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Abstract: This paper presents a wideband low-profile dual-polarized patch antenna with helical-
shaped L-probe feeding (HLF) for mmWave 5G mobile device applications. Parametric studies on the
HLF structure are performed to identify the optimal specifications. As a result, the optimized antenna
achieves a wide bandwidth of 5.4 GHz (24.2–29.6 GHz), good isolation > 18 dB between ports, and
5.1 dBi of good peak realized gain, which is experimentally verified with a 10× upscaled antenna.
In addition, various one × four phased arrays with different port configurations and beamform
capabilities are designed and simulated for the peak realized gain. The designed antenna array
shows a high peak realized gain of 10 dBi, high isolation of 15 dB between the ports, and a small
substrate thickness of 0.048λ0 (λ0 is the wavelength of 24.25 GHz). Compared to the state-of-the-art
antennas, the designed dual-polarized antenna can operate in the frequency ranges of 24.25–29.6 GHz,
including n257, n258, and n261 of the 5G new radio frequency range 2.
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1. Introduction

The advent of fifth-generation (5G) wireless communication technologies has sparked
considerable interest across various applications, enabling ultra-fast data transfer, high-
definition video live streaming, and the Internet of Things (IoT) [1]. Critical to supporting
these technologies are high data rates, ultra-low end-to-end latency, and high capacity.
Leveraging millimeter-wave (mmWave) frequency bands has become pivotal given their
broader bandwidth compared to 4G wireless frequency bands. Consequently, many coun-
tries have already allocated frequency ranges from 24.25 to 29.5 GHz for 5G networks
(low-band: n257, n258, and n261 of 5G new radio (NR) frequency range 2 (FR2)), as shown
in Figure 1.
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Although mmWave frequency bands offer broad bandwidth, higher frequency bands
lead to increased free space path loss. This phenomenon shortens the traveling distance of
electromagnetic waves, necessitating a compensatory increase in effective isotropic radiated
power (EIRP) to mitigate the effects of increased free space path loss. In response to the
need, a high antenna gain is demanded in mmWave wireless communication systems.
Antenna arrays, comprised of multiple antenna elements spaced at optimal distances, are
deployed to enhance antenna directivity and gain. Nonetheless, the increased directivity
of the antenna poses challenges in achieving sufficient wireless communication coverage.
Electrical beamforming effectively extends the coverage range to overcome this issue,
addressing the challenge.

Recently, antenna-in-package (AiP) technology has emerged, integrating antenna ar-
rays into packages alongside radio-frequency integrated circuits (RFICs). The AiP technol-
ogy offers several advantages, including low insertion loss by shortening the RF signal path,
compactness, fabrication reliability, and cost-effectiveness [2]. Millimeter wave-phased
array microstrip antennas have been studied for 5G wireless communication bands. How-
ever, conventional microstrip antennas suffer from narrow impedance bandwidth and low
gain. To address these issues, various methods, such as loading different substrates [3,4],
using an air cavity and glass as substrates [3,5], loading metasurfaces [6], employing an
L-shaped probe [7], and loading patterned slots [6], have been proposed. Gu et al. reported
a multi-stacked organic- and air cavity-based AiP [3]. The hybrid multilayered method
achieves a bandwidth of 3.7 GHz (26.3–30 GHz), but it has issues such as low gain, thick
thickness, and limited bandwidth. It does not cover the entire low band of 5G NR FR2.
Other reported methods also have problems like low gain, high profile, single polarization,
or low operating bandwidth [3–20]. There is a pressing need for a specific technique to
effectively address these issues.

This paper introduces a new wideband dual-polarized patch antenna and antenna
array that covers n257, n258, and n261 of 5G NR FR2, spanning from 24.25 to 29.5 GHz. The
antenna offers high isolation between ports and high gain. Experimental results confirm
the simulated performance of this antenna array. A novel helical-shaped L-probe feeding
(HLF) structure is introduced to achieve high bandwidth with a low profile.

This paper consists of five sections. Section 2 describes the designed AiP with the
HLF. The antenna performance of the AiP is investigated in Section 3. The experimental
verification of the 10× upscaled AiP is presented in Section 4. Section 5 covers the design
of the 1 × 4 array and compares the antenna array performance among state-of-the-art
antenna designs. Lastly, Section 6 provides concluding remarks.

2. Antenna-in-Package Structure

Figure 2 shows the designed geometry and dimensions of a dual-polarized HLF patch
antenna (HLF-PA). The antenna was designed on multilayer laminated FR-4 printed circuit
board (PCB) substrates. The measured dielectric constant (εr) and dielectric loss tangent (tan
δε) of the multilayer laminated FR-4 substrate are 4.02 and 0.018 at 30 GHz, respectively [8].
The stack-up for the antenna consists of a copper-clad laminate (CCL) layer with a thickness
(tCCL) of 0.3 mm, 10 layers of prepregs (PPG) with an equal thickness (tPPG) of 60 µm, and
12 layers of metal with a thickness (tCu) of 20 µm, as shown in Figure 2b. Annealed copper
is used for all metal layers. The CCL, top five PPGs, and six top-metal (TM) layers are used
for the patch antenna structure (antenna portion in AiP). BM1 is the main ground for the
patch antenna, and the total thickness of the antenna portion is 600 µm. The bottom five
PPGs and six metal (BM) layers are used for the feeding network, digital, and power lines.
The RFIC port is connected to the antenna input terminal at BM2 via transitions from BM1
to BM6 without strip lines in antenna performance simulation [2].
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Figure 2. Geometry and dimensions of the proposed (a) dual-polarized helical-shaped L-probe fed
patch antenna (HLF-PA) and (b) PCB stack-up of the designed HLF-PA.

Furthermore, eight shorting vias from BM1 to BM6 form a coaxial structure to match
the impedance [2]. The guided feeding via transitions is connected to the designed HLF
structures at BM1. To increase the antenna impedance bandwidth, the helical L-probe
feeding structures are located from BM1 to TM4. Lastly, the patch radiator is situated on
the TM6 layer. The antenna dimensions are summarized in Table 1. The performance of the
designed AiP was simulated with the ANSYS high-frequency structure simulator (HFSS
v.18.1). All simulations in this paper were performed on a Dell Precision T5600 workstation
having a CPU (Dual Intel Xeon Processor E5-2697 v2—12 core HT, 2.7 GHz turbo) and
128 GB of RAM.

Table 1. Dimensions of wideband dual-polarized 5G mmWave patch antenna structure.

lS wS lP wP lPB wPB dF dFP dPB

5 5 2.35 2.35 0.3 0.12 0.18 0.27 0.33

wHP XF dV dVP dc tPPG tCCL tCu Unit in
mm0.145 1.705 0.08 0.12 0.5 0.06 0.3 0.02

3. Performance of Designed Antenna with Parametric Studies
3.1. Conventional L-Probe and Designed Helical-Shaped L-Probe

One well-known method to broaden the bandwidth is the L-probe proximity coupled
feeding method, as illustrated in Figure 3a [5,7]. A self-resonance of the feeding structure
near the fundamental resonance of the patch antenna can broaden the impedance band-
width of the L-probe-fed patch antenna [7]. Accordingly, the total length of the L-probe
feeding (sum of vertical and horizontal lengths) is an essential parameter in achieving a
broad impedance bandwidth. Additionally, the horizontal portion of the conventional
L-probe feeding controls the coupling coefficient, i.e., the resonant frequency of the antenna,
between the L-probe feeding and the driven patch. Hence, the horizontal portion of the
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L-probe feeding must have an appropriate length and width. Figure 4a shows the simu-
lated scattering parameters (S-parameters) of the conventional L-probe feeding without
a patch radiator. The length of the vertical part of the L-probe feeding is 500 µm in this
simulation. The length of the horizontal portion of the L-probe feeding (lPB) varies from
0.9 to 1.5 mm to identify the resonance of the conventional L-probe feeding. As expected,
the resonant frequency shifts from 40 to 26 GHz as the lPB increases. When the lPB is
1.5 mm, the L-probe feeding resonates near 27 GHz, close to the center frequency, covering
n257, n258, and n261. However, poor isolation between ports is observed in Figure 4a,
which is attributed to coupling between ports for V- and H-polarizations. For this reason,
the conventional L-probe feeding method is unsuitable for 5G mmWave AiP to realize a
broadband dual-polarized antenna.
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To address the issue, the HLF is newly designed, as illustrated in Figure 3b. The
designed feeding structure consists of a vertical component, which has a helical winding
structure with 1.5 turns that is connected between BM1 through TM3, and a horizontal
component located at TM4. The designed structure decreases the lPB of the conventional
L-probe-fed antenna by 1.2 mm. The simulated resonant frequency of the designed feeding
probe is 29.4 GHz.

Regarding the mutual coupling between V- and H-pol ports, a minimum isolation
greater than 25 dB between the two ports is achieved due to the decreased lPB, as shown in
Figure 4b. Figure 5a,b show the simulated surface current distribution of the conventional
and the designed HLF at 27 GHz, respectively, when Port 1 is excited. At the same time, Port
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2 is terminated with 50 Ω. The simulated surface current distribution shows the improved
isolation between the two ports with the HLF structure replaced by the conventional
L probe. A strong surface current is observed from the terminated port (Port 2) in a
conventional L-probe structure when Port 1 is excited in Figure 5a. On the other hand, the
designed HLF structure shows a negligible coupling effect between ports in Figure 5b.
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Figure 6 shows the S-parameters of the conventional L-probe and the designed HLF
with a patch radiator. The same rectangular patch radiator of TM6 is used for both L-probes.
The resonant frequency of 26 GHz without the patch radiator shifts to 30.5 GHz when the
patch radiator is introduced on the conventional L-probe. This is mainly attributed to the
capacitance (Cpat_up) between the upper probe and patch radiator in Figure 7a. The high
Cpat_up is induced by the coupling between the patch and the conventional L-probe with a
longer lPB than the designed L-probe. The feeding position is moved toward the edge of
the ground to reduce the coupling, resulting in a larger antenna size. Another method is to
shorten the L-probe’s vertical length, increasing the gap between the patch radiator and the
horizontal portion of the L-probe. However, this approach requires increased laminated
PCB thickness, making manufacturing costly and complex. Therefore, both methods are
unsuitable for the low-profile broadband dual-polarized patch antenna. In contrast, the
designed dual-polarized patch antenna with an HLF shows a good −10 dB impedance
bandwidth of 5.4 GHz (24.2–29.6 GHz) with high isolation (|S21|) greater than 18 dB. The
introduction of L3, C2, and C3 in Figure 7b allows a short horizontal portion of the L-probe
feeding. Accordingly, the optimal coupling coefficient and high isolation between V- and
H-pol ports can be achieved within the limited size and thickness.
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3.2. Parametric Studies on Various HLF Dimensions

Parametric studies on various HLF dimensions were conducted to analyze the effects
on antenna performance, determining the optimal HLF dimensions. First, the reflection
and transmission characteristics of the designed HLF are analyzed for various lPB of the
HLF structure in Figure 8. As the lPB increases from 0.2 to 0.5 mm, the resonance of the
S11 shifts from a low to a high frequency. In contrast, the transmission coefficient (S21)
is insignificantly affected. Similarly, the resonance of the S11 shifts from a low to a high
frequency as the width (wPB) increases from 0.06 to 0.24 mm without changing S21, as
shown in Figure 9a. The S11 degrades from −30 to −10 dB in the frequency range between
25 and 26 GHz, while the S11 improves from −12.5 to −40 dB in the frequency ranges
between 28.5 and 29 GHz with an increase of wPB.
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Antenna input impedance is subject to reactance (Zimag), which is affected by the
coupling coefficient between the patch radiator and the horizontal portion of the HLF.
Figure 9b shows the simulated resistance and reactance at various wPB values as a function
of frequency. The resistance changes within 10 ohms at 25.5 GHz as the wPB varies between
0.06 and 0.24 mm, while the reactance varies within 30 ohms at the same frequency. A lPB
of 0.3 mm and wPB of 0.12 mm are chosen for further study, since the antenna with the
given dimensions shows good S11 and S21 in the desired frequency bands.

Figure 10 shows the effects of the distance (XF) between the center of the rectangular
patch radiator and the center of the stacked via in the CCL for HLF on antenna performance.
As the XF decreases from 1.805 to 1.705 mm, the −10 dB impedance bandwidth improves
from 4 to 5.2 GHz at the expense of a slightly high S21. However, the impedance matching
degrades when XF decreases from 1.705 to 1.505 mm. Therefore, the optimum value of
1.705 mm is selected for XF.

Figure 11 shows the S11 and S21 characteristics of the designed HLF-PA for various
diameters of the helical turn (dPB). Good impedance matching is observed in the frequency
ranges from 24.2 to 29.6 GHz for a dPB of 0.33 mm. As dPB increases from 0.32 to 0.34 mm,
the second resonant frequency (f2) shifts from low to high, which is attributed to the increase
in the L3 and total length of the HLF. The simulated results indicate that varying dPB can
tune f 2.
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with various dPB.

Figure 12 shows the simulated S-parameter and peak realized gain at boresight (RG00)
for the optimized HLF-PA. The HLF-PA shows a wide −10 dB impedance bandwidth of
20% (5.4 GHz: 24.2–29.6 GHz) for both V- and H-pol. High isolation (|SHV|) between
V- and an H-pol greater than 18 dB is achieved within the frequency bands of interest.
The simulated RG00 ranges from 3.7 to 5.1 dBi in the desired operating frequency bands
(24.25–29.6 GHz). Figure 13 shows the electric field distribution at 24.25 GHz and 29.5 GHz.
As shown, the patch is well excited with the fundamental mode. Figure 14 shows the 2D
radiation patterns of the designed HLF-PA at 24.25 GHz and 29.5 GHz. The simulated
maximum gains appear at the boresight in the XOZ and YOZ planes, indicating broad-side
radiation for both ports. In addition, the co-polarization for V-pol (Eθ in the XOZ plane
and Eϕ in the YOZ plane) is orthogonal to the co-polarization for H-pol (Eϕ in the XOZ
plane and Eθ in the YOZ plane) in the same observation plane. Accordingly, the designed
HLF-PA exhibits dual-polarization characteristics. Relatively small cross-polarization levels
of −20 dB are obtained in the XOZ and YOZ planes.
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Figure 14. Simulated radiation patterns of the designed dual-polarized patch antenna with the
helical-shaped L-probe feeding at 24.5 and 29.5 GHz: V-pol (a) XOZ and (b) YOZ plane and H-pol
(c) XOZ and (d) YOZ plane.

4. 10× Upscaled Antenna Experimental Verification

The 10× upscaled proof-of-concept (PoC) antenna is fabricated and characterized to
validate the simulated results based on the structural parameters and specifications in
Table 1. Since a multilayer PCB with a fine design rule is inaccessible in small quantities,
the designed dual-polarized patch antenna with an HLF structure is upscaled ten times for
fabrication to validate the proposed concept. Figure 15 shows the fabricated 10× upscaled
PoC antenna. An in-house precision milling machine (LPKF ProtoMat S62, LPKF, Garbsen,
Germany) is used to mill eight copper layers of double-sided CCL FR-4 epoxy substrates
for each layer. Below is the detailed fabrication process.
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via (left) and helical-shaped pattern (right). (The 2.92 mm (K-type) connector is suitable for n257,
n258, and n261 bands.)
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1. To align and fully compress the milled substrates into the antenna using M2.5 × 10 mm
screws and nuts, 2.55 mm diameter holes were punched on the edges of the substrate
and copper patch radiator. M2.5 × 10 mm plastic screws are selected and used on the
edge of the copper radiator patch to mitigate the effects of the screws on the radiation
from the copper patch radiator.

2. The copper foils of FR-4 substrates were milled accordingly for each TM1–TM6, CCL,
BM1, and feeding layer. The purpose of the BM layers is to provide feeding between
other chipsets. As shown in Figure 15b, the feeding layer replaces these BM layers
to ease the fabrication process and feed. The feeding layer thickness is 0.6 mm, and
a microstrip line with a width of 1.2 mm and length of 6.8 mm was used to connect
with the probe. Then, portions of the FR-4 substrate were milled to provide spaces to
embed parts of the proposed HLF structure for the TM1–TM4 and CCL layers.

3. The individual parts of the proposed HLF structure used in the TM1 to TM4 layers
were punched from a 0.2 mm thick copper sheet, as shown in Figure 15c. The copper
rod, with a 1.8 mm diameter, connecting between each TM layer and the TM1 and
feeding layers, was cut using a diamond wire saw.

4. To integrate the milled substrates and parts of the HLF structure, the FR-4 substrate
having the TM1 layer was flipped, and the holes were filled with screws and nuts.
After flipping and placing the TM2 layer on top of the TM1 layer, the first copper part
of the HLF structure was inserted. Then, the substrate for the TM3 layer was placed
on top of the substrate for the TM2 layer. To connect the TM2 and TM3 layers, the
copper rod cut in Step 3 was inserted and soldered. Then, the parts for the TM3 layer
were included and soldered to connect the copper rod and TM3 layer. This process
was repeated to connect the other layers.

5. After stacking all substrates, the bolts were tightened to eliminate possible air gaps
between the layers. Then, 50 Ω SMA connectors were used to feed the antennas
through feeding layers.

The fabricated 10× upscaled PoC antenna was characterized using a vector network
analyzer (VNA: Agilent N5230, Agilent, Santa Clara, CA, USA) for S-parameters and an
in-house anechoic chamber (Raymond Quietbox AVS 700, Raymond RF, Cleveland, OH,
USA) for radiation patterns and realized gain. The antenna was re-simulated with the
upscaled dimensions, modified stack-up, and modified feeding structure to compare the
measured and simulated results.

Figure 16 shows the simulated and measured S-parameters and RG00 of the fabri-
cated 10× upscaled PoC antenna. As depicted in Figure 16a, the HLF-PA shows a wide
−10 dB impedance bandwidth of 20% (540 MHz: 2.42 GHz~2.96 GHz) for V-pol and 22.7%
(620 MHz: 2.42 GHz~3.04 GHz) for H-pol. Further, the high measured |S21| of greater
than 18.2 dB is observed. Measured RG00 ranges from 4.0 to 5.2 dBi, closely following
the simulated results within ±0.5 dBi, which is approximately the measurement accu-
racy of the anechoic chamber. Good agreement between the simulated and measured
results is observed. Due to the same simulated S11 and S22 values, the solid blue line
(S22) covers the solid black line (S11). Small discrepancies between the results may be
attributed to minor fabrication errors, frequency-dependent material characteristics, and
characterization inaccuracies.

Figure 17 shows the simulated and measured normalized radiation patterns in the
E-plane at 2.5, 2.7, and 2.9 GHz for both ports. The measured E-planes show the broadside
radiation pattern. The cross-polarization levels are also lower than 15 dB for both ports
at all frequencies. These measured results validate the effectiveness of the novel helical
L-shaped feeding structure in developing an antenna for 5G mobile devices.
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5. Antenna Performance of Antenna Array

The 5G mmWave application requires high antenna gain to overcome propagation
path loss at allocated frequencies. Figure 18 shows various designed 1 × 4 HLF-PAAs. The
antenna arrays are simulated for performance to validate their versatility and effectiveness
in various port configurations. The distance of 5 mm between adjacent elements (d) is used
for all port configurations.
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Figure 18. Design of 1 × 4 designed wideband dual-polarized 5G antenna array with different port
configuration: array (a) #1, (b) #2, (c) #3, (d) #4, and (e) #5.

The simulated active S-parameters and S21 of the 1 × 4 HLF-PAA with port configura-
tion #2 and #5 are presented in Figure 19. Other arrays show similar antenna performance
and are not presented. A broad −10 dB impedance bandwidth is observed from the simulated
S-parameters of HLF-PAA with port configurations #2 and #5, which can cover the low band
of 5G NR FR2. The impedance matching is slightly degraded compared to the impedance
matching of the optimized unit antenna. This is because the minimum port-to-port isolation
is marginally degraded from 18 to 15 dB within the operating frequency in Figure 19b.
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The simulated far-field characteristics of the 1 × 4 HLF-PAA are presented in Figures 20–22.
The simulated frequency-dependent RG00 of 1 × 4 HLF-PAAs for all port configurations is
shown in Figure 20. The simulated lowest RG00 of all HLF-PAAs is 8.5 dBi in the operating
frequency bands. The maximum RG00 is 10 dBi. Thus, the simulated result demonstrates
that the proposed L-probe structures can be used in any array configuration without
any significant degradation of bandwidth and isolation. Figure 21 shows the simulated
radiation patterns of the developed 1 × 4 HLF-PAAs with the excitation of V-pol ports in
XOZ- and YOZ-plane at 27 GHz. The HLF-PAAs exhibit good broadside radiation at both
observation planes.
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The beamforming capability of HLF-PAA is validated by varying the phase progression
angle from 0◦ to 120◦. The simulated 2D radiation patterns of the HLF-PAA with port
configuration #1, when only V-po. ports were excited at 27 GHz, are shown in Figure 22
for the phase progression angle from 0◦ to 120◦. As the angle varies from 0◦ to 120◦, the
angle for the maximum gain from the radiation pattern in the YOZ plane was steered
from 0◦ to 318◦ in Figure 22. Low sidelobe levels (SLLs) less than 9.3 dB are observed.
Other HLF-PAAs show the same beamforming capability. It is also noted that the far-
field characteristics of the HLF-PAA with the excitation of H-pol. ports show identical
performance (not shown here) due to the structural symmetry. Thus, it can be concluded
that the developed HLF-PAA is insensitive to the port configuration, which can increase
the level of design freedom.
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Table 2 summarizes that the designed HLF-PA is compared with previously reported
antennas for 5G mmWave applications. The HLF-PA is the only low-cost antenna that
shows a wide impedance bandwidth (5.4 GHz: 24.2–29.6 GHz) covering n257, n258, and
n261 of the 5G NR FR2, antenna peak gain above 5 dBi, dual polarization, and thickness
below 600 µm, compared to other reported antennas. To emphasize the effectiveness of
the proposed antenna, the boxes highlighted in green are antennas that show bandwidth
above 20%, gain higher than 5 dBi, a low-cost substrate, thickness below 600 µm, and the
dual-polarization feature, while the boxes highlighted in red are antennas that do not meet
the above requirements.

Table 2. Performance comparison between state-of-the-arts and developed antenna *.

Ref. Frequency Band
(−10 dB Bandwidth) Peak Element Gain Substrate Height for

Antenna Part Remark

[2] 30–30.8 GHz
(0.8 GHz: 2.6%) 3 dBi 2 HDIs N. G. Dual-pol

(|Sij| > 22 dB)

[3] 26.3–30 GHz
(3.7 GHz: 13%) 4 dBi Air cavity and 2

HDIs N. G. Dual-pol
(|Sij|: N. G.)

[4] 27.4–29.6 GHz
(2.2 GHz: 7.7%) 4.5 dBi 3 HDIs 490 µm

(0.045 λL)
Dual-pol

(|Sij|: N. G.)

[5] 26.4–29.3 GHz
(2.9 GHz: 10%) N. G. A6 LTCC 480 µm

(0.042 λL)
Single-pol

(|Sij|: N. A.)

[6] 22.8–33.3 GHz
(10.5 GHz: 37.5%) N. G.

Organic substrate
(HL972LF,

GHPL-970LF)

420 µm
(0.031 λL)

Single-pol
(|Sij|: N. A.)

[9] 26.5–29.5 GHz
(3.0 GHz: 11%) 7.4 dBi TLY-5 and FR-4 1200 µm

(0.11 λL)
Dual-pol

(|Sij| > 23 dB)

[11] 22.3–29.6 GHz
(7.3 GHz: 28%) 5.8 dBi TLY-5, FR-27, FR-4,

RO4350
2570 µm
(0.2 λL)

Single-pol
(|Sij|: N. A.)

[14] 24.25–29.5 GHz
(5.25 GHz: 20%) 4.5 dBi RO4003C, RO4450F,

TLY-5
1800 µm
(0.15 λL)

Dual-pol
(|Sij| > 35 dB)

[16] 23-29 GHz
(6 GHz: 23.1%) 5 dBi FR-4, Air 1200 µm

(0.092 λL)
Dual-pol

(|Sij| > 15 dB)

[18] 27.5–31 GHz
(3.5 GHz: 12%) 6 dBi LTCC 1183 µm

(0.11 λL)
Dual-pol

(|Sij| > 14 dB)

[21] 25.87–29.05 GHz
(3.18 GHz: 11.5%) N. G. RO3003 and RO4003 1100 µm

(0.095 λL)
Single-pol

(|Sij|: N. A.)

[22] 26–31.0 GHz
(5.0 GHz: 17.5%) N. G. Prepreg 1160 µm

(0.1 λL)
Dual-pol

(|Sij| > 10 dB)

[23] 24.2–28.5 GHz
(4.3 GHz: 17.8%) 7.5 dBi EMC, Dielectric

polymer
450 µm

(0.036 λL)
Single-pol

(|Sij| > N. A.)
This
work

24.2–29.6 GHz
(5.4 GHz: 20%) 5.1 dBi FR-4 600 µm

(0.048 λL)
Dual-pol

(|Sij| > 18 dB)
* N. G.: not given; N. A.: not applicable; λL is the air wavelength at lowest frequency.
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6. Conclusions

A novel dual-polarized helical-shaped L-probe fed patch antenna (HLF-PA) and
phased array (HLF-PAA) were designed to cover n257, n258, and n261 for the 5G new radio
(NR) frequency range 2 (FR2). The antenna has a wide impedance bandwidth (>5.4 GHz),
excellent isolation between V- and H-ports (|SHV| > 18 dB), and good antenna gain (up to
5.1 dBi) with a small height of 600 um for the antenna portion in the antenna-in-package
(AiP). The optimized 10× upscaled AiP was fabricated to compare the measured antenna
performance with the simulated results. The measured and simulated results show a
good agreement. Various 1 × 4 phased arrays were designed based on the optimized
single element. The designed 1 × 4 HLF-PAAs showed reasonable isolation between ports
(|Sij| > 15 dB) and excellent antenna gain with good impedance matching in the desired
5G NR FR2. The developed HLF-PAA has also demonstrated beamforming capabilities,
which are vital for 5G wireless communication. Therefore, the designed antenna holds
promise in 5G mobile devices.

7. Patents

One U.S. patent entitled “Wideband millimeter (mmWave) antenna” is granted by the
U.S. patent office.
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