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Abstract—An IPM motor is a primary electric motor broadly
used in the electric vehicle (EV) industry, in which flux-linkage
estimation is critical for the operation and control of the motor.
This paper shows that besides the motor current impact, motor
operating speed is another factor that should be considered and
addressed in the flux linkage estimation of an IPM motor. This is
particularly important for IPM motors in EV applications, which
typically require for a very broad motor operating speed range
from low to very high speed. The paper shows that the
conventional estimation method based on motor -current
information only cannot provide accurate motor flux estimation,
especially for motors operating at high-speed conditions. The
paper also indicates that introducing additional impact factors
could cause significant challenges to the conventional methods in
terms of computing complexity and memory needed to store the
conventional lookup tables. To overcome the challenges, the paper
proposes a neural network (NN) method for flux linkage
identification. The proposed NN is trained offline. Therefore, it
only requires a small memory size to store the trained network
weights and computing efficiency is high, and suitable for online
implementation. The evaluation study in this paper demonstrates
that compared to the conventional methods, the proposed NN
method can provide accurate flux linkage estimation, which
further enhances the motor torque estimation based on the
proposed NN method.

Keywords—interior permanent magnet, torque currents (Iq),
field weakening currents (Id), Neural-Network (NN), Look-Up-
Table (LUT)

I. INTRODUCTION

Among the electric traction motors, interior permanent
magnet (IPM) motors, which include rotors with embedded
magnets, are increasingly being used as the driving motors for
electric vehicles (EVs). The advantages of an [PM motor include
its wide velocity and torque variation, high power, light weight,
and energy efficiency. Flux linkage of an IPM motor is an
essential measurement of the linkage of the magnetic field in the
motor windings to identify the electromagnetic characteristics
and performance of the motor. Accurate identification of motor
flux linkage is important for the development and design of
motor control and drive systems and for the high performance,
safety, and efficiency of the motor [1-3]. It is also important for
the motor performance evaluation and torque estimation.

A significant challenge in the identification of motor flux
linkage is the magnetic saturation and cross saturation impacts,
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in terms of motor core losses, that are difficult to determine due
to the nonlinear relations of the core loss with motor current,
speed, etc. [4-6]. This paper focuses on investigating the motor
speed impact to the flux linkage identification, which is
especially important for IPM motor applications in EVs, where
broad motor operating speed range is typically needed for IPM
motors in EVs.

At present, the lookup table (LUT) method is the widely used
method for flux linkage identification in the IPM motor and
automobile industry for EVs. However, the traditional LUT flux
linkage identification methods cannot successfully handle the
flaws in correctly identifying motor flux linkages when the
motor operates at varying speeds. Especially, the core loss of the
motor becomes a non-neglectable aspect as the operating speed
increases. The balancing of the accuracy and the size of the
LUTSs makes it a difficult choice for the LUT methods.

Recently, the development of neural networks has had
outstanding results in many complex research areas. It also
should have great potential for solving the motor identification
problem. This paper focuses on the flux linkage identification of
IPM motors by taking a consideration the motor speed impact
through a neural network based approach. A comprehensive
investigation into the development and validation of the
proposed neural network method is presented in the paper. The
effectiveness of the proposed approach is demonstrated by
comparing the performance of the proposed NN method with the
traditional LUT method based on a simulated test motor.

The paper is organized as follows. In Section II, the IPM
motor model considering the speed impact is evaluated and its
equivalent with and without core loss is analyzed. In Section III,
the flux linkage estimation using conventional methods is
analyzed and the proposed NN method is presented, including
the NN training mechanism for the flux identification. Section
IV focuses on the performance investigation of the flux
estimation using the conventional LUT method and the
proposed NN method as well as their impact on the torque
estimation of the motor. Section V gives the conclusions of this

paper.
II. IPM MOTOR MODEL AT LOW AND HIGH SPEED

The IPM motor model is typically defined in the dq reference
frame based on the well-known Park transformation [7]. In most
IPM motor applications, the speed impact on the magnetic
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model of the motor is not considered. However, this could
become a critical issue when the motor operates at a high speed,
such as in the application of EVs, where an IPM motor can
operate in a broad speed range from low to high speed.

A. IPM motor model at low speed

When the operating speed is low, the core loss impact of the
motor is normally not considered. Therefore, the d- and g-axis
flux linkages of the motor are modeled as
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where Lg, Lg, 14,1, are stator d- and g-axis inductance and

current, and A, is the flux linkage of the rotor magnet. The
stator d- and g-axis voltage equations are
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where w, is the motor electric speed. The equivalent circuit
representation of (2b) is shown in Fig. 1, in which the core loss

of the motor is not included. The electromagnetic torque of the
motor is obtained as follows
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Fig. 1. Equivalent circuit model at low speed: a) d-axis circuit, b) g-axis circuit

B. IPM motor model at high speed

When the operating speed is high, the core loss impact of the
motor cannot be ignored, which means that in terms of the
equivalent circuit, we need to have a core loss component in the
d- and g-axis equivalent circuits of the motor. This can be
modeled by adding a variable resistance R in the d- and g-axis
equivalent circuits of the motor as shown in Fig. 2, where
lgc Uge and ig,, Lgo are motor currents contributed to the d- and
g-axis core loss and flux linkage parts, respectively.
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Fig. 2. Equivalent circuit model at high speed: a) d-axis circuit, b) g-axis circuit

Thus, the d-axis and g-axis flux linkages are expressed as:
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and the electromagnetic torque of the motor is described as
Pry . .
Tem = By (Adlqo - Aqldo ) %)

III. IDENTIFICATION OF IPM MOTOR FLUX LINKAGES

The d- and g-axis flux linkages are important information for
controlling and operating an [PM motor with high efficiency and
performance. The estimation can affect the accuracy of
maximum-torque-per-amp (MTPA), flux weakening, and
maximum-torque-per-volt (MTPV) algorithms as well as the
development of the motor controller. However, as it is well
known, motor flux linkages can be affected by multiple factors.
In this section, we first present the current method used in the
industry for flux linkage identification based on the motor
current information only and then present the proposed method
as well as why the proposed method is needed.

A. Traditional Look-up-Table (LUT) Method

The LUT approach is a commonly used technique in many
motor drives and EV industries because of its reliability,
computing efficiency, etc. In the LUT method, it is assumed
that the motor flux linkages depend only on the motor d- and g-
axis currents without considering the motor speed impact. The
method uses two LUTs to gain d- and g-axis flux linkage
relations over all the possible Id and Iq combinations from low
to high values as illustrated in Fig. 3. Hence, the LUTSs use two-
dimensional input variables, Id and Iq, to determine the motor
d- and g-axis flux linkages. The size of the LUTs can vary
depending on the motor's current range and the resolution of the
LUTs. However, these lookup table data are usually pre-made
at one a low particular speed condition to decrease the impact
of core loss. Therefore, it cannot represent the correct flux
linkage at a high speed unless the dimension of its input
variables switches from 2 dimensions to larger dimensions.
However, a larger multidimensional LUT would significantly
increase the size of LUTs and the complexity of the
interpolation algorithm. Another flaw with the LUT method is
that the operational variation of motor parameters over the
motor's lifetime is ignored. In addition to the LUT method,
several other identification methods have been developed by
others [8-11]. However, critical issues associated with these
methods include convergence and accuracy problems under
complicated motor operating conditions.
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Fig. 3. d-q flux linkages with motor d- and g-axis currents

B. Proposed Neural Network Method

Unlike traditional treatments, we consider that motor speed
is an important factor to affect the identification of motor flux
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linkages. However, this would be difficult to achieve using the
LUT approach since the increase of the input variable dimension
would generally make the LUTs impractical. To overcome this
challenge, we propose a neural network (NN) method to identify
motor flux linkages considering the impact of motor speed that
can change from low to high-speed range. Therefore, the input
variables to the NN will include motor d- and g-axis currents and
motor speed. The NN outputs are the identified d- and g-axis
flux linkages under a specified input condition. The NN is a
typical forward network consisting of one input layer, 2 hidden
layers, and one output layer. Each of the 2 hidden layers has 10
nodes. The structure of the NN is shown in Fig. 4.

Input Layer

Hidden Layers

Output Layer
Fig. 4. Structure of the proposed NN for flux linkage estimation

C. Training of Neural Network

For the NN to have the identification capability, training of
the NN is required. This involves two stages: 1) training data
collection and 2) NN training based on the collected data.

In the training data collection stage, measurements are
obtained through either offline or online experiments. In each
experiment, voltage applied to the motor as well as motor
current and speed are recorded. To get enough training data, the
motor speed is slowly increased from a low speed to its
maximum speed. For each motor operating speed, motor d- and
g-axis currents are obtained over the full motor current ranges.
Then, for each measurement of motor voltage, current, and
speed at a steady state, the flux linkages are calculated according
to (6), which is the steady-state representation of (2b).

Aa = (vg —Rig)/we, Ag = (—v4 + Rig)/w, (6)

Each collected data is saved into the memory in an NN input-
output pair as {(ig, iz w,) © (g4,)}. After all the data
collection and calculation process is completed, the data are
presented to train the NN in the training stage.

In the training stage, the NN is trained repeatedly until a stop
criterion is reached. The NN is trained offline, meaning there is
no online training involved. We used the Levenberg—Marquardt
Backpropagation algorithm to train the NN [12]. The objective
of the NN training is to minimize the root mean square error
between the NN estimated and actual motor flux linkages as
follows:

C= %Eﬁ’ﬂ\/ (Aa(k) = A4(0)" + (A, (k) = 2,())* (7)

where N is the total number of training data samples, & stands
for the training sample index, A4 (k) and A, (k) are the motor d-
and g-axis flux linkages of the kth training sample, and A, (k)
and /Tq (k) are the corresponding NN estimated flux linkages.
Fig. 5 illustrates the training process of the NN for the flux
linkage identification.

The NN is trained multiple times and a best trained NN is
selected as the finalist. The performance evaluation of the
developed NN is shown in the next section.

Compute
and Update
NN Weights

QO

[Aar = Aaw]

Fig. 5. Training NN for flux linkage identification

IV. SIMULATION EVALUATION

The potentiality of the proposed Neural Network method is
verified with the MATLAB/Simulink model. The simulation
evaluation is based on an 8-pole, 100 kW IPM motor from [13].
Table 1 shows the parameters of the test motor. The motor
parameter variations are built into the model and considered as
an unknown black box, which would make the simulation
evaluation closer to the situation of a hardware experimental
evaluation.

Table I: Parameters of an IPM motor from [13]

Parameter Units
Rated Power 100 kW
DC voltage 500 A\
Maximum Speed 10000 RPM
Permanent magnet flux 0.1266 Wb
Inductance in g-axis 0.59 mH
Inductance in d-axis 0.35 mH
Stator copper resistance 0.5 Ohm
Inertia 0.095 Kg*m?
Pole pairs 4

A. Neural network development based on the test motor

First, collection of the training data was conducted for the test
motor as follows. The motor operating speed was increased from
500 RPM to 9000 RPM with a 1000 RPM increment interval.
The motor current range is set from +320A to OA. Then, a
simulation experiment was conducted, and the d- and g-axis flux
linkages were calculated according to (6) for each speed and
current condition. To cover the entire current combination
possibilities at each motor operating speed, Id and Iq were
alternately changed from 0 to their maximum value.

Second, we conducted 30 NN training experiments based on
the above-collected data. In each training experiment, the
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network has a maximum of 1000 training epochs. However, if
the NN training performance in terms of RMS error reduction
does not improve by 0.001 for twenty consecutive epochs, the
training process stops. From 30 separately trained NNs, the NN
with the best performance was picked as the finalist for the flux
linkage identification of the IPM motor. For comparison
purposes, we also developed flux linkage LUTs based on the
collected data obtained at a low speed (500 RPM). Note: the
LUTs can only provide flux linkage estimation based on motor
d- and g-axis currents.

B. Performance evaluation and comparison

In this subsection, the NN and LUTSs, obtained in Section
IV.A, are evaluated and compared for arbitrary motor current
and running speed.

First, we compared the flux linkage estimation using NN and
LUT methods. Note: in the following figures, the 2D method
stands for the LUT method. Fig. 6 shows the flux linkages
estimation for motor operating speeds at 500 RPM, 5500 RPM,
and 8500 RPM, respectively, when the d-axis current changes
while the g-axis current is fixed. Fig. 7 shows the flux linkages
estimation for the same speed condition when the g-axis current
changes while the d-axis current is fixed.
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Fig. 6. Comparison results of d- and g- flux under different speed with d-axis
current change only. Iq =200A

From the figures, it can be seen that when the motor running
speed is low, there is almost no difference in the flux estimation
using the NN and LUT methods. However, when the motor
running speed is high, the difference becomes higher and the NN
method provides a more accurate estimation. A closer look at
Figs. 6 and 7 shows that the change in the g-axis current has a
higher impact on the estimation of the d-axis flux linkage. This
interesting finding can be better understood from Figs. 2a, 2b,
and equation (4), which shows that the product of motor speed

and permanent magnet flux linkage can particularly cause a high
impact on the core loss in the g-axis circuit (Fig. 2b) and
therefore affect the estimation of motor d-axis flux linkage.
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Fig. 7. Comparison results of d- and g- flux under different speed with g-axis
current change only. Id = 200A

Fig. 8 shows the absolute error between the measured and
estimated flux linkages by using the NN and LUT methods when
the motor operating speed is 8500 RPM. The figure further
demonstrates that the proposed NN method can provide a much
more accurate estimation of motor flux linkage than the LUT
method.

LUT Method Errors

Proposed NN Errars

Fig. 8. Estimation error between the LUT and NN methods at 8500 RPM

Fig. 9 shows the actual motor torque compared with the
estimated motor torque based on the flux linkages estimated by
using the NN and LUT methods. This investigation is important
as the estimated motor flux is usually needed for developing
MTPA, flux weakening, and MTPV algorithm and for the motor
torque diagnosis as well. Therefore, the study would provide an
important guideline on whether the speed impact should be
considered in the motor flux estimation. As can be seen from the
figure, the error between the actual torque and the estimated
torque using LUTs becomes larger as the motor speed increases
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while the NN method can accurately provide the torque
estimation.

Overall, all the comparison studies demonstrate that the
proposed NN method can provide an accurate estimation of
motor flux linkages. On the other hand, the memory needed to
store the NN weights is much smaller even than the 2D LUT
method. Regarding computing speed, the proposed NN method
can provide fast flux linkage estimation since there is no training
involved in the online application of the NN method, which
would make the NN method easy to implement in practical [PM
motor operation and control, such as in EV applications.
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Fig. 9. Torque results under different speed with the g-axis current change only
while Id =-320A

V. CONCLUSIONS

IPM motors are important electric motors that are widely
used in electric vehicles, in which accurate estimation of the
motor flux linkage is critical to ensure the high performance,
efficiency, reliability, and safety of the EV electric motor. It is
found in this paper that the motor operating speed is a key factor
affecting the motor core loss and flux linkages. However, the
speed impact has not been properly addressed in the traditional
estimation methods, especially the widely used LUT method in
the IPM motor industry. A significant challenge is that the
consideration of the speed impact would significantly increase
the size and complexity of the traditional LUT methods. To
overcome the challenge, this paper proposes an NN method for
motor flux estimation with full consideration of motor current
and speed impacts. The study presented in this paper
demonstrates that the proposed NN method can accurately
estimate the motor flux linkages while the conventional
methods will generate evident estimation error especially when
the motor running speed is high. In addition, since the proposed
NN is trained offline, it only requires a very small memory size

to store the trained network weights and the computing
efficiency is adequate to meet the online DSP implementation
of the proposed NN method on a practical [IPM motor in EVs.
In future research, other factors that may affect the motor flux
linkage estimation, such as motor’s internal temperature, will
be further investigated.
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