Pattern Recognition 148 (2024) 110122

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Check for

Reducing communication in federated learning via efficient client sampling &=

Mboénica Ribero, Haris Vikalo *

Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, United States

ARTICLE INFO ABSTRACT

Keywords: Federated learning (FL) ameliorates privacy concerns in settings where a central server coordinates learning
Federated learning from data distributed across many clients; rather than sharing the data, the clients train locally and report
Machine learning the models they learn to the server. Aggregation of local models requires communicating massive amounts of

Distributed optimization information between the clients and the server, consuming network bandwidth. We propose a novel framework

for updating the global model in communication-constrained FL systems by requesting input only from the
clients with informative updates, and estimating the local updates that are not communicated. Specifically,
describing the progression of the model’s weights by an Ornstein-Uhlenbeck process allows us to develop
sampling strategy for selecting a subset of clients with significant weight updates; model updates of the clients
not selected for communication are replaced by their estimates. We test this policy on realistic federated
benchmark datasets and show that the proposed framework provides up to 50% reduction in communication
while maintaining competitive or achieving superior performance compared to baselines. The proposed method
represents a new line of strategies for communication-efficient FL that is orthogonal to the existing user-driven
techniques, such as compression, thus complementing rather than aiming to replace those existing methods.

1. Introduction and clients’ model uploads. Since transmitting large models requires
considerable communication resources, it is desirable to reduce the
Federated learning is a framework for training machine learning amount of information that has to be collected by the server [7,8]. This
models in Such settings are common in applications that involve mobile has been explored in the line of research focused on reducing clients’
devices, automated vehicles, and Internet-of-Things (IoT) systems [1], required communication budget by compressing the model [9-14].
as well as in cross-silo applications including healthcare and bank- In existing federated learning systems, the number of clients par-
ing [2]. In FepAvg, the baseline federated learning procedure proposed  ticipating in each round of updates (and, therefore, the required com-
by [1], a server distributes an initial model to clients who indepen- munication budget) is typically fixed. Meanwhile, the contributions
dently update the model on local training data. These updates are of many clients in any given round may have limited impact on the
aggregated by the server which broadcasts a new global model to the global model, especially near convergence. Following this intuition,

clients and selects a subset of them to start a new round of local
training; the procedure is repeated until convergence. Since clients
communicate only their models to the server, federated learning pro-
vides data security that can be further strengthened and formalized via,
e.g., differential privacy mechanisms [3-5].

The number of clients in federated learning systems may be on
the order of millions, and the models they locally train and share
with the server can be rather large; for example, VGG-16, the widely
known neural network for image recognition, has 138M parameters [6],
weighing 526MB when represented by 32 bits. Moreover, federated
learning systems are often highly dynamic (e.g., mobile devices, IoT),
with new users joining and old users continuing to generate new
data; such settings may require a large number of training rounds

we propose a novel approach to reducing communication in federated
learning by identifying and transmitting only the client updates that
are deemed informative, and optimally estimating the absent ones. The
contributions of the paper and the proposed methods are summarized
below.!

Efficient communication with stable convergence. We present a
federated learning algorithm that reduces the number of communicat-
ing clients without destabilizing the optimization by introducing (1) a
novel client selection policy, and (2) a procedure for estimating updates
of the clients that are not selected. To this end, we rely on techniques
for optimal sampling of stochastic processes and adapt them to the
problem of client selection in FL systems. Specifically, we interpret
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Fig. 1. One round (1) of the proposed communication-efficient federated learning system deploying client sampling and estimation.

progression of the global model (i.e., the vector of model parameters
during Stochastic Gradient Descent (SGD)) as a discretized sample path
of an Ornstein—-Uhlenbeck (OU) process. Exploiting the above connec-
tion, the server requests a number of clients to locally train and decide
whether or not to communicate an update based on its informativeness
(e.g., how far is the local path from the steady state). The optimal
strategy that minimizes the mean-squared error (MSE) of predicting the
sample paths of the process turns out to be a simple threshold on the
update’s norm and can thus be efficiently implemented at the client’s
side. We develop a dynamic strategy for selecting the threshold, varying
it adaptively during the training. The server utilizes previous global
models to efficiently compute unbiased least-squares estimates of the
underlying process parameters, and deploys those parameters to predict
updates of the clients who choose not to communicate in a given round
of training.

Reduced bias and variance gradient estimation. To develop an
intuition on why the proposed approach works we present a bound on
the convergence of the proposed scheme for strongly convex smooth
objective functions. Alternative state-of-the-art (SOTA) methods and
proposed heuristics for distributed learning systems [15-18] either
replace the missing models with historic values or simply ignore them,
adding respectively bias and variance to the solutions, as demonstrated
by our experiments. In the remainder of the paper we refer to these two
strategies as the Zero and IGNoRre strategies, respectively. We demon-
strate that by estimating the missing client updates via the OU model,
one obtains unbiased update estimates and achieves variance reduction
that boosts the performance of federated learning.

Extensive experimental verification in realistic settings and
comparison with competitive baselines. Efficacy of the proposed
methodology is demonstrated in experiments on realistic federated
datasets, with highly non-convex objectives, showing that: (1) client
sampling schemes that utilize side information (e.g., magnitude of local
model updates) generally outperform random uniform sampling; (2)
the proposed methods achieve the same rate of convergence and a
comparable (or better) model accuracy as the baseline while reduc-
ing the communication up to 50%; (3) combining communicated and
estimated updates has a major beneficial impact on the convergence
speed and stability of training, as reflected by the reduction of bias and
variance compared to existing techniques. In particular, we validate the
proposed methods on a logistic regression task with synthetic data, and
on three benchmarking tests involving real data: a character classifica-
tion task on a real federated dataset, EMNIST, using a convolutional
neural network architecture, a next-character prediction task with an
RNN on Shakespeare dataset, and a classification task with ResNet-18
on CIFAR-100. Finally, we demonstrate that the proposed framework

is complementary to and can readily be combined with compression-
based techniques for reducing communications in federated learning
systems.

We illustrate our proposed scheme in Fig. 1. Our approach requires
two major modifications of the original Federated Averaging algorithm
(FepAvg) [1]. As in the original FepAve, the server broadcasts the
current model and selects N clients to perform an update; unlike
FepAve, the server also communicates threshold y, to the selected clients
(please see Fig. 1(a)). The selected clients train for E epochs and decide
whether to communicate based on how much their update differs
from the original model. In particular, if the norm of the difference
between the updated and original model exceeds threshold z,, the
update is transmitted; otherwise, only the norm of the update is sent
to the server (see Fig. 1(b)). The server relies on the model history to
estimate parameters of the underlying OU process, and uses them to
predict missing clients updates (rather than zeroing or ignoring these
clients updates). This is discussed in details in Section 3. By combining
received and estimated updates, the server generates a new model.
Finally, the server uses the collected local model norms to produce a
new threshold for the next round; the described procedure repeats until
a stopping criterion is met.

Organization. The remainder of the paper is organized as follows.
Section 2 introduces key concepts from federated learning (FL), reviews
previous efforts on improving communication efficiency in FL systems,
and provides background on the Ornstein-Uhlenbeck process. Section 3
develops connection between training with SGD in the federated learn-
ing settings and the OU process, and introduces the proposed algorithm.
In Section 4 we present numerical results that compare the developed
algorithm to related methods, while Section 5 summarizes the paper
and suggests future research directions.

2. Background and related work
2.1. Federated learning

Let #(-,-) be a loss function. Given a set of K clients, each one with
n, data samples, FEDAVG aims to solve the minimization problem

K
min F,.(6), 1
md;pk 1 (6) €y

where F,(0) = L Z','f £(0, x;) denotes the loss function at client k£ and
k ny i=1 1

P = an" weighs each client’s loss by its dataset size. For simplicity of
J i, .

the analysis we assume balanced datasets, i.e., p, = 1/K. (Note that one

can use a simple transformation to extend the results to the unbalanced

setting — see, e.g., Section 3.3. in [19]). The FepAvc algorithm requires
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a random subset of clients to send their updates to the server after
having trained locally for E epochs on mini-batches of size B (see [20]
for a comprehensive overview).

2.2. Reducing communication in distributed learning systems

Existing schemes for reducing communication overhead in federated
learning systems typically perform compression on the client side and
thus require additional computation for encoding and decoding. De-
terministic approaches such as low rank approximation, sparsification,
subsampling, and quantization [10,13,14,21], as well as randomized
approaches including random rotations and stochastic rounding [11],
randomized approximation [12], or more recently communication-
efficient surrogate likelihood framework [21] can be used to reduce
the communication while maintaining high accuracy. Note that these
methods may also be leveraged at the server [22].

Orthogonal to compression-based methods, approaches that dismiss
updates of some workers have been proposed in the distributed learning
literature [15-18]. The authors of [15] propose that only those updates
whose magnitude exceeds a certain threshold should be considered sig-
nificant and therefore communicated. A major drawback of this method
is in ignoring updates near the convergence, thus causing stagnation
in training. It was recently shown that the model aggregation step is
crucial for ensuring rapid convergence of a training process in a fed-
erated learning system [23]. Indeed, our experiments demonstrate that
ignoring updates leads to unstable behavior, particularly in the case
of heterogeneous data. In [16], the authors introduce a thresholding
method that relies on a central server for coordination, and propose
to replace the update of a client that did not communicate by the
client’s previous update. This approach requires the server to store
for all clients their updates from the previous round. [17] considers a
similar approach for the fully decentralized scenario, with a notable
difference of setting the threshold according to a schedule ¢, = o(z)
to ensure convergence. The last two approaches are challenging to
implement in federated settings because the number of clients can
be on the order of millions, implying it is very likely that in each
training round new clients are sampled. Therefore, updates of the
clients that did not communicate are replaced by the latest model they
received, likely slowing down the training process. Nevertheless, the
idea of selecting only the clients with informative updates is worth
pursuing since it may lead to significant savings in communications,
as demonstrated by the heuristics which impose limits on the upload
times of the updates [24]. In [18], the authors analyze the effect of
biased user sampling on the convergence of federated learning; we
show in our experiments that their loss-based selection with fixed top-
k strategies unfortunately saturates relatively fast. Alternatively, recent
work proposed feature selection as a communication reduction strategy
on vertically partitioned data, i.e., where each client holds certain
features about a set of records [25]. Our work focus on the horizontal
setting described in Eq. (1).

2.3. Ornstein-Uhlenbeck process

In this section we provide a brief background on the Ornstein—
Uhlenbeck process (OU), a stationary Gauss—-Markov process which we
utilize to statistically model training in a federated learning system.

Definition 1. The OU process {6,}, is described by the stochastic
differential equation
do, = Au — 6))dt + cdW,, @

where W, denotes the standard Wiener process. Eq. (2) specifies the
process that is drifting towards u with velocity 4, and has volatility
driven by a Brownian motion with variance o.
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Table 1
The notation used in the paper.
Variable Definition
N The number of clients to sample in each round
T The total number of rounds
% Threshold sent by the server to the users at the beginning of
round ¢
0, Global model at round ¢
954’:’1 Local model at the end of round ¢ at client k
A% := 9% -6, Update for client k at round ¢
m® :=1a®]l,  ¢,- norm of client k’s update at ¢
m, Mean of the update norms at the end of round ¢
s, Standard deviation of the update norms at the end of round ¢
C, Set of clients initially selected to participate in round ¢

Remark 1. Rate-constrained sampling of stochastic processes has been
widely studied in literature, primarily in the context of communications
and control [26-33]. In the setting where samples are observed locally
(by nodes/clients) but used for estimation only if communicated to
the central processor, thresholding the signal magnitude increment
is an optimal sampling policy for estimating parameters of an OU
process [31-33].

3. Training via client sampling and model update estimation

Here we introduce Apartive-OU, a federated learning framework for-
malized as Algorithm 1, inspired by techniques from optimal stochastic
process sampling and developed with the goal of reducing communica-
tion and improving accuracy. Specifically, we present a strategy where
a client transmits its model update to the server only if the norm of the
update exceeds a time-varying threshold set by the server, and propose
a non-trivial unbiased estimator of the model updates that did not meet
the communication threshold. In Theorem 3 we provide a convergence
bound for Algorithm 1.

3.1. Notation

For clarity, the notation used in the upcoming sections is summa-
rized in Table 1.

3.2. SGD as an OU process

Recently, studies of SGD via stochastic differential equation models
have gained significant attention [34-37]. Consider the loss L£(6; X) =
Zl’i L Zi(0), where X is a dataset with N samples and 7;(9) denotes
the loss function evaluated at point x; € X, i = 1,..., N. In gradient
descent, £(0; X) is typically minimized by finding in each iteration an
approximation of the gradient using a mini-batch B C X of the data. In
particular, letting g;(0) = %f,-(e) denote the gradient of #; at 6,

n
01 <6, — Z 8i(0)).
151 2
The following observations and assumptions are commonly encoun-
tered in literature (see, e.g., [371).

Observation 1. Note that the gradient at time ¢ is formed as the
empirical mean of per-sample gradients of the points in B that are
drawn independently and uniformly at random. Consequently, as noted
in [37], the central limit theorem implies that g can be approximated
by a normal distribution as ﬁ Dicn &) — N(g®), B(6)B(0)T), where
g(0) denotes the full gradient and B(0)B(9)" is the corresponding

covariance matrix.

Assumption 1.
constant [37].

When 6 approaches a stationary value, B(§) = B is
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Assumption 2. The iterates ¢, lie in a region where the loss can
be approximated by a quadratic form £(0) = %HTAH (readily justi-
fied in the case of smooth loss functions), and the process reaches a
quasi-stationary distribution around a local minimum.

Let us consider the discrete process defined as 49, := 6,,; — 6, =
—% >icn &i(6,). Predicated on the above,

40, =~ —ng(6,) — /%BN(O,M).

This is precisely the discretized version of the OU process

n n
- \/—B —_A ‘/—B
do g(@0)dr + N dW 0dr + N dw

in the relative proximity of the steady state.
3.3. Optimal sampling and estimation of OU processes in FL settings

When a sampling frequency constraint (i.e., uplink bandwidth) lim-
its the number of updates that could be collected by the server, clients
should locally decide when to send an update. The optimal strategy is
discussed below.

Lemma 1 (Proposition 2, [33]). Given the observation of an OU process
at time t,, 6, , the optimal sampling strategy minimizing the mean-square
estimation error is to collect the next sample at time t* = inf{z > 1, :
|A9r —E[OTIG,U]I > 7 b and the optimal estimate of 0., © € [t), 1), is
0. =E[0,10,1. In particular, for the OU process in Eq. (2),

0, = e A T0g, 4+ (1 — e M)y, (3)
where A and u denote parameters of the OU process in Eq. (2).

To establish the connection to federated learning, we recall the
interpretation of SGD as an OU process and note that in each round ¢
of a federated learning procedure, client k “observes” a partial sample
path of an OU process that terminates in 9,(?1 (i.e., the client records
progression of its weights during local training); the sample path starts
from point ¢, (i.e., the global model weights at round r) broadcasted by
the server at the beginning of the current training round. Let Afk) 1=
9:?1 — 6, be the difference between a locally updated (by client k) and
the previously broadcasted global model. Invoking the above sampling
optimality results, we propose to schedule transmission of updates if
||A$k)||2 exceeds a judiciously selected threshold (see Algorithm 2). If
client k decides not to communicate with the server due to the result
of a thresholding test, the server may estimate the client’s update
according to Eq. (3).

3.4. A stable communication-efficient algorithm

We formalize the overall proposed communication-efficient feder-
ated learning framework as Algorithm 1. In brief, N clients are selected
at the beginning of round . The server broadcasts the model parameters
0,, and the selected clients locally performs SGD with mini-batches of
size B for E epochs. After comparing the norm of the local model
update to a threshold, each client locally decides whether to commu-
nicate its updates or not, and transmits either the model updates effj]
or a negative-acknowledgment message (NACK), respectively. Finally,
the server incorporates either the update received from client k or its
estimate formed using Eq. (3). In practice, the process parameters A and
u are unknown and would need to be estimated themselves; to this end,
we replace Eq. (3) by

if an update was sent,

gk — b1 (€)]
t+1 A 7 s
4,0, + b, otherwise,

where 4, and b, are inferred from 6, ...,0,, previously aggregated at
the server, by relying on a least-squares estimation procedure described
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in Section 3.6, producing unbiased estimates of these parameters.
Rather than storing full past models, the server can update 4, and b,
via recursively computed rolling sums involving previous model param-
eters (see Section 4.5 for details), thus enabling efficient evaluation of
6,,,- We formalize this procedure as Algorithm 3.

Note that the server’s computationally cheap alternative to estimat-
ing a missing update is to reuse the client’s model from the previous
round, i.e., to set ét(f] = 6, (which we refer to as zero strategy), or to
simply ignore the client (1GNoRE strategy); as reported in Section 4, these
alternatives consistently underperform our proposed policy. Finally, the
server computes a new model according to 6,,; = % Z,’; . éff:)l (line 13
of the pseudo-code), updates the threshold and the rolling sums used
for parameter estimation, and proceeds to the next round of training.

Algorithm 1 Communication-Efficient FEpAve (Apaprtive-OU)

1: Input: K clients, number of gradient steps E, learning rate 7,
number of training rounds 7.

2: Initialize 6,, prediction 4, and

[Sys Syxs Sy» Sy Sy, at the server

3: fortr=1,..,T do

rolling sums S =

4. C, < random set of N clients.

5:. for ke, clients do

6: Mt(k) « CuentUppate(k, 6,, E, 7,)

7:  end for

8: for ke C, Server do

9: 9;21 <« SERVERESTIMATE(M r(k) ,9, 1) (Equation (5))
10: end for
11:  Server update:
12: Vel = mean(mfk) - std(mgk)))
13: 041 < % Z,I:]:] 9;5_)1
14: Update S with 6, (Equation (8))
15: Predict 4,.,, (Equation (10))
16: end for

17: Return Global model 6,

Algorithm 2 CuentUppATE at client k

Input: Initial global model ¢,, threshold y,, number of gradient steps
E.
initialize 91(1‘) 0,
+1
fori=1,..,FE do
0% 0 _yve@® x)

t+1 t+1 t+1°
end for
(k) _ plk) _ pk)
At _91+1 91+1

mk = (|49,
if m, > y, then

M® — (40 o)
else

MP — (NACK,mY)
end if
Return M,(k) to server

Algorithm 3 ServerEstivATE for client k

Input: The message from client k at time 7, M ,(k), estimate 8,

+1 7 ) 5

0w eff)l if received updates ©
0,,1, otherwise.

Return: The update 9&)' of client k to use for the next global model.
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3.5. Adaptive threshold selection

The policy of deciding whether or not to communicate based on
comparing ||Afk)||2 to a threshold y, aims to reduce communication
without incurring significant accuracy loss compared to a baseline.
Since the norm of the gradients is expected to decrease as the training
progresses, a fixed threshold may have detrimental effect on the learn-
ing process as it starts converging and approaches the minimum. We
empirically explore this point in Section 4.3.7; in particular, we propose
a strategy for adaptive modification of y, based on the magnitudes
of the updates of participating clients. At + = 0, clients receive an
initial threshold y, = 0, implying that everyone transmits in the first
round. In the following rounds, clients transmit either their model
updates and the corresponding update norms mgk), or a NACK message
along with the norm of their update. At the end of round ¢, the server
estimates the mean of the update norms, m,, their standard deviation,
s;, and sets threshold for the next round as y,,; = m, — s,. As stated
in Lemma 2, the threshold should be set to a small value in order to
reduce communication yet remain sufficiently large to allow collection
of model updates and thus reduce the variance of the updates.

3.6. Estimating parameters of the OU process

Various techniques for estimating parameters of the OU process
from the observations of its sample path have been proposed in litera-
ture, including least-squares, maximum likelihood [38] and Jackknife
method [39]. For convenience, we here summarize the computation-
ally efficient least-squares solution. First, note that by discretizing the
continuous OU process we obtain

1 — e—244t
24 r
where At denotes the discretization (sampling) period and AW, are i.i.d.

increments of the Wiener process. This leads to a linear measurement
model

Oy =M +(1-e Yy +o (6)

0,1 =ab, +b+e, )

where ¢, denotes i.i.d. noise and where

_ At _ AAt _ (1 —e244)
a=e ", b=pu(l-e"), and std(¢,) =0 —

To enable efficient online (i.e., recursive) estimation of the relevant
process parameters, let us define

t t
Sx,l = Zoi—h Sy,l = Zoi’
i=1 i=1
t t
— 2 _ 2
SXXJ - 2 91‘—1’ Syy,t - 2 ei ’
i=1 i=1

t
Sxy,t = z 01’—19[’ (8)
i=1

where 6,,6,, ...,0, denote samples of the OU process. It is straightfor-
ward to show that the least-square estimates of g,, b, and std(¢,) given
0,,0,,...6, can be found as

4 = thy,r - Sx,tSy,r i) _ Sy,t - éer,t (9)
o thx,thxj ’ T t ’
and
— tSny - S}zz,r - ﬁt(thyJ - Sx,tSy,z)
std(e,) =
tt—1)

Finally, the next value of the sample path, 6, , is predicted as

ét+1 =40, + i’t- (10)
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3.7. Convergence of Algorithm 1

Below we state Lemma 2 which analytically justifies the proposed
policy and discuss convergence of the algorithm’s output to the mini-
mizer of Eq. (1) in Theorem 3. We defer a proof sketch to Section 3.9.
For simplicity, we assume balanced datasets and that N clients are sam-
pled (with replacement) from the set of K clients, each with probability
pr = 1/K. We compare the convergence of three estimation strate-
gies which differ according to how they handle missing updates: (1)
ignoring the missing updates (iGNore); (2) replacing the missing updates
AG,(J]?I = 9:?1 — 0, by zero, i.e., assuming that the local model is equal
to the previous global model (zero); and (3) our proposed ADAPTIVE-
OU estimation strategy that controls which updates are missing by
deploying the proposed threshold strategy and estimating them at the
server via Eq. (5).

We start by analyzing the variance induced by our scheme and then
state its convergence rate.

Lemma 2. Assume client gradients in Eq. (1) are uniformly bounded so it
holds that ||V F,.(0, x)||* < G2, and execute CuinTOpT in Algorithm 1 with E
steps of SGD. Then, the variance of estimating a model at time t via the OU
strategy that selects N and receives a fraction of H (y,) clients (parametrized
by the threshold y,) satisfies

E2G? 17
Cou < Hi =~ + (1= Ho) - an

The first term in Eq. (11) captures the variance over clients which
communicated their updates while the second term represents the
variance over the remaining clients, i.e., those that did not meet the
communication threshold. Consequently, compared to [19], the pro-
posed scheme achieves smaller variance for the same communication
budget; this follows from the fact that the variance of randomly sam-
pling N clients and averaging models received from H(y,) - N of them

t _ _EG? : : t t
Crovore = Hoo N - Since H(y,) < 1, it holds that Cou < Clovore:

is given by

Theorem 3. Assuming (i) L-smooth and u-—strongly convex local loss
functions, (ii) bounded variance o of local stochastic gradients, ||V (0, x)—
F.®]? < o-i for k = 1,...,K, and (iii) uniformly bounded client
gradients, |VF.(0,x)||> < G?, then after T iterations the model produced
by Algorithm 1 satisfies

2 22
o2 /K +T +EXG* +C
L/ OU+B>, 12)

E(Fy) - F =0< -

where ai/ K captures variability of mini-batch gradients, I' = F*~Y, p, F}

reflects data heterogeneity (F," denotes the minimum value of F), E*G?
represents divergence of the clients’ models from the average, Coy =
%Z,Tzl Cly, = O(E®>G?) is the average variance of the client sampling
procedure defined in Lemma 2, and B is a bias term capturing how far
F is from its quadratic approximation.

Remark 2. Unlike the result above, the bound in [19] does not have a
bias term. However, client sampling variance of the approach in [19]
can be relatively much larger; as noted in Lemma 1, Cy,,, < Cp ... Our
experiments demonstrate that the increased variance can in practice be

more detrimental to accuracy than the bias term.
3.8. Computational complexity

Limited power and memory of users’ devices in federated learning
systems require rational use of computational resources. The time
complexity of our proposed framework is essentially as same as the
complexity of the traditional federated averaging algorithm. In partic-
ular, the proposed scheme does not make significant contribution to
the clients’ computational burden since the only additional operations
include: (i) computing the norm of the update, and (ii) comparing the
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computed norm to a threshold. The former is often already computed
in federated learning systems in order to enable clipping large updates
or to bound gradient sensitivity and guarantee differential privacy;
the latter is negligible. On the server side, our framework increases
memory consumption by a constant factor proportional to the number
of parameters d in order to store the five arrays in S (see Algorithm
1), maintaining O(d) memory consumption. Moreover, an additional
computational overhead is needed at the server to predict missing
model updates via recursive least squares. This step is performed in-
dependently for each weight, and only requires element-wise sums and
multiplications.

3.9. Sketch of the proof of Theorem 3

Proof. Let 0* be the true minimizer of Eq. (1), and v,,; be the model
at round ¢ assuming all clients participate in training, i.e.,

K

v = (k)
Viel = Z ANE

k=1
Below we utilize standard distributed optimization techniques [40]

and follow a line of arguments similar to the convergence proof for

FepAvc in Theorem 2 of [19]. First, we note that

16041 = 01 = 16,41 = Veur 1P + ¥4y — 6% 13)

—_——
A Ay
+ 2<9r+1 - Vr+1’ Ore1 = 9*> .

b1

In Theorem 2 of [19], b, vanishes due to unbiasedness of the es-
timator. Here, let b, denote the bias introduced at round z. Then

E|6,41 — 0*11* < (1 = n)E||6, — 0% || +n7(Cly, + Var) + by, a4

where

2
C(Y)U=E[||Vr+1—9 Var——L+6r+8(E 1262,

Ll

and we use Lemma 2 and Lemma 1 in [19] to upper bound A, and A,
in (13), respectively. Letting 5, = #/(t + y) for some g > 1/u and y > 0,
it can be shown by induction that

t—1
. P
E[l6,., — 0" |21 < — 1- b, +b,. 15
(16,41 %1 7+’+,-=< P + b, (15)

B2 (Var+COU )

where v = max{ L+ Do, - 0*||}. In particular, for t = 1

this inequality holds due to the definition of v. Now, assume Eq. (15)
holds for r. We know from Eq. (14) that

E[|6,41 — 0*11> < (1 = nE|l6, — 6 || +m7(Cpy

+20 (1

The inductive assumption E[||6, —6*||?] < #

+ Var) + b,.

bu i i
E) b; implies

i=1

=1
%112 v ﬁ” 2/t
Ellf,41 =0 I1> < (1=n,0) (m +2 <1 - m) bx>+n, (Coy +Van)+b,.

Now, since 5, = %, it must be that

KBy L+§<1_ﬂ_">b. 16)
t+y \r+t & t+y) !

IEHHH-I _0*”2 S (1 -

#?
(t+ )2( y +Var) +b,.
Multiplying the second to last term by ﬂ p] y1elds
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e cou Y = ey Cou TV = T

Pattern Recognition 148 (2024) 110122
By substituting this term in Eq. (16) we obtain

<y+t+§< t+y> i>

Ell6. = 0" < (1 -

e )
t+r?
_ttr=wb L Mﬁ)”< > _
(t+7)? Tty par t+y /)"
+M+bt'
(t+7)?

Reorganizing the terms on the right-hand side leads to

t—1

E||01+1—0*||25ﬁ t+y ;( )b + by a7)
Now, note that 1 — o < 1 implies
-1 -1
; <1—t/i—”y>b,- S;bi.
Observing that HV L <1 leads to the desired result,
ﬂ t—1
El6,,, - 0*]* < % +(1- zi—y) ; b; +b,. (18)

Now, it follows from [19] that the first term on the right-hand side
(RHS) of Eq. (17) bounds the first two terms on the RHS of (14); the
bound on the remaining term in (17) is due to unfolding the recurrence
on b,. Moreover, due to strong convexity

E[F(6)] - F©") < SELlI6, - ")
Using this in Eq. (17),

E[F(0;)] - F(0") =

L Var + Cyy /4}/ ﬂ
“LE||6, - 6* z
o(ﬂ(HT_])( . o, — oIl + T4y —— )b, + by

Finally, Theorem 3 follows by letting B = % (ZLI (1 - I’i—”{) b, + bT).
For arbitrary functions, B could be unbounded and grow asymptoti-
cally. However, the error of approximating a smooth, strongly convex
function in a bounded domain is at worst constant because such func-
tions are readily upper and lower bounded by quadratic functions; thus,
b, = O(1) and B = O(l). In practice, the quadratic approximation
improves closer to the optimum, meaning that ||, || decreases over time;
e.g., ifb, = O(%), it holds that B = O (% ), and the bias vanishes. []

4. Experiments

We present extensive experiments that demonstrate the perfor-
mance of our proposed algorithm on several datasets and for various
realistic settings and models. In particular, we benchmark the proposed
client selection strategy on four different datasets — a synthetic dataset,
EMNIST with 62 categories, Shakespeare, and CIFAR100 - with respec-
tive models: (1) logistic regression; (2) a convolutional neural network;
(3) a recurrent neural network for a next character prediction task; and
(4) ResNet-18. For each task we use the optimal learning rate found
in [41] and the same batch size (specific values are provided in the
appendix). Our codes are publicly available> and were implemented
using the Tensorflow-Federated API [42].

2 https://github.com/mriberodiaz/selection_ou_weights.git.
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Fig. 2. The Aparrive-OU strategy is consistently more accurate than the competing methods.

Table 2

Datasets.
Dataset Users Samples
EMNIST 3.4 K 60 K
CIFAR100 500 50 K
Shakespeare 715 16 K

4.1. Federated datasets

For the federated learning experiments with homogeneous data and
convex learning objective, we use a synthetic dataset and consider
a logistic regression task. We synthesize this data by generating 10*
samples X; € R'% ~ N'(0, I,). Moreover, we generate § ~ N(0, I ;o)
and, finally, set labels y;, = round(XiTﬂ). The samples are split evenly
among 100 clients.

For a more realistic task, we rely on the EMNIST dataset [43], a
reprocessed version of the original MNIST dataset with 62 categories:
each image is a character linked to its original writer, providing a
natural non-i.i.d. distribution and thus allowing emulation of a feder-
ated learning setting. This dataset consists of images attributed to 3843
users. For the task of interest, character recognition, we train and test
a convolutional neural network (CNN).

To investigate a language modeling task under data heterogeneity,
we use the Shakespeare dataset [1], a language modeling dataset with
725 clients, each one a different speaking role in each play from the
collective works of William Shakespeare. Each client’s dataset is split
into training and validation sets. We train a recurrent neural network
(RNN) with just under 1M parameters for the next character prediction
task.

Finally, for CIFAR-100 we use the partition introduced by [41] that
applies Latent Dirichlet Allocation to produce a realistic heterogeneous
distribution. We train ResNet-18, replacing batch with group normal-
ization, a modification that has shown improvements in federated
settings [44].

Size of the datasets is summarized in the Table 2.

4.2. Benchmarks

We test our adaptive thresholding for communication reduction and
compare the results to those of the following baselines: (i) a non-
restricted communication scheme where all clients communicate their
model updates to the server; (ii) Power-of-Choice (PoC), the concurrent
approach proposed by [18]: there, clients are sorted in decreasing order
according to their loss at the beginning of a round, and only the top-
k are used for training. We present results for different values of the
hyperparameter k.

Next, we turn our attention to the strategies for dealing with missing
updates and consider two previously mentioned alternatives found in
literature: (i) zero strategy [16,17], where the server replaces missing
updates with zeros; and (ii) iGNoRe strategy [15], where the server
averages only the updates it received.

4.3. Results

We investigate the following aspects of the client sampling problem:
(i) communication efficiency vs. accuracy achieved by a client selection
strategy; and (ii) the effects of different approaches to dealing with the
clients that did not communicate their model updates to the server.

In the experiments with EMNIST, Shakespeare, and CIFAR-100
datasets we fix hyperparameters as in [41], selecting N = 10 clients
at random in each round. Models are trained for 500 rounds.

4.3.1. Accuracy

In Fig. 2, we plot the test accuracy progression during training for
all combinations of adaptive selection and the three estimation strate-
gies (OU, zero, and iGNore) on EMNIST, Shakespeare, and CIFAR100
datasets. We further report the accuracy averaged over the last 100
rounds and its standard deviation in Table 3. In the experiments on
EMNIST and Shakespeare, the AparTive-OU strategy achieves the best
accuracy; for the task involving Shakespeare dataset, Apaprtive-OU even
achieves better accuracy than the full-communication baseline scheme.

The results reveal that thresholding by magnitude reduces commu-
nication without sacrificing performance only if paired with a suitable
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Fig. 3. Combining Aparrive-OU with compression. Model compression has no significant impact on the performance of our selection-estimation strategy.

Table 3
Accuracy and communication cost of communication-reduction strategies.

Dataset Accuracy (%)
EMNIST Shakespeare CIFAR100
BASELINE 82.7 (+0.57) 50.9 (0.69) 8.7 (x0.76)
AparTivE-OU 82.4 (+0.63) 50.6 (+0.55) 13.1(x0.77)
ZERO 82.3 (x0.61) 49.8 (+0.69) 7.8 (£0.71)
IGNORE 75.9 (x1.16) 50.1 (0.61) 13.3 (x1.3)
Communication used (%)
BASELINE 100 100 100
ApapTive-OU 79 48 82
ZErO 77 47 82
IGNORE 66 49 77

strategy for estimating missing updates: over the three datasets, thresh-
olding strategies learn a model with a performance comparable to
the full communication baseline, even outperforming it on CIFAR100.
However, thresholding is not sufficient — the way missing updates
are handled has a significant impact. For instance, the iGNORE strat-
egy achieves similar performance as Apartive-OU on CIFAR100, yet
considerably underperforms on EMNIST, and at a lower degree on
Shakespeare datasets. Similarly, the zero strategy achieves solid results
on EMNIST but falls behind on CIFAR100. Meanwhile, Apaptive-OU
performs consistently well across different tasks.

We notice that the approaches which take into account missing
updates and replace them with an estimate (OU and Ztro) help smooth
the training process. This can also be seen by considering the standard
deviation over the last 100 rounds in Table 3, where we observe that
both Zero and Apartive-OU lead to smaller variance over the training
rounds and a more stable convergence trajectory. However, by zeroing
out clients’ updates, the convergence of Zero is considerably slowed
down on all datasets, confirming the effect of bias analyzed in Sec-
tion 3.7. Indeed, as shown in Fig. 2, Apaptive-OU induces less variance
over the optimization trajectory than Ienore (which tends to exhibit
drastic drops in accuracy) while maintaining competitive accuracy.
This can be theoretically explained by the larger variance of the latter,
analyzed in Lemma 2, and also empirically observed in the standard
deviation in Table 3.

4.3.2. Communication savings

Table 3 shows that our thresholding-based sampling combined with
OU estimation, ApapTive-OU, requires smaller amount of communica-
tion to achieve accuracy comparable to the baseline (i.e., to the scheme
using updates of all initially sampled clients). The zero estimation strat-
egy has communication savings similar to OU but slower convergence
rates and inferior final accuracy. Among all strategies, iGNORE achieves
the highest communication savings but is ultimately not capable of
matching the accuracy of the OU method in Shakespeare and EMNIST.
This lower communication rate of the 1GNoRe strategy is due to the fact
that the ignored clients will continue to have high norm value in the
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Fig. 4. Comparing ApapTive-OU with top-k selection and averaging based on loss values. Apaptive-OU delivers more consistent results across different datasets, without a need for

setting additional hyperparameters (e.g., k).

subsequent iterations, which further inflates the threshold and leads to
even fewer clients in the next round.

4.3.3. Combining client sampling with model compression

It was shown in [10] that FepAvc is compatible with model com-
pression. Here we demonstrate that our method is also unaffected
by and may readily be combined with compression strategies. Fig. 3
compares the performance of Apaptive-OU without compression to the
setting where the model is compressed to 8 bits. We observe that the
Apaptive-OU selection-estimation policy is robust to model compression.
To compare, we also show the effect of compression on FepAve with the
same number of participating users. We observe that neither algorithm
is significantly affected, confirming that our approach is not competing
with but rather complementary to model compression.

4.3.4. Comparison with top-k loss selection

In [18], the authors proposed client selection based on averaging
only the top-k (in terms of the loss) clients out of N that are sam-
pled. The authors argue that client selection strategy can speed up
convergence at the cost of inducing bias. The loss is an intuitive metric
for selecting clients, and empirically shown to bring improvements
compared to collecting updates from all the clients. However, the
loss magnitudes are not necessarily comparable across clients: two
clients may have different loss values yet the one with a smaller loss
could be farther from the optimum. Alternatively, gradient magnitude
may be a better indicator of proximity to the optimum, and is the
default indicator of stability for smooth functions [45,46]. As shown
in Section 3.7, our method is approximately unbiased under the same
conditions introduced in [18] (smoothness and strong convexity).

In Fig. 4, we observe that in experiments on EMNIST, ApAPTIVE-
OU outperforms the loss-selection approach for all values of k; in
experiments on Shakespeare, all methods perform similarly. Finally,
in the experiments on CIFAR100 we observe that by setting k = 5
or k = 8, loss-based client selection performs similarly to Apaprive-
OU; however, loss-based selection requires tuning the hyperparameter
k. Thus, Apaprtive-OU delivers more consistent results across datasets
without needing to set additional hyperparameters.

4.3.5. Additional selection strategies

A trivial yet from the communication perspective effective alterna-
tive to judicious client selection is to randomly drop some of the clients.
However, random client selection leads to deterioration in accuracy, es-
pecially in heterogeneous and non-convex settings. In our experiments
(results omitted for brevity), random selection of clients significantly
underperforms thresholding strategies on EMNIST and Shakespeare
datasets, while it remains relatively competitive on CIFAR100. These
fluctuations in performance are likely due to inherent heterogene-
ity of federated data in EMNIST and Shakespear experiments, which
presents a major challenge to the random sampling policy; on the other
hand, heterogeneity is not as pronounced in the artificially federated
CIFAR100 data.

In particular, estimating the true gradient from a subset of clients
is especially difficult in non-homogeneous and non-convex settings,
and thus randomly dropping clients in such scenarios slows down the
convergence. The convergence slowdown is also in part due to dropping
too many clients near the optimum where the gradient norms become
smaller. Our adaptive thresholding strategy overcomes the aforemen-
tioned problems by changing the threshold in each round based on
the clients’ update norms. We observe similar benefits when clients are
selected using their loss function values, as proposed by [18]. However,
the appropriate value of the hyperparameter k (the number of collected
model updates) in such scenarios is unclear, which in practice leads to
either excessive communication if the selected k is too large, or a failure
to converge if k is too small (see Section 4.3.4).

In summary, the reported results demonstrate that the level of
accuracy in federated learning can be maintained or even exceeded
at a reduced communication by judiciously subsampling the clients
performing updates; however, the clients that communicate model
updates to the server need to be carefully selected, and the missing
updates judiciously accounted for in the new global model. The results
in Table 3 suggest that while there is no single method which is
uniformly superior in exploring accuracy-communication trade-offs, the
thresholding strategies are an efficient way of sub-selecting clients
without a significant deterioration of accuracy. As shown, among the
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Fig. 5. Accuracy of FedAvg with a fixed threshold communication strategy for varied values of the threshold. High thresholds prohibit convergence to an accurate model since

all clients stop transmitting once their updates become smaller than the threshold.

tested methods our is the only one capable of effectively reducing the
number of users and maintaining high system performance without
arduous hyperparameter tuning.

4.3.6. The initial number of sampled clients N

Recall that when a new round starts, the server samples a fixed
predetermined number N of clients. As one would expect, increasing
N leads to improvement of accuracy of all the methods considered. We
test how the performance varies with N and show that the proposed
method consistently outperforms other strategies (see Tables 4 and 5).

4.3.7. Fixed threshold

As described in Section 3, our proposed thresholding strategy relies
on varying the value of the threshold according to the mean and
standard deviation of the norms of the model updates. It is worth
considering if a simpler scheme employing a fixed threshold might
suffice. For this, we test on synthetic data a version of Algorithm

10

Table 4

Accuracy (%) on Shakespeare after 120 rounds as the number of clients N varies.
Method ApapTIvE-OU IGNORE ZerO Full comm.
N =10 23.3 22.22 22.18 22.8
N = 20 23.96 23.37 23.06 23.55
N = 50 25.17 24.31 24.78 26.63

Table 5

Communication rate (%) on Shakespeare with varying number of initial clients N.
Method AparTIvE-OU IGNORE ZERO
N =10 46.6 46.02 47.3
N =20 47.43 47.14 47.98
N = 50 48.95 48.93 49.13
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Fig. 6. Per round communication of FedAvg with a fixed threshold communication strategy as thresholds vary. Small thresholds fail to reduce communication, while high thresholds
completely stop communication as training progresses thus leading to inaccurate models.

1 utilizing a fixed threshold and different estimation strategies. The
results in Figs. 5 and 6 show that the OU client selection outperforms
competing methods. Specifically, we observe in the two right-most
plots in Fig. 5 that zero and iGNORE strategies tend to converge slower
than the OU strategy. However, using a fixed threshold fails to pro-
vide accurate yet communication-efficient FL systems. First, treating
threshold as a hyperparameter adds a layer of complexity to the system
design problem since different values of the threshold may lead to very
different results, as observed in Fig. 5. Tuning the threshold would go
against the objective of reducing communication since a large number
of rounds might be needed to facilitate such tuning. Finally, we observe
that fixing the threshold to small values fails to reduce communication
(the left-most plot in Fig. 6) while setting it to large values leads to
inaccurate models (the right-most plot in Fig. 5).

5. Conclusion

We proposed a novel approach to reducing communication rates in
FL by judiciously subselecting clients — a method which may be used
in conjunction with traditional model compression strategies. Utilizing
an interpretation of SGD as a stochastic process leads to an efficient
estimator of missing client model updates, helping maintain and even
improve the accuracy of the baseline scheme while cutting commu-
nication by up to 50%. Experimental results demonstrate efficacy of

11

the proposed methods in various settings. The proposed client selection
protocol is theoretically justified by the existing results on optimal OU
process sampling. It is worth pointing out that in practical systems
some users may not be available at certain iterations, which may ad-
versely affect the rate of convergence of the proposed methods. Further,
federated learning is often combined with differential privacy tools to
limit the exposure of users’ sensitive data. These privacy techniques
first clip clients’ updates and then add Gaussian noise, which could
adversely affect our magnitude-based client selection policy. Future
research directions include incorporating into our work an availability
model that captures fluctuation of users over time, and studying the
interplay between privacy and client selection policies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data we used is publicly available.



M. Ribero and H. Vikalo
Acknowledgements

This work was supported in part by the National Science Foundation
under grant 2148224 and in part by OUSD R&E, NIST, and Indus-
try Partners as specified in the Resilient & Intelligent NextG Systems
(RINGS) Program.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.patcog.2023.110122.

References

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: International
Conference on Artificial Intelligence and Statistics, 2017.

M. Ribero, J. Henderson, S. Williamson, H. Vikalo, Federating recommendations
using differentially private prototypes, Pattern Recognit. (2022).

M. Abadi, A. Chu, 1. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang,
Deep learning with differential privacy, in: SIGSAC, ACM, 2016.

X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, J. Naughton, Bolt-on differential
privacy for scalable stochastic gradient descent-based analytics, in: SIGMOD,
2017.

H.B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov, N. Papernot, P.
Kairouz, A general approach to adding differential privacy to iterative training
procedures, 2018, arXiv preprint arXiv:1812.06210.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

O. Shahid, S. Pouriyeh, R.M. Parizi, Q.Z. Sheng, G. Srivastava, L. Zhao,
Communication efficiency in federated learning: Achievements and challenges,
2021, arXiv preprint arXiv:2107.10996.

S. Huang, W. Shi, Z. Xu, LW. Tsang, J. Lv, Efficient federated multi-view learning,
Pattern Recognit. 131 (2022) 108817.

H. Tang, X. Lian, T. Zhang, J. Liu, Doublesqueeze: Parallel stochastic gradient
descent with double-pass error-compensated compression, 2019, arXiv preprint
arXiv:1905.05957.

J. Kone¢ny, H.B. McMahan, F.X. Yu, P. Richtarik, A.T. Suresh, D. Bacon,
Federated learning: Strategies for improving communication efficiency, 2016,
arXiv preprint arXiv:1610.05492.

A.T. Suresh, F.X. Yu, S. Kumar, H.B. McMahan, Distributed mean estimation with
limited communication, in: International Conference on Machine Learning, 2017.
J. Koneény, P. Richtarik, Randomized distributed mean estimation: Accuracy vs.
communication, Front. Appl. Math. Statist. (2018).

D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, Qsgd: Communication-
efficient sgd via gradient quantization and encoding, in: Advances in Neural
Information Processing Systems, 2017.

S. Horvath, C.-Y. Ho, L. Horvath, A.N. Sahu, M. Canini, P. Richtarik, Natural
compression for distributed deep learning, 2019, arXiv preprint arXiv:1905.
10988.

K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G.R. Ganger, P.B. Gibbons,
O. Mutlu, Gaia: Geo-distributed machine learning approaching {lan} speeds,
in: {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI}), 2017.

T. Chen, G. Giannakis, T. Sun, W. Yin, Lag: Lazily aggregated gradient for
communication-efficient distributed learning, in: Advances in Neural Information
Processing Systems, 2018.

N. Singh, D. Data, J. George, S. Diggavi, Sparq-sgd: Event-triggered and com-
pressed communication in decentralized stochastic optimization, 2019, arXiv
preprint arXiv:1910.14280.

Y.J. Cho, J. Wang, G. Joshi, Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies, 2020, arXiv preprint arXiv:
2010.01243.

X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the convergence of fedavg on
non-iid data, 2019, arXiv preprint arXiv:1907.02189.

P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K.
Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., Advances and open
problems in federated learning, 2019, arXiv preprint arXiv:1912.04977.

X. Zhou, L. Chang, P. Xu, S. Lv, Communication-efficient and byzantine-robust
distributed learning with statistical guarantee, Pattern Recognit. (2023).

S. Caldas, J. Kone¢ny, H.B. McMahan, A. Talwalkar, Expanding the reach of
federated learning by reducing client resource requirements, 2018, arXiv preprint
arXiv:1812.07210.

Z. Li, T. Lin, X. Shang, C. Wu, Revisiting weighted aggregation in federated
learning with neural networks, in: International Conference on Machine Learning
(ICML), 2023.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

12

Pattern Recognition 148 (2024) 110122

[24] T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous
resources in mobile edge, in: ICC 2019-2019 IEEE International Conference on
Communications (ICC), 2019.

T. Castiglia, Y. Zhou, S. Wang, S. Kadhe, N. Baracaldo, S. Patterson, LESS-
VFL: Communication-efficient feature selection for vertical federated learning,
in: International Conference on Machine Learning (ICML), 2023.

O.C. Imer, T. Basar, Optimal estimation with limited measurements, in: IEEE
Conference on Decision and Control, 2005.

P.A. Bommannavar, T. Basar, Optimal estimation over channels with limits on
usage, IFAC Proc. Vol. (2008).

A. Nayyar, T. Basar, D. Teneketzis, V.V. Veeravalli, Optimal strategies for
communication and remote estimation with an energy harvesting sensor, IEEE
Trans. Automat. Control (2013).

M. Rabi, G.V. Moustakides, J.S. Baras, Adaptive sampling for linear state
estimation, SIAM J. Control Optim. (2012).

K. Nar, T. Basar, Sampling multidimensional wiener processes, in:
Conference on Decision and Control, 2014.

Y. Sun, Y. Polyanskiy, E. Uysal-Biyikoglu, Remote estimation of the wiener
process over a channel with random delay, in: IEEE International Symposium
on Information Theory (ISIT), IEEE, 2017.

T.Z. Ornee, Y. Sun, Sampling for remote estimation through queues: Age of
information and beyond, 2019, arXiv preprint arXiv:1902.03552.

N. Guo, V. Kostina, Optimal causal rate-constrained sampling for a class of
continuous markov processes, 2020, arXiv preprint arXiv:2002.01581.

G. Blanc, N. Gupta, G. Valiant, P. Valiant, Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process, 2019, arXiv preprint
arXiv:1904.09080.

Y. Wang, Asymptotic analysis via stochastic differential equations of gradient
descent algorithms in statistical and computational paradigms, 2017, arXiv
preprint arXiv:1711.09514.

T. Li, L. Liu, A. Kyrillidis, C. Caramanis, Statistical inference using sgd, in: AAAI
Conference on Artificial Intelligence, 2018.

S. Mandt, M. Hoffman, D. Blei, A variational analysis of stochastic gradient
algorithms, in: International Conference on Machine Learning, 2016.

R.S. Liptser, A.N. Shiryaev, Statistics of Random Processes II: Applications,
Springer Science & Business Media, 2013.

J. Shao, D. Tu, The Jackknife and Bootstrap, Springer Science & Business Media,
2012.

S.U. Stich, Local SGD converges fast and communicates little, 2018, arXiv
preprint arXiv:1805.09767.

S.J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Kone¢ny, S. Kumar,
H.B. McMahan, Adaptive federated optimization, in: International Conference on
Learning Representations (ICLR), 2020.

The TFF Authors, Tensorflow federated, 2019, URL https://www.tensorflow.org/
federated.

G. Cohen, S. Afshar, J. Tapson, A. Van Schaik, Emnist: Extending mnist to
handwritten letters, in: 2017 International Joint Conference on Neural Networks
(IJCNN), 2017.

K. Hsieh, A. Phanishayee, O. Mutlu, P. Gibbons, The non-iid data quagmire
of decentralized machine learning, in: International Conference on Machine
Learning, 2020.

Y. Nesterov, Introductory lectures on convex programming volume i: Basic
course, Lect. Not. (1998).

Z. Allen-Zhu, Natasha 2: Faster non-convex optimization than sgd, in: Advances
in Neural Information Processing Systems, 2018.

[25]

[26]
[27]

[28]

[29]
[30] IEEE

[31]

[32]
[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

Monica Ribero received the B.Sc. degree in mathematics from the Universidad de los
Andes, Bogotd, Colombia, in 2015, and the Ph.D. degree in electrical and computer
engineering from the University of Texas, Austin, TX, USA, in 2022. She is currently
working on federated learning under privacy and communication constraints with the
University of Texas. She joined Google Research New York, NY, USA, as a Research
Scientist. She held Research Internship Positions, Bell Laboratories, Murray Hill, NJ,
USA, in 2008, CognitiveScale, Austin, TX, in 2019, and Google Research in 2020.

Haris Vikalo received the B.S. degree in electrical engineering from the University
of Zagreb, Zagreb, Croatia, in 1995, the M.S. degree in electrical engineering from
Lehigh University, Bethlehem, PA, USA, in 1997, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA, USA, in 2003. He has held a
short-term appointment with Bell Laboratories, Murray Hill, NJ, USA, in the summer
of 1999. From January 2003 to July 2003, he was a Postdoctoral Researcher, and
from July 2003 to August 2007, he was an Associate Scientist with the California
Institute of Technology, Pasadena, CA, USA. Since September 2007, he has been
with the Department of Electrical and Computer Engineering, the University of Texas,
Austin, TX, USA. His research interests include signal processing, machine learning,
communications, and bioinformatics. Prof. Vikalo was the recipient of the 2009 National
Science Foundation Career Award.


https://doi.org/10.1016/j.patcog.2023.110122
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb1
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb1
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb1
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb1
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb1
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb2
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb2
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb2
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb3
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb3
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb3
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb4
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb4
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb4
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb4
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb4
http://arxiv.org/abs/1812.06210
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2107.10996
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb8
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb8
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb8
http://arxiv.org/abs/1905.05957
http://arxiv.org/abs/1610.05492
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb11
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb11
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb11
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb12
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb12
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb12
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb13
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb13
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb13
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb13
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb13
http://arxiv.org/abs/1905.10988
http://arxiv.org/abs/1905.10988
http://arxiv.org/abs/1905.10988
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb15
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb16
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb16
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb16
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb16
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb16
http://arxiv.org/abs/1910.14280
http://arxiv.org/abs/2010.01243
http://arxiv.org/abs/2010.01243
http://arxiv.org/abs/2010.01243
http://arxiv.org/abs/1907.02189
http://arxiv.org/abs/1912.04977
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb21
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb21
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb21
http://arxiv.org/abs/1812.07210
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb23
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb23
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb23
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb23
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb23
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb24
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb24
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb24
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb24
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb24
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb25
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb25
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb25
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb25
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb25
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb26
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb26
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb26
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb27
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb27
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb27
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb28
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb28
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb28
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb28
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb28
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb29
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb29
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb29
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb30
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb30
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb30
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb31
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb31
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb31
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb31
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb31
http://arxiv.org/abs/1902.03552
http://arxiv.org/abs/2002.01581
http://arxiv.org/abs/1904.09080
http://arxiv.org/abs/1711.09514
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb36
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb36
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb36
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb37
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb37
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb37
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb38
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb38
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb38
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb39
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb39
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb39
http://arxiv.org/abs/1805.09767
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb41
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb41
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb41
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb41
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb41
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb43
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb43
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb43
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb43
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb43
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb44
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb44
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb44
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb44
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb44
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb45
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb45
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb45
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb46
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb46
http://refhub.elsevier.com/S0031-3203(23)00819-1/sb46

	Reducing communication in federated learning via efficient client sampling
	Introduction
	Background and Related Work
	Federated learning
	Reducing communication in distributed learning systems
	Ornstein–Uhlenbeck process

	Training via Client Sampling and Model Update Estimation
	Notation
	SGD as an OU process
	Optimal sampling and estimation of OU processes in FL settings
	A stable communication-efficient algorithm 
	Adaptive threshold selection 
	Estimating parameters of the OU process
	Convergence of Algorithm 1
	Computational complexity
	Sketch of the proof of Theorem 3 

	Experiments
	Federated datasets
	Benchmarks
	Results
	Accuracy
	Communication savings
	Combining client sampling with model compression
	Comparison with top-k loss selection
	Additional selection strategies
	The initial number of sampled clients N
	Fixed threshold


	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


