The column stochastic

mixing matrix W
(t)
m has the left eigenvector 1n and a positive right

eigenvector ω(t), i.e., 1↘nW
(t)
m = 1↘n and W

(t)
m ω

(t) = ω
(t).

III. THE PUSH-ASGD ALGORITHM

In this section we present an algorithm for distributed non-convex
optimization over directed time-varying networks. At a high level,
the algorithm relies on the push-sum protocol [2] to perform average
consensus, and deploys a stochastic gradient estimator of the unknown
global gradient while simultaneously reducing the variance/noise in
the local updates via momentum.

At the beginning, all the nodes use the same initial model x̄0. At
iteration t, node i updates its local model xi

t by fusing the messages
xj
t received from its neighbors according to

xi
t+1 =

n∑

j=1

w
(t)
ij (xj

t ⇐ φgjt ), (3)

where gjt denotes the local stochastic gradient estimate specified
below. Since W

(t)
m is column-stochastic, the product of W (t)

m over a
time duration s, !s

k=1W
(t+k)
m , generally differ from 11T

n , biasing
each node to a different model. Therefore, following [29], for each
node i with local model xi

t at time t we introduce an auxiliary scalar
y
i
t and compute a recovering model zit = xi

t/y
i
t, enabling de-biasing

the local model fused by the mixing matrix. In other words, while

Algorithm 1 Push Accelerated Stochastic Gradient Descent Algorithm
(Push-ASGD)

1: Input: Initialize xi
0 = x̄0; yi0 = 1 ; zi0 = xi

0; step size φ; ↼ →

(0, 1); time-varying column-stochastic mixing matrix W
(t)
m :=

[w
(t)
ij ]; T → Z+

2: Sample b local data points {ϑ
i
0,r}

b
r=1 and initialize the gradient

gi0 = 1
b

∑b
r=1 ↔fi(z

i
0, ϑ

i
0,r) and the gradient estimator vi

0 = gi0;

3: for t = 0 to T ⇐ 1 do
4: Update the local estimate of the solution

xi
t+1 =

∑n
j=1 w

(t)
ij (xj

t ⇐ φgjt )

5: Update auxiliary variables

y
i
t+1 =

∑n
j=1 w

(t)
ij y

j
t , zit+1 =

xi
t+1

yit+1

6: Sample ϑ
i
t and update the local stochastic gradient estimator

vi
t+1 = ↔fi(z

i
t+1, ϑ

i
t) + (1⇐ ↼)(vi

t ⇐↔fi(z
i
t, ϑ

i
t))

7: Update the gradient tracker

git+1 =
∑n

j=1 w
(t)
ij (gjt + vj

t+1 ⇐ vj
t )

8: end for

the average of xi
t is not preserved due to directed communication,

the average of the de-biased quantities zit will be preserved [21].
In addition to addressing challenges that arise from directed

communication, the proposed algorithm deals with two sources of
variance that hamper the convergence: a local variance that stems
from noise in the local stochastic gradients, and a global variance
that stems from the heterogeneity of the nodes’ data. To address the
former, we rely on momentum-based variance reduction, while to
tackle the latter we deploy gradient tracking.

Let ↔fi(z
i
t+1, ϑ

i
t) and ↔fi(z

i
t, ϑ

i
t) denote stochastic gradients

obtained after querying the local stochastic first-order oracle with
zit+1 and zit, respectively. The momentum-type update of gradient
vi
t+1 is then found as

vi
t+1 = ↔fi(z

i
t+1, ϑ

i
t) + (1⇐ ↼)(vi

t ⇐↔fi(z
i
t, ϑ

i
t)), (4)

where ↼ denotes the momentum step size controlling the direction
of the gradient adjustment term vi

t ⇐ ↔fi(z
i
t, ϑ

i
t). When ↼ = 1,

(4) reduces to the vanilla stochastic gradient descent, while when
↼ = 0, (4) reduces to a SARAH-type gradient update [30]; neither
can achieve the same oracle complexity as the recursive estimator
deploying ↼ → (0, 1). This recursive estimator can reduce the variance
of the stochastic gradient estimates in both centralized and distributed
optimization problems [18, 31]. Finally, the estimate of the global
gradient is found via gradient tracking as

git+1 =
n∑

j=1

w
(t)
ij (gjt + vj

t+1 ⇐ vj
t ), (5)

where the gradient information from neighboring nodes is used to
ensure convergence to the first-order stationary point of the global
objective.

The above procedure is formalized as Algorithm 1 and in the re-
mainder of the paper referred to as the Push-ASGD (Push Accelerated
Stochastic Gradient Descent) algorithm.

IV. CONVERGENCE ANALYSIS

We proceed by analytically showing that Push-ASGD achieves
O(1/ε1.5) SFO complexity, and that under the PL condition it linearly
converges to a small steady-state error. Below, the first theorem
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establishes the O(1/ε1.5) complexity while the second theorem
establishes linear convergence of Push-ASGD.

For convenience, we re-write the key terms in Algorithm 1 as

yt+1 = W
(t)
m yt

zt+1,n≃d = W̃
(t)
m (zt,n≃d ⇐ φht,n≃d)

ht+1,n≃d = W̃
(t)
m ht,n≃d + W̃

(t)
m Y

↔1
t (vt+1,n≃d ⇐ vt,n≃d),

where W̃
(t)
m = Y

↔1
t+1W

(t)
m Yt, Yt = diag(yt) and ht,n≃d =

Y
↔1
t gt,n≃d. Moreover, zt,n≃d = [(z1t )

↘; · · · ; (znt )
↘] (similar for

gt,n≃d,vt,n≃d); note that n⇓ d in the subscript indicates dimension
of a matrix. Finally, W̃ (t)

m is a row-stochastic mixing matrix; there
exists a stochastic vector sequence {ϖt} such that ϖT

t+1W̃
(t)
m = ϖ

T
t .1

Before stating the theorem, it will be convenient to introduce the
global vectors in Rnd

xt = [(x1
t )

↘
· · · , (xn

t )
↘]↘, zt = [(z1t )

↘
· · · , (znt )

↘]↘,

gt = [(g1t )
↘
· · · , (gnt )

↘]↘, vt = [(v1
t )

↘
· · · , (vn

t )
↘]↘,

↔f(zt) = [↔f1(z
1
t )

↘
· · ·↔fn(z

n
t )]

↘
, ht = [(h1

t )
↘
· · · (hn

t )
↘]↘,

(6)
as well as the averaged global vectors in Rnd,

x̄t =
1
n
[(
∑

j

xj
t )

↘
· · · (

∑

j

xj
t )

↘]↘,

v̄t =
1
n
[(
∑

j

vj
t )

↘
· · · (

∑

j

vj
t )

↘]↘,

ẑt = [(
∑

j

[ϖt]jz
j
t )

↘
· · · (

∑

j

[ϖt]jz
j
t )

↘],

↔f̄(zt) =
1
n
[(
∑

j

↔fj(z
j
t ))

↘
· · · (

∑

j

↔fj(z
j
t ))

↘]↘,

(7)

and the global time-varying matrices

W
(t) = W

(t)
m ⇔ Id, W̃

(t) = W̃
(t)
m ⇔ Id. (8)

The updates of global vectors zt,ht → Rnd can be written as

zt+1 = W̃
(t)(zt ⇐ φht),

ht+1 = W̃
(t)ht + W̃

(t)(Y ↔1
t ⇔ Id)(vt+1 ⇐ vt).

For the global vectors, let the L-norm be defined as L2(zt,ϖt) =

≃(diag(ϖt)
1
2 ⇔ Id)(zt⇐ ẑt)≃

2
F , where ẑt is the ϖt-weighted average

of zt. L-norm is induced by a sequence of time-varying stochastic
vectors and facilitates the derivation of one-step consensus contraction
addressed in Lemma 1 and 2.

Theorem 1. Suppose Assumptions 1 – 3 hold. Let step size φ satisfy

0 < φ ⇒ min{
(1⇐ ↽

2)2

48↽2≃Y ↔1≃
√

(2L2ϖm(n+ 1) + 8L4ϖm(n+ 1))
,

1
2L

,
1⇐ ↽

2

8↽≃Y ↔1≃1/2
1
4

√
(6L2ϖm(n+ 1) + L2ϖm)[ 18L2

(1↔ε2)
+ 36L4]

}.

(9)
Moreover, let the momentum step size ↼ be such that

48L2
φ
2
⇒ ↼ < 1. (10)

1Further details are in the proof of Lemma 1 in Appendix A.

Then it holds that

1
T

T↔1∑

t=0

E≃↔f(x̄t)≃
2

⇒
2E(f(x̄0)⇐ f(x̄T ))

φT
+

2
↼T

E[≃v̄0 ⇐↔f̄(z0)≃
2] + 4↼ς̄2

+
16↽2φ2

(1⇐ ↽2)4
(
48L2

ϖm(n+ 1)

↼n2 +
4L2

ϖm(n+ 1)
n

)

{
(1⇐ ↽

2)
T

EL2(h0,ϖ0) + 48↽2≃Y ↔1
≃
2
↼
2
nς̄

2

+ 48↽2≃Y ↔1
≃
2
L
2[
↼

T
E[≃v0 ⇐↔f(z0)≃

2] + 2↼3
nς̄

2]},

(11)

where ↽ = maxt

√
1⇐

mini([ϑt+1]i)

maxi([ϑt]i)(n↔1)2n2(n+2) → (0, 1) is the net-

work contraction parameter; ϖm = d/mint,i[ϖt]i is proportional to
the inverse of the smallest entry in {ϖt}, stochastic vectors associated
with time-varying mixing matrices; and ≃Y

↔1
≃ = supt ≃Y

↔1
t ≃.2

Essentially, the bound in (11) is specified by the initial function
value, the initial gradient estimation error, and the variance of the
gradient estimator.

If step sizes φ and ↼ are chosen as in the statement of the above
theorem, the average gradient error converges to a steady-state error,

lim
T↑↓

1
T

T↔1∑

t=0

E≃↔f(x̄t)≃
2

⇒
2E(f(x̄0)⇐ f(x̄T ))

φT
+

2
↼T

E[≃v̄0 ⇐↔f̄(z0)≃
2] + 4↼ς̄2

+
768↽2φ2

(1⇐ ↽2)4
(
48L2

ϖm(n+ 1)

↼n2 +
4L2

ϖm(n+ 1)
n

)

(↽2≃Y ↔1
≃
2
↼
2
nς̄

2 + 2↽2≃Y ↔1
≃
2
L
2
↼
3
nς̄

2).

(12)

A closer inspection of the right-hand side reveals that by
selecting appropriate φ and ↼, one can provide non-asymptotic
convergence guarantees. Appropriate choices of φ and ↼ and the
corresponding convergence rate are specified in the following corollary.

Corollary 1.1. There exist values of the parameters φ =

O( 1
n1/2T1/3 ), ↼ = O( 1

T2/3 ) and b = O(T
1/3

n ) such that

1
T

T↔1∑

t=0

E≃↔f(x̄t)≃
2
⇒ O(

1

T 2/3
). (13)

Recall that in each iteration of Push-ASGD, each node in the
network samples one local data point and queries the stochastic first-
order oracle for the gradient. Given the parameters in the corollary
above, Push-ASGD can reach an ε-accurate stationary point of the
global objective with the overall oracle complexity of O( 1

ω1.5
).

When comparing the oracle complexity of Push-ASGD with those
of other SFO algorithms in Table I, we note that Push-ASGD has
more desirable complexity for large T when n is fixed; although
GT-HSGD has better oracle complexity, that algorithm does not apply
to general directed time-varying graphs.

Note that Theorem 1 applies to any strongly connected network.
In simulations we observe that the number of steps needed to reach
desirable accuracy level is smaller in more densely connected networks
because fewer gradient queries are required and more information is
exchanged.

Next, we introduce the PL condition and investigate convergence
under this additional assumption.

2The existence/bounds for ε, ϑm, and →Y →1
→ are discussed in the proofs

of Lemma 1 and 2.
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Assumption 4. The objective function satisfies the PL condition with
parameter µ,

1
2
≃↔f(x)≃2 ↘ µ(f(x)⇐ f

↗), (14)

where f
↗ is the optimal value of the objective function.

Theorem 2. Suppose Assumptions 1 – 4 hold. Let the step size φ

satisfy

0 < φ ⇒ min{
1
2L

,
1⇐ ↽

2

µ
,

(1⇐ ↽
2)4µ

36864↽4≃Y ↔1≃2L2ϖm(n+ 1)(3⇐ ↽2)
,

1⇐ ↽
2

24↽2L≃Y ↔1≃
√

(72ϖm(n+ 1) 1
(1↔ε2)2

+ 16ϖm(n+ 1) 1
1↔ε2

)
}.

(15)
Moreover, let the momentum step size ↼ satisfy

max{
φµ

2
,
768φ
µ

[
3L2

↽
4
ϖm(356 + 212n)≃Y ↔1

≃
2

(1⇐ ↽2)4
+

3L2

2
]

+ 768φ2[
2736L2

↽
4
ϖm(n+ 1)≃Y ↔1

≃
2

(1⇐ ↽2)4
+

3L2

4(1⇐ ↽2)2
]} ⇒ ↼ < 1.

(16)
Then E[f(x̄t+1)⇐ f

↗] decays linearly at the rate of O((1⇐ ϖµ
4 )t)

to a steady-state error, i.e.,

lim
t↑↓

supE[f(x̄t+1)⇐ f
↗]

⇒ (
φ
2
L
2

4
+

3L2
φ
2

2↼
)(4

Cexp

φ
+ 6↼2

ς̄
2 +

(1⇐ ↽
2)2

φ
3↼2

ς̄
2)

+
288↼ς̄2

µ(1⇐ ↽2)2
[
8L2

ϖmφ
2
↽
4(60 + 56↼2)(n+ 1)

(1⇐ ↽2)2
≃Y

↔1
≃
2

+ (
(1⇐ ↽

2)2

4
+

L
2
≃Y

↔1
≃
2
φ
2
↽
4
ϖm(96↼2 + 144↽2 + 96↼2

n)

(1⇐ ↽2)2
)],

(17)
where Cexp = maxkm{(1 ⇐

ϖµ
2 )[Ckmu0]4 +

ϖ
n [C

kmu0]3 + ϖL2ϑm(2n+2)
n [Ckmu0]1} and u0 =

[EL2(z0,ϖ0),EL2(h0,ϖ0),E[≃v0 ⇐↔f(z0)≃
2
F ],E[f(x̄0)⇐ f

↗]].

Theorem 2 implies that for small values of step sizes φ and ↼ (which
satisfy the above conditions), the steady-state error will be small. More-
over, the following corollary on the non-asymptotic convergence holds.

Corollary 2.1. Suppose Assumptions 1 - 4 and step size conditions
(15) and (16) are satisfied. If the values of the step sizes are such
that φ = O(T↔1) and ↼ = o(T↔1), i.e., φ ↑ 0 faster than ↼ ↑ 0,
then non-asymptotic convergence is guaranteed,

lim
t↑↓

supE[f(x̄t+1)⇐ f
↗] ↑ 0. (18)

A. Sketch of the proof

Here we briefly go over the main steps of the proofs of Theorems 1-
2; full details are presented in the appendix. First, we identify the
main error terms that contribute to the overall convergence error of
Push-ASGD. These include:

1. E[L2(zt,ϖt)]: the consensus error that quantifies how far the
local models are from their average formed via the weight matrix.

2. E≃vt ⇐ ↔f(zt)≃
2: error of the momentum-based stochastic

gradient estimator.
3. E[L2(ht,ϖt)]: error of the global gradient tracking estimator.
4. E≃v̄t ⇐↔f̄(zt)≃

2: variance of the momentum-based stochastic
gradient estimator.

5. E[f(x̄t+1)⇐ f
↗]: optimality gap, measuring the distance from

the optimal function value.

Our aim is to derive recursive inequalities that relate these error
terms to each other. Then, to prove Theorem 1 we derive upper bounds
on the relevant terms for each iteration t and sum them over t from
0 to T . Finally, we combine the intermediate steps to achieve the
main result, i.e., establish a bound on the average gradient norm
accumulated over the iterations. The major challenge in the analysis
is to establish relationships between the following terms:

1. the consensus errors of the time-varying directed network system;
2. the combination of the global gradient tracking error originating

due to communication of gradient information over the network,
the stochastic gradient computation and the momentum term for
convergence acceleration at local clients.

To start, we introduce a lemma specifying an upper bound on the
consensus error at time t.

Lemma 1. Suppose Assumptions 1 – 3 hold. Based on the updates
of Push-ASGD,

E[L2(zt+1,ϖt+1)] ⇒
1 + ↽

2

2
EL2(zt,ϖt) +

2↽2φ2

1⇐ ↽2
EL2(ht,ϖt),

(19)
for some network topology parameter 0 < ↽ < 1 indicated in Theorem
1.

Next, we present a lemma stating an upper bound on the gradient
tracking error at time t.

Lemma 2. Suppose Assumptions 1 – 3 hold. Then the gradient
tracking error satisfies

E[L2(ht+1,ϖt+1)] ⇒
1 + ↽

2

2
E[L2(ht,ϖt)]

+
8↽2

1⇐ ↽2
≃Y

↔1
≃
2[3L2[3φ2E[≃v̄t≃

2]

+ 6ϖm(n+ 1)E[L2(zt+1,ϖt+1) + L2(zt,ϖt)]]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n].

(20)

The following lemma states an upper bound on the error of the
momentum-based stochastic gradient estimator.

Lemma 3. Suppose Assumptions 1 – 3 hold. The error of the
momentum-based stochastic gradient estimator satisfies

E[≃vt ⇐↔f(zt)≃
2] ⇒ (1⇐ ↼)2E[≃vt↔1 ⇐↔f(zt↔1)≃

2] + 2↼2
nς̄

2

+ 6(1⇐ ↼)2L2[φ2E[≃v̄t↔1≃
2]

+ 2ϖm(n+ 1)E[L2(zt,ϖt) + L2(zt↔1,ϖt↔1)≃
2]]

(21)
while for its averaged version holds that

E[≃v̄t ⇐↔f̄(zt)≃
2] ⇒ (1⇐ ↼)2E[≃v̄t↔1 ⇐↔f̄(zt↔1)≃

2] +
2↼2

ς̄
2

n

+
6(1⇐ ↼)2L2

n2 [φ2E[≃v̄t↔1≃
2]

+ 2ϖm(n+ 1)E[L2(zt,ϖt) + L2(zt↔1,ϖt↔1)≃
2]].

(22)

Using the lemmas above, we proceed by conducting telescoping
from t = 0 to T for each of the four errors to arrive at an upper
bound for the sum of the errors. This leads to the following lemma
for the squared gradient bound.
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Lemma 4. The accumulated expected gradient norm at x̄t satisfies

T↔1∑

t=0

E≃↔[f(x̄t)≃
2] ⇒

2E(f(x̄0)⇐ f(x̄T ))
φ

⇐
1
2

T↔1∑

t=0

E≃v̄t≃
2

+ 2
T↔1∑

t=0

E≃v̄t ⇐↔f̄(zt)≃
2 +

4L2
ϖm(n+ 1)

n

T↔1∑

t=0

E[L2(zt,ϖt)].

(23)

To complete the proof of Theorem 1 we use the upper bounds
on the last three sums on the right-hand-side of (23), canceling out
the sum

∑T↔1
t=0 E≃v̄t≃

2 which appears with a negative sign in (23).
Doing so requires imposing limitations on φ and ↼, the learning rates
of Push-ASGD, as stated in Theorem 1.

Next, we outline the proof of Theorem 2, starting by building a linear
inequality system on top of the error bound lemmas via incorporating
the PL condition. In particular, one first needs to show that the largest
eigenvalue of the coefficient matrix for the linear inequality system is
strictly less than 1, guaranteeing linear convergence. Then, one needs
to find an upper bound on the time-varying residual terms, including
E≃v̄t≃

2, that holds for all t. The proof can finally be complected by
imposing conditions on the step sizes φ and ↼. The main challenges
in this analysis stem from the following:

1) due to non-doubly-stochastic mixing matrices, the error terms
in the linear inequality systems are considerably more involved
than in the case of undirected static networks;

2) the dynamic residual term rt contains E≃v̄t≃
2 and its upper

bound.
To proceed, we use the PL condition to establish the following

recursive relationship.

Lemma 5. Suppose Assumptions 1 - 4 hold and the step size φ is
such that φ ⇒

1
2L . Then

E[f(x̄t+1)⇐ f
↗] ⇒ E[(1⇐ φµ

2
)(f(x̄t)⇐ f

↗)⇐
φ

4
≃v̄t≃

2

+
φ

n
≃vt ⇐↔f(zt)≃

2 +
φL

2
ϖm(2n+ 2)L2(zt,ϖt)

n
].

(24)

To form the linear inequality system, let us introduce

uk+1 =





E[L2(zk+1,ϖk+1)]
E[L2(hk+1,ϖk+1)]

E[≃vk+1 ⇐↔f(zk+1)≃
2
F ]

E[f(x̄k+1)⇐ f
↗]



 ,

C1 = [
1 + ↽

2

2
,
2↽2φ2

1⇐ ↽2
, 0, 0]

C2 = [
144↽2≃Y ↔1

≃
2
L
2
ϖm(2n+ 2)

1⇐ ↽2
,
1 + ↽

2

2

+
288↽4≃Y ↔1

≃
2
L
2
ϖmφ

2(n+ 1)

1⇐ ↽2
,
24↽2↼2

≃Y
↔1

≃
2

1⇐ ↽2
, 0]

C3 = [24(1⇐ ↼)2L2
ϖm(n+ 1), 24(1⇐ ↼)2L2

ϖm(n+ 1)
↽
2
φ
2

1⇐ ↽2
,

(1⇐ ↼)2, 0]

C4 = [
2φL2

ϖm(n+ 1)
n

, 0,
φ

n
, 1⇐

φµ

2
],

(25)
and

rk =





0
8ε2

1↔ε2
≃Y

↔1
≃
2(9φ2

L
2E[≃v̄k≃

2] + 3↼2
ς̄
2
n)

6(1⇐ ↼)2L2
φ
2E[≃v̄k≃

2] + 2↼2
ς̄
2
n

0




.

Moreover, let us for convenience denote

C =
[
C

T
1 , C

T
2 , C

T
3 , C

T
4

]T
. (26)

It is straighforward to show that

uk+1 ⇒ Cuk + rk.

Therefore, if one could find x > 0 such that Cx < x, then ⇀(C) < 1.
The following lemma provides such a guarantee.

Lemma 6. For the range of φ in Lemma 5, one can find x > 0 such
that ⇀(C) ⇒ 1⇐ ϖµ

4 .

It then follows that for ↗t → [1, T ],

ut ⇒ C
tu0 +

t↔1∑

k=0

C
t↔1↔krk. (27)

In the final stage of the argument, we establish an upper bound on
rk by bounding E[≃v̄k≃

2], and show that the bound is independent
of the iteration index.

Lemma 7. Suppose Assumptions 1 - 4 hold, and let φ and ↼ satisfy
the conditions of Theorem 2. Then E[≃v̄t≃

2] can be upper bounded
by a function of ς̄ which is independent of the iteration index t.

The proof of Theorem 2 is completed by incorporating the above
two lemmas into Lemma 5 and summarizing the required conditions
for the step sizes.

V. EXPERIMENTAL RESULTS

In this section we report performance of the proposed algorithm,
Push-ASGD, in a variety of experimental settings, including three
different ML tasks and a numerical study illustrating performance
under PL condition. Specifically, Push-ASGD is benchmarked against
the following methods tailored to directed networks: SGP/Push-
SGD [29, 5], the Push-SAGA algorithm [12] and the Di-CS-SVRG
algorithm [11]. The first of these algorithm uses only local stochastic
gradient updates while the latter two incorporate both global gradient
tracking and variance reduction. Please note that there are no
theoretical guarantees for the latter two algorithms in decentralized
non-convex settings; moreover, those two schemes assume access
to IFO while our Push-ASGD is tailored to the more challenging
SFO scenario. For all algorithms, the step sizes are selected from
[10↔7

, 10↔1] while for Push-ASGD ↼ is selected from [10↔4
, 10↔1];

the best performance for each method is reported.
Regarding the experiments: we first perform a test on the logistic

regression model with non-convex regularization; the second experi-
ment is an image classification task on the CIFAR-10 dataset via a
shallow neural network; the third experiment is an NLP classification
task on the IMDB dataset via fine-tuning the BERT architecture. We
further consider an objective function satisfying the PL condition and
numerically test the algorithms’ performance.

In all tasks, the training data is distributed randomly without
shuffling; hence, nodes are not guaranteed to receive data from
all classes. In other words, the nodes experience different data
distributions due to a high degree of heterogeneity.

A. Non-convex logistic regression

We first benchmark the performance of Push-ASGD on a decen-
tralized non-convex logistic regression model applied to handwritten
digit classification task on the MNIST dataset [32]. The learning task
is distributed across 100 nodes of a time-varying network generated
according to the Erdős-Rényi model and as a directed ring. For the
Erdős-Rényi model, we generate the graph and randomly remove a
subset of edges to make the graph directed. The network is switching
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(a) Norm of the gradient (training performance).

(b) The correct rate (test performance).

(c) Performance as the network size varies.

Fig. 1. Performance on MNIST. Push-ASGD achieves lower loss and
higher correct rate than the competing schemes.

between the Erdős-Rényi model, a directed ring and a reversed directed
ring. The dataset is distributed such that each node has 12 images
for local training. We deploy a non-convex regularizer and consider
the minimization [33]

min
x






n∑

i=1

N∑

j=1

ln(1 + e
↔(mT

ijx)yij ) +
d∑

j=1

⇁[x]2j
1 + [x]2j




 , (28)

where (mij ,yij) represents the image feature vector and the cor-
responding label of the j-th image at node i. Parameters of the
algorithms are set to φ = 6 ⇓ 10↔5 and ↼ = 0.015 (Push-ASGD),
φ = 6 ⇓ 10↔5 (Subgradient-Push with SGD), and φ = 2 ⇓ 10↔5

and 2 ⇓ 10↔7 (Di-CS-SVRG and Push-SAGA, respectively). The
regularization parameter is set to ⇁ = 10↔4. For all the experiments
in this section, the batch size is set to 1.

Results of the benchmarking experiments on the non-convex
logistic regression task are shown in Figure 1. As can be seen
there, the accuracy achieved by Push-ASGD is the highest among
all the considered schemes. This confirms our expectation that Push-
SGD should outperform Push-SAGA and Di-CS-SVRG since the

(a) The test loss.

(b) The correct rate.

Fig. 2. Performance on CIFAR-10. Push-ASGD achieves lower loss and
higher correct rate than the competing schemes.

accuracy of the latter two schemes is adversely affected by the sparse
connectivity of the considered directed ring graph structure (such a
structure causes instability of primal-dual schemes [34, 35]).3

We also test the performance of Push-ASGD as the network size
varies; in particular, we increase the number of network nodes from
50 to 200. For fixed network connectivity level and number of local
data points, the convergence is faster when there are more nodes in
the network (see Figure 1(c)).

B. Image classification experiments

Next, we test the performance of the proposed algorithm on a
decentralized image classification task involving CIFAR-10 dataset
[36]. To this end, we rely on a convolutional neural network
architecture Lenet [32]. Lenet consists of 5 layers: two sets of
convolutional, activation, and max-pooling layers, followed by two
fully-connected layers with activation and a softmax classifier. For
this task we utilize the cross-entropy loss.

The time-varying directed network is constructed based on the
Erdős-Rényi model and directed rings. First, the Erdős-Rényi graph
with 10 nodes is generated, and then several edges are removed to
induce a directed graph. Each node is assigned 5000 images from
the CIFAR-10 dataset for local training. For all algorithms, step size
is set to φ = 10↔2; for Push-ASGD, the momentum step size is set
to ↼ = 0.05. As a reference, we also provide a comparison with
the centralized stochastic gradient descent (C-SGD), for which the
training data includes all 50000 images. For all the experiments in
this section, the batch size is 32.

The test loss and the correct rate are reported in Figures 2(a) and
2(b), respectively. As seen there, the proposed algorithm, Push-ASGD,

3A similar phenomenon is observed in Fig. 3; in Fig. 2, Push-SAGA and
Di-CS-SVRG outperform Push-SGD due to a high number of local training
data points and reduced stochasticity.
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(a) The test loss.

(b) The correct rate.

Fig. 3. Performance on the natural language processing task. Push-
ASGD achieves lower loss and higher accuracy than the competing
schemes.

outperforms other decentralized schemes. The gap between Push-
ASGD and C-SGD is due to the impact of distributing the dataset
across the network nodes while maintaining the same total amount of
data as used by the centralized method.

C. Natural language processing experiments

The remaining real-world data experiment involves an NLP clas-
sification task via fine-tuning a deep learning language model. In
particular, we train this model on the IMDB dataset that contains the
texts of reviews and the corresponding binary tags implying whether
the review is positive or negative [37]. We still consider an Erdős-
Rényi-based directed time-varying network and distribute the IMDB
training data such that each node has access to 2000 reviews and
uses them for local training. The model is constructed by adding
a linear classification layer to the pre-trained Bidirectional Encoder
Representations from Transformers (BERT) [38] architecture, and
fine-tuned locally. We again utilize the cross-entropy loss.

The Push-ASGD and Push-SGD algorithms use step size φ = 0.002,
while Push-SAGA uses a smaller step size φ = 0.0002 to avoid
divergence. For the Push-ASGD algorithm, the momentum step size
is set to ↼ = 0.025. In all the experiments in this section the batch
size is set to 4. The performance of the algorithms is shown in Fig. 3.
As seen there, Push-ASGD achieves lower loss and converges to the
highest correct rate of over 90%.4

D. The PL condition

Lastly, we test the performance of the algorithms in an application to
minimizing a global function that satisfies the PL condition. The local
functions is defined as fi(x) = x

2+3 sin2(x)+ai cos(x), where ai

4The performance of Di-CS-SVRG is omitted since it failed to converge in
20 epochs.

Fig. 4. In simulations of a setting where PL condition holds, Push-ASGD
converges faster than other benchmarking algorithms.

are non-zero parameters satisfying
∑n

i=1 ai = 0 so that the global
function is F (x) = x

2+3 sin2(x). The global function is non-convex
and satisfies the PL condition [39]. To simulate stochastic gradient,
we add random Gaussian noise with mean 0 and standard deviation
1/2 to the gradient at each node. The network consists of 100 nodes;
similar to the previous experiments, the time-varying directed network
topology is based on the Erdős-Rényi model and directed rings. As
seen in Fig. 4, Push-ASGD converges the fastest, followed by the
two benchmarking algorithms with gradient acceleration; Push-SGD,
computing a simple stochastic gradient, converges the slowest and is
less stable than other algorithms.

VI. CONCLUSION

The paper presents the first analytical study of decentralized stochas-
tic non-convex optimization over time-varying directed graphs, and
introduces a novel stochastic optimization algorithm for this problem.
The method, Push-ASGD, is the first scheme that achieves the SFO
complexity of O(1/ε1.5) for smooth objectives; in addition, it enjoys
linear convergence under the PL condition. Push-ASGD relies on a
push-sum protocol to perform local aggregation under communication
asymmetry, while employing a novel stochastic gradient estimator to
deal with uncertainties stemming from noise and heterogeneity in local
data. The proposed gradient estimator incorporates momentum-based
variance reduction and gradient tracking techniques to recursively
estimate global gradient, which is unknown to the participating agents.
Extensive experiments demonstrate that Push-ASGD outperforms
existing methods for distributed optimization over time-varying
directed networks.

VII. APPENDIX

In the appendix we provide details of the analysis summarized in
the theorems.

A. Proof of Lemma 1

We start by defining the norm with respect to time-varying stochastic
vectors, ϖt. Recall the update of zt,

zt+1 = W̃
(t)(zt ⇐ φht),

where W̃
(t) = W̃

(t)
m ⇔ Id and zt,ht → Rnd. The (i, j)-th entry in

the column-stochastic matrix W
(t)
m is given by

w
(t)
ij =

1

d
out,t
j + 1

for (j, i) → E(t), (29)

where d
out,t
j denotes the out-degree of agent j at time t. Since the

entries of W̃
(t)
m are given by w̃

(t)
i,j = w

(t)
i,j y

j
t /y

i
t+1, it is guaranteed

that each row of W̃ (t)
m has row sum equal to 1 [10]. Since W̃

(t)
m is

row-stochastic and the network is strongly connected, W̃ (t)
m can also

be viewed as a row-stochastic mixing matrix for strongly-connected
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directed graphs. Using the weight policy of W t
m and the update of yt,

we can derive that the positive entries in W̃
(t)
m can be uniformly lower

bounded as w̃
(t)
i,j ↘ ω = 1

nn+2 for (j, i) → E(t) [10]. Consider the

stochastic vector sequence {ϖt} such that ϖt+1
T
W̃

(t)
m = ϖ

T
t ; from

Lemma 3.3 of [25], the sequence {ϖt} exists and has element-wise
lower bound, i.e., [ϖt]i ↘

ϱn

n . We recall the definition of L2(zt,ϖt),

L2(zt,ϖt) = ≃(diag(ϖt)
1
2 ⇔ Id)(zt ⇐ ẑt)≃

2
F ,

where ẑt is the ϖt-weighted average of zt in R
nd. Following Lemma

4.2 in [25], we can obtain L(W̃
(t)
m z,ϖt+1) ⇒ ⇁tL(z,ϖt), where ⇁t =√

1⇐
mini([ϑt+1]i)ϱ2

maxi([ϑt]i)(n↔1)2
→ (0, 1). Using the triangle and Young’s

inequalities we obtain

L2(zt+1,ϖt+1) = L2(W̃ (t)(zt ⇐ φht),ϖt+1)

⇒ (1 + r)L2(W̃ (t)zt,ϖt+1) + (1 +
1
r
)φ2L2(W̃ (t)ht,ϖt+1)

⇒ (1 + r)↽2L2(zt,ϖt) + (1 +
1
r
)↽2φ2L2(ht,ϖt)

⇒
1 + ↽

2

2
L2(zt,ϖt) +

(1 + ↽
2)↽2φ2

1⇐ ↽2
L2(ht,ϖt)

⇒
1 + ↽

2

2
L2(zt,ϖt) +

2↽2φ2

1⇐ ↽2
L2(ht,ϖt),

(30)

where r = 1↔ε2

2ε2
and ↽ = maxt⇐0 ⇁t. The proof of Lemma 1 is

completed by taking the expectation of both sides of the inequality.
B. Proof of Lemma 2

We start by applying techniques similar to those used in the
consensus error analysis in the proof of Lemma 1, yielding

L2(ht+1,ϖt+1)

= L2(W̃ (t)ht + W̃
(t)(Y ↔1

t ⇔ Id)(vt+1 ⇐ vt),ϖt+1)

⇒
1 + ↽

2

2
L2(ht,ϖt) +

2↽2

1⇐ ↽2
≃Y

↔1
≃
2L2(vt+1 ⇐ vt,ϖt+1)

⇒
1 + ↽

2

2
L2(ht,ϖt) +

8↽2

1⇐ ↽2
≃Y

↔1
≃
2
≃vt+1 ⇐ vt≃

2
2

where ≃Y
↔1

≃ = supt ≃Y
↔1
t ≃max denotes the supremum of the

inverse elements across all iterations, and the second inequality follows
from the definition of the L-norm. Moreover, ≃Y ↔1

≃ ⇒ n
n since

the smallest element of ≃Yt≃max ↘
1
nn for any t [10]. After taking

expectation of both sides, we obtain

EL2(ht+1,ϖt+1) ⇒
1 + ↽

2

2
EL2(ht,ϖt)

+
8↽2≃Y ↔1

≃
2

1⇐ ↽2
E≃vt+1 ⇐ vt≃

2
2. (31)

We proceed by deriving an upper bound on E≃vt+1 ⇐ vt≃
2
2. To this

end, note that for each i,

vi
t+1 ⇐ vi

t = ↔fi(z
i
t+1, ϑ

i
t) + (1⇐ ↼)(vi

t ⇐↔fi(z
i
t, ϑ

i
t))⇐ vi

t

= ↔fi(z
i
t+1, ϑ

i
t)⇐↔fi(z

i
t, ϑ

i
t)⇐ ↼vi

t + ↼↔fi(z
i
t, ϑ

i
t)

= ↔fi(z
i
t+1, ϑ

i
t)⇐↔fi(z

i
t, ϑ

i
t)

⇐ ↼(vi
t ⇐↔fi(z

i
t)) + ↼(↔fi(z

i
t, ϑ

i
t)⇐↔fi(z

i
t)).

Taking the expectation of ≃vi
t+1 ⇐ vi

t≃
2,

E[≃vi
t+1 ⇐ vi

t≃
2]

(a)
⇒ 3E[≃↔fi(z

i
t+1, ϑ

i
t)⇐↔fi(z

i
t, ϑ

i
t)≃

2]+

3↼2E[≃vi
t ⇐↔fi(z

i
t)≃

2] + 3↼2E[≃↔fi(z
i
t, ϑ

i
t)⇐↔fi(z

i
t)≃

2]

(b)
⇒ 3L2E[≃zit+1 ⇐ zit≃

2] + 3↼2E[≃vi
t ⇐↔fi(z

i
t)≃

2] + 3↼2
ς
2
i ,

where (a) is due to Cauchy–Schwarz inequality while for (b) we
invoke the smoothness assumption; here L denotes the smoothness
parameter and ς

2
i is a bound on the stochastic gradient estimate for

given i. Summing up from i = 1 to n yields

E[≃vt+1 ⇐ vt≃
2]

(c)
⇒ 3L2E[≃zt+1 ⇐ zt≃

2] + 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n

= 3L2E[≃zt+1 ⇐ x̄t+1 + x̄t+1 ⇐ x̄t + x̄t ⇐ zt≃
2]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n

(d)
⇒ 3L2[3E[≃x̄t+1 ⇐ x̄t≃

2] + 3E[≃zt+1 ⇐ x̄t+1≃
2 + ≃zt ⇐ x̄t≃

2]]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n

(e)
⇒ 3L2[3φ2E[≃v̄t≃

2] + 3E[≃zt+1 ⇐ x̄t+1≃
2 + ≃zt ⇐ x̄t≃

2]]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n,

where v̄t = [( 1n
∑

j v
j
t )

T
, · · · , ( 1n

∑
j v

j
t )

T ]T → Rnp and ς̄
2 =

1
n

∑n
i=1 ς

2
i ; note that (c) follows (b), (d) is due to the Cauchy-

Schwarz inequality and (e) stems from the update rule of xt. The
term E≃zt+1⇐ x̄t+1≃

2 appears in the upper bound and thus deserves
closer attention. Recall that ẑt is the ϖt-weighted average of zt;
letting ϖm = d/mint,i[ϖt]i, it holds that

≃zt ⇐ x̄t≃
2 = ≃zt ⇐ ẑt + ẑt ⇐ x̄t≃

2
F

(f)
⇒ 2

1
min(ϖt)

L2(zt,ϖt) + 2n≃
n∑

j=1

[ϖt]jz
j
t ⇐

1
n

n∑

j=1

[yt]jz
j
t≃

2
2

= 2
1

min(ϖt)
L2(zt,ϖt) + 2n

d∑

m=1

[
n∑

j=1

[ϖt]jz
j
t ⇐

1
n

n∑

j=1

[yt]jz
j
t ]
2
m

(g)
⇒ 2

1
min(ϖt)

L2(zt,ϖt) + 2n
d∑

m=1

max
i

[
n∑

j=1

[ϖt]jz
j
t ⇐ zit]

2
m

(h)
⇒ 2

1
min(ϖt)

L2(zt,ϖt) + 2n
d∑

m=1

max
i

≃

n∑

j=1

[ϖt]jz
j
t ⇐ zit≃

2
2

= 2
1

min(ϖt)
L2(zt,ϖt) + 2ndmax

i
≃

n∑

j=1

[ϖt]jz
j
t ⇐ zit≃

2
2

(i)
⇒ 2

1
min(ϖt)

L2(zt,ϖt) + 2nd≃zt ⇐ ẑt≃
2
2

(j)
⇒ 2ϖmL2(zt,ϖt) + 2nϖmL2(zt,ϖt), (32)

where (f) is due to the Cauchy-Schwarz inequality and the fact
that column-stochasticity of matrix W

(t)
m ensures that

∑n
j=1[yt]j =∑n

j=1[y0]j = n. One can show (g) by first finding the max-
imum and minimum of the weighted sum

∑n
i=1 ai[z

i
t]m sub-

ject to
∑n

i=1 ai = 1, ai ↘ 0. Specifically, the maximum is
achieved by putting all the weight on the largest [zit]m, while the
minimum is achieved by putting all the weight on the smallest
[zit]m. Let i

↗ = argmaxi[z
i
t]m and j

↗ = argmini[z
i
t]m; then

max{ai}[
∑n

j=1[ϖt]jz
j
t ⇐

∑n
j=1 ajz

j
t ]
2
m = max{[

∑n
j=1[ϖt]jz

j
t ⇐

zi
↑
t ]2m, [

∑n
j=1[ϖt]jz

j
t ⇐ zj

↑
t ]2m}. Therefore, it must be that

[
∑n

j=1[ϖt]jz
j
t ⇐

∑n
j=1 ajz

j
t ]
2
m ⇒ maxi[

∑n
j=1[ϖt]jz

j
t ⇐ zit]

2
m. (h)

is due to the fact that the square of each entry of a vector is no greater
than the squared -2 norm of the vector. Finally, (i)⇐ (j) are due to
the definition of L2(zt,ϖt). Taking the expectation and revisiting the
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bound on E≃vt+1 ⇐ vt≃
2
2 yields

E[≃vt+1 ⇐ vt≃
2]

= 3L2[3φ2E[≃v̄t≃
2] + 3E[≃zt+1 ⇐ x̄t+1≃

2 + ≃zt ⇐ x̄t≃
2]]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n

⇒ 3L2[3φ2E[≃v̄t≃
2]

+ 6ϖm(n+ 1)E[L2(zt+1,ϖt+1) + L2(zt,ϖt)]]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n,

where the last inequality is due to (e) and (i). Substituting the bound
on E[≃vt+1 ⇐ vt≃

2] in (31), we obtain

E[L2(ht+1,ϖt+1)]

⇒
1 + ↽

2

2
E[L2(ht,ϖt)] +

8↽2

1⇐ ↽2
≃Y

↔1
≃
2E≃vt+1 ⇐ vt≃

2]

⇒
1 + ↽

2

2
E[L2(ht,ϖt)] +

8↽2

1⇐ ↽2
≃Y

↔1
≃
2[3L2[3φ2E[≃v̄t≃

2]

+ 6ϖm(n+ 1)E[L2(zt+1,ϖt+1) + L2(zt,ϖt)]]

+ 3↼2E[≃vt ⇐↔f(zt)≃
2] + 3↼2

ς̄
2
n].

C. Proof of Lemma 3

Recall the rule for updating the local gradient estimate vi
t,

vi
t = ↔fi(z

i
t, ϑ

i
t↔1) + (1⇐ ↼)(vi

t↔1 ⇐↔fi(z
i
t↔1, ϑ

i
t↔1))

= ↼↔fi(z
i
t, ϑ

i
t↔1)

+ (1⇐ ↼)(vi
t↔1 +↔fi(z

i
t, ϑ

i
t↔1)⇐↔fi(z

i
t↔1, ϑ

i
t↔1)).

For all t ↘ 1 and i,

vi
t ⇐↔fi(z

i
t) = ↼↔fi(z

i
t, ϑ

i
t↔1) + (1⇐ ↼)(vi

t↔1 +↔fi(z
i
t, ϑ

i
t↔1)

⇐↔fi(z
i
t↔1, ϑ

i
t↔1))⇐ ↼↔fi(z

i
t)⇐ (1⇐ ↼)↔fi(z

i
t)

= ↼(↔fi(z
i
t, ϑ

i
t↔1)⇐↔fi(z

i
t)) + (1⇐ ↼)(vi

t↔1 +↔fi(z
i
t, ϑ

i
t↔1)

⇐↔fi(z
i
t↔1, ϑ

i
t↔1)⇐↔fi(z

i
t))

= ↼(↔fi(z
i
t, ϑ

i
t↔1)⇐↔fi(z

i
t))

+ (1⇐ ↼)(↔fi(z
i
t, ϑ

i
t↔1)⇐↔fi(z

i
t↔1, ϑ

i
t↔1)

+↔fi(z
i
t↔1)⇐↔fi(z

i
t)) + (1⇐ ↼)(vi

t↔1 ⇐↔fi(z
i
t↔1)).

Let st =
∑

i ↔fi(z
i
t, ϑ

i
t↔1) ⇐ ↔fi(z

i
t) and s⇒t =∑

i ↔fi(z
i
t, ϑ

i
t↔1) ⇐ ↔fi(z

i
t↔1, ϑ

i
t↔1) + ↔fi(z

i
t↔1) ⇐ ↔fi(z

i
t).

Summing over i from 1 to n and taking the expectation conditioned
on Ft gives

E[≃vt ⇐↔f(zt)≃
2
|Ft]

= (1⇐ ↼)2≃vt↔1 ⇐↔f(zt↔1)≃
2 + E[≃↼st + (1⇐ ↼)s⇒t≃

2
|Ft]

+ 2E[↖(1⇐ ↼)(vt↔1 ⇐↔f(zt↔1)),↼st + (1⇐ ↼)s⇒t↙|Ft]

(3a)
⇒ (1⇐ ↼)2≃vt↔1 ⇐↔f(zt↔1)≃

2 + E[≃↼st + (1⇐ ↼)s⇒t≃
2
|Ft]

(3b)
⇒ (1⇐ ↼)2≃vt↔1 ⇐↔f(zt↔1)≃

2 + 2↼2E[≃st≃2|Ft]

+ 2(1⇐ ↼)2E[≃s⇒t≃2|Ft]

(3c)
= (1⇐ ↼)2≃vt↔1 ⇐↔f(zt↔1)≃

2 + 2↼2E[≃st≃2|Ft]

+ 2(1⇐ ↼)2E[≃
∑

i

↔fi(z
i
t, ϑ

i
t↔1)⇐↔fi(z

i
t↔1, ϑ

i
t↔1)≃

2
|Ft],

where (3a) is due to Assumption 1, (3b) is due to the Cauchy-Schwarz
inequality and (3c) is due to the conditional variance decomposition.

The upper bound on the unconditional expectation can then be derived
as

E[≃vt ⇐↔f(zt)≃
2]

⇒ (1⇐ ↼)2E[≃vt↔1 ⇐↔f(zt↔1)≃
2] + 2↼2

nς̄
2

+ 2(1⇐ ↼)2L2E[≃zt ⇐ zt↔1≃
2]

(3d)
⇒ (1⇐ ↼)2E[≃vt↔1 ⇐↔f(zt↔1)≃

2] + 2↼2
nς̄

2 + 6(1⇐ ↼)2

L
2(E[≃zt ⇐ x̄t≃

2 + ≃x̄t ⇐ x̄t↔1≃
2 + ≃zt↔1 ⇐ x̄t↔1≃

2])

= (1⇐ ↼)2E[≃vt↔1 ⇐↔f(zt↔1)≃
2] + 2↼2

nς̄
2

+ 6(1⇐ ↼)2L2
φ
2E[≃v̄t↔1≃

2]

+ 6(1⇐ ↼)2L2(E[≃zt ⇐ x̄t≃
2 + ≃zt↔1 ⇐ x̄t↔1≃

2])

(3e)
⇒ (1⇐ ↼)2E[≃vt↔1 ⇐↔f(zt↔1)≃

2] + 2↼2
nς̄

2

+ 6(1⇐ ↼)2L2
φ
2E[≃v̄t↔1≃

2]

+ 12(1⇐ ↼)2L2
ϖm(n+ 1)(E[L2(zt,ϖt) + L2(zt↔1,ϖt↔1)]),

(33)
where (3d) is due to Cauchy-Schwarz inequality and (3e) is from
(32). This completes the proof of the first inequality in Lemma 3. The
upper bound on the averaged version can be derived using the same
technique by replacing E[≃vt ⇐↔f(zt)≃

2] with E[≃v̄t ⇐↔f̄(zt)≃
2].

D. Proof of Lemma 4

Since the global function is L-smooth, for φ → (0, 1
2L ] it holds

that

f(x̄t+1)
(4a)
⇒ f(x̄t)+ < ↔f(x̄t), x̄t+1 ⇐ x̄t > +

L

2
≃x̄t+1 ⇐ x̄t≃

2

(4b)
⇒ f(x̄t)⇐ φ < ↔f(x̄t), v̄t > +

Lφ
2

2
≃v̄t≃

2

(4c)
⇒ f(x̄t)⇐

φ

2
≃↔f(x̄t)≃

2
⇐ (

φ

2
⇐

Lφ
2

2
)≃v̄t≃

2

+
φ

2
≃v̄t ⇐↔f(x̄t)≃

2

(4d)
⇒ f(x̄t)⇐

φ

2
≃↔f(x̄t)≃

2
⇐ (

φ

2
⇐

Lφ
2

2
)≃v̄t≃

2

+ φ≃v̄t ⇐↔f̄(zt)≃
2 + φ≃↔f̄(zt)⇐↔f(x̄t)≃

2

(4e)
⇒ f(x̄t)⇐

φ

2
≃↔f(x̄t)≃

2
⇐

φ

4
≃v̄t≃

2 + φ≃v̄t ⇐↔f̄(zt)≃
2

+
φL

2

n
≃zt ⇐ x̄t≃

2
,

where (4a) is due to L-smoothness, (4b) follows from the update
of xt, (4c) is due to the perfect square formula, (4d) is due to
the Cauchy-Schwarz inequality and (4e) is due to the smoothness
assumption and the range of φ. Moving ≃↔f(x̄t)≃

2 to the left side
yields

≃↔f(x̄t)≃
2
⇒

2(f(x̄t+1)⇐ f(x̄t))
φ

⇐
1
2
≃v̄t≃

2

+ 2≃v̄t ⇐↔f̄(zt)≃
2 +

2L2

n
≃zt ⇐ x̄t≃

2
.
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By taking the telescoping sum over t from 0 to T ,

T↔1∑

t=0

≃↔f(x̄t)≃
2
⇒

2(f(x̄0)⇐ f(x̄T ))
φ

⇐
1
2

T↔1∑

t=0

≃v̄t≃
2

+ 2
T↔1∑

t=0

≃v̄t ⇐↔f̄(zt)≃
2 +

2L2

n

T↔1∑

t=0

≃zt ⇐ x̄t≃
2

⇒
2(f(x̄0)⇐ f(x̄T ))

φ
⇐

1
2

T↔1∑

t=0

≃v̄t≃
2 + 2

T↔1∑

t=0

≃v̄t ⇐↔f̄(zt)≃
2

+
4L2(n+ 1)ϖm

n

T↔1∑

t=0

L2(zt,ϖt)

(34)
where the last inequality is due to (32). The proof is completed by
taking expectation of both sides of (34).

E. Proof of Theorem 1

Using the fact that 1
1↔(1↔ς)2

⇒
1
ς for ↼ → (0, 1), leveraging

the recursive error bounds in inequality (3e) in (33), and applying
telescoping leads to

T∑

t=0

E[≃vt ⇐↔f(zt)≃
2] ⇒

1
↼
E[≃v0 ⇐↔f(z0)≃

2] + 2↼nς̄2T

+
1
↼
6(1⇐ ↼)2L2

φ
2

T∑

t=1

E[≃v̄t↔1≃
2]

+
1
↼
24(1⇐ ↼)2L2

ϖm(n+ 1)
T∑

t=0

E[L2(zt,ϖ0)].

Moreover, taking the telescoping sum over Lemma 1 leads to

T∑

t=0

EL2(zt,ϖt) ⇒
1

1⇐ (1 + ↽2)/2
L2(z0,ϖ0)

+
1

1⇐ (1 + ↽2)/2

2↽2φ2

1⇐ ↽2

T∑

t=0

EL2(ht,ϖ0)

=
2

1⇐ ↽2
L2(z0,ϖ0) +

4↽2φ2

(1⇐ ↽2)2

T∑

t=0

EL2(ht,ϖ0),

while taking the telescoping sum over Lemma 2 leads to

T∑

t=0

E[L2(ht,ϖt)]

⇒
2

1⇐ ↽2
E[≃ȟ0≃

2] +
4

1⇐ ↽2

72↽2φ2
L
2

(1⇐ ↽2)2
≃Y

↔1
≃
2
T↔1∑

t=0

E[≃v̄t≃
2]

+
4↽2

(1⇐ ↽2)2
≃Y

↔1
≃
2144L2

ϖm(n+ 1)
T∑

t=0

EL2(zt,ϖt)

+
96↽2

(1⇐ ↽2)2
≃Y

↔1
≃
2
L
2
↼
2

T∑

t=0

E[≃vt ⇐↔f(zt)≃
2]

+
4↽2

(1⇐ ↽2)2
≃Y

↔1
≃
224↼2

nς̄
2
T.

Utilizing the upper bounds above, we can derive the range of the step
size φ such that the upper bound on

∑T
t=0 E[L

2(ht,ϖt)] is indepen-
dent of the other error terms. Letting 2304ε4ϖ2

(1↔ε2)4
≃Y

↔1
≃
2
L
2
ϖm(n +

1) + 9216ε4ϖ2

(1↔ε2)4
≃Y

↔1
≃
2
L
4
ϖm(n+ 1) < 1

2 , we have

T∑

t=0

E[L2(ht,ϖt)]

⇒
4

1⇐ ↽2
E[L2(h0,ϖ0)] +

576↽2φ2
L
2

(1⇐ ↽2)3
≃Y

↔1
≃
2
T↔1∑

t=0

E[≃v̄t≃
2]

+
2304↽2

(1⇐ ↽2)3
≃Y

↔1
≃
2
L
2(n2 + 1)L2(z0,ϖ0)

+
192↽2

(1⇐ ↽2)2
≃Y

↔1
≃
2
↼
2
nς̄

2
T

+
192↽2

(1⇐ ↽2)2
≃Y

↔1
≃
2
L
2
↼
2[
1
↼
E[≃v0 ⇐↔f(z0)≃

2] + 2↼nς̄2T

+
1
↼
6(1⇐ ↼)2L2

φ
2

T∑

t=1

E[≃v̄t↔1≃
2]

+
1
↼
24(1⇐ ↼)2L2

ϖm(n+ 1)
2

1⇐ ↽2
L2(z0,ϖ0)].

Initializing by all-zero models and identifying the range of step size
φ such that the coefficient for the term

∑T↔1
t=0 E≃v̄t≃

2 is negative
completes the proof of Theorem 1.

F. Proof of Corollary 1.1

To prove the corollary, we note that

E[≃v0 ⇐↔f(z0)≃
2 =

n∑

i=1

E[≃1
b

b∑

r=1

(gi(z
i
0, ϑ

i
0,r)⇐↔fi(z

i
0))≃

2]

=
1

b2

n∑

i=1

b∑

r=1

E[≃(gi(zi0, ϑi0,r)⇐↔fi(z
i
0))≃

2]

⇒
nς̄

2

b

and

E[≃v̄0 ⇐↔f̄(z0)≃
2 = E[≃ 1

n

n∑

i=1

1
b

b∑

r=1

(gi(z
i
0, ϑ

i
0,r)⇐↔fi(z

i
0))≃

2]

⇒
ς̄
2

nb
.

From the result of Theorem 1,

1
T

T↔1∑

t=0

E≃↔f(x̄t)≃
2
⇒

2E(f(x̄0)⇐ f(x̄T ))
φT

+
2
↼T

E[≃v̄0 ⇐↔f̄(z0)≃
2] + 4↼ς̄2 +O(

φ
2

↼
(
1
T

+ ↼
2))

⇒
2E(f(x̄0)⇐ f(x̄T ))

φT
+

2
↼T

ς̄
2

nb
+ 4↼ς̄2 +O(

φ
2

↼
(
1
T

+ ↼
2)).

By letting φ = O( 1
n1/2T1/3 ), ↼ = O( 1

T2/3 ), and b = O(T
1/3

n ), we
conclude that

1
T

T↔1∑

t=0

E≃↔f(x̄t)≃
2
⇒ O(

1

T 2/3
), (35)

which completes the proof of the corollary.

G. Proof of Lemma 5

Revisiting the proof of Lemma 4 (specifically, expressions (4a)⇐
(4e)) to introduce the PL condition yields
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12

f(x̄t+1) ⇒ f(x̄t)⇐ < ↔f(x̄t), x̄t+1 ⇐ x̄t > +
L

2
≃x̄t+1 ⇐ x̄t≃

2

⇒ f(x̄t)⇐
φ

2
≃↔f(x̄t)≃

2
⇐

φ

4
≃v̄t≃

2 + φ≃v̄t ⇐↔f̄(zt)≃
2

+
φL

2

n
≃zt ⇐ x̄t≃

2

(5a)
⇒ f(x̄t)⇐

φµ

2
(f(x̄t)⇐ f

↗)⇐
φ

4
≃v̄t≃

2

+ φ≃v̄t ⇐↔f̄(zt)≃
2 +

φL
2

n
≃zt ⇐ x̄t≃

2
,

where (5a) is due to the PL condition. Subtracting f
↗ from both

sides and taking the expectation results in

E[f(x̄t+1)⇐ f
↗] ⇒ E[(1⇐ φµ

2
)(f(x̄t)⇐ f

↗)⇐
φ

4
≃v̄t≃

2

+ φ≃v̄t ⇐↔f̄(zt)≃
2 +

φL
2

n
≃zt ⇐ x̄t≃

2]

⇒ E[(1⇐ φµ

2
)(f(x̄t)⇐ f

↗)⇐
φ

4
≃v̄t≃

2

+
φ

n
≃vt ⇐↔f(zt)≃

2 +
φL

2
ϖm(2n+ 2)

n
L2(zt,ϖt)].

Having accumulated recursive error bounds for each of the four errors
impacting the linear inequality system at iteration k, we obtain

uk+1 ⇒ Cuk + rk.

H. Proof of Lemma 6

Recall that, as we argued in the discussion following Lemma 5, the
existence of x > 0 such that Cx < x implies ⇀(C) < 1. Building
on a similar idea, here we aim to find a range for the step size φ

and a specific vector x > 0 such that Cx ⇒ (1 ⇐
ϖµ
4 )x, which

subsequently implies ⇀(C) ⇒ 1⇐ ϖµ
4 . To this end, we construct the

following inequalities by re-writing Cx ⇒ (1⇐ ϖµ
4 )x in scalar format

for 4-dimensional x (recall the definition of C in (25)):

1 + ↽
2

2
x1 +

2↽2φ2

1⇐ ↽2
x2 ⇒ (1⇐

φµ

4
)x1,

144↽2≃Y ↔1
≃
2
L
2
ϖm(n+ 1)

1⇐ ↽2
x1 + (

288↽4≃Y ↔1
≃
2
L
2
ϖmφ

2(n+ 1)

1⇐ ↽2

+
1 + ↽

2

2
)x2 +

24↽2↼2
≃Y

↔1
≃
2

1⇐ ↽2
x3 ⇒ (1⇐

φµ

4
)x2,

24(1⇐ ↼)2L2
ϖm(n+ 1)x1 + 24(1⇐ ↼)2L2

ϖm(n+ 1)
↽
2
φ
2

1⇐ ↽2
x2

+ (1⇐ ↼)2x3 ⇒ (1⇐
φµ

4
)x3,

2φL2
ϖm(n+ 1)
n

x1 +
φ

n
x3 + (1⇐

φµ

2
)x4

(6a)
⇒ (1⇐

φµ

4
)x4.

By rearranging the first three inequalities above, we obtain the
following inequalities on x1/x2 and x3/x2:

2ε2ϖ2

1↔ε2

1↔ε2
2 ⇐

ϖµ
4

⇒
x1

x2
, (36)

x1

x2
⇒

1
2 (

1↔ε2

2 ⇐
ϖµ
4 ⇐

288ε4⇑Y →1⇑2L2ϑmϖ2(n+1)
1↔ε2

)

144ε2⇑Y →1⇑2L2ϑm(n+1)
1↔ε2

, (37)

24(1⇐ ↼)2L2
ϖm(n+ 1) 2ε

2ϖ2

1↔ε2

1
2 (1⇐ (1⇐ ↼)2 ⇐

ϖµ
4 )( 1↔ε2

2 ⇐
ϖµ
4 )

⇒
x3

x2
, (38)

x3

x2
⇒

1
2 (

1↔ε2

2 ⇐
ϖµ
4 ⇐

288ε4⇑Y →1⇑2L2ϑmϖ2(n+1)
1↔ε2

)

24ε2ς2⇑Y →1⇑2
1↔ε2

. (39)

Finally, we set x2 = 1 and solve recursively for x1, x3 and x4 via
(6a) and (36)-(39). The desired inequality Cx ⇒ (1 ⇐

ϖµ
4 )x holds

for the following choice of x:

x1 =

2ε2ϖ2

1↔ε2

1↔ε2
2 ⇐

ϖµ
4

,

x2 = 1,

x3 =
96(1⇐ ↼)2L2(n2 + 1) ε

2ϖ2

1↔ε2

(1⇐ (1⇐ ↼)2 ⇐
ϖµ
4 )( 1↔ε2

2 ⇐
ϖµ
4 )

,

x4 =
4
φµ

[
2φL2

ϖm(n+ 1)
n

x1 +
φ

n
x3].

Therefore, given the above construction, there exist positive x1, x2, x3

and x4 such that ⇀(C) ⇒ 1⇐ ϖµ
4 . The corresponding range of φ can

then be determined via (36)-(39).

I. Proof of Lemma 7

Recall the definition of C in (25). To facilitate upcoming analysis
of the linear system inequality, let us start by computing the inverse
of I4 ⇐ C, i.e.,

(I4 ⇐ C)↔1 = I4 ⇐ C/ det(I4 ⇐ C),

where I4 ⇐ C is the adjugate matrix of I4 ⇐ C. To compute this
inverse, we first find and bound the determinant of I4 ⇐ C,

det(I4 ⇐ C)

=
φµ

2
{(

(1⇐ ↽
2)2

4
⇐

144↽4φ2
L
2
≃Y

↔1
≃
2
ϖm(n+ 1)

(1⇐ ↽2)
)(2↼ ⇐ ↼

2)

⇐ 24(1⇐ ↼)2L2
ϖm(n+ 1)

48↽4φ2
↼
2
≃Y

↔1
≃
2

(1⇐ ↽2)2

⇐
576↽4φ2

≃Y
↔1

≃
2
L
2
ϖm(n+ 1)(1⇐ (1⇐ ↼)2)

(1⇐ ↽2)2

⇐ 288(1⇐ ↼)2L2
ϖm(n+ 1)↽4φ2

↼
2 ≃Y

↔1
≃
2

1⇐ ↽2
}

(7a)
↘

φµ

6
(
(1⇐ ↽

2)2

4
⇐

144↽4φ2
L
2
≃Y

↔1
≃
2
ϖm(n+ 1)

(1⇐ ↽2)
)(2↼ ⇐ ↼

2).

The lower bound (7a) is achieved if the learning rate/stepsize
parameters φ and ↼ are chosen such that

24(1⇐ ↼)2L2
ϖm(n+ 1)

48↽4φ2
↼
2
≃Y

↔1
≃
2

(1⇐ ↽2)2

+
576↽4φ2

≃Y
↔1

≃
2
L
2
ϖm(n+ 1)(2↼ ⇐ ↼

2)

(1⇐ ↽2)2

+ 288(1⇐ ↼)2L2
ϖm(n+ 1)↽4φ2

↼
2 ≃Y

↔1
≃
2

1⇐ ↽2

⇒ (
(1⇐ ↽

2)2

6
⇐

96↽4φ2
L
2
≃Y

↔1
≃
2
ϖm(n+ 1)

1⇐ ↽2
)(2↼ ⇐ ↼

2).

This also implies that

288↽4φ2
L
2
≃Y

↔1
≃
2
ϖm(n+ 1)

(1⇐ ↽2)
⇒

(1⇐ ↽
2)2

8
.

By invoking (7a), we can show that det(I4 ⇐ C) ↘
ϖµς(1↔ε2)2

96 .
Next, we note that the adjugate matrix needed to specify the inverse
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of I4 ⇐ C has entries that satisfy the following (in)equalities:

[I4 ⇐ C]1,2 =
2φ3

↼µ↽
2

1⇐ ↽2
⇐

φ
3
↼
2
µ↽

2

1⇐ ↽2

[I4 ⇐ C]1,3 =
24≃Y ↔1

≃
2
φ
3
↼
2
µ↽

4

(1⇐ ↽2)2

[I4 ⇐ C]2,2 =
φµ↼(1⇐ ↽

2)
2

⇐
φµ↼

2(1⇐ ↽
2)

4
[I4 ⇐ C]2,3 = 6≃Y ↔1

≃
2
φ↼

2
µ↽

2

[I4 ⇐ C]3,2 ⇒
30L2

φ
3
µ↽

2
ϖm(1 + ↼

2 + n+ ↼
2
n)

1⇐ ↽2

[I4 ⇐ C]3,3 ⇒
φµ

8

[I4 ⇐ C]4,2 ⇒
L
2
φ
3
↽
2
ϖm(60 + 56↼2 + 60n+ 56↼2

n)

n(1⇐ ↽2)

[I4 ⇐ C]4,3 ⇒
φ(1⇐ ↽

2)2

4n

+
L
2
≃Y

↔1
≃
2
φ
3
↽
4
ϖm(96↼2 + 144↽2 + 96↼2

n)

n(1⇐ ↽2)2
.

Recall (27) which states that for all k → [1, T ],

uk ⇒ C
ku0 +

k↔1∑

t=0

C
trk ⇒ C

ku0 +
k↔1∑

t=0

C
trkm

⇒ C
ku0 + (I4 ⇐ C)↔1rkm ,

where rkm = maxk→[1,T ] rk and km = argmaxk→[1,T ]rk.

Since rk is a function of E[≃v̄k≃
2], we proceed by deriving an

upper bound on E[≃v̄k≃
2]. Following the proof of Lemma 5,

φ

4
E[≃v̄k≃

2] ⇒ E[(1⇐ φµ

2
)(f(x̄k)⇐ f

↗)

+
φ

n
≃vk ⇐↔f(zk)≃

2 +
φL

2
ϖm(2n+ 2)

n
L2(zt,ϖt)]

(7b)
⇒ Cexp + (1⇐

φµ

2
)[(I4 ⇐ C)↔1rk]4

+
φ

n
[(I4 ⇐ C)↔1rk]3 +

φL
2
ϖm(2n+ 2)

n
[(I4 ⇐ C)↔1rk]1,

where

Cexp = max
km

{(1⇐
φµ

2
)[Ckmu0]4 +

φ

n
[Ckmu0]3

+
φL

2
ϖm(2n+ 2)

n
[Ckmu0]1}.

We leverage the error bounds in Lemmas 1, 2, 3 and 5 and the

computation of (I4 ⇐ C)↔1 in (7b) to establish

1
4
E[≃v̄k≃

2]

⇒
Cexp

φ
+

96(1⇐ ϖµ
2 )

µ↼(1⇐ ↽2)2
[
L
2
φ↽

2
ϖm(60 + 56↼2 + 60n+ 56↼2

n)

n(1⇐ ↽2)

8↽2

1⇐ ↽2
≃Y

↔1
≃
2(9φ2

L
2E[≃v̄k≃

2] + 3↼2
ς̄
2
n)

+ (
(1⇐ ↽

2)2

4φn
+

L
2
≃Y

↔1
≃
2
φ↽

4
ϖm(96↼2 + 144↽2 + 96↼2

n)

n(1⇐ ↽2)2
)

(6(1⇐ ↼)2L2
φ
2E[≃v̄k≃

2] + 2↼2
ς̄
2
n)]

+
1
n

96

↼(1⇐ ↽2)2
⇓ [

30L2
φ
2
↽
2
ϖm(1 + ↼

2 + n+ ↼
2
n)

1⇐ ↽2

8↽2

1⇐ ↽2

≃Y
↔1

≃
2(9φ2

L
2E[≃v̄k≃

2] + 3↼2
ς̄
2
n)

+
1
8
(6(1⇐ ↼)2L2

φ
2E[≃v̄k≃

2] + 2↼2
ς̄
2
n)]

+
L
2
ϖm(2n+ 2)

n

96

(1⇐ ↽2)2
⇓ [(

2φ2
↽
2

1⇐ ↽2
⇐

φ
2
↼↽

2

1⇐ ↽2
)

8↽2

1⇐ ↽2
≃Y

↔1
≃
2

(9φ2
L
2E[≃v̄k≃

2] + 3↼2
ς̄
2
n)

+
24≃Y ↔1

≃
2
φ
2
↼↽

4

(1⇐ ↽2)2
(6(1⇐ ↼)2L2

φ
2E[≃v̄k≃

2] + 2↼2
ς̄
2
n)].

Collecting the terms with E[≃v̄k≃
2] on the right-hand side and

imposing

(1⇐
φµ

2
)

96

µ↼(1⇐ ↽2)2
⇓

[
9L4

φ
3
↽
2
ϖm(60 + 56↼2 + 60n+ 56↼2

n)

(1⇐ ↽2)

8↽2

1⇐ ↽2
≃Y

↔1
≃
2

+ (
(1⇐ ↽

2)2

4φn
+

L
2
≃Y

↔1
≃
2
φ↽

4
ϖm(96↼2 + 144↽2 + 96↼2

n)

n(1⇐ ↽2)2
)

(6(1⇐ ↼)2L2
φ
2)]

+
96

n↼(1⇐ ↽2)2
[
2160L4

φ
4
↽
4
ϖm(1 + ↼

2 + n+ ↼
2
n)

(1⇐ ↽2)2
≃Y

↔1
≃
2

+
3
4
(1⇐ ↼)2L2

φ
2]

+
96L2

ϖm(2n+ 2)

n(1⇐ ↽2)2
[(
8φ2

↽
2

1⇐ ↽2
⇐

φ
2
↼↽

2

1⇐ ↽2
)

2↽2

1⇐ ↽2
≃Y

↔1
≃
2
⇓ 9φ2

L
2

+
144≃Y ↔1

≃
2
φ
2
↼↽

4

(1⇐ ↽2)2
(1⇐ ↼)2L2

φ
2] ⇒

1
8

leads to

1
8
E[≃v̄k≃

2]

⇒
Cexp

φ
+

96(1⇐ ϖµ
2 )

µ(1⇐ ↽2)2
[
8L2

φ↽
4
ϖm(60 + 56↼2 + 60n+ 56↼n)

n(1⇐ ↽2)2

≃Y
↔1

≃
23↼ς̄2n+ (

(1⇐ ↽
2)2

4φ

+
L
2
≃Y

↔1
≃
2
φ↽

4
ϖm(96↼2 + 144↽2 + 96↼2

n)

(1⇐ ↽2)2
)2↼2

ς̄
2]

+
1
n

96

(1⇐ ↽2)2
⇓ [

30L2
φ
2
↽
2
ϖm(1 + ↼

2 + n+ ↼
2
n)

1⇐ ↽2

8↽2

1⇐ ↽2

≃Y
↔1

≃
23↼ς̄2n+

2
8
↼ς̄

2
n]

+
L
2
ϖm(2n+ 2)

n

96

(1⇐ ↽2)2
⇓ [(

2φ2
↽
2

1⇐ ↽2
⇐

φ
2
↼↽

2

1⇐ ↽2
)

8↽2

1⇐ ↽2

≃Y
↔1

≃
23↼2

ς̄
2
n+

48≃Y ↔1
≃
2
φ
2
↼↽

4

(1⇐ ↽2)2
↼
2
ς̄
2
n].

(40)
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Since the right hand side is independent of k and T , this expression
provides an upper bound on E[≃v̄k≃

2] w.r.t. ς̄ for all k, T .

J. Proof of Theorem 2

We recall conditions on the step sizes φ and ↼ used in Lemmas 1-3
and 5-7, and let the step sizes be such that

φ ⇒ min{
1
2L

,
2↼
µ

,
1⇐ ↽

2

µ
},

576L2
ϖm(n+ 1)

↽
4
φ
2
≃Y

↔1
≃
2

(1⇐ ↽2)2
⇒

(1⇐ ↽
2)φµ

32
⇓

⇓ (
1⇐ ↽

2

4
⇐

288↽4≃Y ↔1
≃
2
L
2
φ
2
ϖm(n+ 1)

1⇐ ↽2
),

1728L2
ϖm(n+ 1)

↽
4
φ
2
≃Y

↔1
≃
2

(1⇐ ↽2)2
+ 384L2

ϖm(n+ 1)↽4φ2 ≃Y
↔1

≃
2

1⇐ ↽2

⇒
(1⇐ ↽

2)2

6
,

and

96
µ
[
3L4

φ↽
4
ϖm(356 + 212n)≃Y ↔1

≃
2

(1⇐ ↽2)4
+

3L2
φ

2
]

+ 96[
2736L4

φ
2
↽
4
ϖm(n+ 1)≃Y ↔1

≃
2

(1⇐ ↽2)4
+

3L2
φ
2

4(1⇐ ↽2)2
] ⇒

↼

8
.

Then, it holds that

lim
k↑↓

supE[f(x̄k+1)⇐ f
↗]

⇒
96

µ↼(1⇐ ↽2)2
[
8L2

φ
2
↽
4
≃Y

↔1
≃
2
ϖm(60 + 56↼2 + 60n+ 56↼2

n)

(1⇐ ↽2)2

(9φ2
L
2E[≃v̄k≃

2] + 3↼2
ς̄
2)

+ (
(1⇐ ↽

2)2

4
+

L
2
≃Y

↔1
≃
2
φ
2
↽
4
ϖm(96↼2 + 144↽2 + 96↼2

n)

(1⇐ ↽2)2
)

(6(1⇐ ↼)2L2
φ
2E[≃v̄k≃

2] + 2↼2
ς̄
2)]

⇒ (
φ
2
L
2

4
+

3L2
φ
2

2↼
)E[≃v̄k≃

2] +
96

µ↼(1⇐ ↽2)2

[
8L2

φ
2
↽
4
ϖm(60 + 56↼2 + 60n+ 56↼2

n)

(1⇐ ↽2)2
≃Y

↔1
≃
2(3↼2

ς̄
2)+

(1⇐ ↽
2)2

4
(2↼2

ς̄
2)+

L
2
≃Y

↔1
≃
2
φ
2
↽
4
ϖm(96↼2 + 144↽2 + 96↼2

n)

(1⇐ ↽2)2
(2↼2

ς̄
2)].

Substituting the upper bound derived for E[≃v̄k≃
2] in (40), one can

readily show that E[f(x̄k+1)⇐f
↗] decays linearly to the steady-state

error given in the statement of Theorem 2.
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[9] Shi Pu and Angelia Nedić. “A distributed stochastic gradient
tracking method”. In: 2018 IEEE Conference on Decision and
Control (CDC). IEEE. 2018, pp. 963–968.

[10] Angelia Nedic, Alex Olshevsky, and Wei Shi. “Achieving
geometric convergence for distributed optimization over time-
varying graphs”. In: SIAM Journal on Optimization 27.4 (2017),
pp. 2597–2633.

[11] Yiyue Chen, Abolfazl Hashemi, and Haris Vikalo.
“Communication-Efficient Variance-Reduced Decentralized
Stochastic Optimization over Time-Varying Directed Graphs”.
In: IEEE Transactions on Automatic Control (2021).

[12] Muhammad I Qureshi et al. “Push-SAGA: A decentralized
stochastic algorithm with variance reduction over directed
graphs”. In: IEEE Control Systems Letters (2021).

[13] Muhammad I Qureshi et al. “S-ADDOPT: Decentralized
stochastic first-order optimization over directed graphs”. In:
IEEE Control Systems Letters 5.3 (2020), pp. 953–958.
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[29] Angelia Nedić and Alex Olshevsky. “Stochastic gradient-push
for strongly convex functions on time-varying directed graphs”.
In: IEEE Transactions on Automatic Control 61.12 (2016),
pp. 3936–3947.

[30] Ran Xin, Usman A Khan, and Soummya Kar. “A near-optimal
stochastic gradient method for decentralized non-convex finite-
sum optimization”. In: arXiv preprint arXiv:2008.07428 (2020).

[31] Haoran Sun, Songtao Lu, and Mingyi Hong. “Improving the
sample and communication complexity for decentralized non-
convex optimization: Joint gradient estimation and tracking”. In:
International Conference on Machine Learning. PMLR. 2020,
pp. 9217–9228.

[32] Yann LeCun et al. “Backpropagation applied to handwritten zip
code recognition”. In: Neural computation 1.4 (1989), pp. 541–
551.

[33] Anestis Antoniadis, Irène Gijbels, and Mila Nikolova. “Penal-
ized likelihood regression for generalized linear models with
non-quadratic penalties”. In: Annals of the Institute of Statistical
Mathematics 63.3 (2011), pp. 585–615.

[34] Zaid J Towfic and Ali H Sayed. “Stability and performance
limits of adaptive primal-dual networks”. In: IEEE Transactions
on Signal Processing 63.11 (2015), pp. 2888–2903.

[35] Kun Yuan, Wei Xu, and Qing Ling. “Can primal methods
outperform primal-dual methods in decentralized dynamic
optimization?” In: IEEE Transactions on Signal Processing
68 (2020), pp. 4466–4480.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Im-
agenet classification with deep convolutional neural networks”.
In: Advances in neural information processing systems 25
(2012), pp. 1097–1105.

[37] Andrew Maas et al. “Learning word vectors for sentiment
analysis”. In: Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language
technologies. 2011, pp. 142–150.

[38] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional
transformers for language understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[39] Hamed Karimi, Julie Nutini, and Mark Schmidt. “Linear con-
vergence of gradient and proximal-gradient methods under the
polyak-"ojasiewicz condition”. In: Joint European conference
on machine learning and knowledge discovery in databases.
Springer. 2016, pp. 795–811.

Yiyue Chen received the B.S. degree from
Wuhan University, China, in 2018, and the M.S.E.
degree from the University of Texas at Austin in
2020. She received her Ph.D. degree in electrical
and computer engineering from the University of
Texas at Austin. Her research interests include
distributed machine learning and optimization.

Abolfazl Hashemi (Member, IEEE) received the
B.Sc. degree in electrical engineering from the
Sharif University of Technology, Tehran, Iran, in
July 2014, and the M.S.E. and Ph.D. degrees
in electrical and computer engineering from the
University of Texas at Austin, Austin, TX, USA,
in May 2016 and August 2020, respectively.
From August 2020 to August 2021, he was a
Postdoctoral Scholar with the Oden Institute for
Computational Engineering and Sciences, the
University of Texas at Austin. Since August 2021,

he has been an Assistant Professor with the Elmore Family School of
Electrical and Computer Engineering, Purdue University, West Lafayette,
IN, USA. Abolfazl was the 2019 Schmidt Science Fellows Award nominee
from UT Austin and was the recipient of the Iranian National Elite
Foundation Fellowship and a Best Student Paper Award finalist at
the 2018 American Control Conference. His research interests include
optimization for machine learning, signal processing, and control.

Haris Vikalo received the B.S. degree from the
University of Zagreb, Croatia, in 1995, the M.S.
degree from Lehigh University in 1997, and the
Ph.D. degree from Stanford University in 2003,
all in electrical engineering. He held a short-term
appointment at Bell Laboratories, Murray Hill, NJ,
in the summer of 1999. From January 2003 to
July 2003 he was a Postdoctoral Researcher,
and from July 2003 to August 2007 he was an
Associate Scientist at the California Institute of
Technology. Prof. Vikalo has been with the De-

partment of Electrical and Computer Engineering, the University of Texas
at Austin, since September 2007. He is a recipient of the 2009 National
Science Foundation Career Award. His research interests include signal
processing, machine learning, communications and bioinformatics.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3479888

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 20,2025 at 17:53:23 UTC from IEEE Xplore.  Restrictions apply. 


