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Abstract. Let G be a finite solvable permutation group acting faithfully and primitively
on a finite set £2. Let G¢ be the stabilizer of a point « in 2. The rank of G is defined as the
number of orbits of Gg in €2, including the trivial orbit {&}. In this paper, we completely
classify the cases where G has rank 5 and 6, continuing the previous works on classifying
groups of rank 4 or lower.

1 Introduction

Let G be a primitive permutation group acting faithfully on a set €2, and let Gy
be the stabilizer of an element o € 2. The rank of G is defined as the number of
orbits of Go ~, 2. Some work has been done to try to characterize these groups
for arbitrary ranks [4,23]. However, there has been significantly more progress for
the classification of groups of low ranks. Both solvable and insolvable groups of
rank 2 have been classified [7, 12]. Various authors have studied primitive groups
of rank 3 [8,9, 14, 16, 17]. Foulser completely classified primitive solvable groups
of rank 3 and gave a partial classification of primitive solvable groups of rank 4
in [5]. Revitalization of this work has been made possible due to the advent of
computer algebra systems such as GAP [29], making it more feasible to study the
actions of finite groups [10]. Using GAP, Dolorfino et al. completely classified
primitive solvable groups of rank 4 [3]. In this work, we classify primitive solv-
able permutation groups of rank 5 and 6. Note that, while [3] relies on a coarse
classification due to [5], our paper is self-contained and does not use such a prior
classification. In recent years, there has been further interest in obtaining stronger
lower bounds for the number of conjugacy classes of a finite group [6, 11, 15]. We
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believe that the results and methods in this paper may have applications in this
direction.

If G is a primitive solvable permutation group acting faithfully on €2, then
|2] = p? for some prime p and positive integer d (see [13]). Moreover, G has
a minimal nontrivial normal subgroup V, which is an elementary abelian group
such that |V| = p?, so V behaves as a d-dimensional vector space over Fp. We
can now decompose G into G = V x Gg, where Gg acts on V as an irreducible
subgroup of GL(V'). Conversely, if an irreducible group G acts on such a vec-
tor space V, then we can construct a primitive permutation group G by taking
the semidirect product G = V x Gg (see [24, Section 2]). Consequently, instead
of classifying the rank of G based on the number of orbits of G¢ in €2, we can
equivalently consider the number of orbits of Go ~ V, as these values are equiv-
alent [5, Definition 2.1].

Viewing Gg as an irreducible subgroup of GL(V'), we classify Gg into three
classes U, B, and &, following the standard analysis of solvable linear groups
in [1,5,12,25]. The class 2 consists of primitive subgroups of I'(V'), where I'(V)
is the semilinear group of V defined as

L(V)={x —ax’ | x €Fyn,a €F, o € Gal(Fyn/Fy)},

and there are infinitely many groups in this class [10]. The class B contains the re-
maining primitive subgroups of GL(1V'), and £ contains the imprimitive subgroups
of GL(V).

Our main result is as follows.

Theorem 1.1. Suppose G =V x Gg is a finite primitive solvable permutation
group of rank at most 6, where Gg acts on 'V as an irreducible subgroup of GL(V).
At least one of the following is true:

(1) Go € A: Gy is a primitive subgroup of T'(V');
(2) Go € B: Gy is one of the remaining primitive subgroups of GL(V') and ap-
pears in at least one row of Table 6; or
(3) Go € &: Gy is an imprimitive subgroup of GL(V'), and there exists an im-
primitivity decomposition V. = @;zl Vi.
(a) Ifrank(G) < 5, then r = 2, 3, or 4, and the action of Go on each V; \ {0}
is transitive.

(b) If rank(G) = 6, then 2 <r < 10 and r # 5 where the action of Gy on
each V; \ {0} is transitive, or r = 2 where the actions of Go on V1 \ {0}
and V \ {0} are doubly transitive |5, Proposition 2.5].
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The structure of this paper is as follows. First, we describe the structure of
primitive solvable permutation groups G acting faithfully on a vector space V in
Section 2. Specifically, we do this for the case when Gg € B. Then, in Section 3,
we leverage this structure in order to enumerate the groups in B8 we are interested
in using the computer algebra system GAP [29]. These groups are fully detailed
in Section 4. In particular, we provide examples illustrating the choice of word-
ing in Theorem 1.1 (2) where we state Go € B appears in at least one row rather
than exactly one row of Table 6 (see Examples 4.1, 4.2 and 4.3). Finally, we pose
possible directions for future work in Section 5.

2 Preliminary results

Let G be a primitive solvable permutation group acting faithfully on a set 2. As
described before, this can be decomposed into a solvable subgroup Go < GL(V)
acting irreducibly on a d-dimensional vector space V' over FF,. We now proceed
to describe the structure when Go € 8. Note that, in this case, G acts primitively
on V. It follows that G¢ also acts quasi-primitively, meaning that all non-trivial
normal subgroups of G¢ act homogeneously on V.

Theorem 2.1 ([26, Theorem 2.2], [27, Theorem 2.2], and [28, Theorem 2.1]). Sup-
pose a finite solvable group Go acts faithfully, irreducibly, and quasi-primitively
on a d-dimensional vector space V over a finite field F of characteristic p. Then
every normal abelian subgroup of Gy is cyclic, and Gy has normal subgroups
Z(E) <U < F < A <Gy and a characteristic subgroup E < F such that the
following statements hold.

(1) F = EU is a central product, where Z(E) = ENU.

2) F/U = E/Z(E) is a direct sum of completely reducible (or semi-simple)
Go/ F-modules.

(3) There is a decomposition E = E1 X --- X Eg, where each E; is an extraspe-

cial qi-group. We have that |E;| = q.sz *1 for some distinct primes qi,----9s

1
and some integer m; > 1. Denote

e 1= \/lEi/Z(El') = qlmi and e:=ej---e;.
We have that e | d and gcd(p,e) = 1.
4) A=Cg,(U), and A/ F acts faithfully on E | Z(E).

(5) U is cyclic and acts fixed point freely on W, where W is an irreducible sub-
module of V.
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(6) |U| divides p* — 1 for some k > 1, and W can be identified with the span of
U which is isomorphic to GF(p¥).

(7) |V|:=n = |W| for some integer b.

Note that, for Gy € B, we must have that e > 1, as it is the product of prime
powers.

We now state a series of lemmas and propositions with the goal of restricting
the various parameters stated in Theorem 2.1 for the case that rank(G) < 6. The
value e as defined in Theorem 2.1 (3) is of great importance to our work. Our first
step is to set a bound on the value e in the case of rank(G) < 6. One immediate
lower bound on the rank of G is

rank(G) > PT&;' ﬂ + 1. 2.1)

This follows from the facts that at least one trivial orbit exists, that all orbits of
Go ~ V must partition V', and that the largest possible orbit size is |Go|. We now
build on equation (2.1) further.

Lemma 2.2 ([27, Lemma 2.3]). |Gy | divides dim(W) - |A/ F|-e? - ((W]| — 1).

Proposition 2.3. Using the notation from Theorem 2.1,

w1
k&) 2 | e | @2

Proof. Combining equation (2.1) with Theorem 2.1 (7) and Lemma 2.2, we get

V-1 Wb —1
k)= | S |2 [ - | £ @

Then note that [W| = p¥ for some prime p and integer k, so dim(W) | k. Also,
k = log, (W), which yields dim(W) | log, (|W ). Thus, dim(W) < log,(|W|).
Since p is a prime, we have that dim(W) < log,(|W|) < log,(|W|). Using this
and equation (2.3), we get that

i wieb —1
UKG) = | oy T 1>W !
- | Lt W+1
| dim(W)-|A/F|-e?- (W] =1)
> IWIF ~1 —‘—1- 1. o
T | logy(IW)) - [A/F|-e2-(IW]|—1)
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Lemma 2.4. A/ F acts completely reducibly on E/Z(E).

Proof. By Theorem 2.1 (2), we have that £/ Z(F) is a direct sum of completely
reducible Go/ F-modules. Also, by Theorem 2.1, A < Gy, so E/Z(E) is a di-
rect sum of completely reducible A/ F-modules. Therefore, A/ F acts completely
reducibly on E/Z(E). o

Lemma 2.5. Let o = loge(96 - ¥/3) and & = 2- /3. Then |A/F| < &=

Proof. This is an immediate application of [18, Theorem 3.5]. Note that £/ Z(E)
is a direct sum of completely reducible A/F-modules by Lemma 2.4 and that
A/ F is solvable since G is solvable. Therefore, by [18, Theorem 3.5],

|A/F| < —'E/ZA(E)'“ _

o
Lemma 2.6. Let rad(e) be the product of distinct prime factors of e. Then
rad(e) | (IW]—=1).
Proof. By Theorem 2.1 (5), U acts fixed point freely on W. This implies that
Ul T(W]=1.

By Theorem 2.1 (1) we have that E N U = Z(E), so Z(E) < U. Then, by Theo-
rem 2.1 (3),

rad(e) :=q1---qs | | Z(E)|.

Therefore,
rad(e) | |[Z(E)[ [ U] | (IW] = 1). o

Proposition 2.7. Suppose rank(G) < 6 and Gy € ®B. Then the only possible values
foreare?, 3,4,5,6,7, 8,9, and 16.

Proof. Combining equation (2.2) with Lemma 2.5 yields

Wi —1
rank(G) > ’710g2(|W|) JA/F|-e2-(|W|— 1)—‘ +1
>( A-(We—1) %1 (2.4)
* | loga@Wh- e 2 qwi—n | " |
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By Lemma 2.6 and the fact that the smallest possible value of e is 2, |[W| > 3.
One can see that the bound in equation (2.4) is increasing with respect to |W | for
|W| > 3. By finding e that satisfies the inequality

A-(3¢—1)
[10&(3) -e20t2. (3 1)

—‘—|—1>6,

we see that if rank(G) < 6, then e < 18. We can now improve this bound on e by
considering individual cases.

e 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

rade) 2 3 2 56 7 2 3 10 11 6 13 14 15 2 17 6
W|>= 3 4 3 11 7 8 3 4 11 23 7 27 29 16 3 103 7

Table 1. Minimum values of |W| for each value of e.

For each case, we find the minimum value of |W| by Lemma 2.6 and the fact
that || is a prime power by Theorem 2.1 (6). These minimum values of |W| are
given in Table 1. If we take these values for e and the corresponding lower bounds
on |W| and apply them to equation (2.4), then we get that

rank(G) > 6 fore € {10,11,12,13,14,15,17,18}.
Therefore, if rank(G) < 6, thene € {2,3,4,5,6,7,8,9, 16} as claimed. O
Now that we have reduced the possible values of e to a finite list, we aim to
obtain upper bounds on | A/ F | for each value of e. By equation (2.2), larger values

of |A/F| decrease the rank bound. Thus, the largest values of |A/F| yield the
worst case bound on rank(G).

Lemma 2.8. E/Z(E) is a symplectic vector space.
Proof. By [18, Corollary 1.10 (iii)],
E/Z(E) = Ey/Z(E) % --- x En/Z(E),
where E; < Cg,(E;) fori # j.In the proof of [18, Corollary 1.10], it is stated that

E;/Z(E) has a non-degenerate symplectic form over [, . Therefore, E/Z(E) is
a symplectic vector space. |
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Proposition 2.9. For each value of e in Proposition 2.7, the following bounds for
|A/ F| hold.

e :=q™ |A/F|divides one of the following values: |A/F| <
2 {6} 6

3 {24} 24

4 {60, 67 - 2} 6% -2

5 {24} 24

6 {24 -6} 24.6

7 {48} 48

8 {42,54,6% .2,6%) 6*

9 {40,242 .2} 24%.2
16 {136,6% .24} 6% .24

Table 2. Upper bounds on |[A/ F|.

Proof. Fore € {2,3,4,5,7,8,9, 16}, we let e := ¢ for some prime g. We have
that £/ Z(E) is a symplectic vector space of dimension 2m over [F; by Lemma 2.8,
and A/ F acts completely reducibly on £/Z(E) by Lemma 2.4. Thus, we can
apply [26, Lemma 2.17] with G = A/F and V = E/Z(E) to obtain the desired
upper bounds for |4/ F| when e € {2,3,4,5,7,8,9, 16}. Furthermore, the proof
of [26, Lemma 2.17] describes many possible values that |4/ F| divides for each
value of e.

For e = 6, we let ¢ = 6 and m = 1. In this case, we see from the proof of [27,
Theorem 3.1] that we have A/ F < SL(2,3) x SL(2,2),s0 |A/F| | 24 - 6. o

Using these values of e and the corresponding bounds on |4/ F'|, we can obtain
upper bounds on |W|.

Proposition 2.10. For each value of e in Proposition 2.7, the following upper
bounds on |W | hold when rank(G) < 6. In particular, e = 5 and e = 7 are ruled
out when rank(G) < 6.

e 2 3 4 6 8 9 16

max|W| 1511 79 31 7 7 4 3

Table 3. Upper bounds for |W| = p¥ for all possible values of e.
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Proof. By Proposition 2.3, rank(G) > 6 if

(wie-1

+1>6. 2.5
loga (WD) - |A/F- - (W —1) '~ )

For each value of e, by using the largest corresponding bound of |A/F| from
Proposition 2.9, we can solve equation (2.5) for |W| to get an upper bound on | W |
for which it is possible that rank(G) < 6. By Theorem 2.1 (6) and Lemma 2.6,
we can further improve the bound by restricting these values of || to be prime
powers such that rad(e) | (|W| — 1). This improvement completely eliminates the
possibility of e = 5 and e = 7. Therefore, we obtain upper bounds on |W | as listed
in Table 3. o

We now give an algorithm which optimizes the lower bound on rank(G) in
the case that e is a prime power. The first lower bound given in Proposition 2.3
was attained by using equation (2.1). This bound is due to the fact that the largest
possible size of an orbit of Gog ~ V is |Gy|. In this algorithm, we extend this
technique to account for the existence of smaller orbit sizes.

Fix some value e = ¢"", where ¢ is prime, from Proposition 2.7. Since Gy
has a trivial orbit in V, the other orbits contain a total of |VV| — 1 elements. For
each orbit O, | O] divides |Gg|. Let B := dim(W) - |A/F|-e? - (|W| — 1). From
Lemma 2.2, |Gy| divides B. Thus, |O] divides B, and the divisors of B are possi-
ble sizes for the orbits of Gg.

We now obtain specific parameters ¢, m, p, and k. For each e = ¢™, we get
upper bounds on |W| and dim(W) over F,, from Proposition 2.10. Let p¥ be some
prime power less than or equal to this upper bound on |W |, and the possible values
for dim(W) are the different values of possible k. We also get possible values of
|A/ F| to consider from the second column of Table 2 since we know that |A/ F|
divides one of those given values. Note that we do not need to consider any proper
divisors of the values in the second column of Table 2 since, by equation (2.2),
smaller values of |4/ F| can only make the rank bound greater.

The other values of consideration are b and d, where d is dim (V') over I, such
that d = b - k - ¢™. For each set of parameters p, k, g, and m, we check both of
the cases where b = 1 and where b > 1. For a given set of parameters p, k, g,
and m, we first let » = 1. Later, we describe how to consider b > 1.

Algorithm 2.11. Suppose we have parameters p, k, ¢, m, and b = 1 as described
as well as the corresponding values of e, |W |, dim (W), and |A/ F'|. We know that,
for each orbit O, | O] divides

B :=dim(W)-|A/F|-e* - (|W]|-1).
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Let dy,d2, ..., d; be the divisors of B, the possible sizes of these orbits. In order
to obtain a lower bound on the number of orbits of Gog ~ V', we want to find the
worst-case “packing” of elements of V' into orbits. We know that there is at least
one trivial orbit. Thus, our goal is to pick n; orbits of size d; for each d; such that

t
> nidi = V| -1 = pbha"

i=1

while minimizing
t
N = E n;.

This is exactly the change-making problem, the problem of representing some
chosen value using as few coins as possible from some fixed set of denomina-
tions [20]. Let N be the optimal solution to the change-making problem with the
chosen value |V | — 1 and the denominations being the set of divisors {d1, ..., d;}.
Finding N is quite simple and can be done via a standard dynamic programming
algorithm. Then the value N + 1 sets a lower bound on the number of orbits of
Go ~ V,i.e. alower bound on the rank of G.

Algorithm 2.11 above helps restrict possible sets of parameters e = ¢™ and
|W| = pk when e is a prime power. When ¢ = 6, we let ¢ = 6 and m = 1, and
we have p = 7 and k = 1 from Proposition 2.10. We now describe how we con-
sider b > 1. For each of these sets of parameters, we use equation (2.3) to bound
the value of b. For a given set of parameters e = ¢™, |W| = p¥, and b > 1, if
equation (2.3) gives a bound less than or equal to 6 for any of the values of |4/ F|
from Proposition 2.9, we keep that set of parameters. Otherwise, we eliminate that
b value and higher b values for the corresponding set of ¢, m, p, and k, as the rank
bound given by equation (2.3) increases as b increases.

Hence, Algorithm 2.11 and equation (2.3) yield possible sets of parameters ¢,
m, p, k, and b for families of groups Gy € B which have 6 or fewer orbits when
acting on V. We further classify Gog € B into two cases based on if b =1 or
b > 1, denoted as B and B, respectively. It is due to the algorithmic process in
Algorithm 3.1 that we split B into these two cases rather than based on the action
E ~ V asin [3] or the action of a minimal normal abelian subgroup of G acting
on V asin [5].

Theorem 2.12. Let G = V x G, where Gy € B, and V is a vector space over
a field of characteristic p. Then, by Theorem 2.1, Gg has an extraspecial subgroup
E of order ¢*™T for some prime q, and ¢™ = e. Let d = dim(V) and let k
be the integer guaranteed by Theorem 2.1 (6) such that d = b -k -q™. If Gy is
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Rank >

d

k

No.

Rank >

d

k

No.

27
28

— e e e e e e

29
30

— v e e —

10

10

11

37
38

12
13
14
15
16
17
18
19
20
21

39
40

2 4

13

41

42

43

44

45

12

46

47

48

22
23

49

50
51

24
25

18

52

26

Table 4. Parameters for Gy € B; which possibly have 6 or fewer orbits on V.

q m p k d Rank>

No.

53

54

Table 5. Parameters for Gy € B~ which possibly have 6 or fewer orbits on V.
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not described by the sets of parameters in Tables 4 and 5, then rank(G) > 6. In
addition, the case where e = 6 is also included.

Proof. Table 4 and Table 5 result from computing the minimum rank of all pos-
sible sets of parameters allowed by Proposition 2.10 using Algorithm 2.11 and
keeping only those whose minimum ranks are below 6. i

3 Computation

Using the parameters in Tables 4-5, we can enumerate possible groups Go ~ V'
with 6 or fewer orbits using GAP [29]. The procedure used mirrors that of [3, 10],
and our computational process is split into two cases.

Algorithm 3.1. When Gy € 81, we take the following four steps.

1: Construct the extraspecial group E as guaranteed by Theorem 2.1 (3) as well
as its normalizer N as subgroups of GL(e, p¥).

2: Embed N, into GL(k - e, p) using the embedding GL(e, p¥) < GL(k - ¢, p).
3: Construct the normalizer N of Ng in GL(k - e, p).

4: Since Gy is a subgroup of N, enumerate all subgroups Go of N up to con-
jugacy in GL(k - e, p) and check for primitive solvable groups of 6 or fewer
orbits which contain E as an isomorphic subgroup of Gy.

For Gy € B~ we introduce an intermediate step after step 1.

1.5: Embed N from GL(e, p¥) into GL(b - e, p¥) by taking the tensor product of
N with GL(b, p¥). Call this new product Ng and replace k - e with b - k - e
as needed for the rest of the algorithm.

Notice that ¢ = 6 is the only value of e which is not a prime power. Since 6
is the product of two distinct primes, we can take advantage of a decomposition
lemma.

Lemma 3.2 ([2, Lemma 2.1 (6)]). Let Gy ~ V' be a primitive solvable subgroup
of GL(6,7). Then Gy is conjugate in GL(6, 7) to the Kronecker product G, X G3,
where Gy is a primitive solvable subgroup of GL(2,7), and Gs is a primitive
solvable subgroup of GL(3,7).

Our problem for e = 6 is then reduced to enumerating primitive solvable sub-
groups of GL(2,7) and GL(3,7) and taking their Kronecker product by Lem-
ma 3.2. This is a less computationally intensive process than Algorithm 3.1 in the
case of e = 6. However, this cannot be extended to the cases of e being a prime
power since it relies on the fact that 6 is the product of distinct primes.
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4 Results

Table 6 lists all lines from Tables 4 and 5 that correspond to families of groups
G =V x Gg such that rank(G) < 6. Recall that there are exactly two types of
extraspecial groups of order g1 for a prime ¢ and integer m > 1 (see [22]).
One of them is of exponent ¢, and the other is of exponent g2. We denote these
as extraspecial types, or et, + and —, respectively. For each set of parameters
q,m, p,k,d,b, et we describe the number of groups G of rank 2 through 6 with
these parameters. However, we note that there are some caveats to this list.

Example 4.1. For a given ¢ and m, we may have that a group G¢ contains both
extraspecial groups of type + and of type —. One such example of this is line 3 of
Table 4. When taking these parameters and the extraspecial group of type +, one of
the generated groups Gy is Z13 X QDq¢. This group is also generated when taking
the same parameters and the extraspecial group of type —. We count the group in
both sets of parameters in this case.

Example 4.2. We can have that a group is of multiple ranks. What this means is
that two isomorphic copies of a group G¢ may be in separate conjugacy classes
of the larger group N constructed in Algorithm 3.1 and act on V differently, re-
sulting in different ranks. One case where this occurs is line 48 of Table 4. When
considering the extraspecial group of type +, one of the rank 4 groups and one of
the rank 5 groups are isomorphic to ((Z3 x Z3) x Z3) x Qg. We also count the
group in both ranks in this case.

Example 4.3. We may have a group in B that also appears in B. Furthermore,
in each of these cases, the rank may even be the same. One such pair of parameters
that demonstrates this is line 2 of Table 4 with an extraspecial group of type — and
line 53 of Table 5 with an extraspecial group of type —. Both of these sets of
parameters generate a group isomorphic to ((Za X Zy X Zip) X (Zp X Z3)) X Z3.
Furthermore, both of these groups are of rank 4. Such examples are also considered
in [3]. Again, we count such groups in both sets of parameters.

It is because of these examples that Theorem 1.1 states that a given Go € B
appears in at least one row of Table 6 rather than exactly one row.

We provide all families of G for the parameters described in Table 6 as separate
GAP files. These files, along with the details for the implementation of the algo-
rithms in Section 3 in GAP, can be found on GitHub'. This repository also contains
notes on naive optimizations used to make Algorithm 3.1 faster as well as use less

! https://github.com/Spamakin/Solvable-Primitive-Permutation-Groups-of-Rank-5-and-6
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p k d b et #Rank2 #Rank3 #Rank4 #Rank5 #Rank6

No. ¢ m

_— o e e e e

2 41

7

10

1
1
1
1
1
1
1

13
17
19
19
23

13
15
16
16
17
17
18

1

1

23

29

1

37

20

1
1
1
1
1

43

22
23

47

1

47

23

53

24
25

59

1

67

27

Table 6. All parameters of Gy € B which describe families of groups of rank 6

or lower.
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No. ¢ m p k d b et #Rank2 #Rank3 #Rank4 #Rank5 #Rank6
28 2 1 711 21 - 0 0 1 0 0
2802 1 711 21 + 0 0 0 0 1
29 21 731 21 - 0 0 0 0 1
30 21 791 21 - 0 0 0 1 0
31 21 8 1 21 - 0 0 0 1 0
32 21 8 1 21 - 0 0 0 0 1
34 2 1100 1 2 1 - 0 0 0 0 1
3 2 1103 1 21 - 0 0 0 0 1
36 2 1107 1 21 - 0 0 0 0 1
37 2 2 31 41 - 3 4 0 0 0
37 2 2 31 41 + 0 7 6 0 0
39 2 2 51 41 - 0 0 0 1 4
39 2 2 51 41 + 0 0 5 0 8
40 2 2 71 41 - 0 1 0 1 1
40 2 2 71 41 + 0 0 0 0 3
43 2 3 31 81 - 0 0 0 5 5
43 2 3 31 81 + 0 0 0 2 3
45 3 1 22 61 + 0 5 2 0 0
46 3 1 2 4 12 1 + 0 0 0 1 3
48 3 1 71 31 + 0 0 3 2 2
49 3 1 131 3 1 + 0 0 0 0 1
53 2 1 31 42 - 0 10 5 0 0
53 2 1 1 4 2 + 0 8 3 0 0
54 2 2 1 8 2 - 0 0 0 2 0

Table 6 (continued)

memory. Furthermore, it also contains an implementation of Algorithm 2.11 and
files explicitly describing Examples 4.1, 4.2, and 4.3.

We also note some minor corrections to the classification of primitive solvable
permutation groups of rank 4 due to [3]. This prior work found only 3 distinct
groups for line 37 in Table 4 in the case of groups of rank at most 4. However, we
find 4 distinct groups. Furthermore, the case found in [3] withb > l and k = 1 as
stated has parameters which define a family of groups of rank significantly larger
than 4. Instead, that case must have » = 1 and k = 5, which then corresponds to
line 5 in Table 6.
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5 Future work

The methodology of this paper can be extended in a straightforward manner to
classify groups of higher rank. The analysis in Proposition 2.7 can be extended by
considering the relevant inequalities with a value higher than 6. One could apply
the analysis of Section 2, replacing 6 as desired with some larger rank, and then list
possible parameters for higher ranks in a similar manner to Table 4 and Table 5.
Starting with Proposition 2.7, we may consider setting equation (2.4) to be greater
than or equal to some higher value than 6 and proceed with similar analysis from
there obtaining bounds on the parameters p, k, ¢, and m. The same computational
method described in Section 3 can then be applied.

The main source of difficulty of extending our method to higher ranks such as
7 and 8 comes from the computational intensity of constructing groups with larger
parameters for higher ranks. Steps 1 and 4 of Algorithm 3.1 require us to solve the
subgroup isomorphism problem, and step 4 requires us to enumerate subgroups.
Both of these problems are some of the hardest problems in computational group
theory [19,21]. As one considers larger and larger ranks, the sizes of our vector
spaces V/, and thus their general linear groups, grow at a considerable rate. As
a concrete example, Line 51 in Table 4 took 8 days of computation to verify that
no groups of rank 6 or below exist for that particular set of parameters.

Further analysis on the structure of primitive solvable groups is required to over-
come this difficulty. While this issue of extending to higher ranks could be solved
with further computational power, this avenue becomes prohibitively expensive.
Rather, future work should focus on theoretical improvements to obtaining bounds
on the parameters ¢, m, p, k, and d as well as optimizations to Algorithm 3.1.
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