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ABSTRACT

Reinforcement learning (RL) has been employed to devise the best course of actions in defending the critical infrastructures, such as power
networks against cyberattacks. Nonetheless, even in the case of the smallest power grids, the action space of RL experiences exponential
growth, rendering efficient exploration by the RL agent practically unattainable. The current RL algorithms tailored to power grids are gen-
erally not suited when the state-action space size becomes large, despite trade-offs. We address the large action-space problem for power grid
security by exploiting temporal graph convolutional neural networks (TGCNs) to develop a parallel but heterogeneous RL framework. In par-
ticular, we divide the action space into smaller subspaces, each explored by an RL agent. How to efficiently organize the spatiotemporal action
sequences then becomes a great challenge. We invoke TGCN to meet this challenge by accurately predicting the performance of each individ-
ual RL agent in the event of an attack. The top performing agent is selected, resulting in the optimal sequence of actions. First, we investigate
the action-space size comparison for IEEE 5-bus and 14-bus systems. Furthermore, we use IEEE 14-bus and IEEE 118-bus systems coupled
with the Grid2Op platform to illustrate the performance and action division influence on training times and grid survival rates using both
deep Q-learning and Soft Actor Critic trained agents and Grid2Op default greedy agents. Our TGCN framework provides a computationally
reasonable approach for generating the best course of actions to defend cyber physical systems against attacks.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0216874
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I. INTRODUCTION

The growing needs for dependable energy and technologi-
cal breakthroughs have driven further development of the power
grids. The vital infrastructure of the electric power grids is sus-
ceptible to unanticipated random failures and, more worrisome,
to hostile physical and/or cyberattacks that can frequently result
in widespread, cascade types of breakdowns with significant dam-
ages. For example, during the 2003 eastern US/Canada black-
out, ~50 x 10° people in eight US States and two Canadian
provinces were impacted.! In December 2015, a synchronized
and coordinated cyberattack on three regional electric power
distribution firms occurred in Ukraine, causing power disrup-
tions that lasted several hours and affected about 225000 peo-
ple.” These events have continued to occur in recent times. For
example, in May 2021, the Colonial Pipeline,” which supplies

fuel to the US East Coast, suffered a cyberattack that led to a tem-
porary shutdown of its operations. The attack was attributed to the
DarkSide ransomware group, causing disruptions to fuel supplies
and highlighting the vulnerability of critical energy infrastructure.
In February 2021, a cyberattack’ targeted the water treatment plant
in Oldsmar, FL. An unauthorized individual gained access to the
plant’s control system and attempted to increase the levels of sodium
hydroxide (lye) in the water supply to dangerous levels. The attack
was promptly detected and mitigated, preventing any harm to the
public.

Reinforcement learning (RL) has been exploited to generate
effective defense strategies against cyberattacks on cyber physical
systems (see Sec. II for a comprehensive literature review). Despite
demonstrated successes, some significant challenges remain. In RL,
an agent explores the action space according to certain reward cri-
terion and gradually approaches an optimal solution to deliver the
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best course of actions to protect the system. For a conventional
power grid, not only will the number of elements in the action space
grow exponentially and quickly become unmanageable (e.g., the
total number of actions for the IEEE 14-Bus system is 1.46 x 10"%)
but also the possible actions are diverse, as shown in Fig. 1. Reducing
the size of the action space in RL can be approached through vari-
ous techniques. Curriculum learning® involves gradually increasing
the complexity of the learning problem, starting from a simplified
version of the environment and gradually introducing additional
actions. This allows the agent to learn in a structured manner, pre-
venting being overwhelmed from a large action space. Action prun-
ing® focuses on identifying and eliminating irrelevant or suboptimal
actions. By removing such actions, the action space is reduced, lead-
ing to more efficient learning and decision-making. Action space
embedding’ techniques map the high-dimensional action space to
a lower-dimensional space while preserving its essential structure.
This embedding is learned using methods such as autoencoders or
dimensionality reduction techniques, enabling the RL algorithms to
operate in a reduced-dimensional action space, improving efficiency
and scalability. These approaches contribute to addressing the chal-
lenge of dealing with large action spaces in RL, allowing agents to
learn and make decisions effectively. Consider a power-grid net-
work where the human control operator observes the network’s
dynamics, power flow, voltage magnitude vector, and other states
and chooses the best action among the available ones to maintain
the functions of the network even in the event of attack. The types of
actions can be discrete or continuous. Examples of discrete actions
are topology actions that change the topology of certain substations
and transmission line switching known as status actions. Contin-
uous actions include redispatch actions that change the operating
schedule of power plants, curtailment actions that limit the produc-
tion of renewable generators, and set-storage actions that change the
role of some storage units from loads to generators or vice versa. As
aresult, the current RL methods are applicable only to systems with
a limited set of actions.

In this paper, we articulate a heterogeneous reinforcement
learning framework to address the aforementioned two challenges.
First, to make RL applicable to power grids with a vast action
space, we divide the available actions into a number of subgroups
and deploy an equal number of RL agents, each taking the actions
from a single subgroup. Since the nature of the actions in different
subgroups can be quite distinct, the RL agents are heterogeneous.
Given a power grid, when an attack occurs, it is necessary to deter-
mine the best type of RL actions to maximize the integrity of the
grid. The question is how to select the optimal RL actions based
on the available measurements of the current flows on the grid.
Our idea is to develop a set of specialized machine-learning-based
time-series predictors, each tailored to a specific type of RL actions.
For example, if five types of RL actions are possible, we train five
special types of machine-learning predictors, as shown in Fig. 1.
Since the time-series data of the current flows on the grid are
spatiotemporal—spatially they are graph-structured; we choose tem-
poral graph convolutional networks (TGCNs)® as the time-series
predictors to deal with the spatial dependencies and the tempo-
ral features of the measurements. To generate the data for training
the specialized TGCNs, we take advantage of the Grid2Op plat-
form, which can accommodate and simulate realistic power grids
to generate the current-flow time series from all transmission lines
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under arbitrary attacks and RL actions. When the adequately trained
TGCNs are deployed to the real world, each TGCN is able to pre-
dict the time series into a future time window, under the specific RL
actions, based on the available current-flow data at the present time.
The current-flow patterns predicted by all the specialized TGCNs
can then be compared, resulting in the “best” pattern preserving
the healthy functioning of the grid and, accordingly, the specific RL
actions to take to protect the grid.

The main contribution of our work lies in the innovative inte-
gration of heterogeneous RL agents and TGCNs to address the
challenges associated with large action spaces in power grid defense.
By introducing a diverse set of RL agents, each exploring a distinct
subset of the action space, we enhance the scalability and effi-
ciency of our general machine-learning framework, enabling real-
time decision-making in the face of cyberattacks. Moreover, TGCNs
allow us to effectively model the spatiotemporal dynamics from the
power grid data, facilitating accurate prediction of system behav-
ior and informing optimal defense strategies. This interdisciplinary
framework leverages the strengths of both RL and machine learn-
ing techniques to develop a comprehensive solution for enhancing
the grid resilience. Our heterogeneous RL/TGCN framework intro-
duces a strategic RL defensive policy for power grids to significantly
enhance their cybersecurity.

Il. REVIEW OF THE LITERATURE ON MACHINE
LEARNING AS APPLIED TO POWER GRIDS

A. Reinforcement learning

Reinforcement learning enables a machine to learn via inter-
actions with its surroundings or the environment to generate the
optimal course of actions. Previous studies demonstrated that RL
is especially suited for solving sophisticated cyberdefense problems.
Recent studies employing RL in smart grid cyber security systems
include attacks on false data injection systems, topological attacks,
attack mitigation, attack detection, and persistent attacks.”'” More-
over, Q-learning, an important class of RL that aims to optimize
discounted reward and make future rewards less prioritized than
near-term rewards, was used to investigate the susceptibility of smart
grids to sequential topological attacks, where the attacker can utilize
the algorithm to exacerbate the effects of such attacks on system fail-
ures with the least amount of effort.'* For small systems, Q-learning
can be done using the traditional Q-function. However, for larger
systems, the Q-function approach becomes inefficient because of the
large number of state-action pairs. Neural networks can be used to
approximate the Q-function when the state-action space is large, as
in a power grid. To counter the shortcomings of conventional RL,
deep RL'™'® was often employed for solving the power-grid secu-
rity problem.'”"” For instance, deep RL has been used in power
grids for topological assaults'® and cyberattack mitigation.'® There
is also a growing interest in RL-based control of power grids in
recent years. While the efficiency of the conventional methods and
load-flow software are dependent upon the accuracy of the nonlinear
model that describes the dynamics of the system, RL is model-free.
Indeed, being model-free is a key advantage of RL in that its perfor-
mance does not depend on knowing the explicit dynamics governing
the system. RL methods can learn the internal dynamical interac-
tions and the physics of the systems without any domain knowledge,
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FIG. 1. Proposed TGCN framework for defending power grids against attacks. The goal is to determine the “best” type of RL control actions to mitigate the attack. A power
grid entails different types of RL actions, rendering the action space prohibitively high for a single RL agent and necessitating the use of heterogeneous RL agents. The sizes
of action spaces of several common benchmark power-grid systems are presented in Table |. Five common types of actions for power grids are topology, status, redispatch,
curtailment, and set-storage actions, as illustrated in the left column, which require five different types of RL agents. For a given type of action, the corresponding RL agent
is activated to take the actions to ensure that the grid survives under attacks. Computationally, this is done using the Grid2Op platform, where a given benchmark power
grid (schematically shown in the middle column) can be simulated subject to attacks and RL actions. The outcomes of the simulations are the time series of the currents in
all the transmission lines of the grid, providing the required data for training the TGCN tailored for the particular type of RL action, as illustrated in the right column. During
the training, the RL-action-specific TGCN takes in the time series from the power-grid simulation and generates predictions of the current flows in a future time window. The
specialized TGCNs so trained can be deployed to advise the best control actions: once an attack occurs, from the actual time series collected from the grid, each TGCN will
predict the imminent trends of the current flows. The optimal current pattern (e.g., all currents are well below a threshold) can be chosen to yield the best RL actions.

although learning RL policies model-free for safety-critical applica-
tions may be debatable.”””' In power systems, RL can be utilized not
only to control the power system but also to predict power flows.”””’

In applying RL to power systems, an important development is
the establishment of the L2RPN (learning to run a power network)
challenge by the French national grid operator Reseau de-Transport
Electricite (RTE), where a framework named Grid2Op,** built on
top of open-source libraries, such as pypownet, was introduced.
Grid2Op is a Pythonic, easy-to-use modular framework, which can
be used to develop, train, and evaluate the performances of an RL
agent that acts on a power grid in different ways. A baseline RL
method to control power flows on the grid by taking topological
switching actions was proposed,”” where bus bar splitting was the
only type of action allowed. A feed-forward neural network was
used to model the policy. By using a cross-entropy method (a Monte
Carlo technique), the best episode is selected for training. Deep RL
was employed to the power grid by changing the architecture or
topology of the network,”® where the agent, as modeled by dueling
deep Q network, has both state-value and action-advantage func-
tions. To improve the performance, historical data were added to
the architecture as a memory so the control strategy consists of two

offline training and an online operating system. The offline system
provides the trained agent for the online system, ensuring real-time
control of the grid topology. The robustness of the performance of
the RL algorithm in the presence of noise or perturbation and their
vulnerability under the cyberattack were investigated,”” where the
proposed vulnerability assessment method enables the agent to first
identify and reduce the security risks and then practically apply deep
RL control models.

Quite recently, a combinational model taking advantage of both
deep learning power flow estimation and receding horizon control
methods for power grid control was proposed,”® where a Monte
Carlo tree search was constructed using the predictions of the rela-
tive line loading by graph neural networks (GNNs). The constructed
tree helps the agent to select the optimal action that maximizes
both the probabilities of secure operation and of carrying actions to
alleviate any potential overloading in the future. Another approach
to overcoming the curse of dimensionality is an actor—critic-based
agent that uses a curriculum-based approach with reward tuning for
training.”” To reduce the sampling bias, a parallel training proce-
dure was used to stabilize the power grid and make it robust against
the natural variability in the grid operations. While it is infeasible to
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directly compare our approach to previous methods, we recognize
the value in discussing the unique aspects of our work that differ-
entiate it from existing literature. Our focus is on emphasizing the
novelty of the TGCN framework and how it specifically addresses
the challenges of large action spaces in RL for power grid defense.
While there are quality studies done in the field of cybersecurity
in power systems,”’ ”’ and they provide valuable insights into the
strategies for improving security in smart grid energy systems, our
work offers a unique solution tailored to the spatiotemporal nature
of the power grid data and the complexity of decision-making in
real-time defense scenarios.

B. Temporal graph convolutional networks

Temporal graph convolutional networks (TGCNs) have been
used to capture the topological structure of a network in order to
model the spatial dependencies and the temporal features of the grid.
In particular, a TGCN is the combination of a graph convolutional
network (GCN) and a gated recurrent-unit network® to provide a
neural network-based forecasting method. TGCN was first used to
simulate the urban road network, where the nodes in the graph rep-
resent the roads, the edges indicate the connections between the
roads, and the nodes’ attributes are the traffic data on the roads.®
In this set up, the GCN was utilized to capture the spatial topologi-
cal structure of the graph in order to determine the spatial reliance,
and the gated recurrent-unit model was for capturing the dynamical

ARTICLE pubs.aip.org/aip/aml

change in the node attribute to determine the temporal dependence.
It was demonstrated that the TGCN model performs better than
a number of traditional models in the spatiotemporal analysis for
various prediction horizons when tested on two real-world traffic
datasets, such as the historic-average model,’* the auto-regressive
integrated moving average model,”” the support vector regression
model,’® the GCN model alone,”” and the gated recurrent-unit
model alone.” Since a power grid is, in fact, a network or a graph,
TGCN can be beneficial in solving various problems. As such,
in power grid research, TGCN is gaining increasing attention for
problems such as state estimation,” ‘' load forecasting,” stability
analysis,** power optimization,** and anomaly detection based on
the time series.*’

Ill. METHODS AND JUSTIFICATION

Our main method is a combination of parallel but hetero-
geneous RL agents and TGCN networks. Here, we first describe
conventional RL and its shortcomings when applied to power grid
cybersecurity, justifying our articulation of the parallel RL scheme.
We then introduce TGCNs for spatiotemporal analysis and pre-
diction of time series, e.g., the current flows along different trans-
mission lines in the power grid. Finally, we explain how parallel
RL and TGCN networks can be combined to yield a general and
powerful framework for defending power grids against cyberattacks.
To comprehensively demonstrate the effectiveness of the proposed
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TGCN framework, we employ several performance metrics tai-
lored to assessing RL training times of different action spaces and
obtain the episodic rewards (mean alive and mean rewards) as well
as the causality relations of power lines in the IEEE 14-Bus and
118-Bus systems. This analysis provides insights into the scalabil-
ity of our framework for real-time applications in large power grids.
Furthermore, by comparing the predicted outcomes of the TGCN
framework to the ground truth data obtained from the simula-
tions, we quantify its ability to accurately predict the spatiotemporal
behavior of the power grid under adverse conditions.

A. Reinforcement learning for power grids

Learning through experience and interaction or experimental
learning is one of the human instincts to improve knowledge about
the environment and ourselves. Interaction-based learning formed
a core idea behind almost all theories of learning and intelligence.*®
RL is a computational manifestation of the interaction-based learn-
ing theory in machine learning.”” Typically, an RL algorithm is
characterized by six sub-elements: agent, state, environment, policy,
action, and reward.*® In particular, for a power grid, an agent is the
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person sitting in the power grid control room, who interacts with
the environment—the power grid, by taking an action and observing
the state evolution. More specifically, the agent observes the network
dynamics, date, time, active and reactive power, active and reactive
load, power flow, or voltage magnitude vector that define a state.
The objective of RL is to learn to identify the optimal action in each
state to obtain the maximum reward in the long run, where state
is a vector of continuous or discrete valued variables, such as the
current flow or the status of the transmission lines in a power grid,
which reflects the dynamical features of the environment. Environ-
ment stands for a physical world in which the agent can operate and
interact with and policy defines the rules for agents to act, which gen-
erally is a mapping from the state space to the action space. It is the
derived policy that guides the control operator to react under differ-
ent circumstances in order to protect the grid. An action or a control
action is an operation the agent can perform, where each action is
associated with a reward and the maximum total reward over the
long run defines the goal in RL.

In mathematical terms, the goal of an RL algorithm is to learn
a policy 7(s(t),a(t)) that provides action a(t) operating at s(t),
which maximizes the long-run expected reward r(t). In the language

800+
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FIG. 3. Comparison of mean time steps alive for different neural network sizes in the rte_case_14_realistic and 12rpn_wcci_2022 (118-bus) power grid systems. For panels
(a) and (c), the x axis denotes the training iterations, while for panels (b) and (d), the x axis shows the training length timings. The y axis indicates the mean time steps alive.
Each trajectory corresponds to a specific neural network size, with varying performances observed across different network sizes and grid systems.
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of a Markov decision process, the cumulative future return can be
written as

R - i yr(s(6),a(t)), (1

where 0 <y <1 is a discount factor. A well-known RL approach
is the Q-learning algorithm that provides the optimal action-value
function. The Bellman equation®® stipulates that the action-value
function for policy 7 is the value of taking action a(t) in the state
s(t) under a policy 7, formulated as

oo

qx(s(t),a(t)) = Ex| 3. ykrz+k+1|5(t)»a(f)]> @

k=0

where E,[ ] is the expected value function. With the Bellman equa-
tion, the Q-learning algorithm can be updated online to control the
Q-value g, (s(t),a(t)) toward the Q-target g5 (s(¢),a(t)),

an(s(t),a(t)) < qa(s(t),a(t))

+afr(t) + yurgi}l()qn(s(t+ 1),a(t+1)) - q,,(s(t),a(t)):|.
(3)

Our development of the TGCN-based parallel heterogeneous RL
framework is motivated by the following considerations. Generally,
Q table is suitable for discrete states, while deep Q networks (with
neural networks as Q-function approximators) are for continuous
states (or actions). Q learning becomes slow when the state-action
space is large. In a power grid, the agent observes the network’s
dynamics, power flow, or voltage magnitude vector and other states
of the network in order to choose the best action among available
actions so that the network can survive as long as possible under
both normal and critical conditions.

The performance of RL algorithms for power grid defense is
contingent upon various factors, such as the size and complexity of
the grid as well as the architecture of the neural network approxi-
mators. To elucidate the impact of neural network size on the RL
performance, we conduct experiments on two distinct power grid
systems: “rte_case_14_realistic (14-bus)” (illustrated in Fig. 2) and
“l2rpn_wcci_2022 (118-bus)”. Figure 3 compares the mean time
steps alive over the past 100 episodes for different neural network
sizes for each system. In particular, for the “rte_case_14_realistic”
system, which represents a smaller-scale grid, we employ a neu-
ral network structure defined by the formula, size_multiplier = 4
x (i+1), where i denotes the network size index (0 for small, 1

TABLE I. Comparison of actions-space size in different benchmark power grids.

Systems RTE 5-Bus RTE 14-Bus
Total topology actions (Dis.) 31320 1397519 564
Legal topology actions (Dis.) 117 179
Total status actions (Dis.) 256 1048576
Legal status actions (Dis.) 8 20
Total discrete actions 8017920 1.46 x 10"
Total legal discrete actions 936 3580
TGCN aided RL discrete actions 125 199
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for medium, 2 for large, and 3 for larger). The neural network
structure is configured as [size_multiplier x 2, size_multiplier x 1,
size_multiplier x 2]. Surprisingly, the performance deteriorated
with larger neural networks, indicating that smaller networks are
sufficient for effective learning in this system within 200 000 itera-
tions. Conversely, for the “I2rpn_wcci_2022 (118-bus)” system that
represents a larger and more complex grid, the performance consis-
tently improves with larger neural networks. Similar to the previous
system, we utilize the same neural network structure formula that
yields varying network sizes. However, unlike the smaller system,
the larger neural networks exhibit an enhanced performance, sug-
gesting that more complex grids require larger networks to achieve
optimal rewards, even with longer training duration. While smaller
grids may benefit from simpler neural network architectures to avoid
overfitting and undertraining, larger and more intricate grids neces-
sitate more complex network structures to capture the underlying
dynamics adequately. The results of these numerical experiments
highlight the need for continued research into RL methods with
more efficient exploration and exploitation strategies to address the
challenges posed by large-scale power grid defense scenarios.

The types of actions that the agent can perform are shown in
Fig. 1. In more detail, a topology action can be performed to change
how different lines coming from loads, generators, or transmission
lines are connected to different bus bars in a substation. The agent
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FIG. 4. Comparative analysis of the training efficiency and performance of RL
agents deployed on the “[2rpn_wcci_2022 (118-bus)” power grid under attack sce-
narios using deep Q-learning. Four distinct RL training scenarios are evaluated,
each focusing on specific subsets of the action space: (1) comprehensive action
exploration, (2) curtailment actions, (3) power line switch actions, and (4) topol-
ogy actions. The results indicate notable disparities in both training times and
mean time steps alive across the various RL agents. Particularly, while the power
line switch agent demonstrates extended training duration, it achieves the high-
est mean time steps alive, signifying its efficacy in maintaining grid stability amid
attacks. Conversely, the topology agent exhibits shorter training times yet a com-
parable performance to the comprehensive action exploration agent, underscoring
its efficiency in navigating the action space. On the other hand, the all-action
space agent required ~18 h for training while achieving the second worst rewards,
highlighting the exponential increase in training time associated with exploring
the entire action space. The findings underscore the effectiveness of specialized
agents in optimizing training efficiency and performance in RL-based power grid
defense systems.
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can also impose a status action to reconnect or disconnect the trans-
mission lines. A redispatch action causes the generators in the grid to
change their production set point. When the grid contains renewable
sources, it is often necessary to limit their production to maintain
the grid stability, which can be achieved by a curtailment action. For
instance, the windmills should reduce their output if there is exces-
sive wind in a certain area. Some grids also contain storage units
of finite capacity behaving as loads or generators, whose role is to
generate or absorb power. When the storage units reach their maxi-
mum capacity so that they can no longer take power from the grid,
they can still function as generators, leading to a set-storage action.
Even for a relatively small power grid, all these actions constitute
an immensely large action space that makes it hard for the RL algo-
rithm to explore efficiently. Even when not all actions are applicable
or “legal” due to the specific structure of the power grid, the action
space can still be large, as presented in Table I, where the numbers of
topology and status actions are compared for two benchmark power
grid systems.

Figure 4 presents a comprehensive analysis of the training
efficiency of the RL agents in power grid defense against cyber-
attacks, which is a comparative overview of the mean time steps
“alive” and training times for RL agents trained on the power grid
“l2rpn_wecci_2022 (118-bus)” under attack conditions using deep Q
learning. The training duration was set to one million iterations,
although substantially longer training periods (e.g., on the order of
100 x 10° iterations) are typically required for comprehensive train-
ing. This initial analysis serves to highlight the potential benefits
of our proposed approach in terms of efficiency and effectiveness.
In particular, we compare four different RL training scenarios,
each exploring distinct subsets of the action space. One RL agent

a) Deep Q-Learning
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explores the entire action space, another focuses solely on curtail-
ment actions, while the remaining two agents specialize in power
line switch and topology actions, respectively. The results reveal
notable differences in both training times and mean time steps alive
among the different RL agents. The power line switch agent exhibits
the second longest training time, ~8 h, yet achieving the highest
mean time steps alive, averaging around 350 time steps. Conversely,
the topology agent, with the fastest training time of ~6 h, achieved
comparable mean time steps alive to the all-action space agent, indi-
cating its efficiency in navigating the action space. The curtailment
agent, with a training time of around 7 h, demonstrates the low-
est mean time steps alive among the specialized agents but remains
competitive with the all-action space agent.

Of particular significance is the stark contrast in training times
between the specialized agents and the all-action space agent. While
the specialized agents can achieve a comparable or superior per-
formance in terms of the mean time steps alive, they do so within
significantly shorter training times. In contrast, the all-action space
agent requires ~18 h for training while achieving the second worst
rewards, highlighting the exponential increase in training time asso-
ciated with exploring the entire action space. The training time is
going to increase even more in comparison to specialized agents
in longer training. This observation underscores the inherent scal-
ability challenges posed by the expansive action space associated
with power grid defense. The findings from this analysis underscore
the importance of dividing the action space and utilizing special-
ized agents to optimize training efficiency in RL-based power grid
defense systems. By focusing on specific subsets of actions, special-
ized agents can navigate the action space more efficiently, thereby
achieving a comparable or superior performance with reduced

b) Soft Actor-Critic
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FIG. 5. lllustration of the mean time steps alive over the last 100 episodes for the “I2rpn_wcci_2022 (118-bus)” power grid. The performance of various RL agents trained
using (a) deep Q learning and (b) soft actor—critic algorithms area compared. Each agent explores different subsets of the action space, ranging from comprehensive
exploration of all actions to specialized focus on individual action types, such as curtailment, power line switch, topology, redispatch, and storage actions. The training
duration spans 200 thousand iterations, providing insights into the efficiency and effectiveness of dividing the action space and employing specialized agents in power grid
defense. The comparison highlights the scalability challenges associated with comprehensive action exploration and underscores the nuanced performance differences

between specialized agents across different RL algorithms.
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training times. In addition, the use of specialized agents mitigates
the scalability challenges associated with exploring the entire action
space, enabling faster training and higher rewards. These insights
reinforce the rationale behind our proposed approach and provide
empirical evidence of its efficacy in enhancing the efficiency and
effectiveness of RL-based power grid defense mechanisms.

We carry out computations to justify using specialized agents.
Figure 5 shows a comprehensive comparison of the mean time steps
alive over the past 100 episodes for the “I2rpn_wcci 2022 (118-
bus)” power grid under attack conditions, utilizing two distinct
reinforcement learning (RL) algorithms: deep Q learning and soft
actor—critic. Notably, soft actor—critic is distinguished from deep
Q learning by its incorporation of an entropy regularization term,
facilitating a more exploratory behavior and potentially improv-
ing sample efficiency. Surprisingly, despite this added exploration,
the all-action-space exploring agent performs even worse relative to
other agents in soft actor—critic compared to deep Q learning. The
training duration spans 200 thousand iterations, serving as an illus-
trative example rather than a comprehensive training regimen. This
comparison underscores the efficiency and effectiveness of dividing
the action space and employing specialized agents. Eight different RL
training scenarios are evaluated, each targeting specific subsets of the
action space: comprehensive action exploration; curtailment actions;
power line switch actions; topology actions; redispatch actions; stor-
age actions; combinations of power line switch and topology actions;
and combinations of redispatch, curtailment, and storage actions.
Our aim is to obtain an understanding of how different RL agents
navigate the complex action space inherent to power grid defense.

The results reveal that the all-action-space agent’s performance
deteriorates significantly with increasing iterations, underscoring
the scalability challenges associated with exploring the entire action
space. Conversely, specialized agents, such as those focusing solely
on curtailment or power line switch actions, demonstrate a more
consistent and efficient performance across both RL algorithms.
Interestingly, in soft actor—critic, agents exploring only a single
action type, such as curtailment or power line switch, exhibit bet-
ter performance compared to their counterparts in deep Q learning.
This suggests that the inclusion of larger neural networks in soft
actor—critic may increase the performance gap between all-action-
space and specialized agents. These results emphasize the impor-
tance of dividing the action space and utilizing specialized agents
in mitigating the scalability challenges inherent to RL-based power
grid defense systems. Moreover, they highlight the potential implica-
tions of the RL algorithm choice on the performance of specialized
agents, offering valuable insights into future research and practical
implementation.

B. Temporal graph convolutional neural networks
(TGCNSs)

TGCNs® are a type of machine learning model that extend
the traditional graph convolutional networks (GCNs) to handle
data on temporal graphs with features evolving over time. TGCNs
can be used to analyze the sequences of interactions in social
networks to understand the spread of diseases on networks or
to model the evolution of physical systems. A key challenge in
designing TGCN models is defining how to incorporate the tem-
poral information into the graph convolution operation, which
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has been addressed through, e.g., using a recursive formulation or
introducing a temporal convolutional layer,”*"****

Our aim is to analyze the network characteristics of various
power grid components, such as the current flows of the transmis-
sion lines, their thermal capacity, the load, and generator conditions
under the control of multiple agents with varying policies in order
to accurately predict how well they will perform in the event of an
attack. Due to the intricate spatiotemporal relationships, a num-
ber of difficulties can arise. Because of the spatial dependence, the
topological structure of the power grid network is a dominant fac-
tor determining the change in the current flows on the transmission
lines. Analogs with the traffic flow problem,* the current flow of
the main transmission lines impact the flow on other lines through
the transfer effect, and the traffic status at side transmission lines
impact the main lines’ current flows through feedback. The temporal
dependence means the current flows change dynamically over time
and are mainly reflected in the periodicity and trend in a power grid.
(For example, the load power can change periodically over a week
or a day.) In addition, the current flow can be affected by the condi-
tions of the power grid in the previous hours or even longer. Some
recent machine-learning based time-series prediction methods™
consider the temporal dependence but tend to ignore the spatial
dependence, so the predicted changes in current flows may not
be accurate. Our solution is to employ TGCN that was originally
designed for traffic forecasting tasks based on urban road networks.

C. TGCN-aided reinforcement learning

Our method consists of two steps. The preparation phase
involves training individual RL agents to learn the control of the
power grid and also using TGCN to learn the behavior of the trained
agents under attack. In the execution phase, we use the trained
TGCN to predict the behavior of the trained agents under the attack,
and the best individual agent is selected based on a set of predefined
criteria. The standard TGCN model consists of a graph convolu-
tional network and a gated recurrent unit (GRU). However, we find
that the GRU model does not perform well on power grids, so we
replace the GRU by an LSTM network because of its performance-
wise superiority. Both LSTM and the GRU are recurrent neural
networks and share a similar set of fundamental principles: They
use a gated mechanism to memorize as much long-term informa-
tion as possible and are equally effective for various tasks. In terms of
computations, LSTM is more complex and requires a longer training
time, while GRU is simpler and faster.

In applications of graph neural networks, it is a common prac-
tice to learn the features of the nodes rather than of the edges.
Take the various social media learning engines as an example, where
users are the nodes and their interactions constitute the edges. Fea-
tures such as the profile pictures or the user age, are associated with
the nodes. The opposite situation arises for the power grids, where
the interested features are associated with the transmission lines
representing the edges of the original network, thereby requiring
converting the original network into a line graph. More generally,
aline graph of a graph G is obtained by associating a node with each
edge of the graph and connecting two nodes with an edge if and only
if the corresponding edges of G have a node in common.’* For exam-
ple, for the benchmark RTE 14-Bus system, the original grid network
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FIG. 6. Corresponding line graph of the benchmark power grid shown in Fig. 2.
Given a power-grid network, its “line graph” is obtained by converting the nodes
(edges) in the original network into edges (nodes), where the nodes now represent
the transmission lines and the edges denote that if two power lines have a mutual
connection to each other through a node. The features on the nodes are the vari-
ous current flows in the original network. The line graph is provided as an input to
our method shown in Fig. 1.

shown in Fig. 2 is transformed into the line graph shown in Fig. 6,
where the nodes correspond to the transmission lines with current
flows as the key features and an edge arises if two power lines have
mutual connection to each other.

The structure and training of the TGCN is shown in Fig. 7.
Briefly, for training the TGCN, we generate a number of scenar-
ios under the control of the individual RL agents, which include
both normal operation and attacks. The input to the TGCN con-
sist of time series and the line graph shown in Fig. 6, and the graph
convolution network designed to handle arbitrary graph-structured
data are used to capture the topological structure of the power grid,
ensuring that the TGCN captures the spatial dependency. The out-
put with the spatial features is sent to the LSTM to capture the
temporal dependency of the dynamical information on the network.
Additional training is achieved by using a fully connected dense
layer.

For the testing phase, during the normal operation of the power
grid, from time t = 0 to t = Ty, the grid is controlled by the reconnect
agent whose task is to reconnect a line if it gets disconnected. For
an attack occurring at time t = T4, the time interval between t = T4
to t = Tp is the decision interval in which our TGCN framework is
deployed to gather the previous data containing both normal and
attack modes to predict the performance of the trained RL agents.
After the required data are gathered, the TGCN predicts the per-
formance of the agents in the future time interval from ¢ = Tp to
t = Tss, the time that the power grid settles into a steady state after
the attack, and selects the best performing RL agent based on the grid
survival criterion (described below). For instance, as shown in Fig. 8,
the performance of the TG agent (topology greedy agent) is predicted
to be better than that of the PLS agent (power line switch) so the TG
agent is chosen to perform to mitigate the effects of the attack.
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FIG. 7. Proposed TGCN framework. The structure of TGCN, where the input is
the current time series from all the nodes in the line graph and the output is the
predicted time series from the same set of nodes. The time series are generated
from the power grid under distinct RL actions using the Grid20p platform. Specifi-
cally, in the platform simulations, the grid is assumed to be attacked multiple times.
Each time an attack occurs, an RL action of a specific type (e.g., topology action,
status action, redispatch action, curtailment action, or set storage action) is taken
to protect the grid, generating time-series segments before and after the attack.
The time series from many attack events are combined to form the training data
for TGCN with the goal of predicting the time series under this specific type of RL
actions. Because of the complexity of the organization of the time series from the
grid network, GCN is used to handle the graph-structured data to deal with the spa-
tial dependence of the time series, and the LSTM is used to capture the temporal
dependence. TGCN is action-specific because, for a different type of RL actions,
it is necessary to train a new TGCN. The training process yields a set of distinct
TGCNs, each corresponding to a specific type of RL actions. (An analogy is med-
ical doctors of different specialties who are trained to deal with different types of
diseases.).
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FIG. 8. Deployment of trained TGCNs. A schematic illustration of some grid sur-
vival indicator as a function of time. Before an attack occurs at Ty, the grid
functions normally. For ¢ > T, the value of the grid survival indicator decreases
with time. A time interval is required for making the decision and taking the appro-
priate action to protect the grid—the decision interval, where Tp is the present
time. This time interval cannot be long as any meaningful action will need to be
taken before the grid collapses. The time series of the currents from all nodes in
the grid collected during the decision interval are fed into each trained TGCN for it
to predict the future time series, from which the time evolution of the grid survival
indicator can be calculated. The RL actions associated with the TGCN that yields
the fastest and greatest recovery of the indicator value are selected to mitigate the
specific attack. (It is assumed that the time required for the TGCNS to carry out the
prediction of the time series is small compared to the length of the decision interval
and is practically negligible.)

To have a criterion for selecting the best RL agent, we define the
following indicator of grid health:

B 1
T 14N

Ic (4)
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where N is the total number of transmission lines with the ratio p of
their current flows to the thermal capacity above a certain threshold
7> where 0 < ry, < 1 during the prediction time interval (from time
t = Tp to time ¢t = T'ss). The smaller the number N, the larger is the
value I and the “healthier” the grid is. The RL agent predicted to
have the largest I value is selected. Note that if ry, is close to one,
fewer control actions are triggered but the safety margin of the grid is
reduced. On the contrary, if ry, is far less than one, then more control
actions will be needed but the grid will be safer against attacks.

IV. RESULTS
A. Simulation Settings

To demonstrate the workings of our TGCN-aided RL method,
we use the benchmark RTE 14-Bus system that has 20 transmis-
sion lines, 5 generators, and 11 loads and employ the Grid2Op
platform (a Python environment), specifically designed for applying
reinforcement learning algorithms to power grid control. In particu-
lar, Grid2Op is a user-friendly Python tool that enables developing,
training, and evaluating agent or controller performance, taking into
account many physical and dynamical aspects of the power grid.
The package is modular and can be used to test the effectiveness
of optimal control methods or to train RL agents. It is adaptable
and enables users to employ the algorithm of one’s choosing to
compute the power flows, e.g., in all the transmission lines of the
power grid. The application is compatible with the openAl gym
programming interface—the state-of-the-art tool for simulating RL
algorithms. In fact, arbitrary controllers can be implemented on
Grid2Op even though it was originally developed in the RL com-
munity. In our simulations, the power grid dynamics are modeled
using the Grid2Op platform, which provides detailed CSV logs con-
taining information on loads, generator powers, and voltages. Even
under “normal conditions” without attacks or random failures, the
power grid is dynamic due to factors such as fluctuating demand and
generator outputs. While the grid may be in a steady state overall,
small fluctuations in load demand and generation output can occur,
necessitating continuous monitoring and potential intervention by
control agents. As a result, the temporal dynamics of the system
are simulated to ensure the model accurately reflects real-world sce-
narios. Trained RL agents are designed to adapt to these dynamics
and make decisions accordingly, contributing to the robustness and
effectiveness of our proposed approach.

In our work, all the simulations were performed on a desk-
top PC with an Intel Core i7-6850K CPU and 128 GB of RAM.
Table II presents the simulation parameter values. For the RTE 14-
Bus system, we simulate its dynamics under attack conditions for
10000 episodes under the control of two types of default Grid2Op
greedy agents: topology greedy (denoted as TG agents) and power
line switch (PLS agents), where the former performs only topolog-
ical actions at the buses in the power grid and the latter takes status
actions whenever necessary. Greedy agents adopt a brute force strat-
egy by exhaustively testing all the available actions and selecting the
one yielding the highest reward. In our implementation, we opt for
greedy agents due to their speed advantage. However, our frame-
work is versatile enough to accommodate any reinforcement learn-
ing trained agent in practice. Moreover, in a normal operation time
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TABLE II. TGCN simulation parameters used for learning the behavior of individual
RL agents.

Parameters Values
Time step (ts) 5 min
Input sequence length 24 ts
Forecast horizon 12 ts
Multi-horizon True
Learning rate 0.001
Patience 10 episodes
Training data 70%
Validation data 20%
Test data 10%

interval, the reconnect agent (denoted as Reco, also a greedy agent)
controls the whole power grid by reconnecting a line if it is
disconnected at any time.

B. Justification for TGCN

A basic justification for our TGCN framework is certain degree
of correlations (which assures spatial dependency) and causality
(that reveals temporal dependency) among the input time series. In
particular, the framework is articulated for predicting the current
flows in the power grid in a future time window, using the flows
in a previous time window up to the present time as the input.
These time series are from a power grid so they have a graph or
network structure in the sense that they must be inter-related or
correlated with each other. The correlations of various pairs of time
series can neither be too small nor too large, as the TGCN needs to
be trained with time series from the power grid to learn its inher-
ent network structure. Figures 9 and 10 show the correlations and
causality relations among the normalized currents in various trans-
mission lines, where for any line, the normalized current (p) is the
actual current divided by the thermal capacity of the line. The cor-
relation heat map shows the strength and direction of the linear
relationships between different features at each time point. High
correlation (positive or negative) indicates that the features tend to
move together or in opposite directions over time. Anti-correlation
suggests that when one feature increases, the other tends to decrease
and vice versa. Granger causality analysis goes beyond the correla-
tion by assessing whether one time series can predict another. Values
greater than zero indicate that the past values of one feature contain
information that helps predict the future values of another better
than just using the past values of that feature alone. The presence of
nontrivial correlation and Granger causality suggests that there are
dynamic relationships between the current flows in the transmission
lines. The features that are correlated but do not show significant
Granger causality (such as lines 7-14 under the TG agent) imply a
synchronous behavior but not necessarily any causal relationship.
Conversely, features with significant Granger causality but low cor-
relation (such as lines 2-6 and lines 7-11 under the TG agent)
suggest directional dependencies that are not apparent from lin-
ear correlation alone. The results from this correlation and Granger
causality analyses indicate that our dataset exhibits both spatial
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FIG. 9. Correlations among current flows in the RTE 14-Bus power grid (under attack scenario). The correlations associated with the normalized currents, all pairs of
transmission lines in the power grid. The networked system is simulated under attack conditions for 10* episodes under the actions of (a) PLS and (b) TG agents. Correlation
solely captures the linear relationships among current flows and falls short in depicting the complete dependence among transmission lines. TGCN takes into account the
spatial interdependence of closely situated lines and thus emerges as a dependable approach.
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FIG. 10. Granger causality within the RTE 14-Bus power grid’s current flows. It demonstrates how the past signal history shapes the future of others, unveiling the temporal
interconnection of power lines’ current flow, further justifying TGCN. The networked system is simulated under attack conditions for 10* episodes under the actions of (a) PLS

and (b) TG agents.

(correlation) and temporal (Granger causality) dependencies. Tra-
ditional machine-learning models tend to struggle to capture these
complex dependencies effectively. TGCN is specifically designed to
handle data with both spatial and temporal dependencies, making
it a suitable choice for modeling the dynamic interactions between
features over time in the dataset.

C. TGCN Implementation

We now simulate an attack scenario that disconnects a trans-
mission line. Concretely, we assume that the set of transmission lines
{3,4,15,12,13,14} is susceptible to the attack. In our study, for sim-
plicity, we use selective targeting of transmission lines in the RTE
14-bus power grid, which is commonly adopted in the emerging
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FIG. 11. Performance of TGCN for predicting the current flows in the RTE 14-Bus power grid. The normalized currents under the control actions of (a) TG agent for
transmission lines (Nos. 2 and 18) and (b) PLS agent transmission lines (Nos. 4 and 8). The input time series contains a phase of normal operation, followed by an attack

phase.

field of RL for power grid security. In fact, RL applications in this
domain are relatively recent, where simplified scenarios are assumed
to facilitate successful training. Naturally, the simplified approach
may not fully capture the diverse range of vulnerabilities present
in real-world power grids, but future studies will incorporate more
comprehensive and realistic representations of power grid systems,
leading to improved training outcomes and more robust defense
strategies. When a line is attacked, we simulate the dynamics of the
power grid at the 5-min step. The attack duration is 30 min (five time
steps) during which the defender is unable to reconnect the attacked
line. At the end of this attack interval, the line is reconnected and we
continue to simulate the power grid for 3 h during which no further
attack can occur. This is to keep the attacker—defender interaction as
a fair game. The attacker has the initial budget of 0 units at the start
of the simulation, which increases by 0.1 units/time step. Each attack
costs 1 unit of resources. The attack budget assures that the attacker
does not have infinite resources where it can attack indefinitely and
recklessly. For the training phase, 10000 episodes of such attacks
are simulated with the maximum length of 24 h (not all episodes
take 24 h).

Our heterogeneous RL agents are trained in the divided action
spaces and we create a TGCN for each type of RL agents. To demon-
strate the predictive power of the TGCNs, we simulate a large
number of scenarios of normal operation and attacks, controlled by
two types of RL agents: TG and PLS. The input time series length is
2 h (24 time steps) and the prediction horizon is 1 h (12 time steps).
The input time series contains the data from the normal interval and

the attack interval, as shown in Fig. 8. Figures 11(a) and 11(b) show
the predicted normalized currents in the transmission lines Nos. 4
and 8 under the control actions of TG and PLS agents, respectively,
where the spikes indicate the attack events. It can be seen that the
specialized TGCNs are able to accurately predict the time evolution
of the currents, even during the attack.

The grid health indicated, as defined in Eq. (4), makes use of the
number N of the transmission lines in which the current exceeds a
threshold value ry,. How does this threshold affect the choice of the
RL agents? To answer this question, we vary the threshold systemati-
cally from zero to one. For each value of ry;,, we simulate 50 different
attack scenarios and calculate the fractions of different RL agents,
selected to best protect the power grid. Figure 12 shows the fractions
of three RL agents being chosen vs ry,. It can be seen that for ry, < 0.5,
the selected RL agent is almost exclusively PLS. For ry, = 0.7, the TG
agent should be used. For ry, > 0.8, the best RL agent is Reco. This
process is expandable to any other set of user-defined agents. The
results can be intuitively understood by considering the different
functionalities and costs associated with the RL agents used to pro-
tect the power grid under attacks. When the threshold parameter is
set below 50%, the dominant choice for protecting the power grid
is the power line switch agent. This agent is responsible for dis-
connecting or reconnecting power lines based on the situation. In
this case, it is likely that a significant level of attack or disruption
is present in the system. To mitigate the effects of the attack, the
RL system chooses to disconnect specific power lines that are vul-
nerable or compromised. However, when the threshold parameter
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FIG. 12. Frequencies at which different RL agents are selected to best protect
the power grid under attacks. The fractions of three types of RL control actions
selected vs the threshold parameter ry,. The results show that for a threshold below
50%, the chosen agent is the power line switch, indicating significant disruption.
Above 90%, the preferred agent is the reconnect agent, focusing on restoring dis-
connected lines. For thresholds between 50% and 90%, a mix of agents is used,
including power line switch, topology greedy, and reconnect agents.

is set above 90%, the preferred agent becomes the reconnect agent
switch agent. This agent’s primary function is to try and reconnect a
power line that has been previously disconnected. At this threshold
level, it is likely that the system has already undergone significant
restoration efforts and most power lines are functioning properly.
Therefore, the RL system focuses on re-establishing any remaining
disconnected lines to optimize the overall power grid’s stability and
functionality. For threshold values between 50% and 90%, the RL
system employs a mixture of power line switch, topology greedy, and
reconnect agents. This suggests that in situations where the power
grid is moderately affected by attacks, a combination of strategies
can be utilized. The power line switch agent may still be used to
isolate vulnerable or compromised lines, while the topology greedy
agent, although more expensive, can be employed to ensure that the
overall structure of the power grid remains intact. The presence of
the reconnect agent indicates that there are still some disconnected
lines that need to be addressed, albeit in a lesser proportion than
the higher threshold case. It is important to note that these results
were obtained using the RTE 14-bus system, but similar outcomes
can be expected for other benchmark systems. The choice of the RL
agents depends on the specific characteristics of the power grid and
the severity of attacks. Furthermore, the higher cost associated with
the topology greedy agent suggests that it should only be employed
when necessary, potentially due to its resource-intensive nature.

D. Real-world implementation

Real-world implementation of the proposed TGCN frame-
work comes with several challenges and considerations that must
be addressed to ensure its practical relevance and applicability. One
key consideration is scalability, as real power grids often consist of
thousands of transmission lines, generators, and loads, leading to
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significantly larger network sizes compared to the benchmark sys-
tems used in the simulations. Scalability challenges arise not only
in terms of model training and inference but also in data collection
and preprocessing. Addressing scalability requires efficient algo-
rithms and distributed computing frameworks capable of handling
large-scale spatiotemporal data. Another consideration is computa-
tional resource requirements, particularly in real-time applications
where decisions must be made rapidly to mitigate cyberattacks and
maintain grid stability. The computational demands of training
and deploying TGCN models for predictive analytics on large-
scale power grids can be substantial, necessitating optimization
techniques and hardware accelerators to ensure timely responses.
Furthermore, the energy efficiency of the computational infrastruc-
ture used for TGCN implementation is a critical factor, especially in
environmentally sustainable energy systems. In addition, the adapt-
ability of the TGCN framework to dynamic network conditions
is essential for a robust performance in real-world environments.
Power grids are subject to continuous changes due to factors such
as demand fluctuations, equipment failures, and renewable energy
integration, requiring adaptive learning algorithms capable of cap-
turing and responding to evolving network dynamics. Incorporating
mechanisms for online learning and model updating can enhance
the framework’s adaptability and enable it to cope with unforeseen
changes and disturbances in the power grid. Addressing these chal-
lenges and considerations for real-world implementation is crucial
to ensure the practical relevance and effectiveness of our TGCN
framework in enhancing the cybersecurity and resilience of power
grids. By leveraging advanced algorithms, computational resources,
and domain knowledge, the TGCN framework holds promise as
a valuable tool for industry practitioners and policymakers tasked
with safeguarding critical energy infrastructure against cyber threats.

V. DISCUSSION

When it has been detected that a power grid has been attacked,
protective measures must be taken to maintain the grid integrity
and functions. A variety of actions can be taken, such as topology,
status, redispatch, curtailment, and set-storage actions, as shown in
Fig. 1. The question is which actions to take with respect to the
attack that has just occurred. The issue is that a decision needs to
be made in short time before any large-scale blackout occurs. For
a regular power grid, both the number of possible attacks and the
number of possible actions to take are exponentially large (with
respect to the size of the network), making the required decision-
making extremely challenging. While empirical methods based on,
e.g., previous experiences might help, it is desired to develop a
more rigorous framework to defend power grids against cyberat-
tacks. Machine learning, especially reinforcement learning, provides
a viable solution.

The main achievement of this work is the articulation of
a reinforcement-learning centered predictive machine-learning
framework capable of real-time decisions of choosing the best
actions to protect a power grid from attack. Underlying the predic-
tive framework are two ideas: heterogeneous RL agents and TGCN.
In particular, the first idea is motivated by the following consider-
ations: while employing reinforcement learning to protect power
grids from cyberattacks has been extensively investigated in recent
years, the challenge of dealing with an exponentially large action
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space remains outstanding. For a regular power grid, using a sin-
gle RL agent to explore the entire action space is computationally
infeasible. Our idea is then to use an “army” of heterogeneous RL
agents: each exploring a small part of the action space and altogether
they cover the whole action space. The second idea of TGCN is moti-
vated by two factors: (a) the graph or network nature of the power
grid (spatial) and (b) the need to predict the dynamical evolution of
the system, i.e., the time series of current flows in all the transmission
lines (temporal). When an attack has been detected, for the defender
of the power grid, the available information is the time series of the
current flows in the network in a time interval that contains some
time period before the attack and a short time period after, which
constitute a spatiotemporal time series dataset. The defender’s task
is to choose the best course of actions based on the available spa-
tiotemporal time series. It is precisely this spatiotemporal nature
of the available information that leads us to the idea of TGCNs—a
graph machine-learning architecture specifically suited to deal with
spatiotemporal data. For each RL agent, we generate a unique TGCN
that specializes in the specific type of RL actions. That is, we create an
army of TGCNs whose number is equal to the number of heteroge-
neous RL agents. Each TGCN is trained according to the specific RL
action type. Specifically, given an RL type, we take advantage of the
Grid2Op platform to generate ample time series of the current flows
in the power grid under a large variety of attack scenarios, which
are used to train the TGCN. A well-trained TGCN accomplishes the
prediction task by taking the available time series as the input and
output an equal number of time series in a future time interval.

With a set of well-trained, specialized TGCNs, the defense strat-
egy can be summarized. When an attack has occurred, the available
spatiotemporal time series are fed into each TGCN to generate pre-
diction of all the current flows in the network in the near future.
The predicted spatiotemporal time series can be used to calculate a
predefined grid health indicator. The RL actions associated with the
TGCN that yields the highest value of the indicator are selected and
delivered to protect the grid.

Our combined heterogeneous RL and TGCN framework pro-
vides a potential solution to defending power grids against cyber-
attacks. We have demonstrated the capability of the framework in
accurately predicting the spatiotemporal time series and thereby
selecting the corresponding RL actions using the benchmark RTE
14-Bus system. A future work may include adding preferences into
the decision making. For example, realistically, topology changes are
more expensive than the actions, such as reconnecting the transmis-
sion lines or changing the set points of a generator in a power grid.
This introduces economic constraints into the problem so that the
expensive solution is not selected unless absolutely required. While
our framework demonstrates promise in simulation environments,
challenges will arise in real-world implementation. Factors such
as scalability, computational resource requirements, and adaptabil-
ity to dynamic network conditions warrant careful consideration.
Future research directions could focus on overcoming these lim-
itations by exploring new architectures or algorithms to improve
scalability and efficiency. Investigating methods to enhance adapt-
ability to changing network conditions and integrating additional
data sources for improved performance could also contribute to
the framework’s robustness and applicability in practical settings.
Furthermore, evaluation metrics, such as convergence rates, compu-
tational efficiency, and robustness against various attack scenarios,

ARTICLE pubs.aip.org/aip/aml

should be investigated to provide a comprehensive assessment of the
framework’s efficacy. Addressing these unresolved issues and sug-
gesting possible extensions or refinements can foster ongoing dialog
and innovation in the field of RL-based defense mechanisms for
cyber physical systems.
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