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Abstract. Segmentation of echocardiograms plays an essential role in
the quantitative analysis of the heart and helps diagnose cardiac diseases.
In the recent decade, deep learning-based approaches have significantly
improved the performance of echocardiogram segmentation. Most deep
learning-based methods assume that the image to be processed is rect-
angular in shape. However, typically echocardiogram images are formed
within a sector of a circle, with a significant region in the overall rectan-
gular image where there is no data, a result of the ultrasound imaging
methodology. This large non-imaging region can influence the training of
deep neural networks. In this paper, we propose to use polar transforma-
tion to help train deep learning algorithms. Using the r-θ transformation,
a significant portion of the non-imaging background is removed, allow-
ing the neural network to focus on the heart image. The segmentation
model is trained on both x-y and r-θ images. During inference, the pre-
dictions from the x-y and r-θ images are combined using max-voting.
We verify the efficacy of our method on the CAMUS dataset with a vari-
ety of segmentation networks, encoder networks, and loss functions. The
experimental results demonstrate the effectiveness and versatility of our
proposed method for improving the segmentation results.
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1 Introduction

Echocardiography (echo) is a radiation-free and cost-effective imaging modal-
ity. Thus, echo is the first-line imaging technique for diagnosing most cardiac
diseases. Accurate segmentation of echo images can significantly help the quan-
titative measurement of the heart and diagnosis of cardiac diseases. For example,
segmentation of the left ventricle at end-systolic and end-diastolic frames can be
used to calculate ejection fraction (EF), which is an essential cardiac function
metric; segmentation of the myocardium is used to calculate wall thickness, which
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is widely used in cardiac disease diagnosis, such as left ventricular hypertrophy
[1–3]. Due to the ultrasound imaging method, a typical echocardiography image
is formed within a circular sector, and there is a significant area of the entire
rectangular image for which no data are available.

In recent years, deep learning-based segmentation methods have achieved
great success in computer vision and medical imaging. Convolutional neural net-
work (CNN) based models, like ResNet, VGG and UNet, have been widely used
for medical images analysis in different modalities, such as CT, MRI, and ultra-
sound.There have been many different kinds of deep learning based echocardio-
gram analysis applications: 1) view identification [4,5], 2) chamber segmentation
[6–9], and 3) disease and abnormality identification[10–12]. For chamber segmen-
tation of echocardiograms specifically Ouyang et al. [7] chose DeepLabV3 [14]
to segment the left ventricle for ejection fraction calculation in apical-2-chamber
view echocardiograms; Leclerc et al. [6] used UNet [15] to simultaneously seg-
ment the left ventricle, myocardium, and left atrium; Liu et al. [8] designed a
pyramid local attention architecture for echocardiograms segmentation; Wu et
al. [9] proposed a semi-supervised methods for left ventricle segmentation in
echocardiography vidoes. All the above-mentioned echocardiogram applications,
including classification and segmentation, did not consider the large non-imaging
region in the whole echo image, which can influence the training of the net-
works. Tan et al. [13] applied polar transformations to segment the left ventricle
in MRI images. However, the polar transformation was only applied to a small
pre-defined region of interest and not the entire imaging area.

In this paper, to address this problem, we propose to use polar transforma-
tion to help the segmentation of echo. First, we remove a significant portion of
the non-imaging background using r-θ transformation, which helps the network
focus on the heart image area. Second, we train the segmentation model on x-y
and r-θ spaces simultaneously to let the model capture information from both
spaces. Third, during the testing phase, we use max-voting to combine the pre-
dictions from the original (x-y) image and the polar (r-θ) image to make the
final prediction.

2 Methodology

Our proposed method is shown in Fig. 1 and contains 3 steps: 1) polar trans-
formation that transforms images from the x-y space to r-θ space in order to
reduce the non-imaging area, 2) joint model training on both original and polar
images and 3) combining original and polar results when testing.

2.1 Polar Transformation of Imaging Region

The ultrasound imaging method results in echocardiography images being
formed in a sector of a circle, with large non-imaging regions in the whole rect-
angular image. The model training can be influenced by this large non-imaging
area. To address this problem, we use polar transformation to enlarge the imag-
ing area.
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Fig. 1. Training and testing pipeline of the proposed approach. In the training phase,
the loss function is calculated in both x-y and r-θ spaces. In the testing phase, perfor-
mance metrics are only calculated in x-y space.

As shown in Fig. 2, we choose a sector of a circle (orange) in the original
echo image, which contains all the imaging areas. We denote original echo image
as Io with size X × Y ; and polar image as Ip with size R × Θ. We use a simple
binary segmentation method to identify the center for the sector and the angular
extent Θ of the image in polar coordinates. Specifically, we compute the angle
between OA and OB, where A and B are the left most point and right most
point of the imaging area, and O is the center of the sector. To cover all imaging
areas, the radius R is set to be the same as the side of the original image, where
R = Y . So the value of the polar image Ip at coordinate r-θ can be obtained by:

x∗ = r cos(θ) (1)

y∗ = r sin(θ) (2)

Ip(r, θ) = Io(x∗, y∗) (3)

where r ∈ [0, R], θ ∈ [0, Θ]. When x∗ and y∗ are not integer, Io(x∗, y∗) is calcu-
lated by bicubic interpolation.

The polar image label Lp can also be obtained from the original image label
Lo by following Eqs. (1)–(2) . However, the label is one-hot coded and the values
only contain integers, so we choose nearest interpolation when calculating the
polar image labels:

Lp(r, θ) = Lo(round(x∗), round(y∗)) (4)
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Fig. 2. An example of polar transformation. Before the polar transformation, the region
of interest is shown inside the orange lines. (Color figure onlline)

2.2 Joint Training and Testing

Joint Training. The original training set So contains N image-label pairs
{(Ioi , Lo

i ) | i ∈ [1, N ]}. After the polar transformation, we generate a new polar
set Sp = {(Ipi , Lp

i ) | i ∈ [1, N ]}. To let the segmentation networks capture
information from both x-y space and r-θ space, we combine these two sets:
S = So ∪ Sp = {(Ioi , Ipi , Lo

i , L
p
i ) | i ∈ [1, N ]}. So a training batch contains both

original and polar images of a sample i in this batch. The pseudo-code is shown
below.

Algorithm 1 Joint training and testing

Training:

Input: Original set So, network W
Output: Trained network W ′

Sp ← Polar(So)
while training do

po
i ← W (Io

i )
pp
i ← W (Ip

i )
loss ← LossFunc({Lo

i , L
p
i }, {po

i , p
p
i })

Update W
end while
return Trained network W ′

Testing:

Input:
Test sample Io

t , Lo
t ,

Trained network W ′

Output: Output metrics m
Ip
t ← Polar(Io

t )
po
t ← W ′(Io

t )
pp
t ← W ′(Ip

t )
pt ← MaxV oting(po

t , Polar−1(pp
t ))

m ← Metric(pt, L
o
t )

return m

Model. In this work, we hope to propose a method that is not bound to a
specifically designated network. We choose convolutional neural network (CNN)
based segmentation models, which are widely used in medical image analysis,
specifically UNet and DeeplabV3+ [16]. Within these segmentation models, we
also pick different convolutional neural networks, like ResNet [17] and VGG [18],
to be the encoder of the segmentation models.



Improving Echocardiography Segmentation by Polar Transformation 137

Loss Function. Similarly, we train the segmentation networks with two differ-
ent loss functions to evaluate effectiveness: cross-entropy loss and dice loss, are
shown below:

CrossEntropy = −
N∑

i=1

2∑

j=0

Li,j log pi,j (5)

DiceLoss =
N∑

i=1

(1 − 1
3

2∑

j=0

2|Li,j ∩ pi,j |
|Li,j | + |pi,j | ) (6)

where L and p are the label and the prediction of segmentation networks, i
denotes the index of samples, j denotes the index of classes (0 for background, 1
for LV, 2 for wall). Note that the original images and polar images use the same
loss function during training.

Testing. In testing, we first transform an original image Iot into r-θ space and get
the polar image Ipt . Then, both original and polar images are fed into the trained
segmentation model to get predictions pot and ppt . To aggregate the predicted
probabilities, we use inverse polar transformation to map ppt back to x-y space,
namely Polar−1(ppt ). The finally prediction pt is obtained by max-voting between
pot and Polar−1(ppt ). The final predicted value at (x, y) is calculated below:

pt,(x,y) =

{
pot,(x,y), max(pot,(x,y)) ≥ max(Polar−1(ppt )(x,y)),

Polar−1(ppt )(x,y), max(pot,(x,y)) < max(Polar−1(ppt )(x,y)).
(7)

3 Experiments

3.1 Data

We use the CAMUS dataset to evaluate the effectiveness of our polar transfor-
mation method. The dataset contains 450 different patients. For each patient,
there are 4 labeled echocardiogram frames: apical 2-chamber (A2C), end-systolic
(ES) and end-diastolic (ED), apical 4-chamber (A4C), end-systolic (ES) and end-
diastolic (ED). In total, the dataset contains 1800 labeled frames. Our segmenta-
tion models predict background, LVchamber and LVwall regions. Additionally, we
removed the labels on non-imaging regions, which are not included in the polar
transformation. We used 350 patients (1400 images) for training, 50 patients
(200 images) for validation, and 50 patients (200 images) for testing. All images
and labels were resized to 512 × 512 for training and testing.
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Table 1. The average percentage of each region.

Space Non-imaging Imaging region

region LVchamber LVwall LVall Background Total

x-y 45.88% 9.27% 9.21% 18.48% 35.64% 54.12%

r-θ 2.10% 19.41% 22.30% 41.71% 56.19% 97.90%

3.2 Experimental Details

Comparison of x-y and r-θ Spaces. To show the effectiveness, we compared
our method to 3 other methods: (1) training on x-y space only, (2) training on
r-θ space only, (3) separately training on x-y and r-θ space then voting. For
fairness, we controlled all methods trained with the same number of images.
Specifically, the proposed method was trained for 30 epochs, and the methods
(1) and (2) were trained for 60 epochs since the proposed method was trained
on 2 spaces, but (1) and (2) were trained only on single space images. The loss
function for the joint training also shows that the method has converged around
30 epochs.

Comparison of Segmentation Model Settings. Our base experimental
model is a UNet model with ResNet34 encoder and dice loss. To test the effec-
tiveness with different settings, we trained 3 other models: 1) change architecture
to DeepLabV3+, 2) change encoder to VGG19, and 3) change loss function to
cross-entropy loss. All segmentation models were trained with a batch size of 32
and optimized by the Adam algorithm with a learning rate of 1e−4.

We adopted dice similarity coefficient (DSC) as the metric to evaluate the
segmentation performance for each region, which can be formulated as Eq. (7).
We calculated DSC on 3 regions in x-y space: 1) LVchamber, left ventricle outline
inside the chamber wall, 2) LVwall, the chamber wall, 3) LVall, outline of the
outside chamber that includes the wall.

DSC(P,L) =
2 | P ∩ L |
| P | + | L | =

2TP

TP + FP + TP + FN
(8)

In this equation, P and L denote prediction and true label, and {TP, FP, TN}
denote the number of True Positive, False Positive, False Negative pixels, respec-
tively.

3.3 Experimental Results

We first transformed all original images and labels into r-θ space and calculate
the average percentage of each region in the whole image across all images. The
resulting statistics are shown in Table 1. From the table, the polar transformation
can significantly reduce the non-imaging region in the whole image, and enlarge
the size of foreground area and the region of interest.
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Table 2. Dice similarity scores of different method with different loss functions, seg-
mentation models and encoder networks. The scores are calculated in x-y space.

Setting Method LVchamber LVwall LVall

UNet-R34-Dice x-y only 0.9395 0.8877 0.9647

r-θ only 0.9363 0.8779 0.9613

x-y+r-θ+voting 0.9405 0.8886 0.9648

proposed 0.9418 0.8900 0.9652

UNet-R34-CE x-y only 0.9383 0.8849 0.9635

r-θ only 0.9358 0.8779 0.9611

x-y+r-θ+voting 0.9409 0.8882 0.9649

proposed 0.9409 0.8900 0.9661

UNet-V19-Dice x-y only 0.9386 0.8843 0.9629

r-θ only 0.9358 0.8716 0.9579

x-y+r-θ+voting 0.9397 0.8846 0.9630

proposed 0.9400 0.8857 0.9634

DL-R34-Dice x-y only 0.9389 0.8869 0.9644

r-θ only 0.9370 0.8782 0.9621

x-y+r-θ+voting 0.9415 0.8892 0.9654

proposed 0.9426 0.8929 0.9663

CE: cross-entropy loss; Dice: dice loss;
DL: DeepLabV3+; R34: Resnet34; V19: VGG19.

We show our segmentation results in Table 2, with each row showing a differ-
ent model choice. In each row, the proposed joint training method achieves the
best results, since the proposed method can learn information from both spaces.
Training on polar images only does not achieve better results compared with
training on original images only; we speculate that this is because the supervi-
sion is in r-θ space, but the evaluation metric is in x-y space. Therefore, errors
are accumulated when transforming from r-θ space to x-y space. Comparing
“x-y only” and “r-θ only” with “x-y+r-θ+voting” results shows that the mod-
els trained on different spaces can capture more information. The voting of two
single-space-trained models aggregated information from different spaces and
improved the segmentation results. But the two models were trained separately,
so they could not extract information as well as the jointly trained model.

We also list three groups of results with different settings: changing loss func-
tion to cross-entropy, changing encoder to VGG19, and changing segmentation
model architecture to DeeplabV3+. Within each group, the proposed method
outperformed all other methods, which demonstrated that the proposed method
was effective with different loss functions, encoder networks, and segmentation
model architectures.
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Fig. 3. Segmentation results of one subject with DL-R34-Dice setting. From top to
bottom: A2C-ED, A2C-ES, A4C-ED, A4C-ES. (a) Ground-truth. (b) x-y only. (c) r-θ
only. (d) x-y+r-θ+voting. (e) Propsed. The yellow contour denotes ground-truth in
(b)-(e). LVchamber: green. LVwall: blue. LVall: blue+green. (Color figure online)

A visualization of the segmentation results is shown in Fig. 3. The qualita-
tive results show the effectiveness of our method, which is able to give better
predictions for pixels near the region boundary.

4 Conclusion

In this paper, we have proposed a new polar transformation based method to
improve echocardiography segmentation performance. The polar transformation
helps the segmentation models focus more on the imaging region of the image,
and the joint training on the original and polar image lets the models capture
information from x-y and r-θ spaces. The max-voting aggregates prediction from
2 spaces and achieves better performance. The experimental results show our
method can effectively improve the performance with different segmentation
models, encoders and loss functions.
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