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Abstract 

 
Intensive care units (ICU) are critical for treating severe health conditions but represent significant hospital 

expenditures. Accurate prediction of ICU length of stay (LoS) can enhance hospital resource management, 

reduce readmissions, and improve patient care. In recent years, widespread adoption of electronic health 

records (EHR) and advancements in artificial intelligence (AI) have facilitated more accurate prediction of 

ICU LoS. However, there is a notable gap in the literature on explainable AI models which identify 

interactions between model input features in developing accurate predictions of health outcomes. This gap 

is especially noteworthy as the medical literature suggests that complex interactions between clinical 

features are likely to have a significant impact on patient health outcomes. We propose a novel graph 

learning-based approach offering state-of-the-art prediction and better interpretability for ICU LoS 

prediction. Specifically, our explainable AI (XAI) graph model can generate interaction-based explanations 

supported by evidence-based medicine, which provide richer patient-level insights compared to existing 

XAI methods. We test the statistical significance of our XAI model explanations using a distance-based 

separation index and utilize perturbation analyses to examine the sensitivity of our model explanations to 

changes in input features. Finally, we validate the explanations of our graph learning model using the Co-

12 framework and a small-scale user study of ICU clinicians. Our approach offers interpretable predictions 

of ICU LoS grounded in medical knowledge which can facilitate greater integration of AI-enabled decision 

support systems in clinical workflows, thereby enabling clinicians to derive greater value. 
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1. Introduction 

ICUs provide life-saving capabilities to patients hospitalized for severe diseases, comorbidities, and other 

life-threatening conditions. However, ICUs also consume significant resources in their utilization of clinical 

staff and equipment. Prior studies have shown that as much as a third of hospital budgets are spent on ICUs, 

and a third of inpatient costs can be attributed to ICU stays (Multz et al. 1998, Shweta et al. 2013). Hence, 

it is in the best interest of hospitals, taxpayers, and insurers to reduce ICU costs while ensuring delivery of 

high-quality patient care. Since hospitals use LoS to measure the effectiveness of treatments, schedule 

resources and make staffing decisions, accurate LoS prediction for ICU patients should lead to better ways 

of managing scarce ICU resources (Romano et al. 2014). Furthermore, since LoS serves as an early 

indicator of future hospital readmissions, effective LoS prediction should allow healthcare practitioners to 

manage ICU resources better by reducing readmission rates (Singh and Terwiesch 2012, Oh et al. 2018).  

With widespread adoption and use of EHR systems in recent years, researchers can use AI to 

analyze clinical and administrative claims data to develop more accurate predictions of patient health 

outcomes. However, extant research has often prioritized predictive performance over actionable and 

interpretable insights, a gap that undermines the practical utility of predictive models for clinical decision-

making (Chen et al. 2023). Computer scientists and healthcare professionals have advocated for integrating 

intrinsic explanations within predictive models in healthcare settings, especially to promote greater 

utilization of AI-based, clinical decision support tools (Rudin 2019, Petch et al. 2022). AI systems with 

intrinsic explanation capabilities are designed to inherently explain the prediction process. Unlike post-hoc 

explanation methods, which generate explanations by approximating the inner working of black-box AI 

models, intrinsic explanations accurately reflect the prediction process with no approximation (Molnar 

2022). In healthcare settings, this enhanced transparency is critical to increase physician trust in the 

prediction and underlying logic of AI-based clinical decision support tools. 

Furthermore, recent research suggests that simple feature-based explanations are inadequate to 

explain the complex relationships that AI-based models utilize to generate accurate predictions (Fernández-
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Loría et al. 2022, Carmichael and Scheirer 2023; Jiang et al. 2023). Evidence-based medicine also 

emphasizes the importance of recognizing the complex interactions among clinical factors in understanding 

patient health outcomes (Singbartl and Kellum 2012, Jankovic et al. 2018). Hence, it is important to provide 

explanations that emphasize key interactions among features to better represent the underlying prediction 

process and align with clinical domain knowledge (Ahmad et al. 2018).  

Yet, there remains a significant gap in the development and application of intrinsically 

interpretable models which effectively identify key feature interactions, particularly in healthcare settings. 

To address such a gap, we develop a novel graph learning-based prediction model to intrinsically identify 

complex interactions between patient attributes and their impact on LoS prediction. Our model constructs 

patient-level relational graphs that serve as instruments to predict ICU LoS with high accuracy and interpret 

the contribution of salient features and feature interactions toward LoS prediction. We compare our graph 

learning model against alternative state-of-the-art interaction-based XAI methods. Such methods either 

provide interaction-based explanations of complex prediction methods in a post-hoc manner or construct 

intrinsically explainable models that offer interaction-based explanations. Our results indicate that prior 

XAI methods fail to generate meaningful explanation based on feature interactions and are computationally 

less efficient. In comparison, our model not only identifies the importance of feature interactions but does 

so more efficiently than existing XAI methods, demonstrating its superiority in providing more transparent 

explanations, while offering comparable predictive accuracy. 

We further validate our interaction-based explanations through multiple tests to evaluate our model 

properties based on the Co-12 framework, which defines  a set of conceptual properties for evaluation of 

XAI methods (Nauta et al. 2023). Utilizing perturbation analysis, we demonstrate that modifications to 

input features result in appropriate changes in model explanation based on the importance of the perturbed 

features. We deploy a distance-based separation index to test the significance of feature interactions 

identified by our model and confirm their relevance for ICU LoS prediction. Finally, we validate the 

coherence of explanations generated by our model by ensuring that salient feature interactions identified 

by our model are medically relevant and corroborated by prior medical research. We conduct a small-scale 
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user study to gather feedback from ICU physicians on the insights generated by our XAI approach, and 

their feedback further supports the practical usability and explanations generated by our model. 

In summary, we introduce a novel graph-learning, intrinsically explainable prediction model to 

predict ICU LoS. Our model offers enhanced explainability by generating medically-relevant explanations 

of interactions between patient attributes. Our intrinsic approach provides rich patient-level insights 

compared to existing XAI methods, thereby fostering greater trust in the prediction and enabling clinicians 

to make better-informed decisions using AI-based clinical decision support tools (Petch et al. 2022). Hence, 

our approach represents a significant contribution from a methodological and application perspective, with 

respect to its ability to identify salient interactions and generate patient-specific (instead of population-

level) explanations of salient features and interactions that contribute to model prediction. Although initially 

designed for ICU LoS prediction, our framework is generalizable to other types of health risk prediction 

and can be extended to non-healthcare prediction tasks that require intrinsically explainable models capable 

of highlighting important feature interactions. Such methods can advance the deployment of AI applications 

in critical sectors, where it is paramount to deliver accurate and comprehensive explanations based on 

nuanced interactions between input features. 

2. Background 

In this section, we review existing research on application of machine learning (ML) and deep learning 

(DL) techniques for prediction of patient health outcomes, with a focus on LoS. Subsequently, we discuss 

advancements in graph learning algorithms—a subset of deep learning that processes data with graph 

structures—and their emerging use in healthcare. We identify and discuss significant gaps and limitations 

in the current XAI literature and describe how our proposed graph learning model addresses these 

challenges. In doing so, we illustrate the potential of our research to enhance the reliability and 

interpretability of AI-based predictions in healthcare settings. 

2.1. LoS Prediction  
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Length of stay in the ICU is one of the most important measures of patient health, a proxy for resource 

allocation decisions, and an indicator of future readmissions. Hence, accurate prediction of LoS is critical 

for effective ICU management and care delivery, especially for high-risk patients with severe complications 

(Singh and Terwiesch 2012, Romano et al. 2014, Oh et al. 2018). Severity score-based measures, such as 

Acute Physiology and Chronic Health Evaluation IV (APACHE IV), have been deployed in ICUs to predict 

patient outcomes such as mortality and LoS (Zimmerman et al. 2006). These scores were derived from 

regression models using patient characteristics and vital signs as independent variables. However, the 

efficacy of risk-score-based systems, such as APACHE IV, has come under greater scrutiny due to their 

limited selection of independent variables and over-reliance on the underlying statistical assumptions of 

logistic regression models (Zangmo and Khwannimit 2023). 

In recent years, medical researchers have deployed ensemble-based ML techniques, such as random 

forests and gradient boosting, to predict LoS in ICU settings. These methodologies have been applied to 

diverse patient populations, ranging from general ICU patients to those with specific conditions such as 

lung cancer and COVID-19 (Alsinglawi et al. 2022, Saadatmand et al. 2023). Information systems 

researchers have also utilized these techniques to study preventable readmissions among patients with 

chronic conditions (Ben-Assuli and Padman 2020). While ensemble methods outperform statistical 

approaches, they are unable to exploit latent relationships, such as temporal dependencies, in clinical data.  

In contrast, recent computational advancements have enabled the development of increasingly 

sophisticated DL models that utilize latent relationships within healthcare datasets (Morid et al. 2023). For 

instance, researchers have studied the application of Temporal Pointwise Convolutional Neural Networks 

to predict ICU LoS (Rocheteau et al. 2021, Al-Dailami et al. 2022b). These models represent distinct 

variations of temporal convolutional neural networks (T-CNNs) that were developed to analyze time-

varying data. Alternatively, attention mechanisms have also been utilized to improve LoS prediction. These 

mechanisms allow neural networks to focus on relevant input data segments and have established healthcare 

applications, such as the Reverse Time Attention (RETAIN) model (Choi et al. 2016). Recent innovations 

in this stream of literature have applied variants of attention mechanisms specifically designed to handle 
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complex healthcare data. These innovations include additional designs to process multi-modal and time 

series data. Examples include the Attention-Based Memory Fusion Network and Temporal-Spatial 

Correlation Attention Network (Al-Dailami et al. 2022a, Nie et al. 2023).  

2.2. Graph Learning 

Graph learning, or deep graph learning, has emerged as a powerful approach to analyze and model data 

with complex interactions between entities. Traditional deep learning techniques, such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs), excel at handling structured data, such as 

images and numeric or text sequences, but struggle with complex, unstructured interactions. Graphs 

naturally depict these interactions through nodes and edges, making them suitable to represent a variety of 

real-world phenomena, including social networks, molecular structures, and transportation systems (Wu et 

al. 2020). In turn, graph learning methods, also known as graph neural networks (GNNs), offer a general 

framework for learning representations of graph data. These models aggregate and process information 

from the neighbors of nodes in graphs and capture complex interaction patterns within the data. 

In healthcare settings, prior studies have explored the applications of graph learning methods, 

particularly for ICU risk prediction and chronic disease management. For example, Ma et al. (2023) 

constructed a patient graph to predict mortality risk in ICU patients, where the graph edges are weighted 

by patient similarity. The patient graph was used to identify missing patient features, and a dynamic 

attention mechanism was used to learn additional structural features for each patient. Carvalho et al. (2023) 

predicted 30-day ICU readmission risk by enriching electronic health record (EHR) data with a knowledge 

graph (KG) and used KG embeddings to integrate ontology information. Similarly, Sun et al. (2024) 

addressed EHR data heterogeneity by using multi-view graphs to encode diagnosis and medication co-

occurrence and analyzed their impact on ICU outcomes. Tong et al. (2021) proposed an ICU LoS prediction 

model that combines Long Short-Term Memory (LSTMs) networks to extract temporal features and GNNs 

for exploiting similarity in patient diagnoses.  

2.3. Explainable AI 
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Despite a rapid increase in the deployment of AI applications in healthcare, the “black box” nature of 

ensemble and DL models poses a barrier to clinical use and integration, as they lack transparency in 

decision-making. Without being able to interpret the recommendations proposed by AI models, the 

adoption of AI in clinical practice has sparked criticism and raised questions about numerous legal, ethical, 

equity, and medical concerns (Rai 2020, Bauer and Gill 2024).  Due to these challenges, there has been 

greater emphasis in recent years on the role of XAI methods in enhancing the transparency and acceptance 

of AI models in healthcare. The field of XAI seeks to develop methods that explain AI-based models to 

enhance model interpretability, fairness, and transparency. Such explainability allows for better human 

understanding of AI decision-making and fosters greater trust in model outputs (Chaddad et al. 2023).  

Previous studies have classified XAI methods based on various attributes (Chaddad et al. 2023). 

As described in Table 1, we review various XAI methodologies and their specific applications in healthcare, 

emphasizing two defining characteristics: the type of explanation—intrinsic or post-hoc, and granularity of 

explanation—feature-based or interaction-based. In Appendix A, we provide a comprehensive comparison 

of the XAI methods discussed. Extant research on XAI methods has mainly focused on developing and 

using post-hoc, feature-based explanations to explain deep learning models. Prominent examples include 

Gradient-weighted Class Activation Mapping (Grad-CAM), Layer-wise Relevance Propagation (LRP), and 

Integrated Gradient (IG) (Bach et al. 2015, Sundararajan et al. 2017, Selvaraju et al. 2020). These methods 

determine the importance of input features by examining the gradient associated with each input. 

Applications in healthcare include identification of critical regions for medical imaging, such as chest CT 

scans for COVID-19 detection (Zhang et al. 2021), creating explainable early warning scores for conditions 

such as sepsis (Lauritsen et al. 2020), and evaluating the significance of various input features in predicting 

ICU LoS (Rocheteau et al. 2021).  

Outside the scope of deep learning models, post-hoc, feature-based XAI techniques are more model 

agnostic, offering interpretability irrespective of their underlying model architecture. Perturbation-based 

methods, which modify specific features to evaluate their impact on model output, have been particularly 

useful to identify vulnerabilities in prediction models (Finlayson et al. 2019). Model distillation techniques, 
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such as Local Interpretable Model-agnostic Explanations (LIME), create localized linear models to interpret 

more complex models and have been used to explain the predictions of heart failure incidents during 

hospitalization (Khedkar et al. 2020). Building on LIME, the ROLEX approach was developed to provide 

locally faithful explanations and used to explain predictions of fragility-related fractures in patients (Kim 

et al. 2023). Shapley Additive Explanations (SHAP) utilize Shapley values, derived from cooperative game 

theory, to assign importance to individual features. SHAP has been particularly useful in explaining and 

predicting hospital LoS for lung cancer patients (Alsinglawi et al. 2022). 

Beyond feature-based explanations, there is an emerging body of research aimed at developing 

techniques that provide explanations based on interactions between features. A prominent stream of work 

involves extending SHAP values to account for feature interactions, such as the Shapley Interaction Index 

(SII), Shapley Taylor Index (STI), and Faith Shapley Index (FSI) (Grabisch and Roubens 1999, 

Sundararajan et al. 2020, Tsai et al. 2023). These methods extend the SHAP framework to include subsets 

of features, thereby calculating the importance of feature interactions. Another significant stream of 

research in building post-hoc, interaction-based XAI methods for DL models involves extending gradient-

based explanation methods to calculate the gradient of feature interactions. A notable example is Integrated 

Hessian (IH), an extension of IG, which utilizes the gradient of IG values to identify the importance of 

interactions between pairs of features. The effectiveness of IH has been studied in the context of identifying 

drug-drug interactions in the treatment of leukemia (Janizek et al. 2021). 

Lastly, a related stream of literature focuses on developing intrinsic, interaction-based XAI 

methods by expanding Generalized Additive Models (GAMs) to include pairwise interaction terms. Initial 

work in this area started with GA2M, later evolving to explainable boosting machines (EBM), which 

constructs GAMs using ensemble decision trees, and more recently NODE-GAM, which employs deep 

neural networks to build GAMs (Lou et al. 2013, Nori et al. 2019, Chang et al. 2021). These methods excel 

at generating intrinsically explainable models but are limited by the additive nature of the GAM framework. 

2.4. Research Gaps 



 

 

9 

Computer scientists and medical professionals have increasingly advocated for using inherently 

interpretable models in healthcare, highlighting significant concerns with the limitations of post-hoc 

explanation methods. Yet, most applications of XAI in healthcare focus on utilizing feature-based, post-

hoc XAI methods, such as SHAP and CAM (Chaddad et al. 2023). Such post-hoc methods primarily rely 

on approximations and often fail to accurately represent the nuances of black box models. Information lost 

in this approximation process can potentially erode users’ trust in the prediction model or lead to 

misinterpretation of predictions (Rudin 2019, Petch et al. 2022). Petch et al. (2022, p. 211) articulated the 

challenges associated with post-hoc explanations and argued for inherently interpretable prediction models:  

“…. The most notable limitation of explainability techniques is that most of them are 

approximations of black-box models and therefore do not precisely account for the inner workings 

of those models […]. A key advantage of many ML methodologies is that they can model nonlinear 

relationships, but the strategy of explaining black-box models through approximations may be 

particularly limiting […]. Even with nonlinear explainability techniques such as decision trees, the 

relative simplicity of explanations compared with the black-box models means that any nonlinear 

relationships surfaced through the explanation are likely to be oversimplifications and thus should 

be interpreted with caution […]. If there is no meaningful difference in accuracy between an 

interpretable model and a black box, an interpretable method should be used ….” 

This perspective highlights the critical importance of deploying intrinsically interpretable models in 

healthcare. Such models ensure that physicians can rely on the accuracy of the explanations provided, 

avoiding error-prone decisions based on prior beliefs and superficial information (Jussupow et al. 2021).  

Similarly, we argue that feature-based explanations alone are insufficient to understand the complex 

relationships that AI models exploit to generate predictions. Instead, it is important to offer explanations 

that highlight key interactions between features, especially in real-world healthcare settings.  

Extant research has shown that feature-based XAI methods fail to accurately explain complex AI-

based models, often providing misleading or incorrect explanations (Fernández-Loría et al. 2022, 

Carmichael and Scheirer 2023; Jiang et al. 2023). Providing misleading or incorrect interpretations can 

significantly impair the effectiveness of AI-based tools. Similarly, modern evidence-based medical research 

suggests that understanding patient health outcomes requires recognizing the complex interactions of 

multiple factors. In ICUs, for example, acute kidney injuries—which affect up to 25% of ICU patients—
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occur due to complex interactions of clinical conditions instead of individual factors (Singbartl and Kellum 

2012). Likewise, drug-drug interactions in ICUs may have unexpected synergistic or antagonistic effects, 

further complicating patient outcomes (Jankovic et al. 2018). Therefore, it is critical to offer explanations 

that account for interactions among input features. We posit that such explanations may not only represent 

the prediction process more accurately but also align with domain knowledge, making them accessible to 

practitioners who often lack a background in machine learning (Ahmad et al. 2018). 

Despite the importance of intrinsic, interaction-based explanations, a significant gap persists in the 

development and application of AI models with these capabilities. In this research, we address this gap by 

developing a graph learning-based XAI approach that provides intrinsic, interaction-based explanations to 

predict patient health outcomes, using ICU LoS as our primary research context. 

2.5. Research Contributions 

Our graph learning-based model constructs patient-specific, relational graphs that not only serve as 

predictive instruments of ICU LoS but also explain the relationships between patient attributes that 

contribute to the predicted outcome. In comparison,  prior studies on ICU LoS prediction primarily seek to 

improve prediction capabilities without explaining these models. Furthermore, prior studies that attempt to 

offer explanatory insights into their prediction models utilize post-hoc, feature-based XAI methods that 

exhibit major limitations discussed in the previous section (Rocheteau et al. 2021, Al-Dailami et al. 2022a).  

Our model is different from existing graph learning models as it aims to address the task of 

constructing patient-level graphs to provide intrinsic, interaction-based explanations. Unlike previous graph 

learning applications in healthcare that analyze cohort-level graphs for patient outcome predictions, our 

approach utilizes patient-level graphs, enhancing both the accuracy and explainability of predictions (Tong 

et al. 2021, Carvalho et al. 2023, Ma et al. 2023). Furthermore, our approach autonomously constructs graph 

structures from data lacking any predefined graph format, identifying key interactions or edges, that are 

unobserved in the initial data. This approach is superior to prior graph learning models that rely on pre-

defined graph structures or are limited to exploring only a subset of potential unobserved interactions 
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(Kreuzer et al. 2021, Zhu et al. 2021).  

We also introduce an innovative, attention-based method to assess the importance of both nodes 

and edges for graph-level prediction tasks. Existing methods, such as Graph Attention Networks (GAT), 

primarily focus on studying edge importance at the node or edge level (Veličković et al. 2018). In contrast, 

our model evaluates the hierarchical significance of both nodes and edges, providing a deeper and more 

nuanced understanding of the final prediction at the graph level. This comprehensive approach to assessing 

node and edge importance, combined with an ability to generate and analyze unique graphs for individual 

patients, allows us to develop intrinsically interpretable and accurate predictive models. 

Compared to existing XAI methods, our proposed graph learning model offers a distinct advantage 

by providing intrinsic, interaction-based explanations. By representing each patient as a relational graph, 

where nodes correspond to clinical features and edges denote their interactions, our model can accurately 

identify nuanced interactions that contribute to the predicted outcome. In contrast, existing post-hoc 

interaction-based explanation methods rely on approximation of the internal mechanism of complex black-

box models. While these techniques can offer some insights, they are limited in their capacity to faithfully 

represent the intricate feature interactions within the prediction model.  

Although recent advances in intrinsically interpretable models provide interaction-level 

explanations, the family of GA2M models, which include EBM and NODE-GAM, prioritize an optimal 

GAM based on features alone, before identifying and ranking potential feature interactions within the 

residuals. This design treats interactions as less important than individual features and limits the magnitude 

of their contribution to the final prediction. We empirically demonstrate that our graph learning model 

produces explanations that are computationally more efficient compared to post-hoc, interaction-based XAI 

methods and offers more insightful interaction-based explanations. This enhancement in computational 

efficiency and explanatory power establishes our model as a superior approach from an application and 

methodological perspective in understanding the key features and interactions that influence ICU LoS. 

Our graph learning-based XAI approach is also distinct from extant studies that apply XAI methods 

to graph learning models. While XAI techniques have been developed and applied to graph learning models, 
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these applications focus on post-hoc interpretations that illuminate the internal mechanism of black-box 

graph learning models (Ying et al. 2019, Zhang et al. 2022). These methods identify critical nodes and 

edges within predefined graph structures based on pre-trained graph learning models. In contrast, we build 

an intrinsically explainable model which constructs graphs from data that do not have a graph-structure 

format. Our approach then uses this constructed graph to predict and explain predictions of patient LoS, 

integrating graph construction directly into the prediction and explanation process. 

In summary, we develop a novel graph-learning-based model to generate explainable predictions 

that highlight important interactions between input features that are not easily observable in the underlying 

data. This model is distinct in its ability to provide intrinsic and interaction-based explanations. We 

addresses the challenge of generating intrinsic, interaction-based explanations by transforming it into a 

graph-based task. Specifically, the objective is to construct graphs from data that initially lack graph 

structure and reveal the significance of features and their interactions utilizing the structure of the 

constructed graph. To accomplish this, we extend graph learning techniques not originally designed for this 

purpose to improve the explainability of our XAI approach. Table 2 summarizes the contributions of our 

graph learning approach to the relevant streams of literature.  

3. Data and Methodology 

In this section, we describe the specific task of predicting patient ICU LoS, data utilized in this study, as 

well as the design and implementation of our proposed model.  

3.1. Prediction Task 

Previous studies have primarily focused on predicting the numeric value of ICU LoS by calculating the 

exact duration between patient admission and discharge from the ICU. However, current state-of-the-art 

models have shown severe limitations with this approach, as prediction errors are measured in days, 

rendering them less useful in real-life clinical settings (Al-Dailami et al. 2022b, Sun et al. 2024). This 

drawback has prompted a shift toward more accurate and interpretable LoS prediction methodologies. For 
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example, Harutyunyan et al. (2019) transformed the task of predicting the numeric value of LoS into a multi-

label classification problem and predicted the specific day of discharge for a patient after admission, with 

each label corresponding to a different discharge date. Alsinglawi et al. (2022) and Saadatmand et al. (2023) 

utilized binary predictions based on whether a patient is likely to be discharged from the ICU within a 

specific time window, such as within seven days of admission.  

In this study, we embrace prior research and adopt a binary prediction strategy based on the 

likelihood of patient discharge within seven days following ICU admission. Identifying patients with 

predicted ICU stay exceeding one week enables early intervention of specialized care management teams, 

enhancing the quality of care, especially for at-risk patients (Dahl et al. 2012). We also conduct robustness 

tests using alternate prediction tasks, specifically the binary prediction of ICU discharge within 3 days and 

numeric prediction of ICU LoS, as discussed in Appendix C.  

3.2. Data Selection and Processing 

We utilize data collected from MIMIC III, a publicly accessible database provided by the MIT Lab for 

Computational Physiology, to assess the prediction and explanation capability of our proposed model. 

MIMIC III encompasses de-identified health records from 61,532 ICU admissions, compiled between 2001 

and 2012 at a large academic medical center in Boston (Johnson et al. 2016). Since the MIMIC III data 

spans twelve years, some patients have multiple records from recurrent ICU admissions in one or more 

hospital visits. We only consider the first ICU stay for each patient as a qualifying stay and eliminate 

successive ICU visits (if applicable) to limit our research scope to prediction of LoS based on clinical data 

from their first ICU visit. This preempts the potential for serial correlation across multiple visits, since LoS 

on a later visit may depend on treatments performed during the prior ICU visit.  

We further refine our dataset by excluding ICU admissions with LoS less than two days—the data 

collection period—to ensure that comprehensive and relevant data is used for model training. Selecting the 

data collection period is crucial; an excessive duration can hamper model operability, while a shorter period 

might not offer sufficient data for training, culminating in suboptimal prediction. Our choice of a 48-hour 
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window is consistent with prior research and addresses the relative scarcity of clinical data for selected 

input variables within the first 24 hours of ICU admission (Rotar et al. 2022). Our final data set contains 

22,243 ICU stays which provide the relevant data for our predictive models. Since our data has a one-to-

one correspondence between patients and ICU stays, we refer to them interchangeably in the following 

discussion. For reference, we do not remove patients who passed away during their ICU stay.  

3.3 Graph Learning-Based Model  

We propose a novel graph learning model to generate intrinsically explainable predictions of ICU LoS, 

capable of highlighting key interactions between features. This model predicts ICU LoS by constructing 

patient-level graphs that illustrate the importance of individual features and interactions between features 

at the patient level. A visual representation of the model structure is provided in Figure 1. 

First, during node attribute generation (step 1), each type of input feature is transformed into a 

fixed-length vector within a unified feature space utilizing different projection layers, each corresponding 

to a specific type of input feature. These projection layers are customized based on defining characteristics 

of the associated type of input features—LSTM units for processing temporal data and feed-forward neural 

layers for the remaining types of features. Let x be the input for a given patient. In step 1, x is transformed 

into h, a combination of transformed feature representations htemporal and hstatic, as defined in equation (1).  

ℎ = [ℎ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 , ℎ𝑠𝑡𝑎𝑡𝑖𝑐]                                                                    (1) 

Specifically, projections for temporal data are generated through LSTMs as shown in equation (2),  

ℎ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝐿𝑆𝑇𝑀(𝑥𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙)                                                             (2) 

and a feed-forward layer for other feature types as shown in equation (3). 

ℎ𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐿𝑆𝑇𝑀(𝑊𝑠𝑡𝑎𝑡𝑖𝑐𝑥𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑏𝑠𝑡𝑎𝑡𝑖𝑐)                                                   (3) 

where Wstatic and bstatic are the weights and biases of the feed-forward layers. 

Step 2 involves graph construction, where a fully connected directed graph, G=(V, E), is 

constructed based on the projected input features h. In this graph, each node i in V corresponds to a specific 

type of input feature with the associated projection hi encapsulated as the node attribute. Each edge eji = (j, 
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i) in E represents the potential flow of information, or interaction, from node j to node i.  

Next, we calculate edge importance in step 3, where we leverage a GAT to refine the node attributes 

in the constructed graph G. GAT is a specialized type of message-passing GNN that utilizes attention 

mechanisms to selectively focus on and aggregate relevant node-level information (Veličković et al. 2018). 

Specifically, the attributes of each node are updated with the weighted sum of attributes of its neighboring 

nodes. These weights are dynamically determined by an edge-level attention mechanism, which assesses 

the relevance of each neighbor in relation to the attribute vector of the focal node. For each node i in G, its 

updated attribute h'i is computed as shown in equation (4), 

ℎ′𝑖 = 𝜎(∑ 𝛼𝑗𝑖𝑊ℎ𝑗𝑗∈𝑉 )                                                             (4) 

where W is a learnable weight matrix, and αij are attention coefficients computed as shown in equation (5), 

𝛼𝑗𝑖 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈((𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑘]))𝑘∈𝑉
                                                  (5) 

with a being a learnable weight vector of the attention mechanism. The calculated edge-level attention 

coefficients, αji’s, describe the relevance of edge eji for updating the attributes of node i. Given the fully 

connected nature of the patient-level graph constructed in step 2, α’s are calculated for all possible 

combinations of 𝑖, 𝑗 ∈ 𝑉, enabling the model to comprehensively assess all potential interactions. 

Next, in step 4, the node importance calculation, an attention-based read-out mechanism is utilized 

to generate a vector representation, hg, of the entire graph. This process involves creating a weighted sum 

of the updated node attributes h' shown in equation (6), where βi’s are attention weights computed similarly 

to the α’s by evaluating the relevance of each node’s transformed attributes h'i for the prediction task. 

ℎ𝐺 = ∑ 𝛽𝑖ℎ′𝑖𝑖∈𝑉                                                                       (6) 

The β’s assigned to each node not only determine hg but also serve as indicators for the importance of the 

updated node attributes.  

Finally, in the graph-based prediction step (step 5a), the graph-level representation hg obtained 

from the attention-based read-out in step 4 is processed using a multi-layer perceptron, consisting of 

multiple feed-forward layers, to generate the final prediction for ICU LoS, as shown in equation (7).  
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𝑌 = 𝑀𝐿𝑃(ℎ𝐺)                                                                        (7)  

Simultaneously, in the graph-based explanation step (step 5b), we construct a patient-level directed 

graph utilizing the attention values from steps 3 and 4. This graph encapsulates the importance of individual 

types of features and their interactions in contributing to the ICU LoS prediction for each patient. 

Specifically, we define the importance of the node i, 𝐹𝑒𝑎𝑡𝐼𝑚𝑝𝑖, as the corresponding node-level attention 

value, βi, which represents the importance of the feature type represented by node i, shown in equation (8) 

𝐹𝑒𝑎𝑡𝐼𝑚𝑝𝑖 = 𝛽𝑖                                                                    (8) 

We then define the importance of the edge eji, 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑗,𝑖, as the product of the attention value 

attributed to the edge, αji, with the attention value assigned to the destination node, βi. Its value equals the 

proportion of importance assigned to node i in step 4 attributed to the flow of information from the feature 

represented by node j to the feature represented by node i.1 We interpret this value as the importance of the 

interaction between the features represented by node i and node j, as shown in equation (9). 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑗,𝑖 =  𝛼𝑗𝑖𝛽𝑖                                                            (9) 

The product term in equation (9) is particularly important in representing the true importance of a 

given edge/feature interaction to the overall prediction process. While the attention values generated by the 

GAT represent the relative importance of an edge for information flow to a particular node, such values are 

assigned at the node level and do not measure the global relevance of that edge for the graph-level prediction 

task. By multiplying the edge-specific attention with node-specific attention, we derive a measure of the 

overall importance of the edge (or interaction). Through this effective integration of GAT and an attention-

based read-out mechanism, our model can identify the contributions of the interactions between features to 

the attention allocated to each feature. The sum of both feature- and edge-level importance scores is equal 

to one, as shown in equation (10). 

 
1 It should be noted that the constructed graph is directional in nature, 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝

𝑖,𝑗
 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝

𝑗,𝑖
 

represent different values. 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝
𝑖,𝑗

 represent the importance of the information flow from node i to node 

j, while 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝
𝑗,𝑖

 represent the importance of the information flow from node j to node i.  
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∑ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑗,𝑖 =𝑗,𝑖 ∑ 𝛼𝑗𝑖𝛽𝑖𝑗,𝑖 =  ∑ 𝐹𝑒𝑎𝑡𝐼𝑚𝑝𝑖 =𝑖 ∑ 𝛽𝑖 = 1𝑖                         (10) 

3.4. Model Implementation 

Based on the model structure described in section 3.3, we now discuss the implementation of the model for 

LoS prediction using the MIMIC III data. It is important to note that while we apply the model in the context 

of ICU LoS, the model structure described in Section 3.3 is adaptable to other prediction tasks by simply 

modifying the process of transforming input features into a unified vector space. The rest of the model is 

designed to be general purpose and applicable across various domains and datasets. 

For each patient, we utilize 47 types of features across four categories: patient administrative data, 

diagnosis, medication data, and vital signs. Table 3 provides descriptive statistics of selected input features. 

Specifically, we utilize 7 types of patient administrative data: patient age, gender, ethnicity, marital status, 

type of hospital admission, insurance status, and ICU admission type, which together form a 1x71 vector. 

Patient diagnosis is represented as a 1x18 vector, indicating the presence or absence of disease diagnoses 

based on 18 top-level ICD-9 categories. We include 8 types of vital sign measures: heart rate, glucose level, 

body temperature level, oxygen level, respiration rate, systolic blood pressure, diastolic blood pressure, and 

mean blood pressure. Each type of vital sign is represented as a 1x24 vector, based on the average readings 

of the corresponding vital signs, organized in 24 two-hour intervals during the initial two days of ICU 

admission. Intervals with no readings are filled with a value of -1.2 Medications administered to patients 

are represented through seven principal components derived from daily dosage data across the two-day data 

collection period, for a total of 14 distinct values.  

The original daily dosage data spans 178 medication categories classified under level 3 of the 

Anatomical Therapeutic Chemical (ATC) system. These data are factorized into seven principal 

components through principal component analysis (PCA). We categorize and name the seven principal 

components based on their corresponding loading values, as (a) Metabolic and Anti-infective Agents, (b) 

 
2 Alternative filling approaches, such as backward/forward filling, mean filling, or 0 filling, were examined and do 

not significantly influence the results.  
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Cardiovascular and Blood Agents, (c) Gastrointestinal and Hormonal Agents, (d) Nutritional and Anti-

inflammatory Agents, (e) Antineoplastic and Immunomodulating Agents, (f) Dermatological and 

Respiratory Agents, and (g) Analgesics and Central Nervous System Agents. Appendix G provides a 

detailed description of our classification approach. Utilizing principal components as inputs instead of raw 

medication dosage data helps to reduce noise and ensures consistent node count in the patient-level graphs, 

thereby standardizing input features across patients. 

In the next step, 47 projection layers map each of the feature types into the same 64-dimensional 

vector space. The eight vital signs are processed through unidirectional LSTM layers with a hidden size of 

64 to exploit the temporal relationships inherent in the data, while the remaining 39 feature types are 

mapped via feed-forward layers, reflecting their simplicity. Subsequently, a fully connected directed graph 

is constructed for each patient comprising 47 nodes and 2209 edges. Each node corresponds to one of the 

47 types of features. The 64-dimensional vectors, generated by the projection layers, are included in the 

graph as node attributes, aligning with their respective nodes. A GAT with a hidden dimension of 64, 4 

attention heads, and ReLU as the activation function, is utilized to generate the edge-level attention values 

and update the node attributes. A global attention pooling layer then computes a weighted sum of the 

updated node attributes across the 47 nodes based on the node-level attention values. This computation 

yields a 64-dimensional vector representing the entire graph. This vector is subsequently processed through 

a feed-forward layer with a sigmoid activation function to yield the predicted likelihood of 7-day ICU stay. 

The node- and edge-level attention values are then utilized to construct the patient-specific relational graph, 

to explain corresponding ICU LoS prediction.  

4. Results 

Due to the intrinsically explanatory nature of our graph learning-based model, it is imperative to assess its 

predictive capabilities and the quality of explanations generated. This two-pronged evaluation ensures a 

comprehensive understanding of the ability of our graph learning model to not only predict accurately but 

also explain its prediction. We first compare the predictive performance of our graph learning-based model 
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(henceforth referred to as our graph model) with EBM, a custom-built DL model (henceforth referred to as 

the DL model), and other widely used ML algorithms.3 This comparative evaluation is designed to validate 

the reliability and efficacy of our graph-centric approach for accurate prediction. Next, we shift our focus 

to the explanation dimension of our model and compare the explanations generated by various XAI 

techniques. Due to our interest in generating interaction-based explanations, we compare the following XAI 

approaches: our graph model, EBM, Integrated Hessian, and FSI, with the two latter approaches explaining 

the DL model (henceforth referred to as DL-IH and DL-FS, respectively). These alternative XAI methods 

are included as benchmarking targets based on the classification shown in Table 1. Implementations details 

of these methods are provided in Appendix B. 

4.1 Prediction Comparison 

Table 4 offers a detailed comparison of the predictive performance of various models, including our graph 

learning model, the DL model, EBM, and conventional ML models such as XGBoost, random forests, and 

logistic regressions, in predicting the likelihood of ICU discharge within 7 days (of admission) across 10 

cross-validation runs with an 80/20 split of train/test data. Notably, our graph model and DL models 

demonstrate identical performance in terms of the area under the receiver operating characteristic curve 

(AUROC) and the area under the precision-recall curve (AUPRC), with scores of 0.824 and 0.899, 

respectively. The EBM model also reports comparable AUROC and AUPRC values of 0.824 and 0.898, 

respectively, and exhibits the highest F1 score of 0.839 with a prediction accuracy of 0.771, matching that 

of the DL model. Since approximately 30% of patients in our data remain in the ICU for more than seven 

days, metrics such as AUROC and AUPRC gain importance for being less prone to the effects of class 

imbalance, compared to accuracy or F1 scores. The predictive performance of our graph learning model is 

superior to conventional ML models and comparable to the DL model and EBM. 

While the focus of our study is to predict 7-day ICU discharge, Appendix C broadens the scope of 

our analysis by evaluating both prediction and explanation capabilities of our graph learning model and the 

 
3 Microsoft actively supports the EBM package, which is more up-to-date and accessible compared to NODE-GAM.  
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EBM, to predict 3-day ICU discharge and numeric values of LoS. Although EBM demonstrates slightly 

higher precision in predicting 3-day discharge, our model offers superior capability in predicting numeric 

LoS. However, with a mean average error exceeding 5 days, we observe that numeric LoS predictions lack 

practical relevance. Our analysis reveals that the graph learning model and EBM identify significantly 

different features and interactions for the three prediction tasks. This finding highlights the complexity of 

feature dynamics for predictive modeling in critical care settings. 

4.2 Explanation Comparison 

After assessing the predictive accuracy of our graph learning model, our focus shifts to its ability to explain 

the relationships identified by the model. Our goal is to assess whether our graph learning model and various 

interaction-based XAI techniques can generate meaningful explanations based on the interaction of patient 

attributes. In the ensuing analysis, we visually contrast the explanations generated by our graph learning 

model with those of other interaction-based XAI methods. This includes comparison of individual patients, 

patient cohorts, and evaluations of the significance of interaction-based explanations. Further, we explore 

their computational efficiency based on the time required to produce explanations for an individual patient. 

4.2.1 Computation Time 

Before we present explanations provided by various XAI methods, we first evaluate the computation time 

required by each method to generate explanations for an individual patient. This is particularly pertinent 

for interaction-based explanations that necessitate computing the importance of at least N2 pair-wise 

interactions—compared to feature-based explanations that only require computing the significance of N 

features. Table 5 compares the computational efficiency of four types of XAI methods deployed to explain 

the predicted outcome for a single patient. These include two intrinsic (EBM and our graph learning model) 

and two post-hoc (DL-FS and DL-IH) methods.  

We observe a notable discrepancy between intrinsic and post-hoc methods with respect to the 

computation time to generate explanations. Specifically, both EBM and our graph learning model can 

produce explanations in under 0.1 seconds, whereas post-hoc methods require significantly more time. For 
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instance, the DL-FS method averages 20 seconds while DL-IH requires up to 4 minutes to generate 

explanations for a single patient. Due to the considerably poorer performance of DL-IH, we exclude it from 

subsequent analysis.4  We note that generating explanations is significantly quicker for intrinsic XAI 

methods, since a simple forward pass through the neural network (for our graph learning model) or the 

ensemble of decision trees (for EBM) is sufficient to generate the relevant explanation. On the contrary, 

both post-hoc techniques must, by design, calculate the relevance of each feature and their interactions at 

the time of generating the explanation, a process that is more computationally demanding. 

4.2.2 Patient-level Explanation 

In this analysis, we compare the explanations generated by DL-FS, EBM, and our graph learning model, to 

predict the LoS of a 46-year-old male patient, admitted through the emergency department and treated in 

the surgical ICU. The patient had an ICU stay exceeding seven days which was accurately predicted by all 

models (i.e., binary prediction LoS > 7 days). Figure D1 in Appendix D displays the explanations from the 

EBM model for the top 15 terms—either a feature or interaction between two specific features—that impact 

LoS prediction for this patient. Based on the EBM results, there is a 34.2% chance of this patient being 

discharged within 7 days. It identifies respiratory system-related diagnosis as a critical factor, suggesting 

its presence decreases the likelihood of ICU discharge within seven days by 27.3% (=1-e^-0.32). It is 

important to note that all 15 factors are features and do not include any feature interactions.  

Figure D2 in Appendix D provides a graphical illustration of the explanation of the DL-FS model, 

showing salient features and interactions that explain the LoS prediction. It estimates a 4.6% likelihood of 

ICU discharge within a 7-day period and identifies the prevalence of respiratory system-related diagnosis 

in reducing the likelihood of 7-day discharge by 12%. Vital signs, such as mean blood pressure and glucose 

levels, are also noteworthy as predictive indicators. DL-FS does not assign significant importance to feature 

interactions, with the most significant interaction only having a -0.007% impact on LoS prediction. 

On the other hand, Figure 2 displays the explanation of our graph learning model, which predicts 

 
4 In Appendix B, we explain why the DL-IH method is much slower compared to other methods.  
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an 8.5% likelihood of discharge within 7 days. The graph representation visually emphasizes the importance 

of features and feature interactions through the size of nodes and width of edges in the personalized graph. 

While our model identifies respiratory system-related diagnosis as a prominent explanatory feature that 

receives 71.81% of the total attention, closer examination reveals significant portions of this attention—

specifically, 17.954%, 17.954%, and 15.629%—can be attributed to the interactions between respiratory 

system diagnosis and patient age, nutritional and anti-inflammatory agents, and analgesics and central 

nervous system agents, respectively. This suggests that the attention assigned to respiratory system 

diagnosis is a function of its interactions with patient age and medications.  

Compared to EBM and DL-FS, our graph learning model generates a more comprehensive 

explanation of ICU LoS that identifies the nuanced impact of feature interactions. For instance, only our 

model identifies the interaction between patient age and respiratory system diagnosis as important for this 

patient. Such an interaction is medically sound, as prior research has observed gradual deterioration in lung 

function as patients age, emphasizing the need to consider patient age when diagnosing and treating 

respiratory system conditions (Sharma and Goodwin 2006).  

4.2.3 Population-level Explanation 

Next, we aggregate patient-level explanations generated by the three XAI methods—DL-FS, EBM, and our 

graph learning model—at the cohort  level to demonstrate the importance of features and feature 

interactions across the patient population. By averaging the attention scores of nodes (representing features) 

and edges (representing interactions) from our graph learning model across patients, we can identify key 

features and interactions that are relevant for LoS prediction across the patient population. Similarly, the 

EBM model calculates global term importance for each feature and pairwise interaction as the mean of 

absolute importance values across all patients. We apply a similar approach to calculate the mean absolute 

values of Faith SHAP scores that quantify the average influence of each feature or interaction on prediction 

of LoS. Tables 6 and 7 provide a comparative evaluation of the salient features and interactions determined 

by the three XAI methods. Although the specific importance values are not directly comparable across the 
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three methods, the rankings of the features and interactions can be compared. 

Based on the DL-FS results shown in the left panel of Table 6, we observe that patient diagnoses, 

age, and blood pressure during the final two hours of the ICU stay, are significant predictors of LoS. 

Similarly, the EBM model identifies different types of diagnosis, ICU type, and medications, as salient 

factors in predicting LoS, with respiratory system diagnosis emerging as the most influential factor. Our 

graph learning model also reports different types of patient diagnoses, age, vital signs, and ICU type, as 

important features. On average, 11.5% of the attention is assigned to respiratory system diagnosis, 

demonstrating its role as the most important feature. Our results indicate a high level of consistency across 

the three XAI methods with respect to salient features for LoS prediction.  

On the other hand, the results reported in Table 7 provide a different perspective of the explanations 

based on feature interactions. A closer examination of mean absolute Faith SHAP scores shows that DL-

FS largely overlooks the importance of feature interactions. For example, admission to a Medical Intensive 

Care Unit (MICU) is ranked as the tenth most important feature by Faith SHAP, influencing the predicted 

likelihood of an extended ICU stay by an average of 0.69%. In comparison, the top-rated interaction 

between Systolic Blood Pressure and Mean Blood Pressure (during hours 46-48) has a trivial importance 

score of 0.02%, implying an almost negligible impact on the likelihood of LoS prediction. Such findings 

suggest that DL-FS struggles to assign substantive importance to feature interactions. In contrast, EBM and 

our graph learning model attribute meaningful significance to feature interactions. The mean importance 

scores for feature interactions assigned by these methods are substantial compared to individual features. 

4.2.4. Distance-based Separation 

The quantitative evaluation of explanations generated by various interaction-based XAI methods poses a 

significant challenge. Existing evaluation techniques deployed in prior XAI research primarily focus on 

feature-level analysis or utilize synthetic data with predetermined underlying relationships (Janizek et al. 

2021, Kim et al. 2023). Consequently, these methods are not directly applicable in assessing the quality of 

interaction-based explanations in our research context. Drawing on the literature on concept-based 

explanations, we develop an approach to evaluate the efficacy of interaction-based explanations by 
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measuring the enhanced differentiation provided (Crabbé and van der Schaar 2022). We propose that 

including interactions in explanations, as opposed to utilizing only features, should improve the ability to 

distinguish patients with different LoS outcomes. We utilize t-distributed stochastic neighbor embedding 

(T-SNE), a well-known technique for dimension reduction and visualization, to process and visualize the 

high-dimensional explanations generated. Specifically, we generate 2-dimensional T-SNE plots for the 

patient cohort using our explanations from the DL-FS, EBM, and graph learning model. For each XAI 

method, two plots are generated: one based on the importance scores of the top features, and another based 

on the scores of top features and interactions. Each patient is then classified based on their outcomes, 

specifically whether they were discharged within 7 days. 

Our proposition suggests that T-SNE plots generated from feature and interaction importance 

scores should offer better separation between patients with different outcomes compared to T-SNE plots 

that only include feature importance scores. We assess the separation within the T-SNE plots using the 

Distance-based Separation Index (DSI) (Guan and Loew 2022). DSI measures the degree of separability 

between two sets of data, with a value between 0 to 1, with a higher DSI value indicating a greater degree 

of separation. By examining the DSI values, we can determine the effectiveness of including interaction-

based elements in explanations, with the expectation of observing greater separation based on explanations 

provided by including feature and interaction-based importance scores. 

Table 8 shows the average DSI improvement for the DL-FS, EBM, and graph learning models, 

highlighting the impact of interaction-based explanations in T-SNE plots. These improvements are 

calculated across ten cross-validation runs, utilizing different training/test splits generated randomly with 

each pair of T-SNE plots derived from the respective test dataset. Furthermore, we evaluate the statistical 

significance of these improvements using a paired t-test. The results demonstrate that inclusion of 

interaction terms in the graph learning model enhances patient separation in the corresponding T-SNE plots, 

i.e., they accurately explain whether patients are likely to be discharged (or not) within 7 days. This 

improvement is statistically significant in all T-SNE configurations for the graph learning model in Table 

8. However, inclusion of interaction terms in the EBM and DL-FS models does not yield statistically 
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significant enhancements in patient separation. This indicates that the interaction-based portion of 

explanation from EBM and DL-FS do not augment the insights provided by the feature-based portion. 

The failure of DL-FS to enhance patient separation with interaction terms can be attributed to its 

insufficient emphasis on these terms, as demonstrated in Table 7. Similarly, the issue with EBM arises from 

the design philosophy of the GA2M family of algorithms. GA2M prioritizes building an optimal GAM-

based on features before identifying and ranking potential feature interactions within the residuals. Only 

the top-ranked feature pairs determined through cross-validation are included in the final model. This 

sequential estimation approach, which focuses initially on individual features, and subsequently on their 

interactions, may explain why EBM yields high predictive accuracy without providing interaction-based 

explanations that offer additional insights. In contrast, our graph learning model adopts a novel 

methodology by first assessing the significance of feature interactions using GAT before evaluating the 

importance of individual features. This ensures that interaction-based explanations can consistently enrich 

the separation between patients with different LoS outcomes.  

We illustrate this separation in Figures 3 and 4 where we present the T-SNE plots derived from 

explanations generated by our graph learning model. These plots compare the visual clustering of patients 

based on 30 features versus a combination of 30 features and 30 interactions, with both plots subjected to 

a perplexity of 100 and 10,000 iterations. Figure 3 includes feature interactions and reveals three clusters: 

patients in the bottom left cluster generally have longer stays, those in the top center cluster have shorter 

stays, and a gradient from left to right in the lower right cluster indicates increasing LoS. Conversely, Figure 

4 represents a T-SNE plot without interactions and does not indicate a clear separation between clusters. 

The DSI scores are 0.171 and 0.097 for the T-SNE plots with and without interactions, respectively, which 

suggest that interaction-based explanations contribute to an improvement of 0.074 in DSI.  

In Appendix E, we further evaluate the utility of interaction-based explanations of our graph 

learning model, focusing on the degree of separation enabled by feature interactions. We demonstrate that 

the attention values attributed to two interactions, exhibit significantly different distributions across patient 

groups in Figures E1 and E2. Specifically, patients with ICU stay longer than seven days are more likely to 
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exhibit salient attention on the interaction between patient age and respiratory system diagnoses. In contrast, 

patients with stays shorter than seven days are more likely to exhibit salient attention on the interaction 

between patient age and mental disorders. Although we highlight only two of the top ten interactions, the 

importance of all interactions in Table 7 show significant differences between the two patient groups. 

5. Evaluation of Explanations 

In this section, we further validate the explanations generated by our graph learning model, based on the 

Co-12 framework (Nauta et al. 2023). The Co-12 framework is a collection of 12 key properties that can 

be used to systematically evaluate explanations generated by machine learning models. Evaluation of XAI 

methods is a nascent area of research and early studies have primarily focused on the assessment of post-

hoc, feature-based XAI methods. These studies focus on the consistency between the explanations and 

underlying prediction model either by observing the impact of removing features deemed as important or 

by assessing local fidelity scores (Janizek et al. 2021, Kim et al. 2023). However, there is a notable research 

gap with respect to systematic evaluation of intrinsic, interaction-based XAI methods. Our evaluation 

approach includes several tests designed to assess whether the explanations generated by the graph learning 

model adhere to the Co-12 framework. A summary of our evaluation approach is provided in Table 9. 

5.1. Correctness, Completeness, and Compactness 

The first two properties, correctness and completeness, are foundational to assess the quality of explanations 

provided by any XAI method. Correctness ensures that explanations accurately reflect the predictions of 

the underlying model, while completeness emphasizes the need for explanations to fully represent the model 

decision-making process. Since our model explanations are intrinsically derived from the prediction model, 

the correctness of explanations is inherently assured. Since these explanations are generated directly by the 

model, they offer a complete view of the decision process by design. This relationship between model 

prediction and explanations distinguish intrinsic methods from post-hoc alternatives. Hence, we argue that 

our graph learning model satisfies both correctness and completeness properties of the Co-12 framework.  
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The compactness property states that explanations should be succinct and sparse. Figure 2 suggests 

that the explanations of our graph learning model are compact, focusing on a limited set of key features and 

interactions. Furthermore, the results described in Appendix F demonstrate that the distribution of node and 

edge importance scores adheres to a zero-inflated pattern, indicating that our model assigns substantial 

attention only to a limited number of nodes and edges across all patients.  

5.2 Consistency, Continuity, and Contrastivity 

Next, we evaluate the explanations provided by our graph learning model through the lens of consistency, 

continuity, and contrastivity. These properties suggest that the ability of the XAI model to provide 

explanations should accurately reflect the importance of input features, highlighting its capability to 

generate reliable and meaningful insights into the prediction. We evaluate these properties by perturbing 

the most and least significant diagnoses—respiratory system-related diagnosis as the most important and 

blood-forming organs as the least important. For all patients diagnosed with both categories of conditions, 

we generate explanations using the original data, a perturbed version excluding blood-forming organ-

related diagnosis, and another excluding respiratory system-related diagnoses. The impact of perturbation 

analyses using aggregated graph-based explanation is represented in Figures 5a, 5b, and 5c. 

While Figure 5a represents the explanations based on the original data, Figure 5b demonstrates that 

perturbation of a less critical diagnosis category across the relevant patient cohort—blood-forming 

organs—does not significantly alter the explanation or attention values of the nodes (features). For instance, 

the prominence of respiratory system diagnosis remains unaffected as do other important nodes such as 

patient age, mental disorder, and injury and poisoning diagnosis. This stability indicates that variations in 

less critical diagnostic categories have negligible effects on model explanation. Conversely, Figure 5c 

demonstrates that perturbation of an important feature—respiratory system diagnosis—leads to a drastic 

change in the importance of other features and interactions. For example, patient age emerges as the most 

significant node in explaining LoS prediction when respiratory diagnosis is perturbed. Overall, perturbation 

analysis confirms our model adherence to the principles of consistency, continuity, and contrastivity. 
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5.3. Confidence 

Next, we utilize logit regressions to assess the property of confidence, which is related to probability-based 

confidence measures of model explanation. Specifically, we focus on providing statistical confidence in the 

significance of interactions identified by our model. We choose logit regressions due to their ability to 

support goodness-of-fit tests. We compare two logit models: one with only salient features identified by 

our graph learning model as independent variables, and another which includes both salient features and 

interactions. The goal is to determine whether inclusion of the interaction terms improves the goodness of 

fit for predicting ICU stay. We present a comparison of the two logit regression models in Table 10. The 

logit regression utilizing interactions increases McFadden's R-square from 0.218 to 0.228, which is 

statistically significant based on the likelihood ratio test and reduces the Akaike Information Criterion 

(AIC) from 22,156 to 22,069. These results confirm the importance of the interactions identified by our 

graph learning model and establish their statistical significance with high confidence.  

5.4 Coherence and Covariate Complexity 

Next, we evaluate the coherence of our model explanations with the established medical literature. 

Coherence ensures that explanations align with domain knowledge while covariate complexity requires 

explanations to be understandable to the target audience. Such properties are particularly important as prior 

research suggests that XAI methods can enhance user trust in algorithms and confidence in decision making 

when designed using task-specific domain knowledge (Lee and Ram 2023). We assess these two properties 

by cross-referencing salient interactions identified by our model with findings from extant clinical research. 

Table 11 presents the top 10 salient interactions identified by our graph learning model (as reported in Table 

7), along with supporting clinical evidence which provide evidence-based support for the validity of our 

model explanations. For example, our model highlights the interaction between “nutritional and anti-

inflammatory agents” and heart rate as important predictors of  ICU LoS. This is supported by the medical 

literature, which suggest that short-term usage of corticosteroids, a type of anti-inflammatory agent, is 

associated with significant decrease in heart rate and can lead to bradycardia (Brotman et al. 2005). In other 
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words, attention should be given to patient heart rate when prescribing this type of medication. Similarly, 

the interaction between respiratory system diagnosis and patient age reflects the impact of age on lung 

capacity and increased risk of respiratory failure, which may affect recovery time and LoS (Sharma and 

Goodwin 2006). These results indicate that our model explanations are not only consistent with evidence-

based medicine but also provide insights that are unavailable using traditional XAI methods. 

6. Discussion 

In this section, we discuss the results of a small-scale user study followed by the research implications. 

6.1 User-based Evaluation 

To evaluate the usefulness of our graph learning model in clinical settings, we designed a small-scale user 

study based on a survey of ICU clinicians (Kim et al. 2023). The questionnaire was comprised of five 

statements based on the explanations between patient attributes and ICU LoS, as identified by our graph 

learning XAI approach. The respondents include six practicing ICU physicians in central Texas, who rated 

the statements on a 5-point Likert scale, where 1 = "Strongly Disagree," 2 = "Disagree," 3 = "Neither Agree 

nor Disagree," 4 = "Agree," and 5 = "Strongly Agree." The survey statements describe the interactions 

between patient age and different diagnoses on ICU LoS. The survey also included an open-ended question 

to elicit physician feedback regarding the feasibility of using our XAI approach to improve care delivery. 

Tables H1 and H2 in Appendix H present the survey statements, mean Likert scores from the 

respondents, and their written responses to the final question. The results show that ICU clinicians generally 

disagreed with the cohort-level statements (i.e., Q1 and Q2), with mean Likert scores below 3. However, 

they generally agreed with individual patient-level statements (i.e., Q3). The salient interaction between 

patient age and respiratory system diagnoses, as illustrated in Figure 2, is discussed in statement 3a. 

Statements 3b and 3c provide additional explanations on the role of skin issues and mental disorders.  

We anticipate that physicians would concur with our model prediction based on statement 3a, with 

statements 3b and 3c having minimal impact on physician opinion. We observe that physicians generally 

agreed with statement 3a, with a mean Likert score of 3.33, with similar responses to statements 3b and 3c. 
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Hence, their feedback with respect to individual patient-level insights indicates a valuable role for our 

model in clinical settings, especially in tailoring care plans to the unique characteristics of each patient. 

Based on their free-form responses, four out of six physicians observed that our model can improve staffing 

and resource management efficiency, enabling better planning for patient placement and future expansion.  

6.2 Research Implications 

From an application perspective, our research demonstrates the importance of intrinsically generated 

explanations that identify important interactions between patient attributes for accurate prediction of ICU 

LoS. Compared to interaction-based XAI methods in the prior literature, our graph learning model 

accurately identifies complex, non-linear relationships in the underlying data, thereby offering a more 

nuanced understanding of their impact on LoS prediction. We demonstrate empirically that interaction-

based explanations can provide more accurate and comprehensive understanding of the underlying 

prediction model, which is particularly important in healthcare. Furthermore, the results of our user study 

indicate general agreement among ICU clinicians with the patient-level explanations offered by our XAI 

approach, which underscores the practical relevance of our graph learning model. We posit that our model 

can enhance clinical decision-making and improve ICU operational efficiency by providing physicians with 

more transparent and comprehensible insights into LoS prediction in the ICU. 

 From a methodology perspective, our model provides a unique solution to the challenge of 

designing prediction models that are not only accurate but also capable of providing intrinsic, interaction-

based explanations. By operationalizing the problem of interaction-based explanations as a patient-level 

graph that describes the relationships between patient attributes, our model learns the structure of patient-

level graphs by deploying an end-to-end attention-based learning approach. Our approach provides accurate 

identification of the underlying feature interactions that explain outcome prediction, and thereby, bridges 

extant research on graph learning and XAI methods. Hence, our research expands the application space of 

graph learning techniques and provides new tools for developing XAI methods. Overall, our proposed graph 

learning approach provides a novel contribution from methodological and application perspectives to 
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address the problem of generating intrinsically interpretable solutions for risk prediction.   

Our results also provide a solution to the computation complexity of O(N2) associated with 

examining all potential interactions between features. By adding intrinsic explanation capabilities to the 

prediction model, computation complexity is internalized in model training, thereby enabling more 

computationally efficient explanations compared to extant post-hoc methods. In other words, our model 

generates interaction-based explanations significantly faster than alternate post-hoc methods.  

Although our primary research setting is the ICU, our graph learning model can be generalized to 

other healthcare contexts to accurately identify key feature interactions for predicting patient health 

outcomes such as mortality, readmission risk, or hospitalizations. As experts increasingly recognize the 

limitations of post-hoc, feature-based explanations, our model offers a novel approach to generate intrinsic, 

interaction-based explanations that hold promise in any domain that requires an understanding of complex 

feature interactions and their impact on risk prediction (Petch et al. 2022, Carmichael and Scheirer 2023). 

7. Conclusions 

In this study, we propose and test a novel graph learning-based prediction model to address the challenge 

of developing explainable predictions of ICU LoS which identify the importance of patient attributes and 

interactions between attributes. Our model intrinsically constructs a patient-level graph that describes the 

importance of features and feature interactions during prediction. Our model demonstrates superior 

explanation capability based on identification of important feature interactions, compared to traditional 

interaction-based, XAI methods for predicting ICU LoS.  We supplement our model-based approach with  

a small-scale user study which demonstrates that our model provides accurate explanations that can lead to 

practical improvements in the care delivery process. Our model lays the foundation to develop interpretable, 

predictive tools which healthcare professionals can utilize to improve ICU resource allocation and enhance 

the clinical relevance of AI systems in providing effective patient care.  

7.1. Limitations and Future Research 
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In recognizing the limitations of our research, we also identify several avenues for future research. Our 

graph learning model is designed with broader applicability in mind. It can be adapted to various healthcare 

settings and potentially extended beyond healthcare applications. Future research may validate our model 

using data collected across a diverse group of hospitals, such as non-teaching institutions or safety-net 

hospitals, for various health outcome prediction tasks. We acknowledge that clinical features, such as 

diagnosis and medications, are represented in an abstract form, while clinical notes and lab results are 

omitted due to data sparsity and quality challenges. Future research can extend our model to include such 

data at a more granular level or examine the possibility of integrating large language models in our graph 

learning model to utilize unstructured clinical notes. Lastly, while the user study offers preliminary insights 

into the practical relevance of our model, future studies should adopt a comprehensive approach, using 

randomized field experiments, to study how such models can help practitioners improve care delivery. 
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Figures and Tables 

 

  

Figure 1. Structure of Graph Learning-Based Model 

 

  

Figure 2. Personalized Explanation of Graph Learning-Based Model  
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Figure 3. Visualization of T-SNE Separation with Interactions.  

 

 
 

Figure 4. Visualization of T-SNE Separation without Interactions 
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Figure 5a. Original Data  

 

Figure 5b. Perturbation of Diagnosis associated with Blood-forming organ  

 

Figure 5c. Perturbation of Diagnosis associated with Respiratory system. 

Figure 5. Results of Perturbation Analysis   
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Table 1. Axis of Comparison for XAI methods 

 

 
Feature-Based Interaction-Based 

Post-Hoc 

Integrated Gradient (IG), Local 

Interpretable Model-agnostic 

Explanations (LIME), Shapley 

Additive Explanations (SHAP) 

Gradient based: Integrated Hessian (IH) 

SHAP based: Shapley Interaction Index (SII), 

Shapley Taylor Index (STI), Faithful Shapley 

Index (FSI) 

Intrinsic 

Regressions, simple decision trees Generalized Additive Model with Interaction 

(GA2M) 

*our graph learning-based model 

 

Table 2. Contributions to Literature 

 

Body of 

Literature 
LoS Prediction Graph Learning XAI 

Contribution 

Propose a prediction model 

for ICU LoS that provides 

intrinsically explainable 

predictions by highlighting 

key interaction-based 

explanations.  

Extends application of graph 

learning models to the field of 

XAI by synthesizing existing 

methods to construct 

interpretable graphs from non-

structured data. Extends graph 

learning beyond data with 

inherent graph structures  

Proposes an XAI framework 

which provides intrinsic 

explanations based on the 

significance of feature 

interactions (beyond feature-

based metrics alone). 

 

Table 3. Descriptive Statistics of Selected Variables 

Binary Output Variable 
Variable Name Description and Unit of Measure Distribution 

7-day discharge Binary indicator of ICU patients discharged after the seventh day 28.79% 

Selected Inputs 

Variables Vital Signs 

Heart Rate Heart rate of the patient measured in beats per minute 94.06 (25.22) 

Mean BP Mean blood arterial pressure of the patient in mmHg 78.76 (14.02) 
Respiration Rate Patient respiration rate in breaths per minute 19.36 (5.20) 
Body Temperature Body temperature of the patient in degree Celsius 37.02 (0.83) 
Glucose Concentration of glucose present in the blood of patients in mg/dl 141.60 (55.82) 
Bihourly Entry 
Count 

Count of vital sign recordings during the 2-hour period 2.97 (4.32) 

Administrative Variables 
Age Patient age in years 55.47 (27.59) 
GenderF Binary (1 = patient is female) 44.10% 
Ins Medicare Binary (1 = patient insurance is Medicare) 47.65% 

Adm Elective Binary (1 = patient from elective admission) 12.35% 

Diagnosis Variables 
Respiratory Binary (1 = patient has respiratory system related diagnosis under ICD 9) 50.39% 
Circulatory Binary (1 = patient has circulatory system related diagnosis under ICD 9) 73.74% 
Injury Binary (1 = patient has diagnosis pertain to injuries and poisoning under 

ICD 9) 
43.51% 

Standard deviations (if applicable) are shown in parentheses. 
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Table 4. Predictive Performance Comparison  

 
 Method Accuracy AUROC AUPRC F1 score 

1 Graph Learning-based Model 
0.767 

(0.003) 

0.824 

(0.002) 

0.899 

(0.003) 

0.829 

(0.003) 

2 DL Model 
0.771 

(0.004) 

0.824 

(0.004) 

0.899 

(0.003) 

0.831 

(0.004) 

3 EBM 
0.771 

(0.005) 

0.824 

(0.006) 

0.898 

(0.005) 

0.839 

(0.003) 

4 XGBoost 
0.762 

(0.004) 

0.810 

(0.006) 

0.890 

(0.005) 

0.831 

(0.003) 

5 Random Forest 
0.755 

(0.05) 

0.803 

(0.007) 

0.880 

(0.005) 

0.836 

(0.003) 

6 Logistic Regression 
0.732 

(0.005) 

0.729 

(0.007) 

0.826 

(0.007) 

0.818 

(0.004) 

Standard deviations are shown in parentheses. 

 

Table 5. Computation Time for Patient-Level Explanation 

 Intrinsic Methods Post-Hoc Methods 

XAI Method EBM Ours DL-FS DL-IH 

Time (in seconds) 0.05 0.1 20 240 

 

Table 6. Salient Features identified by XAI Methods 

DL-FS Model EBM Model Graph Learning Model 

Feature Name 

Average 

Absolute FSI 

Score 

Feature Name 

Global 

Term 

Importance 

Feature Name 

Average 

Node 

Attention 

Respiratory system 

related diagnosis 
0.03537 

Respiratory system 

related diagnosis 
0.56907 

Respiratory system 

related diagnosis 
0.11531 

Patient Age 0.02792 
Infectious and parasitic 

diseases 
0.18134 Heart Rate 0.08628 

Mean BP  

(Hr 46-48) 
0.02719 Injuries and poisoning  0.15509 Patient Age 0.07790 

Systolic BP  

(Hr 46-48) 
0.01418 

Diseases of the 

genitourinary system 
0.10952 

Injuries and 

poisoning 
0.06780 

Injuries and 

poisoning 
0.01313 

Symptoms, signs, and 

ill-defined conditions 
0.10670 Mental Disorders 0.05178 

Diastolic BP 

 (Hr 46-48) 
0.01080 

Nervous system and 

sense organs diagnosis 
0.10099 Body Temperature 0.04150 

Glucose 

(Hr 46-48) 
0.00951 

Nutritional and Anti-

inflammatory Agents 

(Day 2) 

0.09521 Glucose 0.03807 

Infectious and 

parasitic disease 
0.00899 ICU type (CSRU) 0.08764 

MSK and Connective 

Tissue Diagnosis 
0.03585 

Glucose 

(Hr 44-46) 
0.00702 

Analgesics and Central 

Nervous System 

Agents (Day 2) 

0.07710 ICU Type 0.03502 

ICU type (MICU) 0.00694 ICU type (MICU) 0.07092 
Symptoms, signs, and 

ill-defined conditions 
0.03161 

CSRU: Cardiac Surgery Recovery Unit, MICU: Medical Intensive Care Unit. 
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Table 7. Salient Interactions identified by XAI Methods 

DL-FS Model EBM Model Graph Learning Model 

Interaction Name 

Average 

Absolute 

FSI Score 

Interaction Name 

Global 

Term 

Importance 

Interaction Name 

Average 

Edge 

Attention 

Systolic BP × Mean BP  

(Hr 46-48) 
0.0002 

Metabolic and Anti-

infective × Analgesics 

and Central Nervous 

System Agent (Day 2) 

0.0399 

Nutritional and Anti-

inflammatory Agents 

(Day 2) -> Heart Rate 

0.0301 

Mean BP (Hour 46-48) 

× Insurance  

(Government Subsidy) 

0.0002 
Patient Age × 

Admission (elective) 
0.0377 

Patient Age -> 

Respiratory system 

related diagnosis 

0.0285 

Oxygen Level (Hr 46-

48) × neoplasms 
0.0002 

Oxygen Level (Hr 12-

14) ×  Vital Sign 

Count (Hr 34-36) 

0.0337 

Nutritional and Anti-

inflammatory Agents 

(Day 2) -> Patient Age 

0.0228 

Oxygen Level (Hr 46-

48) × Ethnicity (Eastern 

European) 

0.0002 

ICU type (CSRU) × 

Diseases of the 

genitourinary system 

0.0297 

Body Temperature -> 

Respiratory system 

related diagnosis 

0.0199 

Oxygen Level (Hr 46-

48) × ethnicity 

(Filipino) 

0.0002 
Mean BP (Hr 44-46) × 

Diastolic BP (Hr 46-48) 
0.0294 

Body Temperature -> 

Patient Age 
0.0169 

Oxygen Level (Hr 46-

48) + Dermatological 

and Respiratory Agents 

(Day 1) 

0.0002 

Diastolic BP (Hr 4-6) 

× Antineoplastic and 

Immunomodulating 

Agents (Day 2) 

0.0248 
Patient Age -> Injuries 

and poisoning 
0.0166 

Mean BP (Hr 46-48) × 

complications of 

pregnancy 

0.0001 
ICU type (CSRU) × 

Injuries and poisoning 
0.0242 

Analgesics and Central 

Nervous System Agents 

(Day 2)-> Respiratory 

system related diagnosis 

0.0164 

Glucose (Hr 44-46) × 

ethnicity (Thai) 
6E-05 

Heart Rate (Hr 20-22) 

× Nutritional and Anti-

inflam Agents (Day 2) 

0.0228 

Nutritional and Anti-

inflam Agents (Day 2) 

-> Mental Disorders 

0.0142 

Oxygen Level (Hr 38-40) 

× symptoms, signs, and 

ill-defined conditions 

4E-05 

Heart Rate (Hr 12-14) × 

Antineoplastic & 

Immuno Agents (Day 

2) 

0.0205 
Patient Age -> Heart 

Rate 
0.0131 

Respiration Rate (Hr 

38-40) × Diastolic BP  

(Hr 40-42) 

3E-05 
ICU type (MICU) × 

Respiratory system 

related diagnosis 

0.0203 
Patient Age -> Mental 

Disorders 
0.0128 

CSRU: Cardiac Surgery Recovery Unit, MICU: Medical Intensive Care Unit. 
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Table 8. Improvement in DSI with Inclusion of Salient Interactions 

Hyperparameters 
Top X features versus  

Top X features and Interactions 

Top X 
T-SNE 

Perplexity 

T-SNE 

Iteration 
DL-FS EBM 

Graph-Learning 

Model 

10 100 5000 -0.00061 -0.00332 0.02935*** 

20 100 5000 -0.00061 -0.01671** 0.03470** 

30 100 5000 0.00007 0.00295 0.04210*** 

10 100 10000 0.00049 -0.00352 0.03572*** 

20 100 10000 0.00169 -0.01561** 0.04246** 

30 100 10000 -0.00072 -0.00059 0.05194*** 
*  p-value < 0.1, ** p-value  < 0.05, *** p-value  < 0.01 

 

 

Table 9. Evaluation of Co-12 Properties  

 
Co-12 

Property 
Interpretation Evaluation Approach 

Correctness 
The explanation should correctly describe the behavior of the 

underlying black box model 

Section 5.1. 
Completeness 

The explanation should comprehensively describe the behavior of the 

underlying black box model 

Compactness Offer sparse but meaningful explanation 

Consistency Identical inputs should have identical explanations 

Section 5.2. Continuity Similar inputs should have similar explanations 

Contrastivity Different inputs should have different explanations 

Confidence Explanation should contain accurate probability information Section 5.3. 

Covariate 

complexity 

Explanations should offer appropriate feature complexity that are 

comprehensible Section 5.4. 

Coherence Explanation should align with prior knowledge and beliefs 

Composition Explanations should be similar to real counterparts 

Section 6.1. Context User should be able to understand the explanation and act upon it 

Controllability User should be able to influence the explanation through interactions 

 

Table 10. Goodness of Fit of Logistic Regressions 

 Top 10 Features 

with highest 

node attention 

Top 10 interactions 

with highest edge 

attention 

AIC 
McFadden's 

R-square 

P-Value of 

Likelihood 

Ratio Test 

1 ✓  22156 0.218 
< 2.2e-16 

2 ✓ ✓ 22069 0.228 

 

Note: Dependent variable: ICU LoS <= 7 days. 
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Table 11. Evidence-based Support from Medical Literature 

 

Salient Interactions Relevant Clinical Findings 

Nutritional and Anti-inflammatory 

Agents (Day 2) -> Heart Rate 

Short term utilization of corticosteroids is associated with significant 

decrease in heart rate and can lead to bradycardia (Brotman et al. 2005) 

Patient Age -> Respiratory system 

related diagnosis 

Elder patients are known to have reduced lung capacity, which can 

contribute to respiratory failure (Sharma and Goodwin 2006).   

Nutritional and Anti-inflammatory 

Agents (Day 2) -> Patient Age 

Patient age is known to influence the potential adverse effects of 

corticosteroids (Yasir et al. 2023) 

Body Temperature -> Respiratory 

system related diagnosis 

Body Temperature is known to influences breathing patterns and 

respiratory mechanics (Rubini and Bosco 2013).  

Body Temperature -> Patient Age Normal body temperature differs based on age (Geneva et al. 2019).  

Patient Age -> Injuries and poisoning Injury severity increased as age increased (Lee et al. 2019).  

Analgesics and Central Nervous 

System Agents (Day 2) -> 

Respiratory system related diagnosis 

Opioids utilization can lead to opioid-induced respiratory depression 

(Boom et al. 2012) 

 

Nutritional and Anti-inflammatory 

Agents (Day 2) -> Mental Disorders 

Corticosteroids utilization can lead to a variety of mental health 

problems, such as such as anxiety, depression, and psychosis (Alturaymi 

et al. 2023) 

Patient Age -> Heart Rate 
Heart rate variability, a reliable indicator of heart condition, becomes less 

random and more predictable with aging (Acharya et al. 2004). 

Patient Age -> Mental Disorders 

Older adults are more prone to cognitive and mood disorders, with late-

life depression linked to increased disability, poorer physical health, and 

higher mortality rate (McKinnon et al. 2016).  

 


