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Abstract—Distribution systems have limited observability, as
they were a passive grid to consume power. Nowadays, increasing
distributed energy resources turns individual customers into
‘“generators,” and two-way power flow between customers makes
the grid prone to power outages. This calls for new control
methods with performance guarantees in the presence of limited
system information. However, limited system information makes
it difficult to employ model-based control, making performance
guarantees difficult. To gain information about the model, active
learning methods propose to disturb the system consistently to
learn the nonlinearity. The exploration process also introduces
uncertainty for further outages. To address the issue of frequent
perturbation, we propose to disturb the system with decreasing
frequency by minimizing exploration. Based on such a proposal,
we superposed the design with a physical kernel to embed system
non-linearity from power flow equations. These designs lead
to a highly robust adaptive online policy, which reduces the
perturbation gradually but monotonically based on the optimal
control guarantee. For extensive validation, we test our controller
on various IEEE test systems, including the 4-bus, 13-bus, 30-
bus, and 123-bus grids, with different penetrations of renewables,
various set-ups of meters, and diversified regulators. Numerical
results show significantly improved voltage control with limited
perturbation compared to those of the state-of-the-art data-
driven methods.

Index Terms—Distribution grid, Distributed energy resources,
Voltage control, Data driven, Minimum disturbance, Optimal
control systems, Kernel methods.

I. INTRODUCTION

O combat climate change, distributed energy resources
(DERs) are being rapidly installed in the power grid.
DERs, such as photovoltaic (PV) panels, provide clean and
sustainable energy. However, they also introduce new chal-
lenges for the distribution grid, which was passively controlled
in the past [1]. For example, the power output of DERs
nowadays is highly stochastic due to factors such as weather
changes [2]. In addition, DERs result in bidirectional power
flow, for which the grid was not designed to accommodate [3].
Therefore, traditional feeder control methods have an in-
creased risk of failure, leading to excessive voltage violation,
equipment damage, and cascading outages [2], [3]. For ex-
ample, a traditional way to control voltage utilizes relays that
measure the voltage on a specific bus and adjust a connected
capacitor bank by pre-specified settings [4]. Regulation of
voltage by these methods is limited, as the relays are localized,
uncoordinated, and seasonally adjusted [4]. To achieve coordi-
nated control, rules-based policies based on expert knowledge
are used [5]—-[7]. Such rules are based on various scenarios
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for regulators. However, such expert knowledge is expensive
and is not universally applicable. When DERs are continuously
deployed, this expert knowledge is inaccurate and will quickly
become outdated. For more advanced control, physical grid
models are needed to help with analytical solutions to con-
trollability [8]-[10]. But unfortunately, these models are often
unavailable or outdated on the edge of the system, especially
for the secondary distribution grid [11].

An alternative approach to avoid dependency on physical
models is to use data-driven algorithms, which do not require
system knowledge. Furthermore, an online algorithm is needed
for the distribution system because the historical data is often
outdated and does not inform which line is energized [12]-
[14]. The work of those authors suggests that online probing
for distribution grid identification methods are called perturb
and observe methods. Although many online data-driven algo-
rithms exist, not all are suitable for voltage regulation. We need
a safe data-driven approach for effective voltage regulation that
determines the optimal reactive power value based on feedback
from observed voltage measurements [15]. While many data-
driven algorithms can learn and optimize the system, many
do not meet the safety requirements of the unknown power
grid. For effective voltage regulation, we need a data-driven
approach that determines the optimal reactive power value
based on feedback from observed voltage measurements [15].
This need is addressed by reinforcement learning, a subset of
machine learning techniques used for data-driven control of
systems with unknown dynamics. Using previous interactions,
a reinforcement learning agent can learn to take the best action
based on error feedback. In power systems, reinforcement
learning has been used mainly to perform optimal voltage
regulation of known networks. The training is done offline in
a simulation, as it involves unconstrained exploration, which
would destabilize a real network in online deployment [16]-
[18]. Therefore, for unknown networks, the online adaptation
of reinforcement learning for voltage regulation in the power
domain has practical challenges. The challenges are (1) the
lack of a performance guarantee, (2) the requirements to learn
the model structure based on historical data [18], [19], which
are not always learnable [20], and (3) aggressive probing of
reinforcement learning would lead to grid failure in online
deployment. [21]. Thus, reinforcement learning has mainly
seen applications with offline training, where the agent is
trained using a simulated environment or past historical data.

Extremum-seeking, model-free approaches, which also typ-
ically employ perturb and observe schemes, such as [22]—[24]
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have been used and were able to solve (1), and (2), providing a
performance guarantee in the absence of historical data. These
methods use gradient search techniques with a probing signal
to perform optimized voltage regulation. However, gradient-
based approaches have disadvantages, as their performance
deteriorates significantly with the presence of noise, which can
cause a high disturbance in the system [25]. In addition, while
gradient-based approaches can find the global optimum using
convex optimization, they do not establish an upper bound
on their worst-case performance. Thus, (3) remains unsolved,
as they still apply consistent probing, negatively impacting
the grid. Thus, the fundamental challenge in online voltage
regulation of an unknown distribution grid is the amount of
perturbation required to learn a safe control strategy without
historical data. Our proposed controller achieves safe control
with minimal grid perturbation as follows.

In this paper, we propose to design an online data-driven
controller with provable guarantees on its learning capabilities.
Recent work in adaptive control theory establishes a theoretical
understanding of the probing necessary to learn an unknown
stochastic linear system [26]—[28]. To obtain this representa-
tion, we derive a linearized relationship between the system
voltages and the regulators’ reactive powers using an estimate
of the inverse Jacobian matrix. Given this is not an exact
model, we represent all unmodeled dynamics as a stochastic
component. Using the stochastic model, we design an adaptive
linear quadratic regulator (LQR) to minimize the voltage
deviation. LQR 1is an optimal control technique that provides
optimal control actions to linear systems with quadratic loss.
Then, we leverage concepts from [27] to demonstrate that
we can learn the optimal gains of the LQR controller using
decreasing probing signals, minimizing the disturbance on the
grid. The probing signals are designed to decrease in magni-
tude and frequency. Unlike previous methods, our proposed
methods proposed a worst-case bound on the performance in
finite time, which is critical for online deployment.

For systems with higher non-linear error where the stochas-
tic linear model may not be suitable, we propose integrating
the learning policy with a quadratic kernel representation of
the system in the lifted space. Such a design can capture
the non-linear relationship of power and voltage with higher
accuracy. The kernel model is optimized using a model pre-
dictive control (MPC) with a disturbance rejection component
to handle the learning error. This approach will require longer
probing to be learned, but can offer improved regulation in
the presence of significant non-linearity. An outline of the
proposed method highlighting the motivation, challenges and
contributions is shown in Fig. 1.

The model is extensively validated with multiple IEEE
test cases, including IEEE 4-bus, 8-bus, 13-bus, and 123-
bus feeders, based on MATLAB using the OpenDSS li-
brary to handle unbalanced networks. The power profile was
obtained from the National Renewable Energy Laboratory
(NREL) synthetic data set and our utility partners. From the
numerical validation, the controller achieves optimal voltage
regulation with less perturbation and higher performance than
reinforcement learning and droop control. The controller also
exhibits good performance under different topologies with
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varying observabilities. In addition, the kernel-based algorithm
extension is validated for networks with high nonlinearities.

The rest of this paper is organized as follows. Section II
shows how we transform the power system equations into the
linear formulation needed to apply the optimal controller of
STR. Section III introduces the linear model that is learned
to predict voltages based on regulator operations. Section
IV provides mathematical analysis of convergence guarantees
and details the identification policy for minimum disturbance.
Section V shows an extension to handle highly nonlinear cases.
Section VI evaluates the performance of our methods, and
Section VII concludes the paper.

II. MATHEMATICAL MODELING FOR CONTROL IN
DISTRIBUTION GRIDS

For modeling, we assume that there is insufficient knowl-
edge of the system to establish a power flow model of the
distribution feeder and its corresponding impedance matrix.
Howeyver, at least a few network-connected distributed feeder
measurements provide readings at regular intervals. At the
same time, network-connected distribution regulators are as-
sumed to provide continuous kvar. Such regulators include
capacitors, D-STATCOM devices, distributed energy storage
devices, and PV inverters. Mathematically, we need to obtain
a transition relationship between the input of the regulator and
the voltage of the system based on the power flow equation
for control purposes. But power flow equations express the
relationship between voltage and power in a single time
step. Therefore, we convert the power flow equation into a
difference equation to relate system voltage with input power
using the AC power flow relationship below [29] using the

Newton-raphson method.
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where AJ; and Av; are the changes in voltage phase angle
and magnitude at bus i, Ap; and Ag; are the changes of real
and reactive powers at bus 4, and M is the number of buses.
In distribution systems, the goal is to regulate the voltage
magnitude; therefore, we only consider the lower half of (1).
Furthermore, since we limit ourselves to reactive power control
of regulators, the change in active power, Ap, is determined
by load changes of customers between the present state and
the next state of the feeder. As Ap cannot be controlled, its
impact is integrated into the stochastic component. Therefore,
(1) is represented as an approximation rather than an equality.
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Fig. 1: Summary of challenges and contributions.

We do not have voltage measurements or controls on every
bus. So, we use the available measurements and control input
to construct an approximate model below with r controller and
k voltage measurements.

(2) can be seen as a linearization of the distribution feeder
around its operating point [8]. However, linearization of (2) is
time-varying, as the operating point of the network can change
[8]. We approximate the time-varying linearization Jacobian
by an average constant parameter matrix with an additional
stochastic component, £ € R¥*"

Eiq By,
E=1: : 3)
Eyq Ey .
Subsequently, (2) can be approximated as Av ~ FAq, or
vin+1] = Eqn + 1] — Eq[n] + v[n], 4)
where n is the time index, v[n] = [vi[n],---,v[n]]T,
and q[n] = [q1[n],---,¢-[n]]T. In our mathematical model

above, we have approximation errors in (4). They are caused
by approximating the Jacobian near the operating point, the
contribution of unmeasured nodes, and the omission of real
power. The real power is treated as part of the stochastic
component, even when it is measurable. This is because, for
many devices, it is an external input that we cannot control.
Therefore, we cannot establish any guarantee to learn the
resistances of an unknown network. To quantify their impact
on our design, we wrap them in the noise term w[n] € R¥ to
transform the inequality (4) into an equation below.

vin+1] = Eqn+ 1] - Baln] + v[n] + wlnl,  (5)

We will show with real data that w can be modeled approxi-
mately as a Gaussian random variable with bounded variance.
This fact allows us to design a controller with performance
guarantees.

III. OPTIMAL CONTROL WITH PERFORMANCE
GUARANTEES

This section aims to design a data-driven controller with
the following features. The controller should be guaranteed
to stabilize a power system with unknown parameters. The
controller should have minimal disturbances to the system
in the learning process. Finally, the controller should handle
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systems with higher non-linearity. Therefore, we choose linear-
quadratic controller based optimal control theory [28] for
our base design and show how to extend the design using
a quadratic kernel with an adaptive model predictive control
approach to handle large non-linearities [30].

A. State-Space Representation for Linear—Quadratic Regula-
tor

The linear quadratic regulator is based on state-space repre-
sentation. Therefore, we show how to convert the linear model
to the state-space model in the last section. Specifically, state-
space representation consists of inputs, outputs, and a system
of first-order difference equations. For the distribution grid,
since we need to regulate the voltage, we let the output be
v([n] and the control variable be the reactive power q[n| on
the regulator.

vin+ 1] = vin] + Eq[n + 1] — Eq[n] + w[n],  (6)

where E is unknown to the controller. To apply the optimal
state-feedback control, we need to write the control as a func-
tion of n only. For this purpose, we use a change of variables.
The key is to write the new control signal g[n + 1] in terms
of the current time index. q[n + 1] = q[n] + L(v[n] — Vyer)
Consequently, (6) becomes

vin+ 1] =v[n] + Eq[n + 1] — Eq[n] + w[n]
an + 1] =q[n] + L(v[n] — Vyet)

which can be combined as follows
vin+ 1] =v[n] + E(L(v[n] — Vyet)) + W[n) @)

which is in the form of first-order difference equation,
enabling the design of state-feedback optimal control. The
closed-loop system is

vin + 1] = Dvn] + w[n], (8)

where D is the closed-loop state-feedback matrix such that
D = 1+ FEL, where L is the control gain, which will be
derived in the next section. To guarantee convergence through
asymptotic stability, we need to estimate & and design L such
that D is stable.

For the distribution feeder, the E matrix represents the
network connections and contains k X r elements, where k
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is the number of observed buses, r is the number of regulated
capacitors, and n is the current time index. To learn F, rewrite
(7) as

Av[n + 1] = Eq[n] + w[n]. 9

Using this relationship, we inject a probing reactive power
and measure the output voltage. Then, we perform the least
squares estimate (LSE) to obtain E with E; being the i*" row

corresponding to the it" bus of the network.
E;i[n] = ( ZnQi,n)_ InAvi[n] Vie{1,--- Kk}

where

(10)

Qin =[qi1, ’qim]T e R™", (11)

B. Optimal Design for Performance Guarantee

After estimating the system parameter E, we can design
the control gain L for optimal performance. When there is no
noise, we derive our control policy m, for an optimal controller
with known parameters. This policy is designed to minimize
the quadratic cost of the voltage deviation output from the
reference voltage and the regulation input.

For optimal control, we choose the quadratic cost function

fz(

—Veer) [1] " S(v = Vrer) [1] + aln] " Raln]),
(12)

where 7 is the control policy, S is a positive semi-definite
matrix that weighs the voltage deviation cost, and R is a
positive definite matrix that weighs the regulator action cost.
The goal is to control the linear system that we derived in (7).
The optimal control policy 7* is

7 q[n] = L(E*)(v[n] — Vyer), (13)

where L is r X n matrix corresponding to the gain of the con-
troller, and E* is a matrix such that L(E*) is the optimal gain.
L(E*) is obtained by iteratively solving the Riccati equations
for K (E*) [28]. The Riccati equations ensure asymptotically
stability for the closed-loop system matrix D and minimize
the cost function ¢, which is the basis for our guarantee.

K (E)=S+ K (E) - K (E)E
(ETK(E)E+R) ETK (E), (14)
L(E)=- (ETK(E)E+R) 'ETK(E).  (5)

(13)-(15) provide an optimal control gains for a given E
and cost function specified by (12); however, the true system
matrix E* is unknown. Therefore, the controller’s performance
will depend on its capability to learn the true system dy-
namics accurately and quickly. The next section provides an
identification policy to estimate the system parameters. Then,
we state the requirements for our controller to converge to
L(E*) and illustrate that the distribution grid satisfies the
requirements. Finally, we provide a combined policy of control
and identification with decaying perturbation frequency and
magnitude and a bound on the deviation from the optimal
gain L(E™*) for a given time index n.
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C. Conditions for Strongly Consistent Least Square Estimates

In our design above, we build on the principle of cer-
tainty equivalence, which states that the presence of system
uncertainty and additive noise does not change the optimal
control [28]. Therefore, the control strategy for a known
system without noise will be optimal under an unknown noisy
system. However, our approximation does have noises w|n],
which require consistency analysis. Therefore, we show two
conditions below for our controller to be consistent [28].

Condition 1. The system is stabilizable: All uncontrollable
buses are stable, and there exists a stabilizing feedback L €
R™ P such that |Apmax(I + EL)| < 1.

Condition 1 means that the distribution system is stabilizable,
and this is a typical requirement in control theory. For a
distribution grid, these buses that cannot be affected by the
controllers will not cause voltage collapse. This is practical
as the distribution grid is with different protection devices.
We can assume that the targeted grid for our control policy
is stabilizable with enough equipment for many utilities. For
the other places, the proposed method is deployable for the
majority of the time except for a few exceptions. This is
because utilities have grid upgrades for good control over
systems.

Condition 2. The stochastic component needs to sat-
isfy Dbias and variance requirements, E(w[n]) = 0,
sup,, E(||w[n]||%) < oo for some a > 2.

Condition 2 requires that the stochastic component is unbiased
and the variance is finite. This condition comes from the
mathematical derivation of the LSE. Intuitively, for estimation
to be feasible, the variance of the noise must be finite. So, let
us focus on checking if our modeling can ensure E(w) = 0
or E(w;) = 0 for the i bus. Because of our modeling, w;
has three components: measurement error m; due to sensor
quality, feedback delay error f; for users’ load consumption,
and the modeling error [; during the data-driven parameter
estimation. If we can show E(m;) = E(f;) = E(l;) = 0,
E(w;) = 0 leading to E(w) =

o For m;, past work generally assumes the measurement
error in distribution feeders to be Gaussian with a zero
mean. More recent studies have shown that a combined
Gaussian may be a better assumption, but the expected
error is still nearly 0 [31].

« For the feedback delay f;, it is an outcome of the load
change in between stages n — 1 and n. Previous work
has shown that this component is Gaussian for shorter
intervals [32]. For more evidence, we examined this claim
using two data sets. The first data set is loading data from
the National Renewable Energy Laboratory , a synthetic
load profile representing a typical load curve for a year
and simulated in the IEEE-123 load case. The second
data set is from the local voltage profile of a sample
distribution feeder in Phoenix, Arizona. For the NREL
data simulation and the Arizona feeder, the feedback
delay errors are on the order of 1075 p.u., which is
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Fig. 2: The change in voltage data from a year of unregulated
hourly operation at a measured bus from NREL data. The
distribution is numerically symmetric and the mean is zero
visually.
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Fig. 3: Histogram of the error of using the linearized model
instead of the power flow equations in (1). The error can be
well approximated using a zero mean Gaussian distribution.

nearly zero. Here, we show the NREL data in Fig. 2
as an illustration.

« For [;, it arises from assuming constants for the sensitivity
matrix, the omission of real power, and estimation errors
in the LSE. Within an operation point, a constant matrix
estimate leads to negligible error, which has been shown
in simplified power flow solutions [29]. Although it is not
possible to prove that the error is exactly zero, [33] proves
that with sufficient persistent perturbation, the estimation
error is minimized, allowing the LSE to converge to true
values. To further validate this claim, using the NREL
data set, we compute I; = (v[n + 1] — Eq[n + 1] —
Eq[n]+v[n]), where v[n+1] is obtained from the exact
nonlinear expression in (1). Then, we fit a histogram to
show that the error can be represented as a zero-mean
Gaussian random variable as seen in Fig. 3.

Based on conditions 1 and 2, Theorem 1 shows that the
parameter estimation of E will converge to the true parameter,
leading to both system convergence and optimality of our
controller.

Theorem 1. If the system is stabilizable as in Condition 1,
and its stochastic components satisfy Condition 2, then given
the control policy of (13) , the LSE for bus i at stage n is
consistent, and L(E) will converge to L(E™).

Proof. See Appendix 1. O
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Thus, we can state that the LSE is consistent and that the
controller will stabilize the system, guaranteeing convergence
to the optimal control L(E*).

Proposition 1. (Optimal policy [26]—[28]) if the linear system
in (7) is stabilizable, (14) has a unique solution, and 7 defined
in (13) is an optimal regulator.

This proposition assures that any stabilizable linear system
has a unique optimal solution given by (14). Thus, we guar-
antee stability by finding a consistent estimate of E*, which
yields L(E*) that can stabilize the system.

IV. REDUCE DISTURBANCE BUT KEEP PERFORMANCE
GUARANTEE

A. Trade-off between Exploration and Exploitation

Theorem 1 establishes an asymptotic convergence guar-
antee. Persistent perturbation is deployed to identify E for
better control. However, the system operators want to limit
the perturbation, as the disturbance may lead to outages in
the network. To capture the trade-off, we need a metric that
captures both the transient degradation of a perturbation and
the steady-state improvement it causes. For this purpose, we
adopt regret, describing the deviation between our identified
policy 7, and the optimal policy 7*:

r" =

Cr [n] — Cr> [n]v (16)

where 77* knows E*, and the instantaneous regret is computed
for a single hour. To measure how well a policy regulates the
measured outputs over time, we need to define total regret
as the running sum of the instantaneous regret ™, such that
R = Z;:Ol r™[i]. Using this metric, we can investigate the
rate at which our estimate converges to the optimal control.
To establish a bound on the regret, we examine the behavior
of the identification policy with two stages [28]:

« Find an initial estimate L(E).
« Apply an asymptotically consistent adaptive policy to
regulate and estimate the voltage.

—Disturbance Energy
®Perturbation Instance|

Variance of the disturbance

Operation time

Fig. 4: Perturbation magnitude and frequency over time for a
sample v decaying policy .

The initial estimate L(E) can be obtained by applying k
linearly independent random probing inputs to obtain E as
an estimate of £ and subsequently L(E) as an estimate of
L(E) using (15). During the first k instances, the policy
will randomly set the capacitor states q[n]|. After an initial
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LSE is obtained, the second stage is initiated with persistent
perturbation. In this stage, the controller will either explore
the system to improve the estimation or exploit using optimal
regulation for each operation hour. During exploration, a
random perturbation is added to improve the estimation at
each n = |v;], so that 7, is the perturbation instance. During
exploitation, we apply (15) without perturbation. The faster
v; grows, the more spaced out the instances and the less we
perturb the system. Fig. 4 visualizes the perturbation process.
The red dots indicate the instances in which the perturbation
is added to the control output. Both the frequency and the
magnitude of the perturbation decrease over time. Note that
the plot shown for the figure is illustrative; in the next section,
we propose a minimum perturbation policy with guarantees on
the worst-case regret.

B. Regret-Based Policy for Asymptotic Convergence

In previous iterations of the STR, during the exploration
process, the controller uses a random signal. This leads to
sub-optimal regulation during the exploration. Instead, we can
apply the optimal control signal with a small superimposed
random signal with a constrained design. This ensures that we
are still regulating during the exploration steps.

Algorithm 1: Input Perturbation Algorithm for Un-
known Distribution Voltage Control

1 Input v > 1 and ¥ > 0.

2 Let r be the number of input capacitors.

3 Obtain initial £y and L(Ey) by generating r randomly
generated q then using (10) and (14).

aforme (r+1,---,00) do

5 if n=1[y"] 4+ r then

6 aln] = L(E,)(v[n] = Veet) + @[n], where d[n]
is drawn according to (17).

7 Update E by (10).

8 else

9 ‘ q[n] = L(E,)(V[n] — Vret).

10 end

11 end

In the algorithm, q is a vector of independent zero-mean
Gaussian variables satisfying:

C < n =22\ i (D) < n~2y"?7 < C,

where ¢ is the norm of q and » is the covariance of q.
The given constraints on q ensures fast convergence. The
following equation, from Theorem 1, and Corollary 1 in [27],
characterizes the convergence of the regret of this algorithm.
The corollary allows us to state the following:

7)

Theorem 2. (IP rates) Suppose T is the adaptive regulator of

Algorithm 1. Let E[R,, ()] be expected regret at time n. Then
we have

1 ot

D v it

n—00 n

= Oa SUPn>ng E[/(Rn(ﬂ—)} < C, (18)

where C,ng are constants and the mathematical formulation
to compute them can be found in the Appendix of [27]. The
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expected value of the cumulative regret is finite. This can
intuitively be seen as the regret bound is guaranteed for n > ng
where ng is finite. We note previous methods such as the
extremum seeking method and other decreasing perturbation
methods [8], [28] do not provide a worse case bound for
performance in finite time. Therefore, the method is claimed to
asymptotically converge; grid stability is not guaranteed during
the early deployment phase. On the other hand, the guarantee
given by Theorem 2 is for both asymptotic and finite time.
A flow chart summarizing the operation is shown in Fig. 5.
In the figure, we perform system identification in stage 1 to
obtain an initial estimate of the system matrix. Then, in stage
2, we follow a decaying perturbation approach using our new
constrained perturbation signal.

V. INTEGRATE QUADRATIC KERNEL FOR LEARNING
SYSTEM NONLINEARITY

The learning-based method can be further boosted because
we have knowledge of the functionals used in the non-linear
power flow equations. This is specifically the case where the
variation of active and reactive power in the load profile is
too large to be approximated with the linear model. In such a
case, we can extend our representation to higher dimensions to
capture the non-linearities for better prediction and regulation.
There are various methods to represent a non-linear system,
such as neural networks, regression trees, and kernels [34]. Our
goal is to find a representation where a mathematical basis for
the convergence guarantee can be provided. Representations
such as neural networks or decision trees do not provide an
analytical relationship with their models. Without an analytical
model, the stability and convergence of a controller cannot be
guaranteed [35]. Also, data-driven models typically require a
data-driven controller design, which has good disturbance re-
jection compared to classical control techniques. Furthermore,
machine learning algorithms typically have poor early training
performance [21], making online training infeasible. However,
Hofmann’s work shows that the deterministic kernel approach
provides an explicit relationship between the input and output.

Specifically, we choose the quadratic kernel because it best
fits the physical nature of the power flow equation [29]. How
to apply a quadratic kernel to the linear representation in (10)?
We observe that the notation for the single-output voltage
estimates of (10) describes the inputs with the vector q;
and the output as v;. Therefore, we can transform the linear
inputs into their corresponding quadratic inputs ¢(q;) using
the quadratic kernel for bus <.

(bh(ql) = qi2717 o 7qi2,r7 \/EQi,lqi,Qa Tty \/Ecqi,h

\/iqi,2qi737 Tty \/iqi,rflqi,rv \@C%,m Cl,

where r is the number of regulated capacitors. The quadratic
kernel captures the relationship between power and voltage.
The corresponding parameters for the quadratic kernel "
are constants that correspond to the quadratic inputs. These
parameters can be approximated so that the voltage output
y[n + 1]; can be predicted such that

viln+ 1] = ¢} Tén(viln], qs[n]) + w;.

19)

(20)
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Fig. 5: Conceptual flow of the operation.

As this equation is non-linear, we cannot use (14) to find
the control. Thus, we apply a suitable non-linear control
method for our system. While there are many non-linear
control approaches that can be found, e.g., the Lyapunov-
based approach and sliding mode control [36], those methods
require extensive hyper-parameter tuning under disturbance
[37]. As our approach is based on perturbation, we choose
model predictive control to reject disturbances and modeling
errors. Therefore, we implement a model predictive control
with disturbance rejection [30]. In MPC solutions, the cost
function is optimized for a specific time window called a
rollout horizon. We find the control action for each time
window p by solving a constrained optimization problem.

rnqin cr ] = Z (v[n+m]— Veet) S(V [ +m] — Vyer)
m=0

+q [n+m]" Rqn+m]+ L(v[n+m]

[+ m})}, @1
subject to the model given in (20).With this formulation, we
obtain a kernel-based implementation of the controller.

VI. NUMERICAL VALIDATION

This section uses various case studies to examine our
controller’s performance and investigate the disturbance on
the grid. Specifically, we use various benchmark methods,
including the RL type method, e.g., Deep Policy Gradient
(DDPG) algorithm and droop control method. The implemen-
tation of such a method for an unknown network is detailed in
subsection VI-A. Then, we assess our convergence guarantee
under different loading scenarios and using multiple load
cases. Furthermore, kernel implementation is demonstrated.
For an accurate simulation of the distribution grid, we use the
OpenDSS MATLAB interface to simulate power flow, and the
load profile data are obtained from the National Renewable
Energy Laboratory data set. For diversity, we employ IEEE
4-bus, 13-bus, 30-bus, 123-bus, etc. Additional validations
are with realistic feeder data from a local utility partner in
Phoenix, Arizona. The grid is considered to have a high
penetration of renewables.
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To implement the controller, we need to select some hyper-
parameters, including the state cost S, the control cost R, the
perturbation energy o, and the perturbation rate . The choice
of S and R balances the regulation and operating cost based
on the system operators’ needs. Therefore, S and R should be
selected to achieve the maximum regulation without exceeding
the rated value of the regulators. The choices of ¥ and ~
impact the learning of our controller and the disturbance on the
grid. Ideally, we want to select the minimum value of v, X to
learn the model. Based on these considerations, we conducted
extensive simulations. The performances are similar, so we
use the following setup for consistency: The controller was
implemented with S = I, R = 10007, where I is the identity
matrix. Also, we let v = 1.4, and ¥ = 0.0011.

A. Optimal Regulation through LOR based Design

For comparison, we use droop control, where the reactive
power of each regulator is determined by the voltage mea-
surement at that regulator. Furthermore, the performance of
the proposed controller has been compared with that of a
DDPG-based RL controller. DDPG was chosen for comparison
because it utilizes continuous action and state spaces, similar
to feedback control. The DDPG is composed of two neural
networks. The actor-network maps the measured state to
action, and the critic network estimates the expected reward
given an action-state pair. In the implementation, the action
space is the MVAR compensation for each capacitor, and
the state space is the voltage magnitude. Furthermore, we
implemented a multi for the actor and critic networks. The
reward function is the negative cost function used in adaptive
LQR control.

We simulate both our controller and the droop controller
for the 123—bus system in Fig. 6. The figure shows the
change in the average nodal voltage of the 123 nodes in
time for the proposed controller (red), reinforcement learning
(purple), and droop controller (blue). We observe that our
design outperforms traditional droop control in average volt-
age regulation and learns faster than reinforcement learning,
achieving optimal regulation.
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Fig. 6: Average node voltage performance benchmark against
droop control and reinforcement learning.

B. Minimized Grid Disturbance with Decaying Perturbation

This simulation benchmarks against traditional LQR control
with no persistent perturbation after stage 1. Fig. 7 shows
the behavior of average nodal voltage in the early and late
stages of operation. The figure shows that our controller has
a worse initial performance due to perturbation, while having
a better performance after the parameter estimate improves.
This can be explained by the convergence of the parameter
with the true value, which does not occur in stage 1, as shown
in Fig. 8. In the figure, we show how a component of FE; ;
updates, as the x-axis represents the parameter updates defined
by 7, and the y-axis is the parameter value. Furthermore, we
validate our perturbation decay rate is optimal by comparing
the perturbation policy per (17) against the implementation of
constant perturbation in Fig. 9.

1.002
1.04 [—Stage I based control
—Two stages based control|
1.03 1.001 /\M
= =
&10 I .
> >
1.01
0.999
1 A_A
e
0.998
10 20 30 40 100 120 140 160
Hours Hours

Fig. 7: Impact of persistent perturbation on the average node
voltage.

SSEE [+
—FE Stage 1
mF Stage 2

1,]
W

4.5¢ ]

5 10 15 20 25 30
Parameter update

Fig. 8: Parameter convergence through perturbation.
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Fig. 9: Diminishing perturbation vs. constant perturbation.

We observe that constant perturbation has a consistently
negative impact on the grid’s voltage while the proposed
controller’s impact is minimal and diminishes in time. We have
evaluated a typical response and the convergence rate of the
model for a particular case, but a power network has many
configurations. Therefore, the persistent decaying perturbation
improves the performance of our controller and has a minimal
impact on the voltage. Next, we examine three representative
control outputs at different buses in Fig. 10. In this figure, we
plot the reactive power that the regulator produces over time.
The patterns include constant, oscillatory, and zero control.
Furthermore, all three control patterns converge after the initial
perturbation.

—Pattern 1: Constant reactive compensation
-+=Pattern 2: Oscillatory reactive compensation
—-Pattern 3: Minimal reactive compensation
=
o
=
o
-0.5 1
—
A ‘ ‘ ‘ ‘ 1
50 100 150 200 250 300
Hours

Fig. 10: Reactive power controller output at different buses to
highlight different control patterns.

C. Robust Stability via LOR Design

To validate the convergence guarantee and the robustness
of the control, we implemented the controller using multiple
measurements and regulator configurations. Then, we simulate
other test cases to verify consistent performance. Using the
IEEE-123 test case, twenty-five simulations were performed.
Each simulation represents a different regulator and voltage
measurement availability. In each case, the availability is
increased by 20% of the total available buses by assigning
more measured and regulated buses.

Fig. 11 shows the controller performance as the percentage
of the measured and controlled buses vary. The x-axis shows
the percentage of controlled buses and the y-axis is the regret.
Each line shows a percentage for different ratios of mea-
sured buses. Both controlled and measured buses are chosen
randomly. The figure indicates that, while the performance
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Fig. 11: Change of regret as Percentage of measured buses
vary.

may vary on different penetrations, the controller converges
to a finite regret, which shows the combined performance of
voltage regulation and input cost.

Furthermore, we tested the controller on different grid
designs to show robustness, including the IEEE 4-bus, 13-
bus, and 30-bus cases. Also, we tested the controller with
the CLW-13 feeder network configuration. The CLW-13 is a
local distribution feeder in Phoenix, Arizona, operated by the
Arizona Public Service (APS) utility. We obtain a simplified
model of their feeder and load profiles and use them to test our
controller. The simulations can be seen in Fig. 12. In the figure,
the y-axis represents the mean absolute voltage deviation
for all nodes. We see that, while the behavior may vary as
the topology and loading data vary, the voltage deviation of
the measured buses is always minimized. Thus, the previous
results confirmed our performance guarantee for numerous test
cases and loading scenarios. Next, we study the sensitivity of
our controller to varying disturbance levels.

—CLW-13 Feeder

—-IEEE case 30
IEEE case 13

--1EEE case 4

Fig. 12: Average absolute voltage deviation for four different
cases.

D. Validate the Conditions of the Proposed Method via Sen-
sitivity Analysis

Here, we study our controller’s sensitivity to the disturbance
level. We vary the disturbance by changing the variation of
the real power, which is a primary source of disturbance to
the system. In Fig. 13, we plot a box plot of the voltage
deviation against the variance of the total system noise w.
We observe that our controller becomes unstable beyond a
critical disturbance level, and the error grows exponentially.
We repeat a similar experiment by changing the estimation
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bias by adding an error vector to the optimal gain as shown in
Fig. 14. We observe a decrease in the controller’s performance
as the estimation bias increases; however, the controller is still
robust to small estimation errors. Therefore, we notice that
the controller’s stability is not limited by the topology but
by the disturbance of the system validating, as mentioned in
Condition 2. Next, the kernel control performance is studied.

0.02 ‘ ;
Voltage Collapse

0.01+ \

~

BUREN |

-0.01¢ 1

-0.02— ‘ ‘ ‘ ‘

1. L 25 ,
Variance multiplier (o = k * of)
Fig. 13:
variance.
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Estimation bias as a multiplier of optimal gain < E[w]

Fig. 14: Stability of controller with increasing disturbance bias.

E. Improved Performance via Kernel Implementation of Non-
linear Design

The kernel implementation is important for large distur-
bances inducing highly nonlinear behavior. To benchmark the
kernel design in such a scenario, the performance of the
IP, DDPG control, and kernel-based algorithms is shown in
Fig. 15. Notice that the DDPG algorithm experiences voltage
spikes and exhibits poorer performance, while the kernel has
the best performance. We see that the regret has negative
values, which means the kernel implementation outperforms
7*, as defined in Section III. That is the optimal policy that
can be achieved by a linear controller that knows the true
parameters of the system.

VII. CONCLUSION

This paper proposes an algorithm to regulate an unknown
distribution system online in the presence of stochastic ele-
ments such as DERs with a specified convergence rate. Unlike
previous work, we provide a policy with provable performance
guarantees and minimal grid disturbance. Additionally, our
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Fig. 15: Regret of kernel algorithm in comparison to the linear
controllers and RL.

method contains a theoretical closed-loop stability guaran-
tee, which is uncommon for data-driven methods, e.g., rein-
forcement learning. Using optimal control theory, an optimal
adaptive LQR controller was designed for power systems,
and we provide an extension to the kernel representation to
deal with non-linearity for better performance. The results
show improved voltage regulation capability compared to
reinforcement learning and local droop control. Our decaying
perturbation scheme exhibits lower disturbance than consistent
perturbation while still learning the optimal gains. We demon-
strated the robustness of the controller by showing the voltage
regulation capability after imposing additional uncertainty on
the system and varying grid topology. Our result also validates
the adequacy of our quadratic kernel extension to handle cases
with profiles with large fluctuations leading to an increased
linearization error. Future research work can improve the
kernel extension by employing different disturbance rejection
methods, such as the attractive ellipsoid method, and obtaining
worst-case regret bounds for nonlinear identification.
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APPENDIX A
A. Proof of Theorem 1

Proof. First, we define preliminary concepts for our proof.
Let © be the space containing all possible values of E to
which the LSE can converge. We will show that F is a zero-
dimensional affine subspace that contains E*, where L(E*).
Next, we introduce the following lemma.

Lemma 1. For a controller with sublinear regret, © identified
by LSE forms an affine subspace ©¢ with a translation of E*
and of dimension dim(©g) = 0.

Using Lemma 1, we have dim(©*) = 0 implying © =
{E*}, which proves the consistency of estimating E*. Thus,
Lemma 1 guarantees that F converges to £*, and by Propo-
sition 1 we can uniquely determine L(E™). O

B. Proof of Lemma 1

Proof. First, we note that D = I + E'L; thus, the estimate
of E in (10) is equivalent to the estimation of D in (8). For
an arbitrary F, based on condition 2, D(FE) is an unbiased
estimate of D(E™*). Then let N(E) form the space of all E so
that the closed-loop matrix D(E) is equal to D*.

N(E) := {E € R"™*? : D(E) = D(E*)}.

Also, let U(E) form the space for all £ such that the feedback
matrices L(E) are equal to L(E™).

U(E) := {E € R"™? : L(E) = L(E")}.

The subspace S(E) forms all possible values of E such that
L(E) is the optimal regulator. To prove consistency, we show
that U(E) N N(E) = E*. For an arbitrary E € N(E), we
have D* = I + E*(L(E*)).

Let L = L(E*) + eL, where L € R’ P, such that
L is a linear feedback matrix, which stabilizes the closed-
loop dynamics system. Applying L to the system yields the
following Lyapunov equation [26].

P(e) = (I+EL)"P(e)(I+EL) =S+ L"RL,

where P is the solution to the Lyapunov equation. For € =
0, P(0)=K(E*), where K(E*) in (14), and the regret of the
optimal policy, R, = tr(P(e)C). Then we take the derivative
of the Lyapunov equation, which leads to the following.

di prlip_iTz +Z"L,
de de

where Z = RL(E*) + ETK(E*)D*. Now, as per the
definition of U, for E € U(FE), L(E) must be optimal linear

feedback control achieving the optimal regret. This implies

dﬁj’ = tr(0L)C = 0. leading to Z = 0, which implies

(22)

DJ Ko(B—E*)=—L"(E*)R— D KoE*. (23)
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DTKy and (E — E*) form an affine system. Now, (23) is
a necessary condition for £ € ©. Suppose that B satisfies
(23), then the previous results show that £ € N(FE). Thus, it
suffices to show that £ € S(E). That is given (23), then E
solves the optimal Riccati equation (14), and K(E) = K(E*).
LetY =FE—-E*, H=E"K(E*), M = ETK(E*)E + R,
and S = ETK(E*)Y + (ETK(E*)Y)T + YTEY. We will
show that for the following system defined by E, K(E*)
corresponding to the optimal solution based on the true pa-
rameters is a solution. To show FE € S(E), let T be defined
as a solution of (14). Then we have,

T=S+K(E")—-K(E")E"K(E")E+ R)"'EK(E").

Then substituting the values of Y H, M, S. We obtain T =
K(E*) which solves the Riccati equation and is unique per
Proposition 1. Hence, K(E) = K(E*), which implies E €
S(FE). Next, we show that the dimension of the affine subspace
formed by (23) is equal to zero, which implies that it contains
a single point only proving consistency.

dim(0) = (p — rank(K(E*)D*))r

Since S is positive definite, rank(K (E*)) = p. We show that
the rank of D* = p. Using (14), M = E"K(E*)E + R, we
rewrite D* = (I, — E*M~'ETK(E*)), which has a rank
of p due to the positive definiteness of R. Thus, dim(©) =
(p — p)r = 0 completing the proof. O



