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Abstract

Snowpacks are changing in northeastern North America as the regional climate warms, yet
the relative influence of changes in precipitation compared to changes in ablation on snow-
packs is poorly understood. We use 56 years of weekly snow water equivalent (SWE) mea-
surements from three locations within a study site which vary in elevation and aspect, paired
with adjacent daily climate measurements, to investigate relationships between climate and
snowpack onset, maximum, and disappearance. Maximum snowpack size and snowpack
duration are shrinking at all sites, at rates ranging from 4.3 days/decade at the coldest site to
9.6 days/decade at the warmest site. The shorter snowpack duration at all sites results from
an earlier snowpack disappearance, stemming largely from reduced winter maximum snow-
pack sizes. Trends in snowpack establishment dates vary, with the south-facing site show-
ing a trend toward later establishment but the two north-facing sites showing no change.
The date of the maximum snowpack size varies by aspect and elevation but is not changing
at any site. Using a 0° C threshold for frozen vs. liquid precipitation, we only observed a
decrease in the proportion of precipitation falling in frozen form at the warmer, south-facing
site in the winter period. In contrast, the total weekly snowpack ablation in the winter period
has been increasing at least marginally at each site, even at sites which do not show
increases in thawing conditions. Ablation increases range from 0.4 cm/decade at the warm-
est site, to 1.4 and 1.2 cm/decade at the north-facing sites. The south-facing site shows only
marginally significant trends in total winter ablation, which we interpret as being limited by
the smaller snowpack at this site. Overall, we conclude that rising air temperatures are lead-
ing to warmer, more sensitive snowpacks and this change becomes evident before those
temperatures lead to changes in precipitation form.
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Introduction

The loss of seasonal snow cover is a key indicator of climate change across the Northern Hemi-
sphere [1]. In northeastern United States, the size and duration of snowpacks have decreased
as the climate warms [2,3] and are projected to continue to decline under a range of emissions
scenarios [4,5]. These trends have implications for natural and human systems [6], including
impacts on groundwater recharge and water supply [7], soil properties [8], forest productivity
[9], wildlife mobility and competition [10-12], and winter recreation and tourism [2,13,14].
For some processes the length of the snowpack season matters more than the size of the snow-
pack (e.g., soil freezing [15]). Other concerns depend more on the overall size of the snowpack
(e.g., groundwater recharge [16]), and some are impacted by both snow depth and duration
(e.g., winter tourism [13]).

The onset of the seasonal snowpack begins when temperatures favor snowfall over liquid
precipitation, and land surface conditions allow for net snow accumulation [17]. In the north-
eastern U.S., air temperatures in November have not changed significantly, whereas December
is among the months showing the greatest warming [3,18], yet paradoxically the start date of
the continuous snow cover does not appear to have changed appreciably [3,19]. Current cli-
mate projections under various emissions scenarios predict that future warming in this period
will result in later snowpack onset dates [4], yet this snowpack characteristic appears somewhat
resilient to climate changes to date [3,4,19].

When the snowpack develops early in the season, it insulates the soil by altering both con-
vective heat transfer from air temperature and radiative energy transfer through changes in
albedo [20]. Thus, the duration of the snow-covered season can affect the yearly heat balance
of the soil [15], with attendant effects on temperature-dependent soil processes like respiration
[21,22] and nitrogen cycling [23,24]. Lack of snow also exposes soils to cold winter air, increas-
ing susceptibility to soil frost formation [15,25]. Soil frost has cascading effects on forest eco-
systems, such as changes in hydrologic flowpaths [26,27], soil and litter decomposer
communities [28-30], and both below- and aboveground productivity [9,31].

The characteristics of the snowmelt season integrate conditions over a wider range of
months than the snowpack onset period. Spring snowmelt, culminating in snowpack disap-
pearance, is dependent on both springtime weather to drive melting [32], as well as the depth
of the snowpack at the beginning of the snowmelt period [15], which reflects the balance
between accumulation and melting over the winter months [33]. Atmospheric conditions,
such as precipitation phase and the surface energy budget influence snowpack longevity in the
spring [32,34]. Snowmelt initiation timing reflects the overall cold storage of the snowpack
(the amount of energy required to "ripen" the snowpack), which is a function of snowpack
temperature and water content [35]. When snowmelt starts earlier in the year, it tends to hap-
pen more slowly [33,36], which has implications for water resources [37], the timing of stream
runoff [38], and growing season soil moisture [15]. In addition, earlier snow disappearance
can allow soils to warm earlier [15,39], altering rates of soil microbial activity [24] and above-
and belowground respiration in spring [40].

Determining trends in midwinter snowpack size and temperature, in addition to changing
spring climate conditions, is therefore essential for understanding how declining seasonal
snow cover impacts forest ecosystems in the subsequent growing season. The midwinter
period, when the snowpack is generally accumulating [32], may ultimately govern the charac-
teristics of spring snowmelt through the mass and overall cold content of the snowpack
[33,35,39]. Snowpack mass and cold content may each be sensitive to different climatic drivers,
such as midwinter thaws [36], precipitation form or amount [14,41], or radiation balance [34].
In the northeastern U.S., midwinter thaw temperatures are increasing [2,42], and are projected
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to continue [4]. Precipitation volume is also increasing on an annual basis [43], while the pro-
portion falling as snow is diminishing at sites in the region [41,44].

The northeastern U.S. lacks a region-wide snow monitoring network that can match long-
term measurements of snowpack mass dynamics with high-quality, co-located weather data to
elucidate relationships between climate and snowpack characteristics important to ecosystems
and people [2], such as the SNOTEL network managed by the U.S. Natural Resource Conser-
vation Service in the western U.S. [32,33]. Recent contributions toward addressing this defi-
ciency in the northeastern U.S. have used snow depth to represent the historical snowpack
[3,42], remote sensing to depict snowpack depth and duration [45-47] or shorter historical
snow water equivalent (SWE) records combined with modeling [4,48,49]. Our study advances
this body of work by utilizing weekly, long-term measurements of SWE from three nearby
sites that vary along a climate gradient, as well as co-located precipitation and air temperature
measurements. This allows us the opportunity to assess the relative roles of any changes in pre-
cipitation as compared with changes in weekly net snowpack ablation in our understanding of
the changing snowpacks in our region.

This paper describes 56 years of snowpack changes using three different locations along a
climate gradient at a site in the northeastern U.S. Using daily weather data from the site, we
ask to what degree are reported changes in snowpack characteristics in the region due to
changes in precipitation compared with increases in snowpack ablation.

Methods

Study site

This study was conducted at the Hubbard Brook Experimental Forest (HBEF) in New Hamp-
shire, USA (43° 56’ N 71° 45" W; Fig 1). The HBEF is administered by the USDA Forest Service
and is described in detail in Holmes and Likens (2016) [50]. The data used in this analysis have
all been collected as a part of the USDA Forest Service’s hydrometeorological research pro-
gram and are publicly available. The HBEF climate is cool and continental with summer
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Fig 1. Map of the hubbard brook experimental forest. The panel on the left places the HBEF within the northeastern United States, and the panel
on the right shows the locations of the snow courses and weather stations used in this analysis. All map layers are published and available at https://

hubbardbrook.org/data-catalog/. Specific layers are cited in the [S1 Methods].
https://doi.org/10.1371/journal.pcim.0000529.9001
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temperatures averaging 18° C in July and winter temperatures averaging -8° C in January.
Snowpacks vary year to year, but historically begin developing by December and persisting
into April [49]. The vegetation is primarily mature, second-growth forests, with the northern
hardwoods sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.),
and yellow birch (Betula alleghaniensis Britt.) dominant at low and mid-elevations and the
conifers red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.)) dominant
at higher elevations [51].

Snowpack measurements and derived variables

The USDA Forest Service maintains a network of snow courses distributed throughout the
HBEF where weekly snowpack depth and SWE measurements are taken using a Federal snow
sampling tube (Rickly Hydrological Company, Columbus, OH, United States) along a transect
consisting of 10 measurements spaced 2 m apart [52]. Three snow courses were selected for
this study because they have the longest records (>50 years) and represent a range of eleva-
tions and aspects (Fig 1). Snow course (SC) 2 has a southerly aspect and an elevation of 555
meters. Snow courses 19 (SC19) and 17 (SC17) both have northerly aspects and elevations of
600 m and 898 m, respectively. The three sites thus lie along a general climate gradient from
warmer to colder, driven by a change in aspect from south to north and by an increase in ele-
vation. In this study, the highest of the three snow measurement sites is located in a spruce-fir
dominated stand, while the lower two sites are in northern hardwoods. We used SWE (instead
of depth) as the central metric for calculating snowpack characteristics because decreases in
SWE represent net snowpack losses through ablation, whereas depth measurements are
affected both by ablation and settling of the snowpack.

Using the weekly SWE measurements, we calculated the dates of snowpack onset and disap-
pearance for each season. Snowpack onset was defined as the date when SWE first reached a 6
cm threshold. This threshold was chosen because it both represents the snowpack size
observed to be sufficient to decouple soil temperatures from air temperatures at our site [15,
S1 Fig, S2 Methods], and allows us to avoid uncertainties in historical measurement protocols
for early season, possibly intermittent, snow events. The last week of recorded SWE was used
to define the end of the seasonal snowpack, and the duration of snowpack was calculated as
the number of days between snowpack onset and snowpack disappearance (Table 1).

Overall snowpack size was defined as the maximum SWE for the season, and we recorded
the date when the maximum was reached. Following Harpold and Brooks [32], we define win-
ter as the period of snowpack accumulation from December 1 to the median date of maximum
SWE for each snow course over the period of record and we define spring as the period of
snowpack disappearance following the median date of maximum SWE through the median
date of last recorded snow for each snow course. We used December 1 as the winter starting
point because it is the beginning of meteorological winter. Thus, each snow course has slightly
different time periods for both winter and spring (Table 1).

Finally, we calculated snowpack reductions during winter by identifying weeks within these
time periods where the weekly SWE measurement was lower than the previous week. In these
cases, a weekly net loss was calculated by subtracting the current week SWE from the previous
week SWE. The precision of our weekly loss calculation is limited by two factors. First, there
are instances where ablation events are buffered by snow events, such that instances of water
loss are obscured. Second, there are instances under smaller snowpacks where water losses are
more severe at the colder sites simply because there is more water available in the relatively
larger snowpacks.
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Table 1. Datasets and definitions of derived variables used in this study.

Datasets Source

Snowpack USDA Forest Service, Northern Research Station. 2023a. Hubbard Brook
Experimental Forest: Weekly Snow and Frost Measurements, 1955—present ver 18.
Environmental Data Initiative. [52]

Daily temperature USDA Forest Service, Northern Research Station. 2024a. Hubbard Brook
Experimental Forest: Daily Temperature Record, 1955—present ver 13.
Environmental Data Initiative. [53]

Daily precipitation USDA Forest Service, Northern Research Station. 2024b. Hubbard Brook
Experimental Forest: Daily Precipitation Rain Gage Measurements, 1956—present
ver 21. Environmental Data Initiative. [58]

Daily vapor pressure USDA Forest Service, Northern Research Station. 2023b. Hubbard Brook
Experimental Forest (USDA Forest Service): Vapor Pressure Measurements, 1966—
present ver 10. Environmental Data Initiative. [56]

Solar radiation USDA Forest Service, Northern Research Station. 2024c. Hubbard Brook
Experimental Forest: Daily Solar Radiation Measurements, 1959—present ver 13.
Environmental Data Initiative. [62]

Snowpack Derived Variables

Definition

Onset (day of year) The date at which the snowpack first reaches 6cm SWE [15]

Last SWE (day of year) The date of the last recorded SWE of the season

Duration (days) The number of days between onset and Last SWE each season

Winter The period between Dec 1 and the median date of maximum SWE at each site (see
Table 1 for dates) [32]

Spring The period between the median date of maximum SWE and the median date of last
SWE at each site (see Table 1 for dates) [32]

Snowpack reduction (cm) The difference in SWE between weeks when a subsequent week showed a lower SWE

than the previous week
Climate Derived Variables

Average daily temperature | The daily average temperature derived from the nearest weather station and adjusted

(Q®)] by a lapse rate of -0.0065°C per meter of elevation gain [54]

Thawing degree days (TDD) | The cumulative sum of average daily temperatures at each site exceedinga 0° C
threshold [19]

Condensation Degree Days | The cumulative sum of the differences between the estimated snow surface

(CDD) temperature and the dewpoint temperature when the snow surface temperature was
colder than the dewpoint temperature (see methods)

Total Precipitation (mm) The sum of daily precipitation amounts at the nearest weather station

SNOW (mm) The sum of daily precipitation that fell on days with daily average temperatures at or
below 0° C [59]

SNOW/Precip The fraction of the daily precipitation that fell on days with daily average

temperatures below 0° C [61]
https://doi.org/10.1371/journal.pcim.0000529.t001

Climate measurements and derived variables

Long-term meteorological data from nearby weather stations within the HBEF were used to
calculate variables describing climate conditions expected to influence the energy budget of a
snowpack (Fig 1). For temperature variables, we used the nearest weather station with a tem-
perature record that matched the snow record in duration and adjusted the daily average tem-
perature [53] up or down using a lapse rate of 0.0065°C/m [54]. For SC2, the nearest station
was weather station 1, located 77 m downslope and with a similar aspect. For SC19 and SC17,
we used weather station 14, which was 132 m higher than SC19 and 166 m lower than SC17,
with a similar aspect. For each site we used daily average temperatures to also calculate a thaw-
ing degree days metric (TDD, defined as the cumulative sum of average daily temperatures
exceeding a 0° C threshold).
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In order to estimate conditions of latent heat transfer to the snowpack, we calculated a con-
densation degree-day (CDD) metric, which was based on an estimate of snow surface tempera-
ture and the modeled dewpoint temperature. Dewpoint temperature was modeled for the
entire record at weather stations 1 and 14 using a random forest model [55] trained on
observed dewpoint temperature at station 22 between 1981 and 2023, with mean daily, mini-
mum daily, and diurnal range in air temperature as independent variables. The dewpoint tem-
perature at station 22 was calculated using the daily average temperature and relative humidity
measurements [56] (Fig 1), using the Bolton (1980) equations [57]. The random forest model
prediction versus observations had a relationship of predicted = 0.95%observed+0.1 (R* = 0.95)
and a mean absolute error = 1.8°C. The model was then used with weather stations 1 and 14 to
predict the mean daily dewpoint at those stations over their observation record. We assumed
the snow surface temperature was equal to the daily average air temperature when air tempera-
ture was less than or equal to 0° C, and 0° C when the air temperature was above freezing, and
then compared this surface temperature estimate with the dewpoint temperature. In instances
where the estimated snow surface temperature was less than the dewpoint temperature, the
condensation degrees for the day were calculated as the difference. In instances where the esti-
mated snow surface temperature was greater than the dewpoint temperature, we assumed that
there was no latent heat transfer into the snowpack. The CDD metrics for the analyses were
cumulative sums of the daily values over the time periods in question.

For precipitation variables, we paired each snow course with the nearest weather station
with a long-term daily precipitation record. We paired SC2 with weather station 1, SC19 with
weather station 14, and SC 17 with weather station 17 [58]. We then matched daily precipita-
tion values with adjusted daily average air temperatures to partition precipitation that fell dur-
ing freezing air temperatures (which we called SNOW) [59]. We realize this oversimplifies the
range of temperatures at which precipitation can occur as snow, which can vary between -2
and 2°C [60] and also does not allow for mixed precipitation. Because we are concerned pri-
marily with snowpack SWE and thus heat transfers to the snowpack, a 0°C threshold was
deemed suitable. We report both total precipitation and the fraction falling as SNOW [61].

To capture trends in solar radiation, we used long-term solar radiation data [62] from
weather station 22 at US Forest Service headquarters (Fig 1). We assumed that the trend in
solar radiation at station 22 was indicative of the trend at all sites, even though they would
have different total insolation due to their different topographic settings.

Methods and instrumentation for all snow and climate data are described in the metadata
for each published dataset.

Assessing trends in the snowpack and drivers of change

Temporal trends in snowpack and climate variables were tested for significance (o < =0.05)
using the Kendall correlation in the cor.test() function in R, with instances where a0 < = 0.1
and >0.05 reported and treated as marginally significant. Linear slopes associated with those
trends were estimated using the Sen robust estimation technique [63]. This approach uses the
median of a set of slopes generated from each unique pair of data points in the time series.
Correlations between snowpack and climate variables were quantified to provide insight into
whether reductions in snowpack could be due to changes in inputs (i.e., precipitation amount,
precipitation phase), or changes in other variables such as solar radiation, air temperature, and
dewpoint temperature that affect ablation. Data analyses were conducted using R version 4.3.1
[64]. The strength of the relationships between two snowpack descriptors (maximum SWE
and last recorded snow per season) and climate variables or antecedent snowpack variables
were described using a Spearman rank correlation as implemented with the cor.test() function.
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Table 2. Median lengths (in days) and trends over time in the timing of: Snowpack duration, snowpack onset, day of maximum snow water equivalent, and day of
the last recorded snow, as well as the maximum SWE for the year, at three sites that vary in aspect and elevation at Hubbard Brook from the winter of 1968 through

the winter of 2023.

value
Median duration (days) 84
Day of Onset 35 (Jan 4)
Day of maximum SWE 95 (Mar 3)
Day of last snowpack 128 (Apr 5)
Max SWE (cm) 15.85

SC2 SC19 SC17

trend p value trend p value trend p

-0.96 < 0.001 97 -0.647 0.007 119 -0.43 0.033

0.58 0.007 36 (Jan 5) n.t. 0.117 32 (Jan 1) n.t. 0.129

n.t. 0.400 113 n.t. 0.87 115 n.t. 0.191

(Mar 21) (Mar 23)

-0.25 0.008 138 -0.29 0.003 153 -0.17 0.035
(Apr 15) (May 1)

-0.14 0.012 21.55 -0.18 0.003 25.00 -0.26 < 0.001

Variables are described in Table 1. Trends are reported in instances when the p-value <0.05. Instances with no statistically significant trend are indicated with an n.t.

https://doi.org/10.1371/journal.pcim.0000529.t002

Results

The duration of the snowpack at all three sites varied by landscape position and across the
long-term record (Table 2, Fig 2). The south-facing site (SC2), which had a median snowpack
duration of 84 days, shows a shortening of snowpack duration of 9.6 days/decade (p < 0.01).
The highest, coldest site (SC17), whose median snowpack duration was 119 days, is shortening
at a rate of 4.3 days/decade (p = 0.03). Median snowpack duration and change over time at the
middle site (SC19) were between the low- and high-elevation sites, occurring for a median of
97 days and shortening at a rate of 6.5 days/decade (p < 0.01). Changes in snowpack duration
at the two north-facing sites (SC19 and SC17) are due to changes in the date of last recorded
snow, while changes in snowpack duration at the south-facing site (SC2) are due to changes in
dates of both onset and last recorded snow (Table 2). The rates of change reported are slightly
conservative because of rare instances later in the record where a 6 cm snowpack onset was
not reached during that year. These years (2016 at all three locations and 2006 at SC2) were
excluded from the snowpack duration analysis. Like snowpack duration, the seasonal maxi-
mum amount SWE has decreased significantly over time at all three sites (Table 2, Fig 3), with
declines over the 56-year record of 7.8, 10.1, and 14.6 cm for snowcourses 2, 19, and 17, respec-
tively. However, the date on which the snowpack reaches the maximum has not changed over
time at any of the sites. (Table 2, Fig 2).

All three sites show increasing average temperatures in the winter period, with rates of
increase of 0.3-0.4°C/decade, and no changes in total amount of precipitation in this period
(Table 3; Fig 4A-4F). Only the south-facing site (SC2) shows trends in climate variables associ-
ated with crossing the freezing threshold, however, with an increase in TDD of 2.9°C/decade
and a 3% decrease per decade in the proportion of snow to total precipitation (Table 3, Fig
4A-4C). The two north-facing sites do not show any increases in thawing conditions (TDD,
CDD), nor changes in the form of precipitation. All temperature-related meteorological vari-
ables tested were strongly correlated with the maximum snowpack size (Table 3).

Cumulative snowpack losses during winter increased over time at SC19 and SC17
(p < 0.01, Fig 5A, Table 3), while increases in cumulative snowpack losses were only margin-
ally significant at SC2 (p = 0.06). The rates of loss in this period varied from 0.4 cm/decade at
SC2, 1.4 cm/decade at SC19, and 1.2 cm/decade at SC17. Losses at both SC19 and SC17
increased because both the number of loss events per winter period increased (Fig 5B) and the
total volume of loss per event increased (Fig 5C). The average size of a weekly snowpack loss
increased by 0.27 cm/decade at SC19 (p<0.001) and 0.19 cm/decade at SC17 (p = 0.02) and
did not show a change at SC2. The number of weekly net losses per winter period increased at
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Fig 2. Dates of major snowpack milestones. In each panel the lower line is the onset date (when the snowpack
reached 6 cm of snow water equivalent). The middle line is the date the snowpack reached its maximum, and the top
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line indicates the date of the last recorded snow. Solid lines through the data indicate significant trends at p< = 0.05.
Slopes and precise p-values are found in Table 2. Panel A corresponds to snowcourse (SC)17, which faces north at 898
meters in elevation. Panel B corresponds to SC19, which faces north at 600 meters, and panel C corresponds to SC2,
which faces south at 555 meters.

https://doi.org/10.1371/journal.pcim.0000529.g002

least marginally at all three sites (0.2 events/decade at SC19 (p = 0.021), 0.47 events/decade at
SC17 (p < 0.001), and 0.2 events/decade at SC2 (p = 0.076). However, cumulative weekly
snowpack losses during winter were not consistently correlated with annual maximum SWE
across the three sites (Table 3).

In spring, the annual date of last recorded snow occurred earlier at all three sites (Table 1;
Fig 2) and is advancing at rates of 2.5 (SC2), 2.9 (SC19), and 1.7 (SC17) cm/decade at the three
sites. The proportion of precipitation falling as snow did not change at any site in this time
(Table 4). Temperature-related environmental variables (average air temperature, TDD, CDD,
and snow/total precipitation) were generally correlated with the date of last-recorded snow
(Table 4), but of these only CDD showed any change over time and at only one site. Since the
direction of this change is indicative of less thawing pressure from latent heat transfer, we do
not see any environmental changes in the spring period that would increase snowmelt pres-
sures. Solar radiation was not correlated with the date of last snow at any of the sites (S1
Table). In contrast to the environmental variables, annual maximum SWE was both highly
correlated with the last recorded snow date and decreasing over time (Table 4), indicating its
primary importance in explaining the shortening of the spring period.

Discussion

Snowpack duration and amount have clearly declined at our study site. Declines in snowpack
duration were largely due to earlier snowpack disappearance in spring, consistent with other
regional observations [3,19], while a change in snowpack onset was only evident at the south-
facing site. These results reinforce recent observations in the region by Murray et al. (2021),
[3] who measured snow covered days with no SWE threshold and found a consistent yet non-
significant trend of declining snow cover [3], and Burakowski et al (2022), who predicted
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Fig 3. Annual maximum snowpack size (SWE) from three snowcourses (SC) which vary by elevation and aspect.
Solid lines indicate significant trends at p< = 0.05. Slopes and precise p values are found in Table 2.

https://doi.org/10.1371/journal.pcim.0000529.g003

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000529 December 18, 2024 9/19


https://doi.org/10.1371/journal.pclm.0000529.g002
https://doi.org/10.1371/journal.pclm.0000529.g003
https://doi.org/10.1371/journal.pclm.0000529

PLOS CLIMATE

Long-term changes in snowpack duration and winter snowmelt

Table 3. Environmental conditions in the winter timeperiod at each location, showing any changes over time and correlations between each variable and the maxi-

mum size of the snowpack (SWE).

Tave (°C)

p-value

TDD

p-value

CDD

p-value

Precip (mm)
p-value
SNOW!/total precip
p-value
Cumulative snowpack loss (cm)

p-value

SC2 SC19 SC17
p trend p trend p trend
-0.44 0.04 -0.51 0.03 -0.43 0.03
<0.001 0.001 < 0.001 0.004 < 0.001 0.004
-0.56 0.29 -0.59 n.t. -0.44 n.t.
<0.001 0.047 < 0.001 0.340 < 0.001 1
-0.47 n.t -0.46 n.t. -0.40 n.t.
< 0.001 0.243 < 0.001 0.81 0.002 0.960
0.23 n.t. 0.36 n.t. 0.39 n.t.
0.081 0.347 0.007 0.882 0.003 0.344
0.48 -0.003 0.44 n.t. 0.41 n.t.
< 0.001 0.018 <0.001 0.516 0.002 0.48
n.s. 0.04 0.29 0.14 n.s. 0.12
0.167 0.062 0.029 < 0.001 0.555 0.001

Cumulative snowpack loss is the sum of the net weekly melts. Other variables are described in Table 1. Trends are reported in instances when the p-value <0.1, with

instances of p-value< = 0.05 in bold. Instances with no statistically significant correlation are indicated with an n.s. and instances with no significant trend are indicated

with an n.t.

https://doi.org/10.1371/journal.pcim.0000529.t003

near-term declining snow cover relative to a 1980-2005 baseline under different emissions sce-
narios [4]. More broadly, Vincent et al (2015) observed declines in snowpack duration at sites
across Canada, with most sites showing declines in the spring period [65]. While the dates of
snowpack disappearance were highly correlated with the air temperature derived variables
(mean air temperature, TDD, CDD) during the spring period, these variables have not
changed over time in this period, nor has the proportion of precipitation falling as snow. This
strongly suggests that the earlier snowpack disappearance dates we report here are best
explained by declines in maximum SWE, which reflect winter processes and not spring
conditions.

The changes in snowpack onset and duration are consistent with other observations in the
region. Previous studies have used different thresholds for delineating the start of the snow-
pack season, including the beginning of a continuous snowpack [3,19] and a 3 cm SWE thresh-
old [4]. None of them have shown a change in the timing of snowpack onset, despite early
winter warming both historically [3,18] and under projected climate change [4]. Our relatively
large threshold for snowpack onset was chosen for its significance in decoupling soil tempera-
tures from air temperature [66,67], and thus relevance to questions related to soil frost
[9,20,68]. The onset date using our definition of 6 cm SWE is trending later into the winter at
the south-facing site but not at either north-facing site, suggesting that aspect may be impor-
tant in the sensitivity of this metric. Onset occurs at a time of year when direct radiation is at a
minimum, but still differs greatly by aspect, so perhaps either the effect of radiation on the
early snowpack or radiation-driven differences in antecedent soil temperatures contribute to
aspect-related differences in snowpack onset timing. Our somewhat counterintuitive observa-
tion that winter melts are more clearly increasing on the north-facing sites, combined with the
later onset of the snowpack only at the south-facing site, suggests to us that early season snow
events on the south-facing site are melting out before they have the chance to accumulate to a
size where we can perceive snowpack responsiveness to climate. The influence of aspect on
snowpack onset deserves further study as changes in the timing of early snowpack develop-
ment strongly affects soil temperatures [66].
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Fig 4. Trends in total precipitation in the winter period, separated by volume that fell on days above freezing, or
days at or below freezing. Panels d-f show the average temperatures at each site in this period.

https://doi.org/10.1371/journal.pcim.0000529.9004

It is notable that the date by which the snowpacks reach their maximum size is showing no
indication of getting earlier in the winter at any of the sites, so the spring snowmelt period is
getting shorter, rather than shifting earlier. The winter is getting warmer and winter melts are
increasing, but the snowpack appears to be accumulating, albeit to a smaller maximum, for the
same amount of time. The spring period is getting shorter because there is a smaller amount of
snow to melt. This trend toward increasing melts before the maximum SWE is consistent with
observations from the western U.S., where widespread increases in melts before the date of
maximum SWE have been observed [36]. Because this study utilized net snowpack changes on
a weeKkly basis it is difficult to comment on snowmelt rates, but the increases in winter melts
combined with the lower maximum SWE is consistent with observations from the west noting
that, because declining snowpacks and increasing winter melts mean less snow is available at
times of high energy availability, there has been a general slowing of snowmelt rates [69]. Our
observation of decreasing seasonal snowpacks disappearing earlier in the year could result in
changes to soil moisture and groundwater recharge, which experience their greatest seasonal
input during the snowmelt season [70].
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Fig 5. Total snowpack losses during winter (see Table 2) from three snow courses which vary in elevation and
aspect. Solid lines indicate significant trends at p<0.05, dashed line indicates trend at p<0.1. Slopes and exact p-values
are found in Table 3. Panel a shows the total net loss over the entire winter period. Panel b shows the number of weeks
showing a net snowpack loss, and panel ¢ shows the average size of the loss per each weekly loss.

https://doi.org/10.1371/journal.pcim.0000529.g005
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Table 4. Environmental conditions in the spring timeperiod (between the median date of maximum SWE and the median date of last-recorded snow) at each site

paired with correlations between each variable an.

p

Tave (°C) -0.76
p-value < 0.001
TDD -0.71
p-value < 0.001
CDD -0.67
p-value < 0.001
Precip (mm) 0.3
p-value 0.026
SNOW!/total precip 0.7
p-value < 0.001
Maximum SWE (cm) 0.61
p-value < 0.001

d the date of last recorded snow.

SC2 SC19 SC17
trend p trend p trend
n.t -0.64 n.t. -0.48 n.t.
0.241 < 0.001 0.611 < 0.001 0.467
n.t. -0.67 n.t. -0.52 n.t.
0.493 < 0.001 0.827 < 0.001 0.329
n.t. -0.60 n.t. -0.50 -0.53
0.261 < 0.001 0.661 < 0.001 0.045
-0.59 n.s. n.t. n.s. 0.88
0.092 0.674 0.206 0.518 0.066
n.t. 0.31 n.t. 0.24 n.t.
0.534 0.018 0.369 0.078 0.727
-0.14 0.63 -0.18 0.56 -0.26
0.012 < 0.001 0.003 < 0.001 < 0.001

Trends are reported in instances when the p-value <0.1, with instances of p-value< = 0.05 in bold. Instances with no statistically significant correlation are indicated

with an n.s. and instances with no significant trend

https://doi.org/10.1371/journal.pcim.0000529.t1004

are indicated with an n.t.

The proportion of precipitation falling as snow in winter was strongly correlated with the
overall maximum size of the snowpack but has only been changing over time at our south-fac-
ing location. Our two higher, north-facing sites have apparently remained cold enough that
the fraction of winter precipitation falling below 0°C remains about the same over time. Other
authors have reported changes in precipitation type in our region [41,44], which can result in
more rain-on-snow events and associated flooding [71]. Our results suggest a possible increase
in rain-on-snow at the south-facing site only, yet because melting and maximum SWE
declined at all three of the sites, rain-on-snow events do not seem to be the primary drivers of
increased snow ablation events. It is important to note that our temperature threshold for
rain/snow is a simplification of the complexities in precipitation form, but the lack of change
in precipitation form and amount at two of the three sites suggests that changes in duration
and size of snowpacks are not primarily explained by changes in precipitation inputs.

In contrast, there were clear increases in both the number of net snow ablation weeks and
total amount of ablation over the winter period. Snowpack reductions could be a combination
of melting and/or sublimation, but previous stable water isotope data from our site has sug-
gested net condensation into the snowpack instead of net sublimation [72], so we interpret
these trends to be primarily snowmelt driven. Surprisingly, total winter net weekly snowpack
loss was only correlated with the maximum snowpack size at one of the sites (SC19), so the
specific drivers explaining smaller snowpacks are unclear and cannot be attributed solely to
the increase in winter snowpack losses. At the south-facing site, SC2, the net winter snowpack
losses were often lower than the two north-facing sites and declined at a lower and only mar-
ginally significant rate over time (Fig 4). This disparity between aspects could reflect instances,
typically in the early season, where the smaller snowpack at the south-facing site melted out
completely while the deeper snowpacks at the north-facing sites were able to lose more water
simply by virtue of their larger size. This dynamic can be seen in the numerous instances in
Fig 5A where the north-facing sites show more cumulative melt. The occurrence and magni-
tude of snowmelt at the coldest site, SC17, is difficult to explain. This site showed increasing
snowpack losses and a declining maximum SWE, but no significant correlation between the
two and no significant changes over time of any other variable correlated with maximum SWE
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except mean temperature. Given that SC17 is located in a coniferous stand of trees and its
decline in maximum SWE (14.6 cm decline over 56 years) is much greater than its increase in
winter ablation (6.7 cm over 56 years) and we see no indication of changes in precipitation
form or amount, we speculate that perhaps canopy interception of incoming snow may have
increased at the coniferous site, given recent observations that spruce trees have expanded at
the expense of birch trees at higher sites at the HBEF [51].

The fact that both mean temperatures and weekly snowpack reductions increased over time
at both north-facing sites, yet there were no changes in metrics which would directly expose
snowpacks to melt (TDD, CDD, and proportion of precipitation falling as snow) suggests that
the snowpacks are warming and becoming more sensitive to latent and sensible heat inputs to
the snowpack. If the observed decreases in solar radiation at our site are explained by cloud
cover, this could also act to alter the energy budget of the snowpack by decreasing the radiative
heating of the snowpack in the hours the sun is out, and limit nighttime cooling of the snow-
pack because cloud cover re-radiates long-wave radiation [73]. Winter snowpacks experience
far more hours without direct radiation from the sun than with direct radiation inputs so
cloud-driven decreases in radiation could be another factor warming the snowpacks. However,
the frequency of our weekly net ablation measurements does not allow for the precision neces-
sary to closely examine changes in relationships between melt and heat inputs. The best we
can say is that the snowpack has been showing more ablation in the winter period, even in
places where melt-inducing conditions are not increasing.

Weekly net changes in SWE combined with daily meteorological measurements do not
allow for complete analysis of the energy budgets of a snowpack, especially when compared
with the sub-daily data produced by snow monitoring installations such as the automated
Snow Telemetry (SNOTEL) network of the American West [32,33]. However, decades of care-
ful, weekly snowpack measurements combined with co-located weather data have allowed us
to observe changes in snowpack behavior that are best explained by warming of the midwinter
snowpack. The snowpack appears to be more responsive to thawing conditions, regardless of
whether those conditions are increasing over time. This sensitivity shows itself most clearly at
the colder sites with the larger snowpacks because they do not seem to cross the freezing tem-
perature threshold more often but show both higher average losses per melt (Fig 5A) and more
frequent melts. (Fig 5B). The increased sensitivity we observe is consistent with recent broad-
scale findings by Gottlied and Mankin [1], who document a non-linear threshold response in
snowpack sensitivity to temperatures at average climatological winter temperatures above
-8°C. We note that the mean Dec-Feb temperatures at our sites over the years of this study are
-6.75°C, -6.6°C, and -8.5°C for SC2, SC19, and SC17, respectively [53], suggesting that our
sites experience the winter conditions that would make them increasingly sensitive to warming
air temperatures.

Conclusion

Snowpack maximums and duration have both declined over our 56-year record of snowpack
monitoring. The reduced snowpack duration is explained by a shorter spring snowmelt season
at every site, stemming largely from lower snowpack maximums, and with a later-developing
snowpack onset only evident at our south-facing location. The drivers of the decreased snow-
pack maximums are not entirely clear, as observed precipitation changes appear minor and
total net snowpack ablation, despite clearly increasing over time, was not always correlated
with the annual maximum snowpack size. The two locations which do not show increases in
above freezing variables nevertheless show more frequent and more pronounced net weekly
snowpack losses over the record, suggesting an increasing sensitivity of the snowpack to
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thawing conditions when they do occur. Warming temperatures appear to affect snowpack
duration through alterations of their energy budget before those temperatures result in
changes in precipitation form.
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