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Abstract—Given a network of agents, we study the problem of
designing a distributed algorithm that computes k independent
weighted means of the network’s initial conditions (namely, the
agents agree on a k-dimensional space). Akin to average consen-
sus, this problem finds applications in distributed computing and
sensing, where agents seek to simultaneously evaluate k indepen-
dent functions at a common point by running a single coordination
algorithm. We show that linear algorithms can agree on quantities
that are oblique projections of the vector of initial conditions, and
we provide techniques to design protocols that are compatible with
a pre-specified communication graph. More broadly, our results
show that a single agreement algorithm can solve k consensus
problems simultaneously at a fraction of the complexity of classical
approaches but, in general, it requires higher network connectivity.

Index Terms—Consensus algorithms, decentralized control,
graph theory, linear time-invariant (LTI) systems, multi-agent sys-
tems.

I. INTRODUCTION

Coordination and consensus algorithms are central to many network
synchronization problems, including rendezvous, distributed optimiza-
tion, and distributed computation and sensing. One of the most estab-
lished coordination algorithms is that of consensus, which can be used
to compute asymptotically a common weighted average of the agents’
initial states—see, for example, the representative works [1], [2], [3].
This work departs from the observation that, in several applications, it
is instead of interest to compute multiple weighted averages of the
initial states, each characterized by a different weighting. Relevant
examples of this problem include distributed computation [4] (where
agent-specific weights are used to describe heterogeneous computa-
tional objectives across agents), task allocation problems [5] (where
agent-specific weights are used to model the heterogeneous computa-
tional capabilities of the agents), distributed sensing [6], [7] (where
agent-specific weights describe heterogeneous accuracies of differ-
ent sensing devices), and robotic formation [8] (where agent-specific
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Fig. 1. Communication complexity of running k consensus algorithms
in parallel versus one k-dimensional agreement algorithm (proposed in
this article) to compute k = ⌊n2 ⌋ weighted average means of a global
quantity. (a) and (c) Erdős–Rényi network model. (b) and (d) Barabasi–
Albert model. Bars denote the average number of transmissions per
iteration per agent. See Section IV-B.

weights allow one to impose agent-specific configurations relative to
other agents).

Mathematically, given a vectorx0 ∈ Rn of initial states or estimates–
such that each of its entries is known only locally by a single agent–and
a rank-k matrix W ∈ Rn×n, whose rows describe the weights of the
means to be computed, we say that the group reaches a k-dimensional
agreement when, asymptotically, the vector of agents’ states converges
toWx0. The goal of this article is to design distributed control protocols
that enable the agents to reach an agreement. A natural approach to
tackle this problem consists of executing k consensus algorithms [2] in
parallel (see Fig. 1–simulation details are provided in Section III-B),
each designed to converge to a specific row of Wx0. Unfortunately, the
communication and computational complexities of such an approach
do not scale with the network size (cf., Fig. 1); thus, our objective here
is to reach agreements by running a single distributed algorithm.

Related work: The problem studied in this work is closely related to
that of consensus. Consensus algorithms have been extensively studied
in the literature. A list of representative topics (necessarily incomplete)
includes: Sufficient and/or necessary conditions for consensus [2], [9],
[10], [11], [12], [13], convergence rates [14], [15], and robustness inves-
tigations [16]. In contrast with constrained consensus problems [17],
[18] (where the agents’ states must satisfy agent-dependent constraints
during transients, but the desired asymptotic value is unconstrained),
in our setting the values are instead constrained at convergence, and
thus the agents’ states do not coincide in general. Clustering-based
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consensus [19], [20], [21] is a closely related problem where the states
of agents in the same graph cluster converge to identical values, while
intercluster states can differ. Differently from this setting, which is
obtained by using weakly connected communication graphs to separate
the state of different communities, here we are interested in cases where
the asymptotic state of each agent depends on every other agent in
the network. To the best of our knowledge, the agreement problem
proposed here has not been considered before in the literature. A
relevant contribution is that of scaled consensus [22], which can be
seen as a special case of the agreement problem studied here, obtained
by letting k = 1. As shown shortly below, the extension to k > 1 is
nontrivial as standard assumptions made for consensus are inadequate,
see the discussion in Example 4.6.

Contributions: The contribution of this work is threefold. First, we
formulate the k-dimensional agreement problem, and we discuss the
fundamental limitations of linear protocols in solving this problem. We
provide a first main result, which consists of a full characterization of the
agreement space for linear protocols. Second, we provide an algebraic
characterization of all agreement protocols that are consistent with a
pre-specified communication graph. We show how such characteriza-
tion can be used to design efficient numerical algorithms for agreement.
Finally, we illustrate the applicability of the framework on a regression
problem through simulations.

II. PRELIMINARIES

Notation: C and R denote, respectively, the set of complex and
real numbers. For x ∈ C, ℜ(x) and ℑ(x) denote its real and imaginary
parts, respectively. Given x ∈ Rn, u ∈ Rm, (x, u) ∈ Rn+m denotes
their concatenation. 1n ∈ Rn is the vector of all ones, In ∈ Rn×n

is the identity matrix, 0n,m ∈ Rn×m is the matrix of all zeros—
subscripts are dropped when dimensions are clear from the context.
ForA ∈ Rn×n, σ(A) = {λ ∈ C : det(λI −A) = 0} is its spectrum,
and λmax(A) = max{ℜ(λ) : λ ∈ σ(A)} is its spectral abscissa. For
A ∈ Rn×m, Im(A) and ker(A) denote its image and null space, re-
spectively. A polynomial with real coefficients p(λ) is stable if all its
roots have negative real part.

Graph-theoretic notions: A digraph is G = (V, E), where V =
{1, . . . , n} and E ⊆ V × V are, respectively, the set of nodes and edges.
(i, j) ∈ E denotes a directed edge from j to i. G = (V, E , A) indicates
that G is a weighted digraph, whereby the entries of the adjacency
matrix A ∈ Rn×n describe the edge weights. For A = [aij ] to be a
valid adjacency matrix, we must have: (i, j) ̸∈ E implies aij = 0. If
this holds, we say that a matrix A is consistent with G. A graph is
complete if there exists an edge connecting every pair of nodes. A path
is a sequence of edges (e1, e2, . . . ), such that the initial node of each
edge is the final node of the preceding one. The length of a path is
the number of edges contained in (e1, e2, . . . ). A graph is strongly
connected if, for any i, j ∈ V , there is a path from i to j. A closed
path is a path whose initial and final vertices coincide. A closed path
is a cycle if, going along the path, one reaches no node, other than the
initial-final node, more than once. The length of a cycle is equal to the
number of edges in that cycle. A set of node-disjoint cycles such that
the sum of the cycle lengths is equal to ℓ is called a cycle family of
length ℓ. We let Cℓ(G) denote the set of all ℓ-long cycle families of G.
See Fig. 2 for illustration. Since we are concerned with linear subspaces
obtained by forcing certain entries of the matrices in Rn×n to be zero,
we will use the structural approach to system theory [23]. Given G, we
let AG = {A ∈ Rn×n : A is consistent with G} be the vector space of
all matrices consistent with G. Let a ∈ R|E|, we denote by AG(a) the
element of AG parametrized by a.

Fig. 2. (a) Example of digraph G. (b) and (c) Illustration of all cycle
families of G, organized by length (a cycle family of length ℓ is a set of
node-disjoint cycles such that the total number of edges is equal to ℓ).

Projections and linear subspaces: x, y ∈ Rn are orthogonal
if xTy = 0; the orthogonal complement (or orthogonal subspace)
of M ⊂ Rn is M⊥ := {x ∈ Rn : xTy = 0, ∀ y ∈M}. Given
M,N ⊆ Rn, W ⊆ Rn is a direct sum of M and N (denoted W =
M⊕N ) if M ∩N = {0}, and M+N = {u+ v : u ∈M, v ∈
N} = W . Subspaces M,N ⊂ Rn are complementary if M⊕N =
Rn. Matrix Π ∈ Rn×n is called a projection if Π2 = Π. Given comple-
mentary subspaces M,N ⊂ Rn, for any z ∈ Rn there exists a unique
decomposition z = x+ y, where x ∈M, y ∈ N . The transformation
ΠM,N , defined by ΠM,N z := x, is called projection onto M along N ;
ΠN ,M, defined by ΠN ,Mz := y, is called projection onto N along M;
x is the projection of z onto M along N , and y is the projection of z
onto N along M. The projection ΠM,M⊥ onto M along M⊥ is called
orthogonal projection onto M. Because M uniquely determines M⊥,
we will denote ΠM,M⊥ by ΠM. Projections that are not orthogonal are
called oblique projections.

Lemma 2.1 (See [24, Th. 2.11 and Th. 2.31]): If Π ∈ Rn×n,
rank(Π) = k, is a projection, there exists T ∈ Rn×n such that:

Π = T

[
Ik 0
0 0

]
T−1.

Moreover, if Π is an orthogonal projection, then T can be chosen to be
an orthogonal matrix, i.e., TTT = I . !

Lemma 2.2 (See [24, Th. 2.26]): Let M,N be complementary
subspaces and let the columns of M ∈ Rn×k and N ∈ Rn×k form
a basis for M and N⊥, respectively. Then, ΠM,N = M(NTM)−1

NT. !
We recall the following known properties [24, Th. 1.60]:

Im(MT) = Im(M †) = Im(M †M) = Im(MTM),

ker(M) = Im(MT)⊥ = ker(M †M) = Im(I −M †M).
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From these properties and Lemma 2.2, if M ∈ Rm×n, then ΠIm(M) =
MM † and Πker(M) = I −M †M , where M † ∈ Rn×m is the Moore–
Penrose inverse of M .

III. PROBLEM SETTING

A. Problem Formulation

Consider a set of agents V = {1, . . . , n}, each characterized by
a state xi ∈ R, i ∈ V, and communicating through a network whose
topology is described by a digraphG = (V, E). We study a model where
each agent exchanges its state with its neighbors and updates it as

ẋi = aiixi +
∑

j∈Ni

aijxj , ∀ i ∈ V (1)

where aij ∈ R, (i, j) ∈ E , is a weighting factor, and Ni = {j ∈
V \ {i} : (i, j) ∈ E} is the set of in-neighbors of i. Setting A =
[aij ], aij = 0 if (i, j) ̸∈ E , and x = (x1, . . . , xn), in vector form the
network dynamics are

ẋ = Ax. (2)

We say that (2) reaches an agreement if each state variable converges
to an agent-dependent weighted sum of the initial conditions, as for-
malized next.

Definition 3.1 (k-dimensional agreement): Let W ∈ Rn×n be such
that rank(W ) = k ∈ N>0. We say that the update (2) globally asymp-
totically reaches a k-dimensional agreement on W if, for any x(0) ∈
Rn

lim
t→∞

x(t) = Wx(0). (3)

!
We discuss in Section III-B some application scenarios for this

notion. Notice that agreement does not require that the agents’ states
coincide at convergence: In fact, limt→∞ ∥xi(t)− xj(t)∥ = 0 only
holds if all rows of W are identical. We discuss in Remark 3.2 how
agreement generalizes the well-studied notion of consensus.

Remark 3.2 (Relationship with consensus problems): In the special
case k = 1, W can be written as W = vwT for some v,w ∈ Rn. In
this case, we recover the scaled consensus problem [22]. When, in
addition, v = 1 and wT1 = 1, we recover the consensus problem, see,
e.g., [2]. When, v = 1 and w = 1

n1, our problem simplifies to average
consensus [2, Sec. 2]. Notice that all state variables converge to the
same quantity only when k = 1 and v = 1. !

In line with the consensus literature, the following distinction is
important.

Definition 3.3 (Agreement on some weights vs on arbitrary weights):
Let k ∈ N>0.
a) The set of agents is said to be globally k-agreement reachable

on some weights if there exists W ∈ Rn×n, rank(W ) = k, and
A ∈ Rn×n such that (2) globally asymptotically reaches a k-
dimensional agreement on W.

b) The set of agents is said to be globally k-agreement reachable
on arbitrary weights if, for any W ∈ Rn×n with rank(W ) = k,
there exists A such that (2) globally asymptotically reaches a k-
dimensional agreement on W . !

Extending Remark 3.2, agreement reachability on some weights is a
generalization of global consensus reachability [25], while agreement
reachability on arbitrary weights generalizes global average consensus
reachability [26]. Importantly, whether a group of agents is agreement
reachable depends on two main factors: 1) the choice of k, and 2) the
connectivity of G. We illustrate this in the following example.

Example 3.4 (Agreement on arbitrary versus on some weights):
Consider a set of agents whose communication graph is a set of isolated
nodes with self loops (i.e., V = {1, . . . , n} and E = {(i, i)}i∈V ). The
set of protocols (2) compatible with this graph is characterized by a
diagonal matrix A = diag(a1, . . . , an). Notice that limt→∞ x(t) =
limt→∞ eAtx(0) exists if and only if max{ai}i∈V ≤ 0. When the lat-
ter condition holds, limt→∞ eAt = diag(d1, . . . , dn), where di = 0 if
ai < 0 and di = 1 if ai = 0. Hence, the agents are globally agreement
reachable on some weights (precisely, any agreement matrix W has the
form W = diag(d1, . . . , dn)). However, the agents are not globally
agreement reachable on arbitrary weights (in fact, agreement cannot be
reached, for example, on any nondiagonal W ). !

With this motivation, in this work, we study the following two
problems.

Problem 1 (Construction of communication graphs for agreement):
Determine the largest class of communication graphs that guarantees
that the set of agents is globally k-agreement reachable on arbitrary
weights. !

Problem 2 (Agreement protocol design): Let G be a communication
graph such that the set of agents is globally k-agreement reachable on
arbitrary weights (see Problem 1) and let W ∈ Rn×n, rank(W ) = k.
Determine A, consistent with G, such that (3) holds with optimal rate
of convergence. !

Problem 1 is a feasibility problem: It asks to determine the class
of graphs that support agreement protocols on arbitrary weights.
Problem 2, instead, is a protocol design problem. We conclude this
section by discussing an important technical challenge related to de-
signing agreement protocols.

Remark 3.5 (New technical challenges with respect to consensus):
Several techniques have been proposed in the literature to design con-
sensus protocols, including Laplacian-based methods [2], distributed
weight design [27], and centralized weight design [15]. Most of these
methods rely on the assumption that the protocol A is a nonnegative
matrix and on the Perron–Frobenius theorem [28] as the main tool
for the analysis. Unfortunately, the Perron–Frobenius theorem can no
longer be used for agreement problems for two reasons: 1) the entries of
W are possibly negative scalars and thus A can no longer be restricted
to being a nonnegative matrix; and 2) A can no longer be restricted
to being a matrix with a single dominant eigenvalue (as we prove in
Lemma 4.1, shortly below). Hence, the agreement problem presents
new theoretical challenges with respect to the existing literature. !

B. Illustrative Applications

In this section, we present some illustrative applications where the
agreement problem emerges in practice.

Distributed parallel computation of multiple functions: Many nu-
merical computational tasks amount to evaluating a certain function at
a given point [29]: Examples include computing scalar addition, inner
products, matrix addition and multiplication, matrix powers, finding
the least prime factor, etc. [29, Sec. 1.2.3]. Formally, given a function
f : Rn → R and a point (x̂1, . . . , x̂n), the objective is to evaluate
f(x̂1, . . . , x̂n). The classical approach to this problem amounts to
designing an iterative algorithm ẋ = g(x) such that limt→∞ x(t) =
f(x̂1, . . . , x̂n). When such a computing task has a distributed na-
ture [30], each quantity x̂i is known only by agent i, and it is of interest to
maintain x̂i private from the rest of the network. In these cases, the dis-
tributed computation literature [30] has proposed the update rule ẋi =
gi(x), to be designed such that limt→∞ xi(t) = f(x̂1, . . . , x̂n), ∀i.

Consider now the problem of evaluating, in a distributed fashion, sev-
eral functions at a common point. Formally, given f1, . . . , fn : Rn →
R and (x̂1, . . . , x̂n), the objective is to design distributed protocols of
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the form ẋi = gi(x) such that

lim
t→∞

xi(t) = fi(x̂1, . . . , x̂n), ∀i. (4)

It is immediate to see that, when fi are linear, this is an instance of the
agreement problem (3).

Constrained Kalman filtering: Kalman filters are widely used to
estimate the states of a dynamic system. In constructing Kalman filters,
it is often necessary to account for state-constrained dynamic systems;
examples include camera tracking, fault diagnosis, chemical processes,
vision-based systems, and biomedical systems [31]. Formally, given a
dynamic system of the form ẋ = Fx+Bu+ w, y = Cx+ e, subject
to the state constraint Dx = 0, (see [31, eq. (10)]), the objective is
that of constructing an optimal estimate x̂c of x given past measure-
ments {y(τ), τ ≤ t}. Denoting by x̂u the state estimate constructed
using an unconstrained Kalman filter, a common approach to tackle
the constrained problem consists of projecting x̂u onto the constraint
space [31, Sec. 2.3]

x̂c = argmin
x
∥x− x̂u∥2, subject to:Dx = 0.

The solution to this problem is x̂c = (I −DT(DDT)−1D)x̂u; notice
that this is an oblique projection of the vector x̂u. To speed up the
calculation, it is often of interest to parallelize the computation of x̂c

across a group of distributed processors. It is then immediate to see that
the agreement problem (3) provides a natural framework to address this
problem.

C. Complexity Considerations

We now illustrate how the use of classical coordination algorithms to
solve (4) leads to a suboptimal use of resources. Assume that functions
fi(·) in (4) are linear, namely, fi(x) = wT

i x, with wi ∈ Rn, wT
i 1 = 1,

and thatk vectors of{w1, . . . , wn} are linearly independent. It is natural
to consider two approaches to solve this problem.

Approach 1: This approach consists of running k independent
consensus algorithms [26] in parallel, as outlined next. Let each agent i
duplicate its state k times: {x(d)

i ∈ R}d∈{1,...,k}, and update the states
using

ẋ(d)
i =

∑

j

a(d)
ij

(
x(d)
j − x(d)

i

)
, x(d)

i (0) = x̂i. (5)

Letting A(d) = [a(d)
ij ] and choosing A(d) such that wT

dA
(d) = 0,

(5) is a Laplacian-based consensus algorithm [26, Th. 1]; as such,
limt→∞ x(d)

i (t) = wT
d x̂, provided that G is strongly connected. In

words, the dth state replica of each agent satisfies (4). Unfortunately,
the spatial and communication complexities of this approach do not
scale well with n (see Fig. 1): Each agent maintains k replica state
variables and, at every time step, it transmits these k variables to all
its neighbors. Thus, the per-agent spatial complexity is O(k) (since
each agent maintains k state copies), and the per-agent communication
complexity1 is O(k · deg(G)) and thus O(n · deg(G)) when k grows
with n.

Approach 2: Consider the use of protocol (2), designed to achieve (3)
with W = [w1, . . . , wn]T. Deriving techniques to design such a pro-
tocol is the focus of this work, and will be presented shortly below
(see Section V). For such a protocol, the per-agent spatial complexity
is O(1), since each agent maintains a single scalar state variable
and the communication complexity is O(deg(G)). A comparison of
the communication volumes of the two approaches is illustrated in
Fig. 1. Notice the fundamental difference between the two approaches:

1deg(G) denotes the largest among all in- and out-node degrees in G.

In Approach 1, one computes k independent quantities by running k
distributed averaging algorithms while, in Approach 2, one computes
the k independent quantities by running a single distributed algorithm.

IV. CHARACTERIZATION OF THE AGREEMENT SPACE AND
FUNDAMENTAL LIMITATIONS

The focus of this section is to address Problem 1.

A. Algebraic Characterization of Agreement Space

The following result is instrumental.
Lemma 4.1 (Spectral properties of agreement protocols): A set of

agents with communication graph G is globally k-agreement reachable
on some weights, if and only if there exists A ∈ Rn×n such that

A ∈ AG , and A = T

[
0k,k 0k,n−k

0n−k,k B

]
T−1 (6)

for some nonsingular T ∈ Rn×n and B ∈ R(n−k)×(n−k) satisfying
λmax(B) < 0.

Conversely, a set of agents is globally k-agreement reachable on
arbitrary weights, if and only if for any nonsingular T ∈ Rn×n, there
exists A ∈ Rn×n such that (6) holds. !

Proof:(If) When (6) holds, we have that

lim
t→∞

x(t) = lim
t→∞

eAtx(0) = T

[
Ik 0
0 0

]
T−1

︸ ︷︷ ︸
:=W

x(0) = Wx(0).

(Only if): From [28, Lemma 1.7], if limt→∞ eAt exists, then
λmax(A) ≤ 0; moreover, if λ is an eigenvalue of A such that ℜ(λ) = 0,
then λ = 0 and its algebraic and geometric multiplicities coincide. It
follows that A must satisfy (6). "

Lemma 4.1 provides an algebraic characterization of agreement
protocols through (6). Next, we characterize the class of weight matrices
W on which an agreement can be reached.

Proposition 4.2 (Characterization of agreement space): Let x(t)
denote the solution of (2) with initial condition x(0). If limt→∞ x(t) :=
x∞ exists, then there exist complementary subspacesM,N ⊂ Rn such
that x∞ = ΠM,Nx(0). Moreover, let {t1, . . . , tk} denote the first k
columns of T in (6) and {τT

1 , . . . , τ
T
k } denote the first k rows of T−1.

Then

M = Im({t1, . . . , tk}), N⊥ = Im({τ1, . . . , τk}). (7)

!
The proof of this claim is available in [32].
Proposition 4.2 is a fundamental limitation-type result: It shows

that if ẋ = Ax converges, then the asymptotic value is some oblique
projection of the initial conditions x(0). In turn, this implies that
linear protocols can agree only on weight matrices W that are oblique
projections.

Remark 4.3 (Geometric reinterpretation of consensus algorithms):
In the case of consensus, the group of agents is known to converge to
1wTx(0), where w is the left eigenvector of A that satisfies wT1 = 1
(see Remark 3.2). Proposition 4.2 allows us to give a geometric inter-
pretation of the consensus value: 1wTx(0) = ΠM,Nx(0) is the oblique
projection of x(0) onto M = Im(1) along N = Im(w)⊥. In the case
of average consensus, the convergence value (given by 1

n11Tx(0)) is
the orthogonal projection of x(0) onto M = Im(1). !

Motivated by the conclusions in Proposition 4.2, in what follows we
make the following assumption.
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Algorithm 1: Construction of agreement matrix A.

Require M ∈ Rn×k whose columns form a basis for M
Require N ∈ Rn×k whose columns form a basis for N⊥

ΠM,N ←M(NTM)−1NT;

Determine T such that ΠM,N = T [
Ik 0
0 0

]T−1;

Choose B ∈ R(n−k)×(n−k) such that λmax(B) < 0;

return A = T [
0k 0
0 B

]T−1;

Assumption 1 (Matrix of weights is a projection): The matrix
of weights W is a projection. Namely, W ∈ Rn×n, W 2 = W, and
rank(W ) = k. !

Notice that, given two complementary subspaces M,N , a matrix
W that satisfies Assumption 1 can be computed as

W = M(NTM)−1NT

where M ∈ Rn×k and N ∈ Rn×k form a basis for M and N⊥, respec-
tively (see Lemma 2.2). Notice that the agreement space corresponding
to this choice of W is ΠM,N .

We are now ready to prove the following.
Proposition 4.4 (Existence of agreement algorithms over complete

digraphs): Let M,N ⊂ Rn be complementary subspaces and G the
complete graph. There exists A ∈ Rn×n, consistent with G, such that
the iterates (2) satisfy limt→∞ x(t) = ΠM,Nx(0). !

Proof: For any pair of complementary subspaces M,N , [24, Th.
2.26] guarantees the existence of an oblique projection matrix ΠM,N .
Moreover, by Lemma 2.1, there exists invertible TΠ ∈ Rn×n such that
ΠM,N can be decomposed as

ΠM,N = TΠ

[
Ik 0
0 0

]
T−1Π

where k = dim(M). The statement follows by choosing A as in (6)
with T = TΠ and by noting that, with this choice, limt→∞ eAtx(0) =
ΠM,Nx(0). "

Proposition 4.4 provides a preliminary answer to Problem 1: if
the communication graph is complete, a set of agents is globally
k-agreement reachable on arbitrary weights, ∀ k ∈ N>0. The proof is
constructive, and it provides a way to derive agreement protocols—see
Algorithm 1. We remark that, for some special choices of M,N ,
one or more entries of A may be identically zero (notice that such A
remain consistent with our definition of adjacency matrix for complete
graphs—see Section II); in these cases, the protocol A could also be
implemented over a noncomplete graph. However, in the general case,
A is nonsparse.

B. Structural Necessary Conditions for Agreement

While Proposition 4.4 shows that complete graphs can reach an
agreement on arbitrary weights, it remains unclear whether this property
also holds for graphs with weaker connectivity. We begin by showing
that strong connectivity2 is necessary but not sufficient for agreement
reachability on arbitrary weights.

Lemma 4.5 (Necessity of strong connectivity): A set of agents is
globally k-agreement reachable on arbitrary weights only if G is
strongly connected. !

2Recall that strong connectivity is necessary and sufficient for global average
consensus reachability [26].

Proof: When G is not strongly connected, for all A consistent with
G, at least one of the entries of limt→∞ eAt is identically zero (this
follows from eAt =

∑∞
i=0

Aiti

i! and [28, Cor 4.5]). In this case, since
W = limt→∞ eAt, an agreement cannot be reached on every W such
that wij ̸= 0 ∀ i, j.. "

Example 4.6 (Strong connectivity is not sufficient for agreement
on arbitrary weights): Assume that a network of n = 3 agents is
interested in agreeing on a space with k = 2 by using a noncomplete
communication graphG. By using Lemma 4.1, the agents are agreement
reachable on arbitrary weights only if

A =
[
t1 t2 t3

]
︸ ︷︷ ︸

=T

⎡

⎣
0 0 0
0 0 0
0 0 β

⎤

⎦ [
τ1 τ2 τ3

]T
︸ ︷︷ ︸

=T−1

= βt3τ
T
3 (8)

for some β such that ℜ(β) < 0 and some T ∈ R3×3. By (8), A must
be a rank-one matrix and, since G is not complete, at least one of the
entries ofAmust be identically zero. These two properties imply that at
least one of the rows or columns of A must be identically zero, and thus
that G cannot be strongly connected. Since G is not strongly connected,
by [28, Cor 4.5] at least one of the rows or columns ofW = limt→∞ eAt

must be identically zero. In summary, we have found that the agents
are globally two-agreement reachable on arbitrary weights only if G is
the complete graph. !

We will thus make the following necessary assumption.
Assumption 2 (Strong connectivity): The communication digraph G

is strongly connected. !

V. AGREEMENT ALGORITHMS OVER SPARSE DIGRAPHS

While (6) gives a full characterization of agreement protocols and
can be used to design agreement algorithms over complete graphs
(cf., Algorithm 1), it remains unclear how to design agreement protocols
when G is not complete. This is the focus of this section. We will
often use the following decomposition for W (see Assumption 1 and
Lemma 2.1):

W = T

[
Ik 0
0 0

]
T−1 (9)

where T ∈ Rn×n is invertible. Moreover, we will use

T =
[
t1 · · · tn

]
, T−1 =

[
τ1 · · · τn

]T
(10)

where ti, τi ∈ Rn,i ∈ {1, . . . , n} (notice that τT
i tj = 1 if i = j and

τT
i tj = 0 otherwise).

A. Algebraic Conditions for Sparse Digraphs

We will use a graph-theoretic interpretation of characteristic poly-
nomials [33], which we recall next. Recall that Cℓ(G) denotes the set
of all ℓ-long cycle families of G (see Section II).

Lemma 5.1 ([33, Th. 1]): Let G be a digraph, let A ∈ AG , and
det(λI −A) = λn + p1λn−1 + · · ·+ pn−1λ + pn be its characteris-
tic polynomial. Then, for all pℓ, ℓ ∈ {1, . . . , n}

pℓ =
∑

ξ∈Cℓ(G)

(−1)d(ξ)
∏

(i,j)∈ξ

aij

where d(ξ) is the number of cycles in cycle family ξ. !
The lemma provides a graph-theoretic description of the character-

istic polynomial: It shows that the ℓth coefficient of det(λI −A) is a
sum of terms; each summand is the product of edges in a cycle family
of length ℓ of G.
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Example 5.2: Consider the digraph in Fig. 2(a). We have

AG(a) =

⎡

⎢⎢⎣

a11 0 a13 0
a21 0 a23 0
0 a32 0 a34

0 a42 0 0

⎤

⎥⎥⎦

and we refer to Fig. 2(b) and (c) for an illustration of all cycle families
of this graph. Lemma 5.1 yields

p1 = −a11, p3 = −a13a21a32 + a11a23a32 − a23a42a34,

p2 = −a23a32 p4 = −a13a21a42a34 + a11a23a34a42.

Notice that each summand in pℓ is the product of weights in a cycle
family of the corresponding size [cf., Fig. 2(b) and (c)]. !

The following result is one of the main contributions of this article.
Recall that for a ∈ R|E|, AG(a) is the matrix consistent with G whose
entries are parametrized by a.

Theorem 5.3 (Algebraic characterization of sparse agreement ma-
trices): Let Assumptions 1 and 2 hold. ẋ = AG(a)x globally asymp-
totically reaches a k-dimensional agreement on W if and only if the
following hold simultaneously:
a) AG(a)ti = 0, τT

i AG(a) = 0, ∀i ∈ {1, . . . , k};
b) The polynomial λn−k−1 + p1λn−k−2 + · · ·+ pn−k−1, whose co-

efficients are defined as

pℓ =
∑

ξ∈Cℓ(G)

(−1)d(ξ)
∏

(i,j)∈ξ

aij , ℓ ∈ {1, . . . , n− k}

is stable. !
Proof: (If) Let A be any matrix that satisfies a)–b). If A is di-

agonalizable, then, by letting T = (t1, . . . , tn) be the matrix of its
right eigenvectors and (T−1)T = (τ1, . . . , τn) be the matrix of its left
eigenvectors, we conclude that A satisfies (6) and thus the linear update
reaches an agreement on W . If A is not diagonalizable, let T be a
similarity transformation such that T−1AT is in Jordan normal form

T−1AT =

⎡

⎢⎢⎢⎣

Jλ1

Jλ2

. . .
Jλn

⎤

⎥⎥⎥⎦
, Jλi =

⎡

⎢⎣

λ1 1
. . .

. . .
λ1

⎤

⎥⎦ .

From a) we conclude that λ = 0 is an eigenvalue with algebraic
multiplicity k, moreover, since the vectors ti are linearly independent
(see (9)), we conclude that its geometric multiplicity is also equal to
k, and thus all Jordan blocks associated with λ = 0 have dimension 1.
Namely,Jλ1 = · · · = Jλk = 0. By combining this with b), we conclude
that the characteristic polynomial of A is

det(λI −A) = λn + p1λ
n−1 + · · ·+ pn−k−1λ

k−1

and, since by assumption such polynomial is stable, we conclude that all
remaining eigenvalues {λk+1, . . . , λn} of A satisfy ℜ(λi) < 0. Since
all Jordan blocks associated with λ = 0 have dimension 1 and all the
remaining eigenvalues of A are stable, we conclude that A admits the
representation (6) and thus the linear update reaches an agreement.

(Only if): We will prove this claim by showing that (6) implies a)–b).
To prove that a) holds, we rewrite (6) as

T−1AT =

[
0 0
0 B

]

and, by taking the first k columns of the above identity we conclude
Ati = 0, i ∈ {1, . . . , k}, thus showing that a) holds. To prove that b)
holds, notice that (6) implies that the characteristic polynomial of A is

a stable polynomial with k roots at zero. Namely

det(λI −A) = λk(λ− λ1)(λ− λ2) · · · (λ− λn−k)

= λn + p1λ
n−1 + · · ·+ pn−k−1λ

k−1

where ℜ(λi) < 0, i ∈ {1, . . . , n− k} and pj , j ∈ {1, . . . , n− k −
1}, are nonzero real coefficients. The statement b) thus follows by
applying the graph-theoretic interpretation of the coefficients of the
characteristic polynomial in Lemma 5.1. "

Theorem 5.3 provides an algebraic characterization of agreement
protocols over sparse digraphs. The result is remarkable as it can
be used to design sparse agreement protocols as follows. Given G
and W , we interpret a as well as p1, . . . pn−k as free parameters or
unknowns; then, a)–b) define a system of equations (precisely, 2nk
linear equations and n− k multilinear polynomial equations) in these
unknowns. Any solution to this system of equations–yielding a stable
characteristic polynomial–gives an agreement protocol onW consistent
with G. Notice that the solvability of these equations is not guaranteed
in general, but it can be assessed via standard techniques, as discussed
in the following remark.

Remark 5.4 (Determining solutions to systems of polynomial equa-
tions): A powerful technique for determining solutions to systems of
polynomial equations uses the tool of Gröbner bases, as applied using
Buchberger’s algorithm [34]. The technique relies on transforming the
system of equations into a canonical form, expressed in terms of a
Gröbner basis, for which it is then easier to determine a solution.
We refer to [34] and [35] for a complete discussion. Furthermore,
existence of solutions can be assessed using Hilbert’s Nullstellensatz
theorem [35]. In short, the theorem guarantees that a system of polyno-
mial equations has no solution, if and only if its Gröbner basis is {1}.
In this sense, the Gröbner basis method provides an easy way to check
solvability of a)–b). We also note that the computational complexity
of solving systems of polynomial equations via Gröbner bases is
exponential [35]. !

B. Fast Distributed Agreement Algorithms

We next tackle Problem 2. The freedom in the choice of p1, . . . , pn−k
in Theorem 5.3 suggests that a certain graph may admit multiple
consistent agreement protocols. We will now leverage such freedom
to seek protocols with optimal rate of convergence. Problem 2 can be
made formal as follows:

min
A

r(A)

s.t. A ∈ AG , lim
t→∞

eAt = W. (11)

In (11), r : Rn×n → R is a function that measures the rate of conver-
gence of eAt. By Lemma 4.1, the optimization (11) is feasible, if and
only if (6) holds with T given by (9).

When the optimization problem (11) is feasible, it is natural to
consider two possible choices for the cost function r(·), motivated
by the size of ∥eAt∥ as a function of time. The first limiting case is
t→∞. In this case, we consider the following asymptotic measure of
convergence motivated by [36, Ch. 14]:

r∞(A) := lim
t→∞

t−1 log ∥eAt∥ = λmax(A) (12)

where λmax(A) is the spectral abscissa ofA (see Section II). The second
limiting case is t→ 0. In this case

r0(A) :=
d

dt
∥eAt∥

∣∣∣∣
t=0

= lim
t↓0

t−1 log ∥eAt∥ = λmax

(
A+AT

2

)

(13)
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Fig. 3. Application of the agreement problem to solve a regression
problem. Each agent can measure a sample yi (represented by dia-
mond markers) and cooperatively computes the projection of ŷi onto the
range of the regression matrix H. (Top figure) continuous lines illustrate
the time evolution of the states of (1). (Bottom figure) Time evolution of
the trajectories of (1). Notice that the agents’ states do not converge to
the same value.

where λmax(
A+AT

2 ) is the numerical abscissa of A [36].
We have the following result.
Proposition 5.5 (Fast agreement problem): Let Assumptions 1 and 2

hold. Assume that the optimization problem (11) is feasible. Any
solution to the following optimization problem:

min
a∈R|E|

r(AG(a))

s.t. AG(a)ti = 0, τT
i AG(a) = 0, i ∈ {1, . . . , k} (14)

where ti, τi are as in (10), is also a solution of (11). !
The proof of this claim is available in [32].
Proposition 5.5 allows us to recast (11) as a finite-dimensional search

over the parameters a ∈ R|E|. We remark that (14) with the numerical
abscissa formulation (13) is a convex optimization problem [37], while
with the spectral abscissa formulation (12), finding solutions may be
computationally burdensome because the objective function may be
nonconvex (or even nonLipschitz [37]).

VI. APPLICATIONS AND NUMERICAL VALIDATION

Consider a distributed estimation problem characterized by a regres-
sion model of the formy = Hθ + w, whereH ∈ Rn×k, n > k,θ ∈ Rk

is an unknown parameter, and w ∈ Rn models noise. We assume that
each agent i can sense the ith entry of vector y, denoted by yi, and
the group of agents is interested in cooperatively solving the regression
problem

θls := argmin
θ
∥Hθ − y∥. (15)

It is well-known that θls is given by θls = (HTH)−1HTy, provided
that HTH is invertible. Thus, the vector to be computed by the agents
(denoised measurements) is

ŷ = Hθls = H(HTH)−1HTy

which is the orthogonal projection of y onto Im(H). For figure il-
lustration purposes, we consider the case n = 50 (meaning n = 50
agents or sensors in the network) and k = 2 (meaning the sensor
measurements is interpolated using a line). We computed an agreement
protocol using the optimization problem (13) and (14) with weights
W = H(HTH)−1HT and implemented on a circulant graph [2], where
each agent communicates with its four nearest neighbors. Fig. 3(top)
shows the sampling points y and asymptotic estimates ŷ in compar-
ison with the true regression model. As expected, (1) converges to
the data points corresponding to the Mean Square Error Estimator.
Fig. 3(bottom) shows the trajectories of the agents’ states. Notice that
the agreement state is a 50-D vector constrained to a 2-D subspace.

VII. CONCLUSION

We studied the k-dimensional agreement problem, whereby a group
of agents seeks to computek independent weighted means of the agents’
initial states. We provided algebraic conditions to check the feasibility
of the problem and algorithms to design such protocols. Our results
show that agreement protocols can compute several weighted means of
the agents’ initial conditions at a fraction of the complexity of existing
consensus algorithms. This work opens the opportunity for multiple
directions of future research; among them, we highlight the derivation of
graph-theoretic conditions to solve Problem 1, the design of agreement
protocols in a distributed way, the use of nonlinear dynamics, and the
synthesis of distributed protocols to solve optimization problems over
networks.
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