

1 Bold zebrafish (*danio rerio*) learn faster in an associative learning task

2 Jamie Corcoran¹

3 Levi Storks^{2,3}

4 Ryan Y. Wong^{1,2}

5 ¹University of Nebraska at Omaha Psychology Department, Omaha, NE USA

6 Jcorcoran@unomaha.edu ORCID: <https://orcid.org/0009-0001-7880-475X>

7 rwong@unomaha.edu ORCID: <https://orcid.org/0000-0003-0236-672X>

8 ²University of Nebraska at Omaha Biology Department, Omaha, NE USA

9 ³University of Detroit Mercy Biology Department, Detroit, MI USA

10 **Abstract**

11 Animals differ in their ability to learn. One potential factor contributing to learning
12 differences is personality types. We investigated the relationship between learning and the bold-
13 shy continuum by comparing performance of bold and shy zebrafish in conditioned place
14 preference (CPP) and 2 choice tasks. Bold fish learned significantly faster than the shy fish but
15 there were no differences in their final performance. When tested in the 2 choice task, we found
16 no clear evidence of learning, however bold fish made more initial choices than shy fish. Overall,
17 our study suggests that bold fish tend to be faster learners when compared to shy fish. The lack
18 of differences in the final change in behavior suggests that the learning difference is due to
19 neophobic tendencies and resulting initial interactions with the learning stimulus.

20 **Keywords:** Personality, cognition, bold, shy, operant, classical, associative learning

21 **Acknowledgements:**

22 We thank Elizabeth Stone and Shar Soe for help with fish husbandry. We are grateful to

23 Brandon Villanueva Sanchez, Vy Nguyen, Abigail Reynolds, Annabella Madsen, Maddison

24 Thurber, Sydney Klucas for helpful discussions and technical assistance. This project was funded
25 by the National Science Foundation (IOS-1942202 to RYW), and UNO Graduate Research and
26 Creative Activity Grant and Rhoden Fellowship to JC.

27 **Introduction**

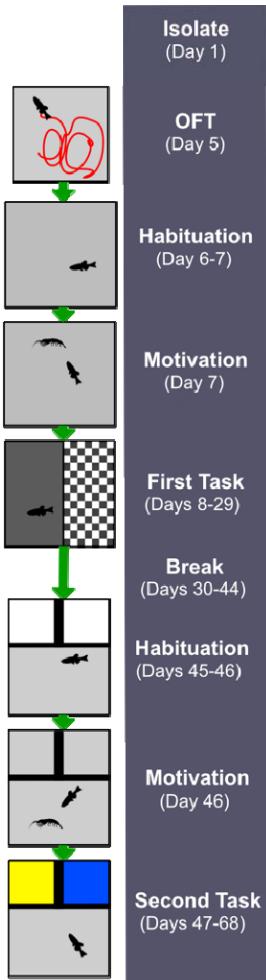
28 As animals interact with their environment, how quickly they learn and recall these
29 interactions can vary between individuals (Boogert et al., 2018, Cauchoix et al., 2018). It has
30 been hypothesized that variation in learning between individuals can be explained in part by
31 differing personality types (Dingemanse & Wolf, 2010, Sih & Del Guidice, 2012, Sih et al.,
32 2004). Across many animal taxa, studies demonstrate that one common dimension of personality
33 is the bold-shy continuum (Réale et al., 2007). Bold individuals are characterized by displaying
34 lower neophobic and stress-related behaviors and have higher exploratory activity. In contrast
35 shy individuals tend to have opposing traits (Wilson et al., 1994, Sih et al., 2004, Baker et al.,
36 2018).

37 However, studies across taxa find a conflicting relationship between personality and
38 learning. Many studies showed that bold individuals learn faster than shy, in animals such as
39 mammals, birds, to teleost fish (Mazza et al., 2018, Guenther et al., 2014, Dugatkin & Alfieri,
40 2002, DePasquale et al., 2014, Bensky et al., 2017, Daniel & Bhat, 2020, Kareklaas, Elwood &
41 Holland, 2017). Fewer studies either found the opposite (e.g. shy learn faster than bold) or no
42 relationship between personality and learning speed (Lermite, Peneaux & Griffin, 2016, Ferron
43 et al., 2015, Sommer-Trembo & Plath, 2018, Baker & Wong, 2019). Inconsistencies across
44 studies suggest that other factors likely influence learning performance beyond personality type.
45 Aspects of the learning assay like the type of task (e.g. operant or classical conditioning) or the

46 context that the animal is tested in could affect the relationship between personality and learning
47 (Poirer et al., 2020, Dingemanse & Wolf, 2010).

48 Individuals of varying personality types likely vary in their interactions with different
49 learning tasks or stimuli, which may influence learning performance (Sih & Guidice, 2012). For
50 example, different training paradigms require that the animal engage with the stimulus in
51 different ways. Some studies found that learning is not correlated across training paradigms
52 (Guillette et al., 2015, Ducatez et al., 2014, Kassai et al., 2022, Poirer et al., 2020) and one found
53 that changing the difficulty of the learning task changed the relationship between personality and
54 learning speed (Chang et al., 2018). Similarly, a meta-analysis in non-human animals found a
55 low correlation between learning ability across cognitive tasks (Poirer et al., 2020). This
56 potential variation across tasks suggests a need for measurements in multiple learning tasks
57 (Griffin et al., 2015). Neophobia, associated with a shy personality, has been seen to affect
58 operant learning of a food reward due to higher latencies to approach (Stöwe et al., 2006). Thus,
59 comparing a passive (classical) task that does not require the animal to approach a novel object
60 to an active (operant) task that does require approach may produce different results.

61 In this study, we investigated the effect of personality type on learning performance
62 across two associative learning paradigms in zebrafish (*Danio rerio*). Using a within-subjects
63 and counter-balanced design we individually trained bold and shy zebrafish to associate a visual
64 stimulus with a food reward in both conditioned place preference and 2 choice tasks. We tested
65 the prediction that bold individuals will be faster learners compared to shy fish because of their
66 decreased neophobia. We also evaluated the prediction that there will be an interaction effect of
67 personality and training paradigm on learning speed. Given that the operant task requires fish to


68 actively make a choice, we expected that bold fish would learn faster in this task than shy fish
69 due to their decreased neophobia.

70

71 **Methods**

72 *Animals*

73 We used zebrafish from selectively bred lines that exhibit shy (high stationary behavior,
74 HSB) or bold (low stationary behavior, LSB) personality traits (n = 48 per line). Across six
75 different stress and anxiety-like behavioral assays, the HSB line exhibits a greater amount of
76 behaviors consistent with a shy personality type (e.g., freezing, less exploratory, higher cortisol
77 levels) than the LSB line (Wong et al., 2012, Baker & Wong, 2019). Additionally, the
78 exploratory behavior of the lines in an open field test is repeatable and reliable (Baker & Wong,
79 2019). The HSB line also shows faster release of cortisol under stress compared to the LSB line
80 (Wong et al., 2019). For simplicity, we will refer to the HSB and LSB lines as shy and bold
81 personality types, respectively. The fish used in this study were selectively bred for 13
82 generations from wild caught zebrafish. Before testing, we housed the fish together in 40L tanks
83 and fish were fed twice a day with Tetramin Tropical Flakes (Tetra, USA). One week prior to
84 testing we physically isolated fish into 3-liter tanks on a recirculating water system (Pentair
85 Aquatic Eco-Systems or Aquaneering) using UV and solid filtration on a 14:10 L/D cycle at a
86 temperature of 27 °C. Fish had visual and olfactory access to each other. Starting three days
87 before testing we withheld food from the fish to reduce the possibility of satiation while training.

Figure 1. Overview of Experiment Timeline. Fish of all groups started with isolation on the first day then went through an open field test (OFT), habituation, motivation test, and training on the first task (conditioned place preference task in this illustration). After a break fish went through the same for the second task (2 choice discrimination task in this illustration). Our study design was counterbalanced and half of the fish began with the CPP task while the other half began with the 2 choice discrimination task.

88

89

90 *Behavioral assays overview*

91 We conducted four behavioral assays on each fish: an open field test (OFT), a test for
92 food motivation, a 2 choice discrimination task (operant conditioning), and a conditioned place
93 preference (CPP, classical conditioning) task. The OFT and food motivation test were performed
94 prior to training. Using a within-subjects design, we tested each fish in both associative learning
95 paradigms and counterbalanced the starting paradigm (Figure 1). We used frozen adult brine
96 shrimp (*Artemia* spp., San Francisco Bay Brand, USA) administered in liquid form as the food
97 reward. Half of the fish received distilled water instead of brine shrimp to serve as controls. We

98 started with four groups of 24 fish (bold control, shy control, bold treatment, and shy treatment).
99 All behavioral assays were performed between 3-8 hours after light onset. After 4 days of
100 isolation, we tested each fish in the open field test to validate behavioral phenotype. We then
101 habituated each fish for two consecutive days in the conditioning tank. We assessed biases in
102 food motivation for the brine shrimp before starting baseline trials of the associative learning
103 assays. Each fish had a 14 day inter-assay testing interval to minimize the influence of the tasks
104 on each other.

105 *Open field test*

106 We individually tested fish in an OFT in a tank that was 31.75cm x 31.75cm x 10cm
107 containing 4L of water. Immediately after placing fish in the tank we video-recorded the
108 individual's behaviors for 5 minutes. We used Ethovision XT 17 (Noldus, Netherlands) to
109 quantify the amount of time that each individual spent frozen during the trial.

110 *Motivation test*

111 This test was performed in the AD and LT models of the Zantiks semi-automated
112 behavioral units (Zantiks, Cambridge, UK). After 30 seconds for acclimation, the food reward
113 was administered 3 times at 30 second intervals. We quantified the time spent in a 9x12 cm
114 rectangle centered around the food administration tube. The time that was being measured started
115 immediately after the first brine shrimp administration until the end of the test to measure the
116 motivation of the fish for the food reward. We performed the test in both Zantiks models but due
117 to the size and height of the tank in the larger LT unit, the food drifted outside the fish tracking
118 zone. Thus, we only used the data from the AD unit to assess motivation.

119

120 *Conditioned place preference*

121 We used a modified conditioned place preference protocol (Lau et al., 2006) in the
122 Zantiks LT unit. The testing tank (36 cm x 27 cm x 30 cm) was filled with 5.8 L of water. We
123 tested each fish in the CPP task for three weeks that consisted of 2 days of habituation, 1 day of
124 baseline testing, 11 days of conditioning, and 3 days of probe trials (Figure S1a). To habituate
125 each fish to the assay we placed the fish in the tank for 10 minutes with no training stimulus
126 lights. After habituation we determined the baseline preference for the light stimuli (gray or
127 checkered pattern) for each fish. Fish swam freely for 10 minutes in the tank where one half was
128 illuminated from the bottom with a gray screen and the other half a checkered screen. We
129 determined the conditioned and non-conditioned stimuli as the stimulus where the fish spent the
130 least and most amount of time, respectively. During conditioning days, we sequentially presented
131 each stimulus for 5 minutes to each fish. The non-conditioned stimulus was presented for the
132 first five minutes followed by the conditioned stimulus. One hundred microliters of brine shrimp
133 or distilled water was administered every minute during presentation of the conditioning and
134 non-conditioning stimulus, respectively. Food reward consisted of 11.4 grams of frozen brine
135 shrimp in 30 mL of distilled water. We fed control fish an equivalent amount of brine shrimp
136 after each conditioning trial. Probe trials were administered the day after a conditioning trial.
137 Probe trials were conducted after 3 days, 7 days, and 11 days after the first day of conditioning
138 with a total of 3 probe trials. Probe trial methods were the same as those used in the baseline
139 preference step where we quantified the time spent in each stimulus for each fish. The order of
140 stimulus presentation was consistent within a fish but random across fish for probe and baseline
141 trials.

142

143 *2 choice discrimination task*

144 We used a modified 2 choice discrimination task from an established protocol (Bilotta et
145 al., 2006). We used the AD model Zantiks unit (Zantiks, Cambridge, UK) with a 14cm x 20cm x
146 15cm tank filled with 2.5 L of water (Figure S1b). We habituated each fish for 20 minutes a day
147 for two consecutive days with white lights on in the wells as shown in Figure S1b. We tested
148 each fish every other day for a total of 10 testing days. Fish were fasted on non-testing days. In
149 this task the fish were presented with two 6.5 cm x 5.1 cm light stimuli (blue and yellow) from
150 below at one end of the tank. Prior studies show that with appetitive learning in zebrafish there is
151 a bias towards red compared to other colors such as blue and yellow (Spence & Smith, 2008,
152 Kim et al., 2017). For each fish, a color was randomly chosen at the start of testing to be the
153 reinforced stimulus where a food reward (brine shrimp) was administered at the other end of the
154 tank when the fish swam into the designated reinforced color. The food reward consisted of 5.7
155 grams of frozen brine shrimp suspended in 30 mL of distilled water. Each trial began with an
156 acclimation period of two minutes with white lights in the two wells. After two minutes blue and
157 yellow lights were presented for 30 seconds. Swimming into the designated correct choice
158 resulted in the correct colored light staying on for an additional 30 seconds and we
159 simultaneously administered 25 μ l of the food reward. An incorrect choice resulted in all lights
160 turning off for 30 seconds. This sequence ran for a total of 20 trials each day for each fish (i.e.,
161 one session consists of 20 trials). The position of the yellow and blue lights (e.g., left or right)
162 was randomly set for each trial. There was an intertrial interval of 10 seconds. Control fish
163 underwent the same protocol with distilled water administered instead of brine shrimp and were
164 fed brine shrimp after each testing day. We compared the number of correct choices and the total
165 number of choices across sessions to assess learning.

166

167

168 *Statistical analysis*

169 We performed all statistical tests using R statistical software(R 4.2.2 GUI 1.79 Big Sur
170 ARM build) and Rstudio version 2022.12.0+353 (R Core Team, 2021). Due to fish mortality
171 during the experiment, the sample sizes for statistical analyses between the conditioned place
172 preference (bold control (n = 20), shy control (n = 20), bold treatment (n = 19), and shy treatment
173 (n = 19)) and 2 choice (bold control (n = 20), shy control (n = 17), bold treatment (n = 19), and
174 shy treatment (n = 20)) tasks differed. We conducted post-hoc tests using the emmeans (Lenth et
175 al., 2022) package and normality and assumptions were checked using base R. The lme4 package
176 (Bates et al., 2022) was used to test negative binomial linear mixed effect models. We obtained
177 simple statistics for all measures using the psych package (Revelle, 2022) (Table 1). Sex was
178 included in all models but was not significant and therefore removed. Model assumptions,
179 including normality were inspected in R.

180

181 *Open field test and motivation*

182 We tested for differences between the bold and shy groups in the OFT and motivation
183 test using a Welch two-sample t-test. This test was used due to unequal variances between bold
184 and shy groups. We compared the duration of time frozen in the OFT between the bold and shy
185 personality types. To investigate difference in food motivation, we compared the duration of
186 time spent around the food administration tube between the bold and shy personality types using
187 the same test.

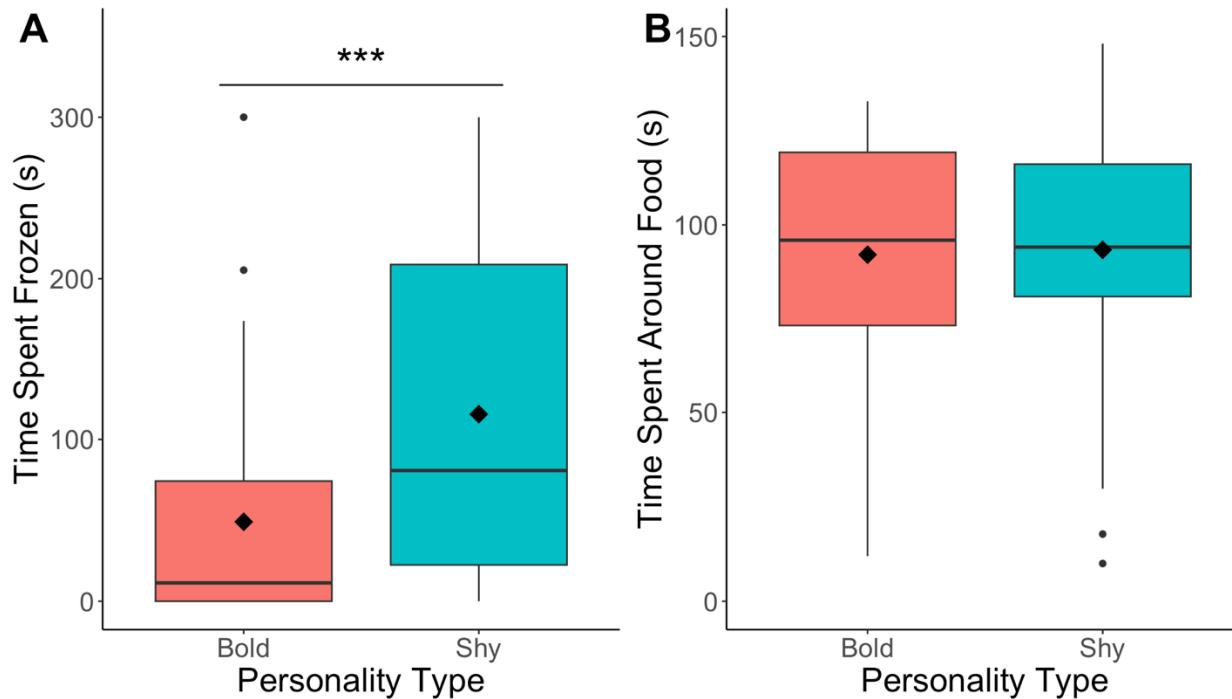
188

189 *Conditioned place preference*

190 We modeled the duration of time spent in the conditioned stimulus for the last half (5
191 minutes) of the baseline and probe trials to test for a change in preference for the conditioned
192 stimulus across the task within the different groups. We did not include the first half (5 minutes)
193 in the analysis to minimize the influence of handling on fish behavior. We performed a repeated
194 measures ANOVA to investigate the effects of treatment, personality type, and conditioning day
195 on the time spent in the conditioned stimulus with a linear mixed effects model with individual
196 as the random effect. We included all interactions in the model and used type II sums of squares.
197 We used Tukey post-hoc tests to evaluate differences in the response variables across trials for
198 each group and within trials between groups.

199

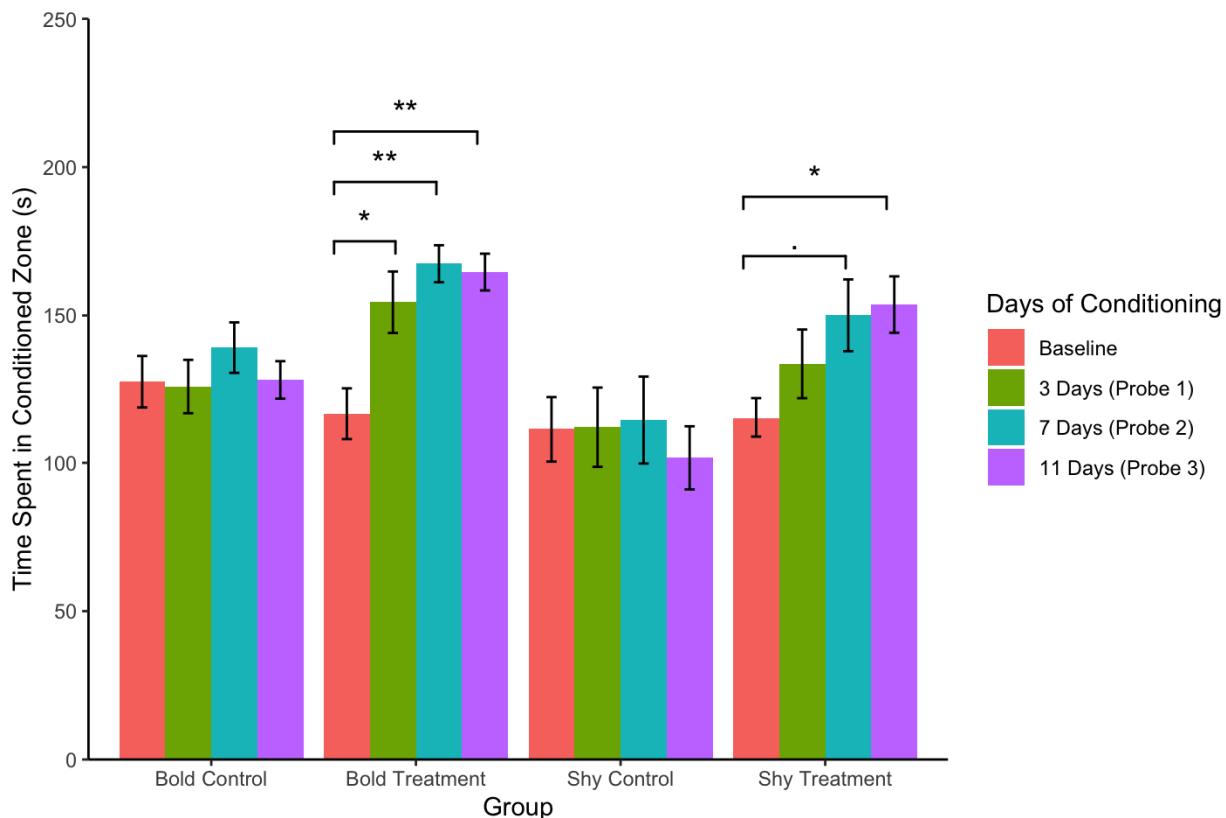
200 *2 choice discrimination task*


201 We modeled the number of correct choices over the conditioning days to examine
202 changes in correct choices over time within groups. We performed a negative binomial mixed
203 effect regression on the number of correct choices with treatment, personality type and session as
204 the fixed effects and ID as the random effect. Simple slopes were obtained to test for increases in
205 correct choices within each group using the interactions package in R and plotted using the same
206 package. Additionally, we performed a negative binomial mixed effect regression on the total
207 number of choices with treatment, personality type and session as the fixed effects and ID as the
208 random effect. We also obtained simple slopes for this model.

209

210 **Results**

211 *Shy fish freeze more but had equal motivation to eat*


212 There was a significant effect of personality type on freezing time in the open field test
213 (Figure 2a). Shy fish spent significantly more time frozen than bold fish ($t = -3.55$, $df = 90$, $p =$
214 6.4×10^{-4}). There were no significant differences between personality types ($t = -0.19$, $df = 82$, $p =$
215 .85) in the amount of time spent around the food in the motivation task (Figure 2b).

216
217 **Figure 2.** A. Boxplot of time spent frozen in the open field test and B. boxplot of time spent around the food in the
218 motivation task. Bold fish are in red and shy fish are in teal. The diamond indicates the mean and the line is at the
219 median.* $p < .05$, ** $p < .01$ *** $p < .001$

220
221 *Bold fish change their behavior before shy fish*
222 Treatment fish increased time spent in the conditioned stimulus in the CPP task, with
223 bold fish increasing time spent in the conditioned stimulus earlier in the task than shy fish
224 (Figure 3). In the full model (Table S1) the interaction effect between treatment and probe trial
225 was approaching significance ($F(3, 292) = 4.09$, $p = .09$). A Tukey post hoc test (Table S2)
226 revealed that there were no significant differences in the duration of time in the conditioned

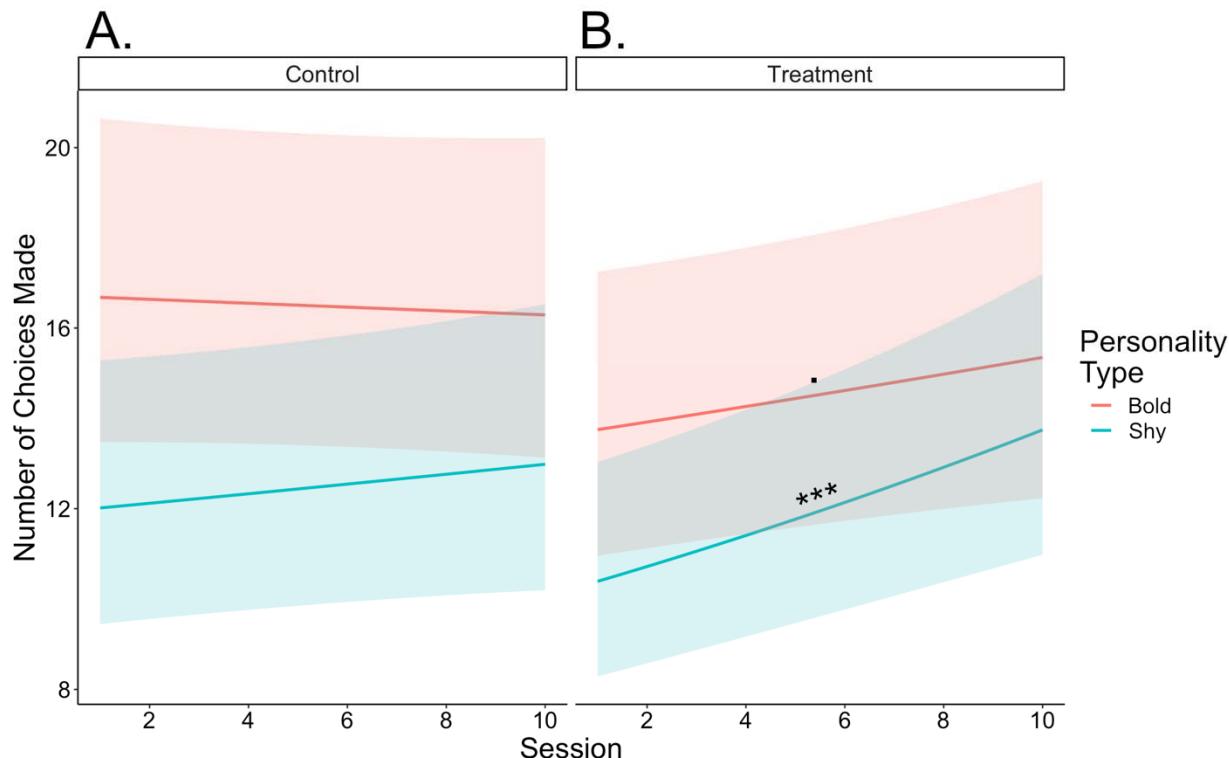
227 stimulus between trials for the control groups for either personality type ($p > .05$). In the bold
228 treatment group there was a significant difference between baseline and probe 1 (i.e., after 3 days
229 of conditioning; $t = -2.64$, $df = 296$, $p = .03$), probe 2 (i.e., after 7 days of conditioning; $t = -3.55$,
230 $df = 296$, $p = 2.8*10^{-3}$), and probe 3 (i.e., after 11 days of conditioning; $t = -3.35$, $df = 296$, $p =$
231 $4.7*10^{-3}$). In the shy treatment group there was no significant difference in time spent in the
232 conditioned stimulus between baseline and probe 1 ($t = -1.27$, $df = 296$, $p = .45$) but there was a
233 trend for a difference between baseline and probe 2 ($t = -2.42$, $df = 296$, $p = .07$) and at probe 3
234 shy treatment group spent significantly more time in the CS compared to baseline ($t = -2.67$, $df =$
235 296 , $p = .04$). No significant differences in duration of time in the CS between probe 1, 2, or 3
236 were detected in any of the groups ($p > .05$). There were no differences in time spent in the
237 conditioned zone at any of the time points between personality types ($p > .05$). Additionally,
238 there was no significant correlation between learning speed (change in CS time from baseline
239 after 3 days of conditioning) and final time spent in the conditioned stimulus in the CPP task for
240 the bold fish ($\rho = .19$, $p = .44$) or for the shy fish ($\rho = .22$, $p = .35$).

241

242 **Fig. 3** Time spent in the conditioned zone by group and day of conditioning in the CPP. Pink bars are at baseline,
243 green bars are after 3 days of conditioning (Probe 1), blue bars are after 7 days (Probe 2) and purple bars are after 11
244 days of conditioning (Probe 3). Error bars indicate standard error. $p < .1$, $*p < .05$, $**p < .01$.

245

246 *No evidence of learning in 2 choice discrimination task with correct choices*


247 In the 2 choice discrimination task there was no significant difference in number of
248 correct choices between control and treatment fish (Table S3). There was only a significant main
249 effect of personality type such that bold fish made more correct choice compared to shy fish ($b =$
250 $-.49$, $t = -2.84$, $p = .01$) and a significant interaction between personality type and session ($b =$
251 0.03 , $t = 2.601$, $p = .01$). Testing for the simple slopes (Table S4, Figure S2), both shy control (m
252 $= 0.03$, $t = 3.15$, $p = 2.2*10^{-5}$) and shy treatment ($m = 0.04$, $t = 4.24$, $p = 4.4*10^{-6}$) groups had a

253 significant positive slope while bold control ($m = 0, t = -0.26, p = .79$) and bold treatment ($m =$
254 $0.01, t = 0.98, p = .33$) have no significant relationship.

255

256 *Difference across treatment and control only in total number of choices in 2 choice*
257 *discrimination task*

258 For the total number of choices, there was a significant difference between control and
259 treatment fish (Figure 4, Table S5). There was a main effect of personality type on total number
260 of choices ($b = -.34, t = -2.07, p = .04$) where bold fish had higher total number of choices than
261 shy. The interaction between session and treatment is approaching significance ($b = 0.15, t =$
262 $1.69, p = .09$). Testing for the simple slopes, shy control ($m = 0.01, t = 1.22, p = .22$), and bold
263 control ($m = 0, t = -0.44, p = .66$) did not have a significant relationship (Figure 4a). Only shy
264 treatment ($m = 0.03, t = 4.59, p = .4.4*10-6$) had a significant positive slope (Figure 4b, Table
265 S6). In contrast, bold treatment had a slope approaching significance ($m = 0.01, t = 1.90, p = .06$)
266 (Figure 4b).

267 **Figure 4.** Regression lines of the number of choices made by personality type and treatment. 4A. shows the
268 regression lines for control fish and 4B. shows regression lines for treatment fish. The bold group is in red and the
269 shy group is in blue. Shaded regions indicate a 95% confidence interval. The simple slopes significance is indicated.
270 $p < .1$, $*p < .05$, $**p < .01$, $***p < .001$.

271 **Discussion**

272 Variation in learning performance can be due to complex interactions between intrinsic
273 (e.g., personality type) and extrinsic (e.g. learning task) factors (Sih & Guidice, 2012). We
274 investigated the effects of personality type and learning task by testing zebrafish of differing
275 personalities across two different associative learning assays. Overall, we found that learning
276 performance in one of the tasks was influenced by an animal's personality type.

277 Bold fish increased time spent in the conditioned stimulus earlier than shy fish in the
278 conditioned place preference task, which suggests that bold fish learned faster in this task. The
279 bold fish showed a significant increase in time spent in the conditioned stimulus after just 3

280 conditioning days whereas shy fish took an additional 8 days of conditioning to show a
281 significant change from baseline (Figure 3). These results are consistent with other studies
282 demonstrating that individuals with bold personality types learn faster than shy individuals
283 (Mazza et al., 2018, Guenther et al., 2014, Dugatkin & Alfieri, 2002, DePasquale et al., 2014,
284 Bensky et al., 2017, Daniel & Bhat, 2020, Kareklaas, Elwood & Holland, 2017). Differences in
285 learning speed between personality types in this task may be due to differences in behavior such
286 as stress reactivity, exploration, and neophobia (Sih & Guidice, 2012, Sommer-Trembo & Plath,
287 2018). Our observed differences in learning speeds between personality types cannot be
288 explained by differences in motivation for the food reward (Figure 2). Interestingly, there were
289 no differences in the amount of time spent in the conditioned stimulus between the personality
290 types after 11 days of conditioning, suggesting that individuals approach an asymptotic level of
291 performance. This suggests that both personality types are capable of changing their behavior
292 (e.g. learn) to similar extents and therefore differences in cognitive ability between personality
293 types is an unlikely explanation for differences in learning speed.

294 When testing the same fish in the 2 choice discrimination assay, there was no significant
295 difference in the number of correct choices between treatment and control groups, which
296 suggests the fish did not learn the stimulus-reward association in this task (Figure 4). However,
297 there were differences across personality types in which both shy treatment and control increased
298 the number of correct choices while the bold groups did not. The positive slope for the shy
299 groups is likely due to an overall increase in total choices with repeated exposure. When looking
300 at the total number of choices made over sessions, the control groups did not change over time
301 while the treatment groups increased the total number of choices made over sessions. This
302 suggests that the treatment fish did not learn the color association but may instead have learned

303 to go into the wells. Animals can attend to several cues in discrimination learning and sometimes
304 attend to unintentional or general cues (Mackintosh, N., J., 1965). We also cannot rule out that
305 rewarding the fish in a different location than the stimuli may have decreased the strength of
306 pairing between action and reward (Murphy & Miller, 1958). While in the 2 choice
307 discrimination task fish did not learn the color association, the bold fish made more choices than
308 shy fish in the first session. This is likely due to decreased neophobia and increased exploration
309 in the bold fish as demonstrated in the open-field test (Sih et al., 2004, Wong et al., 2012).

310 Differences in neophobia (e.g. latency to approach novel objects) classically distinguish
311 bold and shy personality types (Carter et al., 2012, Sih et al., 2004, Wilson et al., 1994). In the
312 current study one potential explanation for bold fish learning quicker in the conditioned place
313 preference and making more initial choices in the 2 choice discrimination task relative to shy fish
314 are differences in neophobia between the personality types. The shy fish could have found the
315 colored lights in the 2 choice discrimination task initially aversive and increased their choices as
316 they habituated to the novel stimuli. Shy individuals tend to have increased neophobia and
317 habituate slower, which would result in the shy fish taking longer to make active choices (Carter
318 et al., 2012). The two days of habituation in the 2 choice discrimination task only allowed the
319 fish to experience the tank and lighted wells but at start of conditioning they were naïve to the
320 color of the lights and the changing stimuli. A similar effect was seen in *Gallus gallus* where
321 individuals that were less exploratory (i.e., shy) habituated slower to a loud sound than those that
322 were more exploratory (Dissegna et al., 2022). Neophobia may also explain shy fish learning
323 slower in the CPP task, as shy fish could have experienced more stress than the bold fish at the
324 start of the task even after habituation and so learned the positive association slower. Mollies
325 (*Poecilia mexicana*) that were desensitized to the lights and sounds used in the task showed no

326 differences in learning related to personality type (Sommer-Trembo & Plath, 2018). Increasing
327 familiarity with the task environment and stimuli could explain why shy fish were slower to
328 increase their preference for the conditioned stimulus but ultimately reached a level of
329 performance similar to bold fish after 11 days of conditioning. Bold individuals tend to make
330 associations faster likely because they are less neophobic and in a simple conditioned place
331 preference task, this leads to them learning faster but does not change the plateau of performance
332 (Dugatkin & Alfieri, 2002, DePasquale et al., 2014, Daniel & Bhat, 2020).

333 The relationship between more rapid learning and bold personality type is not consistent
334 across all studies (Ferron et al., 2015, Lermite, Peneaux & Griffin, 2016). Potential explanations
335 are that the relationship between speed of learning and personality can depend on aspects of the
336 task such as learning stimulus valence or task complexity. Shy zebrafish trained in a contextual
337 fear learning paradigm showed faster learning than bold zebrafish (Baker et al., 2019). As shy
338 zebrafish have a faster glucocorticoid response to a novelty stressor than bold fish, this may
339 facilitate quicker learning of aversive stimuli (Wong et al., 2019, Rau et al., 2005, Riggenbach et
340 al., 2019) but inhibit learning of appetitive stimuli seen in current study. For task complexity, a
341 study looking at learning accuracy found that aggressive spiders (e.g. bold personality type) were
342 more accurate in a simple task but not in a more complex task (Chang et al., 2018). Future work
343 may consider testing whether the same trend holds in a more complex classical conditioning
344 task. In a more complex task, bold fish may make incorrect associations and not learn as quickly
345 as shy fish.

346 Overall, we found support for differences between bold and shy individuals in how they
347 interact with two different learning tasks. These differences in performance could be explained
348 by varying neophobia between bold and shy individuals. In a 2 choice task requiring an active

349 behavioral response, we found differences in initial number of choices made between personality
350 types, suggesting that the personality types naively interacted with the stimulus differently. In the
351 conditioned place preference task, the bold fish learned faster than the shy fish. Differences in
352 performance between bold and shy individuals in both tasks could be explained by variation in
353 neophobia related to personality type. Additionally, the bold and shy fish reached a similar level
354 of performance. We encourage future studies to test the performance of bold and shy individuals
355 across different tasks to compare their behavior both within and across tasks. Future work should
356 also consider explicitly measuring how individuals interact with the task environment, perhaps
357 measuring neophobia and motivation for the task.

358

359

References

360 Baker, M. R., et al. (2018). "Repeatability and reliability of exploratory behavior in proactive
361 and reactive zebrafish, *Danio rerio*." *Scientific Reports* 8(1): 12114

362 <http://www.nature.com/articles/s41598-12018-30630-12113>

363 Baker, M. R. and R. Y. Wong (2019). "Contextual fear learning and memory differ between
364 stress coping styles in zebrafish." *Scientific Reports* 9(1): 9935

365 <http://www.nature.com/articles/s41598-41019-46319-41590>

366 Bates, D., Maechler, M., Bolker, B. (2015). Fitting Linear Mixed Effects Models Using lme4.
367 *Journal of Statistical Software*, 67(1), 1-48 <https://doi.org/10.18637/jss.v067.i01>

368 Bensky, M. K., et al. (2017). "Testing the predictions of coping styles theory in threespined
369 sticklebacks." *Behavioural Processes* 136: 1-10

370 <https://linkinghub.elsevier.com/retrieve/pii/S0376635716301917>

371 Bilotta, J., et al. (2005). "Assessing Appetitive Choice Discrimination Learning in Zebrafish."
372 *Zebrafish* 2(4): 259-268 <http://www.liebertpub.com/doi/210.1089/zeb.2005.1082.1259>

373 Boogert, N. J., et al. (2018). "Measuring and understanding individual differences in cognition."
374 *Philosophical Transactions of the Royal Society B: Biological Sciences* 373(1756): 20170280
375 <https://royalsocietypublishing.org/doi/20170210.20171098/rstb.20172017.20170280>

376 Carter, A. J., et al. (2012). "Evaluating animal personalities: do observer assessments and
377 experimental tests measure the same thing?" *Behavioral Ecology and Sociobiology* 66(1): 153-
378 160 <http://link.springer.com/110.1007/s00265-00011-01263-00266>

379 Cauchoix, M., et al. (2018). "The repeatability of cognitive performance: a meta-analysis."
380 Philosophical Transactions of the Royal Society B: Biological Sciences 373(1756): 20170281
381 <https://royalsocietypublishing.org/doi/20170210.20171098/rstb.20172017.20170281>

382 Chang, C.-c., et al. (2018). "Aggressive spiders make the wrong decision in a difficult task."
383 Behavioral Ecology 29(4): 848-854 <https://doi.org/10.1093/beheco/ary1066>

384 Daniel, D. K. and A. Bhat (2020). "Bolder and Brighter? Exploring Correlations Between
385 Personality and Cognitive Abilities Among Individuals Within a Population of Wild Zebrafish,
386 Danio rerio." Frontiers in Behavioral Neuroscience 14: 138
387 <https://www.frontiersin.org/article/110.3389/fnbeh.2020.00138/full>

388 DePasquale, C., et al. (2014). "Learning rate and temperament in a high predation risk
389 environment." Oecologia 176(3): 661-667 <http://link.springer.com/610.1007/s00442-00014-03099-z>

390

391 Dingemanse, N. J. and M. Wolf (2010). "Recent models for adaptive personality differences: a
392 review." Philosophical Transactions of the Royal Society B: Biological Sciences 365(1560):
393 3947-3958 <https://royalsocietypublishing.org/doi/3910.1098/rstb.2010.0221>

394 Dissegna, A., et al. (2022). "Individual differences in habituation: Innate covariation between
395 habituation, exploration, and body size in naïve chicks (*Gallus gallus*)."
396 Behavioural Processes 200: 104705 <https://linkinghub.elsevier.com/retrieve/pii/S037663572200122X>

397 Ducatez, S., et al. (2015). "Problem-solving and learning in Carib grackles: individuals show a
398 consistent speed-accuracy trade-off." Animal Cognition 18(2): 485-496
399 <http://link.springer.com/410.1007/s10071-10014-10817-10071>

400 Dugatkin, L. A. and M. S. Alfieri (2003). "Boldness, behavioral inhibition and learning."

401 Ethology Ecology & Evolution 15(1): 43-49

402 <http://www.tandfonline.com/doi/abs/10.1080/08927014.08922003.09522689>

403 Griffin, A. S., et al. (2015). "Cognition and personality: an analysis of an emerging field." Trends

404 in Ecology & Evolution 30(4): 207-214

405 <https://linkinghub.elsevier.com/retrieve/pii/S0169534715000245>

406 Guenther, A., et al. (2014). "Learning and personality types are related in cavies (*Cavia aperea*)."

407 Journal of Comparative Psychology 128(1): 74-81

408 <http://doi.apa.org/getdoi.cfm?doi=10.1037/a0033678>

409 Guillette, L. M., et al. (2015). "Individual differences in learning speed, performance accuracy

410 and exploratory behaviour in black-capped chickadees." Animal Cognition 18(1): 165-178

411 <http://link.springer.com/110.1007/s10071-10014-10787-10073>

412 Karekla, K., et al. (2017). "Personality effects on spatial learning: Comparisons between visual

413 conditions in a weakly electric fish." Ethology 123(8): 551-559

414 <https://onlinelibrary.wiley.com/doi/510.1111/eth.12629>

415 Kassai, F., et al. (2022). "Lack of general learning ability factor in a rat test battery measuring a

416 wide spectrum of cognitive domains." Journal of Integrative Neuroscience 21(1): 012

417 <https://imrpress.com/journal/JIN/021/011/010.31083/j.jin2101012>

418 Kim, Y.-H., Lee, K. S., Park, A. R., & Min, T. J. (2017). Adding preferred color to a

419 conventional reward method improves the memory of zebrafish in the T-maze behavior model.

420 Animal Cells and Systems, 21(6), 374–381. <https://doi.org/10.1080/19768354.2017.1383938>

421 Lau, B., et al. (2006). "Dissociation of food and opiate preference by a genetic mutation in
422 zebrafish." *Genes, Brain, and Behavior* 5(7): 497-505,

423 Lenth, R.V., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez,
424 F., Riebl, H., Singmann, H. (2022). Estimated Marginal Means, aka Least-Square Means. R
425 package version, 1.8.6. <https://CRAN.R-project.org/package=emmeans>

426 Lermite, F., et al. (2017). "Personality and problem-solving in common mynas (Acridotheres
427 tristis)." *Behavioural Processes* 134: 87-94
428 <https://linkinghub.elsevier.com/retrieve/pii/S037663571630273X>

429 Mackintosh, N. J. (1965). "Selective attention in animal discrimination learning." *Psychological
430 Bulletin* 64(2): 124-150 <http://doi.apa.org/getdoi.cfm?doi=110.1037/h0022347>

431 Mazza, V., et al. (2018). "The fast and the flexible: cognitive style drives individual variation in
432 cognition in a small mammal." *Animal Behaviour* 137: 119-132
433 <https://linkinghub.elsevier.com/retrieve/pii/S0003347218300253>

434 Morand-Ferron, J., et al. (2015). "Taking the Operant Paradigm into the Field: Associative
435 Learning in Wild Great Tits." *PLOS ONE* 10(8): e0133821
436 <https://journals.plos.org/plosone/article?id=0133810.0131371/journal.pone.0133821>

437 Murphy, J. V. and R. E. Miller (1958). "Effect of the spatial relationship between cue, reward,
438 and response in simple discrimination learning." *Journal of Experimental Psychology* 56(1): 26-
439 31 <http://doi.apa.org/getdoi.cfm?doi=10.1037/h0040121>

440 Poirier, M.-A., et al. (2020). "How general is cognitive ability in non-human animals? A meta-
441 analytical and multi-level reanalysis approach." *Proceedings of the Royal Society B: Biological*

442 Sciences 287(1940): 20201853

443 <https://royalsocietypublishing.org/doi/full/20201810.20201098/rspb.20202020.20201853>

444 Rau, V., et al. (2005). "Stress-induced enhancement of fear learning: An animal model of

445 posttraumatic stress disorder." Neuroscience & Biobehavioral Reviews 29(8): 1207-1223

446 <https://linkinghub.elsevier.com/retrieve/pii/S0149763405000606>

447 Réale, D., et al. (2007). "Integrating animal temperament within ecology and evolution."

448 Biological Reviews 82(2): 291-318 <https://onlinelibrary.wiley.com/doi/210.1111/j.1469-1185X.2007.00010.x>

450 Revelle, W. (2023). psych: Procedures for Psychological, Psychometric, and Personality

451 Research. Northwestern University, Evanston, Illinois. R package version 2.3.3, <https://CRAN.R-project.org/package=psych>

453 Rigganbach, M. R., et al. (2019). "Immediate pre-learning stress enhances baseline startle

454 response and fear acquisition in a fear-potentiated startle paradigm." Behavioural Brain Research

455 371: 111980 <https://linkinghub.elsevier.com/retrieve/pii/S0166432819302463>

456 Sawyer, S., et al. (2012). "Comparing behavioral responses across multiple assays of stress and

457 anxiety in zebrafish (*Danio rerio*). " Behaviour 149(10-12): 1205-1240

458 https://brill.com/view/journals/beh/1149/1210-1212/article-p1205_1209.xml

459 Sih, A., et al. (2004). "Behavioral syndromes: an ecological and evolutionary overview." Trends

460 in Ecology & Evolution 19(7): 372-378

461 <https://linkinghub.elsevier.com/retrieve/pii/S0169534704001211>

462 Sih, A. and M. Del Giudice (2012). "Linking behavioural syndromes and cognition: a
463 behavioural ecology perspective." Philosophical Transactions of the Royal Society B: Biological
464 Sciences 367(1603): 2762-2772 <https://royalsocietypublishing.org/doi/2710.1098/rstb.2012.0216>

465 Sloan Wilson, D., et al. (1994). "Shyness and boldness in humans and other animals." Trends in
466 Ecology & Evolution 9(11): 442-446

467 <https://linkinghub.elsevier.com/retrieve/pii/0169534794901341>

468 Sommer-Trembo, C. and M. Plath (2018). "Consistent individual differences in associative
469 learning speed are not linked to boldness in female Atlantic mollies." Animal Cognition 21(5):
470 661-670 <https://doi.org/10.1007/s10071-10018-11201-10073>

471 Spence, R., & Smith, C. (2008). Innate and Learned Colour Preference in the Zebrafish, *Danio*
472 *rerio*. Ethology, 114(6), 582–588. <https://doi.org/10.1111/j.1439-0310.2008.01515.x>

473 Stöwe, M., Bugnyar, T., Heinrich, B., & Kotrschal, K. (2006). Effects of Group Size on
474 Approach to Novel Objects in Ravens (*Corvus corax*). Ethology, 112(11), 1079–1088.
475 <https://doi.org/10.1111/j.1439-0310.2006.01273.x>

476 Wong, R. Y., et al. (2019). "Differences in stress reactivity between zebrafish with alternative
477 stress coping styles." Royal Society Open Science 6(5): 181797
478 <https://royalsocietypublishing.org/doi/181710.181098/rsos.181797>

479