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ABSTRACT

Temperature has a primary influence on phytoplankton physiology and ecology. We grew 12 strains of Gephyrocapsa huxleyi
isolated from different-temperature regions for ~45 generations (2 months) and characterised acclimated thermal response curves
across a temperature range. Even with similar temperature optima and overlapping cell size, strain growth rates varied between
0.45 and 1day!. Thermal niche widths varied from 16.7°C to 24.8°C, suggesting that strains use distinct thermal response mech-
anisms. We investigated the implications of this thermal intraspecific diversity using an ocean ecosystem simulation resolving

phytoplankton thermal phenotypes. Model analogues of thermal ‘generalists’ and ‘specialists’ resulted in a distinctive global

biogeography of thermal niche widths with a nonlinear latitudinal pattern. We leveraged model output to predict ranges of the 12

lab-reared strains and demonstrated how this approach could broadly refine geographic range predictions. Our combination of
observations and modelled biogeography highlights the capacity of diverse groups to survive temperature shifts.

1 | Introduction

Temperature critically influences organism size (e.g.,
Forster, Hirst, and Esteban 2013; Winder and Sommer 2012;
Zohary, Flaim, and Sommer 2021), development (e.g.,
Gillooly et al. 2002), distribution (e.g., Somero 2005; Jeffree
and Jeffree 1994) and metabolic rate (e.g., Savage, Van,
et al. 2004). Many organisms are reliant on environmental

temperature, ranging from microorganisms (e.g., Jansson and
Hofmockel 2020; Singh et al. 2010) to corals (e.g., Carballo-
Bolafios, Soto, and Chen 2019; Bairos-Novak et al. 2021), and
fish (e.g., Dahlke et al. 2020). The strong relationship between
physiology and temperature indicates that higher average
ocean water temperature will impact the abundance and
distribution of species (Cavicchioli et al. 2019; Lesser 2007;
Vaquer-Sunyer and Duarte 2011; Abirami et al. 2021). Climate
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change is also expected to increase temperature variabil-
ity (Rummukainen 2012; Arnell et al. 2019), which impacts
organisms proportionally to their tolerable thermal range
(Thornton et al. 2014). Increasing climate variability and ex-
tremes are predicted to shape ecology, including phenology,
species interactions and dominant community assemblages
(Vasseur et al. 2014; Parmesan and Yohe 2003; Tylianakis
et al. 2008; Lavergne et al. 2010; Mock et al. 2016).

Phytoplankton are vital to global primary production and car-
bon biogeochemistry (Strickland 1965). Their abundance and
distribution correlate with temperature (Righetti et al. 2019),
and thermal response has multiplicative interactions with
other drivers of phytoplankton fitness (Eppley 1972; Rhee and
Gotham 1981). Thermal reaction norms describe the effect of
temperature on growth rate, are measured for individual taxa
in the laboratory, and indicate potential evolutionary trade-offs
between adaptive thermal mechanisms (such as the use of pro-
teins with different temperature sensitivities (Somero 1995)),
the rate or regulation of resource use (Thompson, Guo, and
Harrison 1992; Sayegh and Montagnes 2011; Baker and
Geider 2021)) and fitness (Angilletta et al. 2003).

The deviation of thermal reaction norms of individual strains
or ecotypes from a ‘standard’ form is suggested to be among the
most important markers of the role of phytoplankton diversity
in shaping thermal response (Kingsolver et al. 2015; Izem and
Kingsolver 2005; Zhang et al. 2014), but its ecological implica-
tions have not been explored in ecosystem models to date. The
width of a thermal reaction norm indicates the trade-off between
being a temperature ‘generalist’ capable of growing successfully
over a wide temperature range, or a ‘specialist’ with a narrower
temperature range, but potentially with a growth rate advantage
(Angilletta et al. 2003). The commonly used Eppley-Norberg
model (Grimaud et al. 2017) parameterises thermal reaction
norm width explicitly (Grimaud et al. 2017; Kremer, Thomas,
and Litchman 2017; Norberg 2004). Thermal reaction norm
width has broad relevance to ecology and species biogeography.
Janzen's rule (Janzen 1967; Sheldon et al. 2018) hypothesises
that at higher latitudes and elevations, higher thermal variabil-
ity leads to wider thermal niche widths. Past work has found
that phytoplankton frequently do not adhere to this expectation
that thermal width increases with latitude (Chen 2015). The di-
versity of phytoplankton makes it difficult to extrapolate point
measurements of thermal width and local temperature to com-
munity trends, which is key to interpreting phytoplankton stud-
ies in the context of ecological theory.

To directly interrogate the effect of diversity on thermal re-
sponse, we used Gephyrocapsa (formerly Emiliania) huxleyi as
amodel system. G. huxleyi is frequently grown in the laboratory
as a model phytoplankter due to its global distribution and ease
of culturing (Wheeler, Sturm, and Langer 2023) as well as its
developed molecular resources (Read et al. 2013). Moreover, in-
traspecific diversity within G. huxleyi is well-described, includ-
ing in calcite elemental composition, growth rate, C:N ratio and
thermal response (Blanco-Ameijeiras et al. 2016; Rosas-Navarro,
Langer, and Ziveri 2016; Conte et al. 1998; Fielding 2013;
Wheeler, Sturm, and Langer 2023). Distinct G. huxleyi iso-
lates have unique thermal reaction norms (Zhang et al. 2014;
von Dassow et al. 2021), and strain diversity can shift thermal

reaction norms in ecologically significant ways (Anderson and
Rynearson 2020). Strain identity thus may determine viral resis-
tance via lipid remodelling (Kendrick et al. 2014), alkenone com-
position (Conte et al. 1998), elemental composition and change
(Sheward et al. 2023) and trace metal speciation and use (William
G. Sunda and Huntsman 1995; Strzepek, Boyd, and Sunda 2019;
Echeveste, Croot, and von Dassow 2018), all of which may deter-
mine both phytoplankton community composition and nutrient
export. The G. huxleyi species complex is unusually resilient to
temperature among coccolithophores (Frada et al. 2022), which
may further increase its importance as global mean tempera-
tures rise. G. huxleyi also has a level of diversity appropriate to
test hypotheses about coccolithophore and general phytoplank-
ton thermal physiology. Coccolithophores are frequently cited
as suited to low temperature, low turbulence and oligotrophic
conditions, which drives predictions of declines in this group
as a consequence of climate warming (Anderson et al. 2021).
Despite this prediction, G. huxleyi expansions have recently
been observed in situ (Rivero-Calle et al. 2015; Krumhardt
et al. 2016). There is a pressing need to examine undersampled
thermal niche traits in G. huxleyi and other phytoplankton, as
niche width and strain diversity could impact group coexistence
and overall biomass and hence explain unexpected trends in the
success of competing phytoplankton taxa.

Here, we selected 12 globally - distributed G. huxleyi isolates to
assess the degree of thermal response curve variability across
strains. To explore the impact of observed thermal trait diversity
on total biomass and thermal type coexistence, we designed a
model simulation for a general phytoplankter with varying ther-
mal optima (following Dutkiewicz et al. (2020)) and included
variable thermal response norm width among model ‘ecotypes’
(we use the term ‘ecotypes’ for the model organisms to differen-
tiate from the empirically studied ‘strains’). The large, relatively
geographically balanced collection of G. huxleyi strains that we
collected in the laboratory expanded available thermal response
data and provided sufficient resolution to implement a diversity-
resolving model simulation. We combined the model simulation
with the laboratory dataset to demonstrate that model output
can predict and diagnose reasons for the success of dominant
traits across ocean regions. Our study bridges increasing recog-
nition of the importance of strain-specific processes with the im-
pacts of intraspecific diversity on typical model representations
of thermal response and global thermal range predictions.

2 | Materials and Methods
2.1 | Laboratory Culturing

Cultures were obtained from the Bigelow Laboratory for Ocean
Science's National Center for Marine Algae and Microbiota
(NCMA) for strains CCMP371, 374, 375, 379 and 2090 and from
the Roscoff Culture Collection (RCC) for strains RCC874, 914,
1212, 3492, 3963 and 6071. Strain CCMP1516, which is a descen-
dant of the same original isolation as Strain 2090, was obtained
from the Dyhrman laboratory at Columbia University and has
been observed to calcify, whereas strain CCMP2090 no longer
calcifies in culture. Maintenance cultures of each of the twelve;
RCC4567 was removed from the analysis strains were kept at 18°C
under a 14:10 light/dark cycle and transferred approximately once
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per month. Four fluorescent tube bulbs were positioned below
the culture vials such that each culture tube was situated directly
above a bulb. Approximately 10cm from the light source, a light
level of approximately 24 umol m—2s~! was measured. Natural sea-
water from Vineyard Sound, MA, USA was used as the base for
all media recipes. Strains were maintained in standard L1 media
without silica (reported herein as L1-Si; as per https://ncma.bigel
ow.org/algae-media-recipes). Strains CCMP1516 and 371 were
maintained in low nutrient media to help retain their calcification
state, where all nutrients, trace metals and vitamins were added at
1/25th of the standard concentration (reported herein as L1/25-Si;
as per https://ncma.bigelow.org/algae-media-recipes).

An aluminium thermal block was used to achieve a thermal gra-
dient over which strains could be incubated at increasing tem-
peratures. The aluminium block has 80 openings across 4 rows
and 20 columns for 25 mm diameter glass culture tubes. Thermal
equilibrium is maintained using insulation, and a shared light
source at the bottom of the thermal block enables constant light
levels across the experiment (Blankley and Lewin 1976; Watras,
Chisholm, and Anderson 1982). A circulating water bath was
used to keep one side of the thermal gradient cool, while a heat-
ing element on the other side set the maximum temperature of
the experiment; the low and high temperatures were selected
for each set of measured strains based on their expected thermal
tolerance. Temperature extremes were set according to realistic
temperatures for the strain being tested, and temperatures were
measured and recorded regularly throughout the experiments.

Each strain was transferred via 1 mL aliquots from the main-
tenance stock to 6-7 different temperatures spanning the
thermal gradient at the beginning of the experiment. Strains
CCMP1516 and 371, as well as strain CCMP2090 for inter-
comparability with a descendant of the same lineage strain
CCMP1516, were transferred into and maintained in the
L1/25-Si media, while the remainder of the strains were trans-
ferred into and maintained in L1-Si media for all subsequent
transfers in the thermal experiment. Cell abundances and
optical properties were measured daily using flow cytome-
try, with either a Guava easyCyte HT 2 or 3 (Luminex, USA;
Strains RCC874, CCMP371, CCMP379 and CCMP374) or a BD
Accuri C6 Plus equipped with a C-Sampler (BD, USA; Strains
RCC1212, RCC6071, CCMP1516, CCMP2090, RCC3963,
RCC914, RCC3492 and CCMP375). Each strain population
was maintained in triplicate rows with identical temperatures
in semi-continuous culture for a minimum of 45 generations,
or approximately 2months. Maximum growth rates were
computed using the last recorded time point in the exponen-
tial phase and the first recorded time point in the exponential
phase, identified manually to ensure that compatible points in
the cell cycle were used for growth rate calculations, according
to the equation:

In(Ng) = In(N;)
u=—--> - v
t
where Ny is the final recorded concentration in the exponential
phase as measured in cells per millilitre, N; is the first recorded
concentration and ¢ is the duration in days. The final growth
rate is expressed in dimensionless units per day. Final thermal
reaction norms were constructed using growth rates computed

from up to 3 semi-continuous transfers when data meeting the
minimum quality thresholds were available.

2.2 | Thermal Response Curve Parameterisation

We used the equation from Norberg (2004) to parameterise phy-
toplankton growth rates across the strains we studied:

2
k(T)=a><eb‘><[1—<7V;—72Z> ] @

where T is temperature, k(T) is specific growth rate, w is the es-
timated thermal niche width and a, b and z are parameters that
determine the Eppley curve between temperature and growth
rate encompassing the thermal optimum and niche width,
commonly fit using methods like maximum likelihood estima-
tion (Strock and Menden-Deuer 2021; Norberg 2004; Thomas
et al. 2012). We used the bbmle package (version 1.0.25; Bolker
and Bolker 2017) to estimate parameter values for this equa-
tion for each of the strains. We estimated the thermal optimum
from the equation by using the optimise function in R with the
maximum parameter set over an interval in temperatures from
zero to 40°C. We recalculated the thermal width for the data
from (Anderson et al. 2021) using 0.01 as a threshold value
for when the growth rate was zero at the intersection points,
since the parameterisations tended to have unrealistically high
reported thermal widths when the estimated thermal perfor-
mance curves had long tails with near-zero growth rates.

We calculated the ‘plateau parameter’ (the range of tempera-
tures over which measured growth rate was within 80% of the
maximum measured growth rate) using the same search pro-
cedure to determine the intersection points. The code used to
calculate these quantities is available in the published GitHub
repository.

2.3 | Parameterisation of Darwin 3-Dimensional
Model Simulation

To simulate more diverse thermal response curve shapes, we
modified the Darwin model (Follows et al. 2007; Dutkiewicz
et al. 2020, 2015). The Darwin model is designed to be flexible in
the number and types of plankton to include. Here, to focus on
the relevance of thermal norm structure alone, we implement a
setup where the phytoplankton types we include (either 10 or 60
types) are identical to each other except for their thermal norm
and are grazed equally by the single zooplankton grazer without
competition. The 10 or 60 phytoplankton functional types (which
we refer to as ‘ecotypes’, while we refer to experimental variants
as ‘strains’) had one of 10 thermal optimum values. We compared
two simulation configurations: thermal optimum only, wherein
only thermal optimum varied between 10 different types, and
roughly linearly spaced optimum values varied between 0°C
and 31.5°C corresponding to typical thermal optimum values for
coccolithophores. In a second model configuration, the same 10
thermal optimum types were simulated between 0°C and 31.5°C,
but each thermal optimum type also corresponded to 6 different
thermal niche width values (16°C, 18°C, 20°C, 22°C, 24°C and
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26°C). These thermal niche width values each corresponded to
a different value of both the parameters a and w in the Norberg
curve parameterisation of the thermal curve. We penalised the
Eppley shape parameter a of each functional type by 0.05 for
every degree Celsius wider its width was than the baseline spe-
cialist phytoplankton functional type. This imposed a cost to
adopting the generalist lifestyle in the model. Because our strains
varied in thermal niche width in the laboratory without predict-
able changes in maximum growth rate, we applied a uniform
penalty rather than using an observed laboratory relationship be-
tween thermal width and maximum growth rate. A single grazer
class was simulated in the model, with grazing rate scaled by tem-
perature according to the expression:

e0.0GSx(Temperature—24)

In each of these two experiments, the phytoplankton types were
initialised with identical biomass and the simulation was run for
10years. The biogeography of the different phytoplankton types
reaches a quasi-steady seasonal cycle after about 3years of inte-
gration. We present results from the last year of this simulation.

2.4 | Analysis of Darwin Model Output

The Darwin model results were saved in time-averaged intervals
of 1 month, and the surface layer of the simulation was extracted
from the model output. Biomass was provided in the model
in units of mg C/m? for each phytoplankton type. Biomass-
weighted thermal niche width was calculated at each gridded
latitude and longitude location according to the expression:

" biomass[w] x widths[w]
Weighted Width (Long, Lat) = Lo

> _, biomass[w]

All maps were generated using the ggalt package (Rudis
et al. 2017) and ggplot within the R statistical computing envi-
ronment (version 4.1; Wickham n.d.; R Core Team 2022). The
map projection was produced using the coord_proj function
and parameters ‘4proj=robin +lon_0=0 +x_0=0 +y_0=0
+ellps=WGS84 +datum=WGS84 +units=m +no_defs’.
RColorBrewer was used to create gradient colour fills for maps
(Neuwirth and Brewer 2014).

The presence or absence of thermal niche widths was estimated
by considering widths to be ‘present’ when they constituted
at least 1% of total community biomass in at least one time-
averaged month of the simulation.

2.5 | Projection of Thermal Habitat of Laboratory
Strains

The maximum thermal habitat of each strain was calculated by
taking all ecotypes that had ever constituted at least 1% of the com-
munity at each latitude and longitude point. Each combination of
thermal width and optimum value was only included once in the
distribution per latitude and longitude location based on its pres-
ence at any time in the final year of the situation. This was done
to identify the locations in which a nonzero probability of ever

finding the strain in question at that location. In other words, this
value represents the probability of survival or persistence of that
strain, rather than its likelihood of being particularly abundant or
being present across seasons. Seasonality and relative abundance
were only considered to the extent that they influenced whether or
not each strain exceeded the abundance threshold for this reason,
as constructed probabilities were designed to represent regions
constituting viable habitats for the strain under consideration. The
maximum and minimum temperature of each strain as assessed
by the thermal width was extracted and used to build a bivariate
normal distribution for each latitude and longitude point. Thermal
minimum and maximum were identified from the Norberg curve
parameterisation using an identical procedure for the modelled
ecotypes as for the laboratory strains. Specifically, + % + opt was
calculated using the Norberg parameters to identify the upper and
lower bounds of the thermal response curve. For each of the twelve
strains, the probability density function value was calculated using
a bivariate normal distribution constructed from the mean and
standard deviation of the distribution of minimum and maximum
values. The bivariate normal distribution probabilities were as-
sessed using the pbinom function from within the VGAM pack-
age (version 1.1-11) in R (version 4.1.0). The probability of each
strain being identified as surviving at any time of the year based
on the distribution built from the modelled ecotype abundance
cut-off in each model grid cell (referred to as ‘model probability’
in the Results and Discussion) was calculated using the cumula-
tive distribution function (CDF) between 1.5° Celsius above and
below the predicted thermal bounds for each strain to replicate the
margin of error inherent in the spacing between adjacent columns
of the thermal block setup during the experiments. The CDF was
calculated using the bivariate normal distribution, with means
and variances specified using the mean and variance of the lower
and upper bounds of the modelled ecotypes present at a latitude-
longitude grid point, with a covariance calculated between them
and a small correction factor (0.0001) added or subtracted in case
covariance was zero. We subtracted the CDF calculated using the
temperature 1.5° Celsius below the lower/upper thermal limits of
each strain subtracted from the CDF calculated at the temperature
1.5°C above the lower/upper thermal limits of each strain. We as-
sessed whether the assumption of normality for the distribution of
thermal minimum and maximum values was appropriate using a
Shapiro-Wilk test, which qualified the distributions as not signifi-
cantly different from normal at all but 7 of 35,865 combinations of
latitude and longitude (and in no location did both the minimum
and maximum distributions significantly deviate from normal).

3 | Results and Discussion

3.1 | G. huxleyi Thermal Reaction Norms Are
Intraspecifically Variable

To quantify the intraspecific variability of phytoplankton ther-
mal response due to local thermal habitat, we selected 12 strains
of G. huxleyi isolated from across the global ocean and from a va-
riety of global environmental regimes (Figure 1). We acclimated
strains to temperatures in the lab for at least 2months (~45 gen-
erations) and then characterised thermal reaction norms. This
minimum time period was chosen because it was the common
minimum time period by which all strains had stable acclimated
growth rates. We did not evaluate whether any of the strains
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FIGURE1 | Isolation location and measurement frequency of strains of Gephyrocapsa huxleyi tested. (A) Location of original isolation for each
strain, which was retrieved from either the Roscoff Culture Collection (RCC) or the National Center for Marine Algae and Microbiota (NCMA). (B)

Temperatures evaluated for each of the 12 strains.
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FIGURE 2 | Thermal response parameters for the 12 tested strains of Gephyrocapsa huxleyi. (A) Thermal response curves as parameterised by

the Norberg equation for each strain. (B) Maximum growth rate compared to the estimated thermal optimum for each strain; the size of each point

indicates its thermal width. The black dotted line indicates the hypothesised Eppley relationship for coccolithophores from Anderson et al. (2021). (C)

Estimated thermal optimum by the latitude of isolation, where strains with a higher latitude of original isolation had higher thermal optimum values.

accumulated adaptations during the experiment and interpreted
changes in each strain over the experimental period to be attrib-
utable to acclimation. The 12 strains of G. huxleyi in this study
have distinct maximum growth rates, ratio between maximum
growth rate and optimum temperature, and thermal range
(Figure 2). The total range in measured thermal widths was
8.1°C, the range in thermal optimum was 11.4°C and the range
between maximum growth rates at the thermal optima of the
strains was 0.69 day~!. We found no significant relationship be-
tween the thermal optimum and the growth rate at the thermal
optimum (Kendall's tau: T=34, tau=0.03, p=0.95). Individual

strains may respond differently to light and nutrient conditions,
meaning that some trait heterogeneity may be the result of une-
valuated light or nutrient limitation for particular strains under
the conditions expected to be replete. Regardless, these results
indicate that the strains we measured did not follow any straight-
forward scaling between average preferred temperature and ei-
ther thermal range or maximum growth rate, highlighting the
ecosystem relevance of intraspecific diversity under constant
ambient environmental conditions. The 12G. huxleyi strains
examined here also had a broader range in thermal optimum
than previously observed (Fielding 2013; von Dassow et al. 2021;
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Anderson et al. 2021) due largely to our addition of a strain from
the Southern Ocean (RCC6071). The data from the 12 strains we
examined reaffirmed that coccolithophores have a wide range of
maximum growth rates within a relatively small range of ther-
mal optima (Figure 2B). The Southern Ocean strain also has a
higher maximum growth rate than several strains with higher
optimum growth temperatures (Figure 2B).

With the specific goal of identifying generalists and special-
ists, we compared our thermal performance characterisations
to a prior data compilation for coccolithophores (Anderson
et al. 2021), and added a recent set of thermal characterisations
of G. huxleyi (von Dassow et al. 2021; Figure 2B). Our globally
sampled data affirm that thermal trait diversity within the
cosmopolitan species G. huxleyi is representative of all known
thermal response data for coccolithophores (Figure 2A,B;
Figure S1), hence G. huxleyi is exceptionally phenotypically
variable. However, the total diversity of coccolithophore ther-
mal responses is undersampled-only four other species of
coccolithophore were present in the two datasets combined
(Anderson et al. 2021; von Dassow et al. 2021). Our work under-
scores the importance of considering intraspecific variability,
in that characterising a single isolate is insufficient to capture
the flexibility of phytoplankton thermal response and inform
parameterisations of phytoplankton thermal limits in models
(Demory et al. 2019; Ye et al. 2023; Bishop et al. 2022). This dis-
covery and our results highlight the importance of quantifying
uncertainty attributable to intraspecific diversity in future labo-
ratory and modelling studies.

Generalist and specialist strategies may influence the ecology
of phytoplankton within and between thermal types and deter-
mine the water temperatures at which they can be successful.
We evaluated the thermal niche width of G. huxleyi in the lab-
oratory experiments by recalculating the width of the thermal
response curve using the temperatures at which the simulated
growth rate via the Norberg parameterisation crossed zero. The
12 strains fell along a range of thermal width values, with strain
RCC1212 being the most ‘specialist’, while strain RCC3963 was
the most ‘generalist’ (Figure 2B). Given the relationship be-
tween maximum growth rate and thermal optimum and other
factors influencing growth, it is difficult to ascertain from lab-
oratory data whether a penalty that assigns a growth rate cost
to have a wider thermal niche width exists. We could not assign
a straightforward growth rate cost to a broader thermal niche
width. Although more thermal range flexibility would likely ne-
cessitate a lower maximum growth rate (Angilletta et al. 2003;
Gilchrist 1995), neither our data nor previous data compilations
supported a significant penalty (Figure S25). The relationship
between maximum growth rate and thermal optimum compli-
cates the evaluation of the cost, and may be an artefact of using
idealised conditions in the laboratory that may not accurately
reflect the environmental condition of simultaneous nutrient
(including light) and temperature limitation https://paperpile.
com/c/S5bid7/61Mo (Thomas et al. 2017). It is likely that with a
broader survey of strains or a shift in the experimental design
(e.g., examination of thermal growth response under nutrient-
limited conditions), a more direct relationship between growth
rate and tolerable thermal range might be determined. While
assigning a penalty is essential to set the feasibility of arbitrarily
flexible thermal niche widths, because this penalty cannot

currently be directly determined from empirical data, we can
explore and evaluate different penalties in a theoretical frame-
work. We will take this approach later in the manuscript in de-
signing a model parameterisation for a growth rate penalty of
thermal niche width.

We used a second thermal width parameter for the range of tem-
peratures that fell within 80% of the maximum measured growth
rate. We call this the ‘plateau parameter’, since it captures the
scenario that we frequently observed in which a range of tem-
peratures appeared to be close to equally suitable for growth
(Figure S2). The plateau parameter had a range of 6.5°C between
strains, and similarly had no significant relationship with opti-
mum temperature (Kendall's tau: T=22, tau=-0.33, p=0.15)
or maximum growth rate at the thermal optimum (Kendall's
tau: T=25, tau=-0.24, p=0.31). The plateau parameter was
weakly correlated with the thermal width (Kendall's tau: T=47,
tau=0.42, p=0.063). Strains with a high range of survivable
temperatures tended to have high growth rates across that sur-
vivable temperature range, but their maximum growth rates
did not occupy a uniform proportion of the range (Figure S2).
A larger measured thermal niche width only partially explained
the larger range of temperatures around the thermal optimum
with similar, near-maximum growth rates. The phytoplankton
thermal types we measured were hence diverse in thermal opti-
mum, thermal niche width and range of temperatures with high,
near-maximum growth rates.

3.2 | Varying Modelled Thermal Width Traits
Predicts Distinct Biogeographies of Generalists
and Specialists

Our observations of the thermal traits of G. huxleyi highlight
the variability in thermal niche width present in a single ma-
rine species. To understand how this diversity may impact G.
huxleyi and other phytoplankton distribution at the ecosystem
scale, we took an ecological modelling approach. To isolate the
role of thermal reaction norm in determining phytoplankton
distribution and biomass, we used the Darwin model (Follows
et al. 2007; Dutkiewicz et al. 2020), an ecosystem layer on the
MIT general circulation model (Marshall et al. 1997). We re-
solved sixty identical phytoplankton ecotypes with the same
light and nutrient requirements (operating under the assump-
tion that these fundamental requirements did not vary signifi-
cantly between empirically studied strains, though this was
not tested in the laboratory study) and susceptibility to preda-
tion. These ecotypes only differed in their thermal optima and
thermal niche widths. We chose six thermal widths that lin-
early spanned the approximate range of thermal niche widths
we observed across G. huxleyi strains (Figure 3C). Both our
experiments and a previous data compilation did not find a
clear relationship between thermal niche width and growth
rate (Chen 2015), but imposing a hypothesised growth rate
penalty in the model ensured that a wider niche width would
not be a universally beneficial trait (Figure S4). To interpret
the impact of an imposed penalty on the growth rate for a
wider thermal niche width, we compared our results to a no
and a high penalty model scenario (Figure S4). Comparing
the no- and high-penalty scenario to the intermediate penalty
we used in this study revealed that while generalist biomass

60f13

Ecology Letters, 2025

ASURDIT SUOWWO)) 2ANRAIY d[qearjdde ayy Aq pauIaA0S are SA[ONIE Y $3sn JO SN 10§ AIRIGI] SUI[UQ AS[IAN UO (SUOHIPUOI-PUB-SULID}/ WO A[1m’ AIRIqI[ouT[uo//:sdny) SUonIpuoy) pue swia], 3y S *[$Z0¢/20/07] U0 Areiqry auruQ Ad[IAy ‘soLreIqr ANsIaATun viquinjo)) £q $S00L 13/ 11 1°01/10p/wod Ao Kreiqrjaurjuoy/:sdny woiy papeojumod ‘[ ‘SZ0T ‘StT019v1



Biomass—weighted mean
thermal width (°C)

18 20 22

C Generalist—Specialist

Thermal
norm width
(°C)

— 16

10 20
Static Specialist Only 26

Growth rate (1/day)
o

0 10 20 30
Temperature (°C)

Mean percent difference in
biomass, generalist-specialist
vs. static specialist only

10 20

FIGURE3 | Thermal niche width modifications to the Darwin model simulation reveal distinct global biogeography of phytoplankton generalists

and specialists (A) Mean biomass-weighted thermal niche width of 60 phytoplankton functional types in the Darwin model simulation. Whereas

theory suggests that specialists should dominate in high-latitude regions with high seasonality, we found that specialists tended to play a larger role

in the total phytoplankton community in the subtropical gyres, whereas generalists with higher thermal niche widths thrived in temperate, mid-
latitude regions. (B) Number of thermal niche widths observed with at least 1% biomass in the generalist-specialist simulation; more purple colours
indicate more thermal niche widths present, up to a maximum of 6. (C) Static thermal niche width (left) vs. specialist-generalist (right) thermal
reaction norms; each colour corresponds to a different thermal niche width, with lighter colours indicating a more generalist thermal niche width.
(D) Percentage difference in mean modelled biomass in the final year of the simulation between the generalist-specialist simulation and the static

specialist-only simulation. Darker pink colours indicate higher biomass in the generalist-specialist simulation, whereas green colours indicate higher

biomass in the static specialist-only simulation.

correlates strongly with temperature variability in the no-
penalty scenario (Figure S4A), there was low overall thermal
niche width diversity, which contrasts with our laboratory ob-
servations. The high-cost scenario was completely specialist-
dominated and showed the least correlation to temperature
variability (Figure S4C). The intermediate penalty scheme
that we adopted provided a reasonable trade-off between
these two extremes that was consistent with the observation
that many different thermal niche widths are indeed found
in situ, suggesting that a penalty may exist even if not directly
observed. Possible reasons for the lack of observed penalty in
the laboratory experiments include the use of replete nutrient
media or the differences between strains with respect to their
specific nutrient requirements, which would moderate growth
rate, and the specific selection of strains of G. huxleyi (i.e., that
a penalty may be observed given a larger total sample size).
Our experiments show that variability in thermal niche width

exists between strains, which motivates a modelling approach
(Darwin and MITgcm) that we use to explore the validity of a
growth rate penalty on thermal niche width variation.

The largest relative populations of generalists were found in
the north Pacific Ocean and northwest Atlantic (Figure 3A),
which were areas of high-temperature variation in the model
(Figure S3; Figure 3). However, some regions that favoured
generalists, such as areas of the Southern Ocean, did not have
high thermal variability. Further, regions enriched with spe-
cialists included oligotrophic gyres with low thermal variability
(Figure 3A). The observation that regions with higher ther-
mal variability tend to favour generalists in our model is par-
tially compatible with generalisations of Janzen's hypothesis
(Janzen 1967; Sheldon et al. 2018). However, the model reveals
that physical features or the timing of seasonal changes in tem-
perature and nutrient availability may result in an outsized role
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of resource availability (Tilman 1980) over thermal variability in
some regions (e.g., Figures S4 and S5).

In this intermediate cost simulation, the mean thermal niche
width and the number of coexisting thermal niche widths
(Figure 3A,B) corresponded to ocean biogeochemical provinces,
such as oligotrophic gyres and boundary currents. Due in part to
these features, abundance patterns of individual thermal types
did not necessarily correlate to thermal variability via standard
metrics. In addition to non-temperature physiological influences
on phytoplankton growth, these features may explain unex-
pected observations in thermal niche width relative to latitude
or local temperature. For example, past work found that strains
of G. huxleyi isolated from Bergen, Norway, a region with com-
paratively high thermal variability, had a lower mean thermal
reaction norm width than isolates from Azores, Portugal, where
thermal variability was lower (Zhang et al. 2014). The model
predicts approximately the same mean thermal niche width
(Figure 3A; Figure S5), and coexistence between generalists
and specialists (Figure S8) at these two locations. This result in-
dicates the flexibility of the model to predicting thermal niche
width coexistence amid differences in temperature variability.
While regions of very high thermal variability in the model had
correspondingly high average thermal niche widths, average
weighted thermal niche width more frequently corresponded to
basin biogeography-hence local resource availability (Fu and
Sun 2024; Tilman 1980; Sommer 1989; Tilman, Kilham, and
Kilham 1982)-than absolute range or standard deviation in en-
vironmental temperature (Figures S4-S6). This could be due
to geographic separation between basins, advection of specific
water masses, nutrient availability or physical mixing.

To further explore the benefit of being a generalist, we com-
pared the simulation with both specialists and generalists
(generalist-specialist experiment) to one with only specialists
(Figure 3C). We found that total biomass was generally lower
in the specialist-only simulation (Figure 3D). The largest
changes in biomass occurred in generalist-dominated regions
(Figure 3A,D). However, there were also some increases in bio-
mass in regions that favoured specialists, suggesting that gen-
eralists were in fact less productive in these regions, but had
nevertheless persisted in the generalist-specialist experiment.
Hence, biogeochemical conditions promoted the existence of
regional niches selecting for diverse thermal widths over max-
imised community growth rate. Notably, while many regions
that had more generalists than specialists had higher total bio-
mass in the generalist-specialist simulation as compared to the
specialist-only simulation, change in biomass was not propor-
tional to the relative abundance of generalists (Figure 3A,D).
This suggests higher relative importance of other factors
(e.g., nutrients, phenology or finer-scale population dynamics
(Moisan et al. 2002)) in these regions.

We also compared the specialist-only simulation to a generalist-
only simulation, which revealed different global patterns in
the benefit of being a specialist versus a generalist (Figures S9
and S10). Most of the global ocean had higher biomass in the
generalist-only simulation. However, regions like the northwest
Pacific and Sargasso Sea had unexpectedly higher biomass in
the specialist-only scenario (Figures S9 and S10) despite high
thermal variability (Figure S3). Short-term bursts in specialist

biomass are only beneficial when fully coupled to the timescale
of temperature change, hence mismatch between these two
timescales may explain the difference in the specialist-benefit
trade-off between ocean regions. Expected impacts differed
between the generalist-only and the generalist-specialist sim-
ulation, indicating that the presence of both specialists and
generalists influences overall biomass. The simulation results
reinforced the observation that thermal niche width influences
overall predicted biomass in an ecosystem model simulation, de-
spite not always correlating directly with local temperature.

3.3 | Strain Geographic Predictions Highlight
the Role of Intraspecific Diversity in Biogeography

The ecosystem model simulation output can be leveraged to de-
termine which thermal traits are likely to be most successful
in each ocean region. We used the ecosystem model output to
predict the distribution of the twelve strains of G. huxleyi that
we measured in the laboratory (Figure 4). Using the minimum
and maximum temperatures of the model thermal types that
could survive at each latitude and longitude, we calculated the
probability that a hypothetical ‘thermal type’ with the same
thermal maximum and minimum of each of the measured
laboratory strains could persist (hereafter ‘model probability’;
see Methods). We found agreement between the location of the
original isolation of the strain and the predicted model proba-
bility that the strain would exist in that location. We consider
agreement to be when the model probability was nonzero, indi-
cating the possibility that the strain could be isolated from the
environment at approximately the location at which the strain
was collected. Some examples of nonzero agreement include
that 6 of the strains had greater than 15% probability and 3 had
greater than 50% probability (Figure S11). The 3 strains with
less than 1% probability of existence in the model grid point cor-
responding to their isolation location (RCC6071, RCC914 and
CCMP1516) had high probability values nearby (Figure S11).
Latent diversity within G. huxleyi indicates the ability of the
species to survive across virtually all global ocean regimes, yet
no individual strain tested had a greater than 1% probability in
all simulated ocean regions (Figure S12). This result indicates
that intraspecific variability in thermal trait diversity can in-
crease the overall success of a species in surviving a range of
temperatures and may be a mechanism that underpins the co-
existence of strains in situ.

3.4 | Implications for Modelled Current
and Future Phytoplankton Habitat

Taken together, the model analysis and laboratory results demon-
strate that the width of the thermal response curve can have a
strongly deterministic influence on the simulated distribution
of phytoplankton in a diversity-resolving ecosystem model. The
varied thermal niche widths of the strains we measured in the
laboratory suggest that individual strains may prioritise alloca-
tion to subcellular processes differently in response to tempera-
ture, have variable rates of temperature-controlled reactions or
use entirely different mechanisms to cope with the environmen-
tal temperature. Genome sequencing paired with gene expres-
sion studies will illuminate what specific differences in biological
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maxima of all strains that existed at each gridded latitude and longitude point in the model and constituted at least 1% of the population. Probability
was calculated using the cumulative distribution function for the bivariate normal distribution within a range of 3° Celsius around the minimum
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RCC6071 (D) Strain CCMP374, (E) Strain RCC1212 and (F) Strain RCC3492.

pathways may be responsible for different observed thermal
parameters between strains (Toseland et al. 2013). Thermal
response mechanisms may also have variable responses under
different resource conditions, which could reduce, eliminate or
augment each strain's thermal response, including shifting the
shape or centring of the thermal response curve (Andersson
et al. 2022; Sunda 1989; Boyd et al. 2013; Thomas et al. 2017;
Bestion et al. 2018; Litchman and Thomas 2022; Barton and
Yvon-Durocher 2019; Rhee and Gotham 1981; Dedman et al.
2023). The importance of more complex temperature-resource
availability relationships in moderating phytoplankton distri-
butions could be tested by future laboratory experiments that
consider the combined effects of temperature and the availabil-
ity of one or more additional resources (Kremer, Thomas, and
Litchman 2017). Future work on the thermal sensitivity of phyto-
plankton to other environmental drivers (e.g., trace metal avail-
ability) should also consider intraspecific variation. Additionally,
it should be noted that the inclusion of other phytoplankton com-
petitors, especially with different nutrient requirements, and
more complex trophic strategies could impact the thermal niche
distributions suggested in the model. Future modelling studies

including additional complexity of the ecosystem, and more
complex thermal-resource functions could explore these many
interacting facets further.

Our observation that generalist-specialist simulations show
greater biomass in thermally variable ocean regions may impact
predicted phytoplankton resilience to future climate, including
increasing thermal variability (Rummukainen 2012; Vasseur
et al. 2014; Easterling et al. 2000) and marine heat waves (Meehl
and Tebaldi 2004). For example, slowly increasing maximum
growth rates among isolates at their optimum temperatures
and diversity of thermal niche widths may enable coccolitho-
phores to persist during short-term heat waves, which may
increase stored resources and resilience to temperature fluctu-
ation (Mason-Jones et al. 2022; Malik et al. 2019). Because G.
huxleyi tends to be comparatively resilient to warming tempera-
tures and fluctuating nutrients among coccolithophores (Keuter
et al. 2023; Frada et al. 2022), the intraspecific diversity in the
thermal niche (e.g., generalist v. specialist) observed here may
offer a still greater mechanistic advantage against temperature
warming and variability. While there is geographic separation
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of strain isolates in this study, intraspecific diversity is expected
to exist both via allopatric and sympatric sub-populations
(Kashtan et al. 2014; Anderson and Rynearson 2020; Godhe
and Rynearson 2017). Fully characterising this diversity in the
laboratory is not feasible. However, the current intraspecific
resolution of culture studies is insufficient to estimate what pro-
portion of the total range of trait values within species is covered
by cultured isolates. Future work will measure trait variation
in the laboratory among a statistically robust sampling of iso-
lates, connect those traits to -omic variation (e.g., gene content
or expression), use environmental meta-omics to predict access
of individual species to those same traits in the field, and in-
crease flexibility in modelled trait parameters accordingly. This
workflow will be useful for predicting future shifts in the en-
vironmental range of species, but also for estimating present
differences and future diversification of allocation strategies
and resultant shifts in marine nutrient availability, storage
and export, and identifying the level of resolution appropriate
to model these features. Measuring the phenotypic flexibility
that confers diverse thermal traits and encoding it in models
is hence essential to projecting future climate-driven changes
in the relative abundance and biogeography of phytoplankton
functional types.
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