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Privacy-Preserving Line Outage Detection in
Distribution Grids: An Efficient Approach With
Uncompromised Performance

Chenhan Xiao
and Yang Weng

Abstract—Recent advancements in research have shown the effi-
cacy of employing sensor measurements, such as voltage and power
data, in identifying line outages within distribution grids. However,
these measurements inadvertently pose privacy risks to electricity
customers by potentially revealing their sensitive information, such
as household occupancy and economic status, to adversaries. To
safeguard raw data from direct exposure to third-party adver-
saries, this paper proposes a novel decentralized data encryption
scheme. The effectiveness of this encryption strategy is validated
via demonstration of its differential privacy attributes by studying
the Gaussian differential privacy. Recognizing that the encryption
of raw data could affect the efficacy of outage detection, this paper
analyzes the performance degradation by examining the Kullback—
Leibler divergence between data distributions before and after the
line outage. This analysis allows us to further alleviate the perfor-
mance degradation by designing an innovative detection statistic
that accurately approximates the optimal one. Manipulating the
variance of this statistic, we demonstrate its ability to approach
the optimal detection performance. The proposed privacy-aware
detection procedure is evaluated using representative distribution
grids and real load profiles, covering 17 distinct outage configura-
tions. Our empirical results confirm the privacy-preserving nature
of our approach and show that it achieves comparable detection
performance to the optimal baseline.

Index Terms—Differential privacy, outage detection, power
distribution networks, privacy aware detection, voltage
measurement.

I. INTRODUCTION

N DISTRIBUTION grids, the detection of line outages is
I essential for system monitoring and control, playing a critical
role in the restoration of network stability and the mitigation
of customer losses. According to the U.S. Energy Information
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Administration [1], customers experienced over seven hours
of power interruptions in 2021, attributed mainly to severe
weather events and power supply shortages. Traditionally, utility
companies have installed smart meters with Advanced Metering
Infrastructure (AMI) and Fault Location, Isolation, and Service
Restoration (FLISR) systems to report outages in cases of power
absence [2]. However, these “last gasp” notifications are limited
when customers continue to have power after the line outage,
from distributed energy resources such as rooftop solar panels,
battery storage, and electric vehicles, which are now widely
adopted. Additionally, in some urban areas, secondary distribu-
tion grids are mesh networks. In this setup, a single line outage
induced by circuit faults or human interference may not result
in a power outage because of alternative power supply routes.
Consequently, smart meters at customer end also cannot report
outages.

To identify these types of line outages, real-time sensor mea-
surements, including voltage magnitudes, phasor angles, and
load estimates, have been employed and confirmed for their
effectiveness [3], [4], [5], [6], [ 7], [8]. However, the utilization of
real-time sensor measurements raises privacy concerns, partic-
ularly regarding the potential exposure of sensitive information.
For example, if a customer’s time-series grid data were provided
to an untrusted third party, they could deduce appliance usage [9]
and unveil details about household occupancy and economic sta-
tus (as illustrated in the lower half of Fig. 1) using non-intrusive
load monitoring techniques [10], [11]. Therefore, it is crucial
to safeguard such data against direct disclosure to third parties
during the outage detection process.

In pursuing a privacy-aware outage detection procedure, we
choose to develop a decentralized randomization scheme based
on a probabilistic methodology for encrypting the raw data.
Among the methodologies for utilizing sensor measurements
in outage detection, both deterministic [4], [5] and probabilis-
tic [12], [13] approaches have been proposed. Deterministic
methods typically set a threshold and declare an outage when
data changes exceed this threshold. Although these techniques
are easy to implement, they do not align with our concept
of a randomization scheme for data encryption. In contrast,
probabilistic approaches focus on monitoring changes in the
probability distribution of sensor measurements, providing a
suitable foundation for our approach. The core idea is to al-
ter the absolute values of end-user measurements to protect
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end-user privacy while preserving the relative changes in data
distribution before and after an outage event (see upper half of
Fig. 1). We also want to point out that while community-level
data, aggregated from individual users, can inherently safeguard
end-user privacy, it complicates the detection of line outages in
large distribution grids and renders the precise localization of
outage branches unattainable.

Specifically, we aim to develop a privacy-aware outage de-
tection procedure based on our prior research [7], [13], which
utilizes a probabilistic change point detection (CPD) method
known for its guaranteed performance. The CPD approach is
adopted for detecting changes in the probabilistic distribution
of sensor measurements while adhering to a predefined false
alarm tolerance constraint [14]. In our problem, the sensor mea-
surements are modeled as a time-series data stream x[n] € RP,
where n € N corresponds to the time step. These time-series
data are assumed to exhibit distinct probabilistic distributions
before and after an outage time A € N:

x[n] e g, n <A and x[n] A /s

n>x (1)
where g and f represent the distributions before and after the
outage, respectively. The CPD framework with sensor data
defined in (1) has been applied to detect line outages and faults
in transmission grids [15] as well as in DC micro-grids [16].
These applications benefit from theoretical guarantees regarding
optimal detection delay, as studied in [17].

In addition to detecting power line outages using sensor data
from electricity customers, many other applications of the CPD
framework involve similar privacy concerns related to the use
of sensitive data. Such applications include monitoring patient
health based on heart rates [18] and evaluating financial condi-
tions using transaction data [19]. Consequently, the development
of a privacy-aware CPD that preserves its detection performance
has emerged as a substantial area of interest and is the primary
focus of this paper.

To safeguard privacy, recent studies have introduced random-
ization schemes to encrypt data, effectively concealing sensitive

An overview of the privacy-aware line outage detection problem in the distribution grid.

information from potential attackers. In assessing the level of
privacy achieved by such randomization schemes, the differen-
tial privacy framework [20] is employed, offering a worst-case
privacy guarantee. In the context of parametric CPD, where
distributions g and f are known in (1), [21] utilized noisy ap-
proximation algorithms developed by [22] to compute a privately
approximated change-point maximum likelihood estimation. In
non-parametric CPD scenarios where the distributions g and f
are unknown, [23] privately estimated the change points using
the Mann-Whitney test [24]. These studies involved encrypting
the detection statistic with Laplace noise after a trusted third
party collected the raw data x[n]. In cases where a trusted third
party is absent, [25] proposed randomizing the raw data with
Laplace noise, ensuring that the raw data remains inaccessible to
anyone except its original holder. Despite the privacy guarantees
offered by existing randomization approaches, there remain
several limitations due to the complexity of the privacy mecha-
nisms or the intricate structure of the data. First, to pursue the
differential privacy framework, many existing works [21], [23]
choose to apply noise to statistic-level after raw data is collected,
potentially exposing raw data to breaches before encryption.
Second, many existing works lack a rigorous quantification of
how privacy mechanisms affect detection performance [21],
[23],[26],[27]. Third, despite the advances in privacy protection,
there is little exploration of methods to mitigate the negative
effects of these privacy measures on system functionality [28],
[29]. To the best of our knowledge, safeguarding privacy without
compromising detection performance remains out of the reach
of existing theory.

In this paper, we narrow our focus on the parametric setting of
CPD for line outage detection. Having knowledge of the distribu-
tions g and f allows us to quantify the cost associated with intro-
ducing privacy guarantees into the outage detection procedure.
Furthermore, it empowers us to design a novel detection statistic
aimed at mitigating this cost. To secure the privacy at user-level,
our first innovation is developing a decentralized encryption
scheme directly on raw data. Unlike existing work [21], [23]
that introduced noise to statistics after raw data is collected, our
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approach ensures user data’s confidentiality before any external
access. To demonstrate that this scheme adheres to classic differ-
ential privacy, we detour the proof through Gaussian differential
privacy [30], an extension of differential privacy applicable to
arbitrary distributions.

Despite the privacy guarantee, there is an inevitable com-
promise in detection performance due to the encryption of data.
Our second contribution is to quantify the extent of performance
compromise in pursuit of varying privacy levels. By investigat-
ing the Kullback—Leibler divergence between distributions f
and g, we pinpoint how encryption-induced noises extend the
outage detection delays. Our findings provide a foundational
framework for assessing the implications of privacy-enhancing
technologies on operational capabilities.

In our third contribution, we tackle the challenge of perfor-
mance degradation due to privacy measures by devising a novel
detection statistic. This statistic innovatively estimates the opti-
mal statistic achievable with raw data, minimizing detection de-
lays and respecting false alarm constraints. Our analysis, rooted
in Jensen’s inequality, reveals that controlling the variance of
this statistic significantly narrows the performance gap. By
strategically reducing the variance, we demonstrate the potential
to virtually eliminate the adverse impacts of privacy protection
on detection performance, marking a significant advancement
in the field.

In summary, our contributions include: (1) We innovate by
introducing noise directly into end-user-level data while ensur-
ing adherence to the differential privacy framework. It enhances
privacy beyond existing methods that only add noise to statistic-
level after end-user-level data is collected. (2) We rigorously
quantify the impact of privacy-induced noise on outage detection
performance using Kullback-Leibler divergence, providing a de-
tailed analysis of the trade-off between privacy and efficiency. (3)
We propose a novel noise-mitigation technique that significantly
reduces the negative effects of privacy protection on detection
accuracy, achieving near-optimal performance levels. To vali-
date our contributions, we conduct comprehensive experiments
utilizing representative distribution grids and real load profiles,
covering 17 distinct outage configurations.

In the following, Section I introduces the preliminary aspects
of our system modeling, the CPD framework, and the differential
privacy framework. Section III presents our privacy-aware detec-
tion procedure that dose not compromise detection performance.
Section IV assesses our method using four distribution grids and
real-world load profiles. Section V concludes of this paper.

II. PRELIMINARY

System Modeling: To illustrate our probabilistic design for
the privacy-aware detection procedure, we define the following
variables. The voltage magnitude at each bus i € G is modeled
as a random variable V;, where G := {1,2,...,p} represents
the distribution grid as a graph containing p > 0 buses. At time
step n, we denote the realization of V; as v;[n] € R in per unit,
and we use v[n] = {v1[n],...,vp[n]} € R? to represent the
collection of voltage magnitudes in the grid G. Finally, we use
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the notation x[n] = v[n] — v[n — 1] to denote the incremental
change in voltage magnitudes.'

We utilize voltage increment data because [ 13] establishes that
this data adheres to two multivariate Gaussian distributions, de-
noted as g ~ N (ug, Xo) and f ~ N (s, 31) before and after
aline outage. For the sake of simplicity, we also use the notation
x5V = Ix[1],...,x[N]} to represent all the measurements up
to time N.

Based on the modeling, the problem of detecting distribution
grid line outages while preserving privacy is formally defined
as follows (refer to Fig. 1 for visualization):

e Given: A stream of voltage magnitude increments x

from the smart meters.

e Find: The line outage time X as quickly as possible.

® Require: Avoid disclosing the raw data x /.

Outage detection based on change point detection: To detect
the outage time A in (1) using voltage magnitude increments
xN our previous work [7], [13] follows the Bayesian detection
procedure [14], [17]. That is, identifying the outage time is
equivalent to performing the hypothesis test:

Ho:A>N and Hi: A <N

N

sequentially given data x''V = {x[1],...,x[n],...,x[N]}.
As data is received in a streaming manner (/N increases), the
first time hypothesis H is rejected reveals the value of A. To
determine when to reject Hy, the posterior probability ratio

uy _ POSn™) S S ()
M= w2 ey @

is calculated at each time step INV. A € N is assumed to follow
a prior distribution 7w, and we define 771’?, = #ﬂ’f(’f) for
simplicity. The ratio in (2) compares the probabilities of “outage
occurred (A < N)” and “outage did not occur (A > N)” given
the historical measurements xV. A larger ratio indicates that
“outage occurred” is more likely than “outage did not occur”.
Therefore, we declare the outage time A when the ratio in (2) ex-
ceeds a predefined threshold. By the Shiryaev-Roberts-Pollaks
procedure [14], [17], the following threshold in Theorem 1
optimally considers the trade-off between the false alarm and
the detection delay.

Theorem 1: When A follows a geometric prior Geo(p), we
declare the outage time when the posterior probability ratio
A(x") exceeds the threshold <= for the first time as

T—inf{NeN:A(xliN)zl_a}. 3)
pa

The detection procedure (3) constrains that the false alarm
rate (FAR) remains below a pre-defined tolerance level o, i.e.,
FAR(A, f,9) 2 P(r < &) < «. More importantly, as o« — 0, T
is asymptotically optimal for minimizing the average detection
delay (ADD) as

E[r —Alr > A= inf

E[r* — A|lT" > A]
P(r<i)<a

!For simplicity, we use the notation x instead of Av.
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_ | log o
—1log(1 — p) + Dxo(fl9)

where Dy (f|g) denotes the Kullback-Leibler (KL) divergence
between distributions f and g.

In the practical application of outage detection, the determi-
nation of the threshold « in (3) is achieved through a systematic
and iterative methodology, which is anchored in both statistical
analysis and operational considerations. Initial selection is based
on analyzing sensor data x'*"V to distinguish between normal
variations and potential outages, taking into account the balance
between minimizing detection delays and reducing false alarms.
This choice is refined through iterative testing with historical
data, allowing us to fine-tune « to optimize detection accuracy
while considering the operational impact of false positives.
Moreover, we incorporate the flexibility to adjust o dynam-
ically, accommodating seasonal variations and evolving grid
conditions, ensuring our algorithm remains effective and reliable
across different scenarios.

After detecting the occurrence of a line outage, accurately
localizing the affected branch is vital for system restoration.
In [7], researchers introduced a precise outage localization
method by demonstrating the conditional independence of volt-
age increments between two disconnected buses. Their tech-
nique involved computing the conditional correlation between
all potential bus pairs in the grid and detecting changes from
non-zero to zero values. Unlike methods relying on nodal electric
circuit analysis for fault location estimation, this approach offers
a distinct method that relies solely on the covariance matrices
of the voltage data. This attribute is shown later to be efficient
even in privacy-aware contexts.

To estimate the conditional correlation between bus ¢ and
bus k, the covariance matrix ¥ is utilized. Let set Z := {4, k}
and K := G\{i, k}, the covariance matrix is decomposed as

2 ADD(A, f,9), (4

3= [g? ;Z‘] Based on this, the conditional correlation p;,
T KK
between bus 7 and bus k is
27c(1,2)
pin(E) = ‘ 5)

- \/ZIUC(L 1)EI\K(25 2) 7

where the conditional covariance is computed by the Schur
complement [31] as Xz = B77 — BB ik

Theorem 2. (Line outage localization): The conditional cor-
relation is calculated based on (5) for every pair of (i, k) as

P = pik(Bo) and  pf = pik(fh). (6)
—_—— —_———

before outage after outage

The branch between bus i and k is out-of-service if |p;, | >
Omax and | P:U < Omin. The thresholds are set as dyax = 0.5
and 6, = 0.1 based on real-world outage data to check if the
correlation changes from non-zero to near-zero value.
According to Theorem 2, we track the change of covariance
matrices to localize the out-of-service branch. Specifically, an
out-of-service branch between bus 7 and bus k can be identified
if both of the following conditions are met simultaneously: (1)
|p;k| > dmax indicating the presence of a branch between buses

i and k before the outage, and (2) | pjk| < dmin indicating the
absence of a branch between buses ¢ and k after the outage.

Differential privacy: To assess the level of privacy preserva-
tion, we follow the framework of differential privacy [20], which
offers worst-case privacy guarantees. Specifically, an algorithm
M : RP — RP is (g, §)-differentially private if, for any neigh-
boring datasets X and X’ (differing in at most one element), and
for every subset of possible outputs S, the following inequality
holds:

PM(X) € §] < exp(e)PM(X') € §] + 4. (7)

In essence, this property ensures that a potential attacker ob-
serving the outcomes of the algorithm M cannot easily deduce
whether a specific individual’s information is present in the
dataset. While the conventional technique for achieving differ-
ential privacy involves the introduction of Laplace noise [21]
to raw data, the concept of Gaussian differential privacy [30]
extends differential privacy to encompass noises generated from
a broader range of distributions.

III. PRIVACY-AWARE LINE OUTAGE DETECTION WITH
BOOSTED PERFORMANCE

In the aforementioned outage identification procedure (3), the
increments of voltage magnitude data x'*"V are critical. How-
ever, such data may also be used to infer customer’s sensitive
information [10], [11], such as the household occupancy (see
lower half of Fig. 1), e.g., when the house owner arrives or leaves
home. To protect the raw voltage data of customers, at each
time step n when data x[n] is received, we apply a randomizing
scheme to encrypt the raw data directly:

x[n] = x[n] + e[n], ®)

where e[n] € R? is a random noise vector. The randomized ap-
proach stands out for its simplicity and effectiveness over other
techniques like Homomorphic Encryption or Data Anonymiza-
tion. Its introduction of systematic noise e[n] not only facilitates
differential privacy, offering a measurable level of privacy pro-
tection, but also enables the quantification of any impact on
detection performance. This dual capability allows for a finely
tuned balance between ensuring user privacy and maintaining
the accuracy of outage detection efforts.

The noise e[n] has to be sufficiently large to hide the character-
istics of the raw data while not being too large to impact the de-
tection performance. To establish the suitable level of embedded
noise, we evaluate the privacy guarantee within the differential
privacy framework in Section I1I-A and assess the corresponding
degradation in detection performance in Section III-B. We show
that, in general, the noise added to data makes it harder to
distinguish whether the data comes from the distribution g or f,
leading to a prolonged detection delay. Integrating these analy-
ses, we propose a new statistic in Section III-C (to replace (2))
such that the new detection procedure is both privacy-preserving
and has comparable detection performance as the optimal case
with access to raw data.

For making the randomizing scheme (8) satisfy the differential
privacy, we generate noise from the same distribution (Gaussian)
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as raw data, i.e., e[n] ~ N(0, D.). The covariance matrix is
designed to be diagonal, i.e., D, = diag(c?,...,02) where
variance o represents the noise level or amount of noise. A
diagonal covariance indicates that each element in the noise
vector is independent. In doing so, the scheme (8) is equivalent
to adding a random noise scalar to each dimension of the data
vector, ensuring that each customer’s raw data is encrypted
before sending to any third party (see Fig. 2). Notice, unlike
some works that add noise to the statistics (e.g., A(xV)) [21],
[23] after raw data is collected, our approach ensures no direct
exposure of the raw data.

There is another advantage of using a diagonal noise covari-
ance D., i.e., introducing independent noise into user data.
In fact, this choice allows us to effectively differentiate line
outages from other causes of voltage distribution changes by
examining the voltage data’s covariance matrix 3. As detailed
in our previous work [13], voltage increments between dis-
connected buses show conditional Independence. Specifically,
if the branch connecting two buses becomes non-operational,
the conditional correlation between these buses shifts from a
non-zero value to zero, highlighting a unique pattern of line
outages in the voltage data’s covariance structure. More im-
portantly, our privacy-preserving technique, when introducing
independent noise to each bus’s data, does not compromise this
unique property, thus maintaining the ability to differentiate line
outages effectively.

A. Differential Privacy Guarantee of the Randomizing Scheme

Applying the randomizing scheme (8), the detection pro-
cedure will be performed on the encrypted data x'V =
{x[1],...,%X[N]} to find the outage (see Fig. 2). In this sub-
section, we quantify how much privacy is preserved w.r.t. the
noise level ag. To achieve this, we prove that (8) satisfies the
classic (¢, 0)-differential privacy mechanism [20].

A differential privacy scheme indicates that by looking at the
encrypted data X[n|, an adversary struggles to tell whether any
piece of real data x; [n] is included. The mathematical definition
is given in (7). Since noise e[n] is independent Gaussian to
raw data x[n|, the encrypted data X[n| also follows Gaussian.
It allows us to detour the proof of classic differential privacy
by the tool of Gaussian differential privacy [30]. Specifically, a
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G ,-Gaussian differential privacy scheme implies the following:
telling whether any piece of real data x;[n] is present in the
encrypted data x[n] is more difficult than distinguishing between
distributions N'(0,1) and A (u,1). The difficulty is quanti-
fied using the trade-off function 7'(N(0,1), N (u, 1)), which
characterizes the balance between type I and type II errors in
distinguishing these distributions [30]. This particular trade-off
function is also referred to as G,. In Lemma 1, we show that
our scheme (8) is Gaussian differential private.

Lemma 1: The randomizing scheme (8) is G A -Gaussian dif-
ferential private [30] where A := supy ] x[n] ||>€<[n] —x'[n]|| is
the sensitivity of raw data, and x[n], x'[n] only differs in exactly
one element.

Proof: The encrypted data X[n] and its neighboring data
X'[n] (ie., they differ in exactly one element) both follow
Gaussian distributions as X[n] ~ N (x[n], D.) and X'[n] ~
N (x'[n], D.). Then, we have

T (x[n},%'[n]) = T(N(x[n], D), N (x'[n],D.))
= Glxin)-xn]l/o. = G2, )

where T'(x[n], X[n]) is defined as the trade-off function between
type I and 1T errors in differentiating data x[n] and x'[n]. The
inequality is due to the definition of sensitivity, i.e., ||(x[n] —
X))o < 2. O

Given the foundation of Gaussian differential privacy, we are
ready to demonstrate that our scheme (8) also adheres to the
classic (g, 0)-differential privacy [20].

Corollary 1: Providedthe G A -Gaussian differential privacy,
(8) satisfies the (g, (5))—differer€1tial privacy [30] where

€0,

A R eo. A
5(6)_(1)( A +2ae>_e¢)<_A _2ae>’

and @ is the CDF of the unit normal distribution.

Satisfying the (e, §(¢))-differential privacy in Corollary 1, our
proposed scheme (8) ensures that an adversary can not easily
determine if the data he observes is real, thus preserving the
privacy of raw data. Moreover, we can control the amount of
noise to achieve any desired level of privacy guarantee.

In fact, Lemma 1 and Corollary 1 reveal that the degree
of differential privacy is directly related to the noise variance
o2: larger noise results in enhanced privacy protection. The
sensitivity A is determined by the distribution system and can
be approximated using domain expertise. For instance, in power
grid analysis, the sensitivity of voltage data can be computed
based on its standard operational range (ranging from 0 p.u. to
1.1 p.u.).

B. Quantification of Detection Performance Degradation

While (8) enhances privacy protection, it may degrade the
ability to detect line outages, potentially leading to increased
detection delays and a higher false alarm rate. Therefore, it is
crucial to analyze the extent to which detection performance
is compromised when utilizing the encrypted data x'*. Only
after completing this analysis can we devise a new solution to
mitigate the degradation.
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To study the performance degradation, we first note that the
encrypted data X[n| follows Gaussian distribution due to our
choice of independent Gaussian noise for the raw data. Specif-
ically, x[n] follows g. ~ N (ug, X0 + D.) before the outage
(n < A) and follows f. ~ N(uq,31 + D,) after the outage
(n > X). We use the notation g, and f. to denote the “encrypted”
distributions, which are the results of introducing independent
noise to distributions g and f, respectively.

Having defined g, and f., we can now rigorously measure the
performance degradation. In Theorem 3, we demonstrate that
the “distance” between g. and f. is smaller than that between
g and f by evaluating their Kullback-Leibler (KL) divergence.
The “closer” the distributions are, the more challenging it is
to distinguish them in the outage detection procedure, thus
leading to a prolonged detection delay. Intuitively, if the noise
term is infinitely large (O'z — 00), the distributions g. and f.
will be dominated by the same noise distribution and become
impossible to distinguish.

Theorem 3: The randomizing scheme (8) diminishes the KL,
divergence between pre- and post-outage distributions:

KL := Dxi(fll9) = Dxv(fellge) = 0, (10)

(tr(21) — ()
tr(Xq) > - (1D

KLa < O(c?) (IIuo —mll3 +

Proof: For showing KLA > 0, we have

KLy = 30— )" [(50) ™ = (25) (oo — 1)
+ 3o E E: +5tr{(S0) ()~ (3) ()
> 1y [(vi —logv;) — (& —log&;)],

= 9L ai=1
where 3¢ =X, + D, for i =0,1. vq,...,v, and &;,...,&,
are the eigenvalues of (2¢) 13 and (X)X, respectively.
The inequality is due to that matrix (Xg)~* — (£§)~! is pos-
itive semi-definite. Moreover, since | — 1| < |v; — 1],Vi =
1,...,p, we finally obtain KLA > 0. Aside from the lower
bound as zero, an upper bound of KL 5 is further derived as

1 1 1
KLa < = |\t — pq]/2 — — —

— 0 Hall2 min min 2

2 v vyt + o
max max max 2 max 2
+M (Vl log log oD v +a€>
min min min 2 min 2
2\ v vyittog  vytttog

2
O¢

(Vinax _ Vénin)Q
S 2(1/611111)2 pmax ) ?

(|N0 - N1||% + M
where M is the smallest eigenvalue of X, and v is the
largest eigenvalue of 3. (]

As a corollary of Dxy(fellge) < DkL(f|lg) in Theorem 3,

the asymptotic lower bound of average detection delay in (4) is
increased when the randomizing scheme is applied:

ADD(A, fe,g.) = ADD(A, f, g),

resulting in a prolonged detection delay of finding the outage
time given encrypted data x**"V. Theorem 3 not only indicates a

A Statistic ' (XI:N) A(S(LN)
detection delay
A
SI:N
| AT
I
|
I
_____________________ L.l & .
1-a
e o "
| : prolonged delay P
A T Time N

Fig.3. Outages are reported when the calculated statistic surpasses the thresh-
old 1;—5‘ See Table I for a summary of these statistics.

strict performance degradation but also infers the magnitude of
this degradation by deriving the upper bound of KL . That is,
we know approximately how much extra delay is brought w.r.t.
the noise variance 2.

To illustrate the prolongation of detection delay, we present
Fig. 3, comparing two scenarios: the application of the statistic
(2) to raw data A(x'") (red curve) and its application to
encrypted data A(x*) (blue curve). Due to the KL diver-
gence reduction established in Theorem 3, A (%) is typically
smaller than A(x*") (we will show this claim later in the
paper), especially after the outage occurrence. This inequality
has two intuitive consequences. Firstly, it reduces the likelihood
of triggering a false alarm when detecting the outage time
using encrypted data, i.e., FAR(A, f., g.) < FAR(A, f,g) < a.
Secondly, encrypted data leads to a prolonged detection delay,
i.e., the performance degradation.

To address the performance degradation, as suggested by
Fig. 3, a logical approach is to design a new detection statistic
(represented by a green curve) to process the encrypted data. The
new detection procedure is expected to maintain a comparable
detection delay to the optimal scenario with access to raw data
and still restrict the false alarm rate below a.

C. A New Statistic to Boost the Detection Performance

In this subsection, we formally introduce a noise-mitigation
technique to achieve detection performance comparable to the
optimal scenario with access to raw data. We term it “noise-
mitigation” since the technique essentially alleviates the per-
formance impact resulting from the privacy-protective noise. To
achieve this, we design a new statistic Ato process the encrypted
data X1V, The new statistic aims to offer an approximation of
the optimal statistic A(x*") (as depicted by the green curve
in Fig. 3), even when raw data is not available. We refer to
the statistic A(x*") as “optimal” due to its demonstrated op-
timal detection performance when raw data is available (see
Theorem 1). It’s also important to note that this optimal statistic
doesn’tincorporate privacy protection. To prevent any ambiguity
with these statistics, we present Table I for a comprehensive
summary of the detection statistics used in this paper, along
with their relevant attributes.
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TABLE I
SUMMARIZE OF DETECTION STATISTICS

Statistic Calculation ~ Privacy  Detection Performance
A1) ) X optimal
/}()ELN) 2) v compromised
AN (12) v sub-optimal

Ay (%) (15) v optimal

For designing a new statistic A that approximates A, we
leverage the following insights. While the noise is generated ran-
domly, its pattern, specifically the distribution parameters o2, are
known to utility operators. This insight prompts us to compute
the expectation of noise-related terms in the statistic A(x1V).
By replacing these terms with their respective expectations, we
can provide an unbiased estimation of A(x'*"). Following this

rationale, the new design for the statistic A(il N is presented

in (12):
N N
Ry - S T Ve Gl
(&) ; N,gmexp(ﬁon (12)
where  B;[n] := —3(x[n] — ;)" () H(X[n] — p;) + Soe -

tr(3; 1) fori = 0, 1. We note that 3;[n] is an unbiased estimation
of the corresponding term in the optimal statistic A(x!*V), i.e.,
Ee-n(0,0.)8iln] = —3(x[n] — p;)" (£:) 7' (x[n] — p;). By
the unbiased design, the proposed statistic JNX(il N serves as
the desired approximation of the optimal statistic A(x'V). This
effect is shown in Fig. 3 and proved in Lemma 2.

Lemma 2: The proposed statistic A in (12) satisfies

A(il:N) S /~\()~(1 N) S A(XlzN)7

Proof: For showing AXENY < A(REN
L < |35 |3/ (20| % exp(Baln] -

N>xr  (13)

), it suffices to show

Bo[n]), where these two

ge(X[n])
terms are denoted as (#°¢) and (x). In fact, we have
p S0 + o2 ag ai
log(#°) = 21 ¢ -
Og(#) 20g51+0'g+(50+0'g 81+0'g>’
2
p 50 ap a1 po; (1 1
log(x) = =1 —_— ) - ===,
og(*) 9 08 S1 +<so 31> 2 <so 51)
where ag = 1[|%[n] — pol* and a; = 3[x[n] — p1 ||, and

we consider diagonal co-variances 3, = diag(so, ..., so) and
3, = diag(s1,...,s1). When n > A (the line outage occurs),
we have ag >> a1, which results in log(#¢) < log(x).

For showing AMN) < A(xBN), it suffices to show

gé)’: Z]g > |12 /|20|2 exp(Bi[n] — Bo[n]), where these two

terms are denoted as (#) and (*). In fact, we have

(#) 2 1 b _bo

2log L = - — )42t 90

o8 B = p (02~ lelllP) (- - - ) 20— 22
where by = (e[n], po) and by = <e[n], ) satisfying Egby =

Ecb; = 0. Itindicates that E¢[log %] = 0, which further gives

us Ee[((f))] > exp(0) = 1 from Jensen’s inequality. It implies a
higher likelihood that (#) > (x). Since at every time stepn = k
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we will randomly generate a noise vector e[n], we can conclude
that A(x1N) < A(x"N). O

From Lemma 2, the proposed statistic A (%) falls between
the A(x'V) and A(x'Y) after the outage event (n > A), align-
ing with our expectations in Fig. 3. Consequently, it will exhibit a
reduced false alarm rate (FAR) compared to the optimal scenario
with raw data access, and will help alleviate the prolongation of
average detection delay (ADD).

Corollary 2: The proposed A in (12) restricts the FAR below
a, and alleviate the prolongation of ADD, i.e.,

FAR(A, fe, ge) < FAR(A, fe, g.) < FAR(A, f,9) <

ADD(A, f,g.) > ADD(A, f., g.) > ADD(A, f,g), (14)

As indicated by the proof of Lemma 2, Jensen’s inequality
hinders the attainment of a “perfect” approximation to the op-
timal statistic A, resulting in a remaining gap between A and
A. To address this matter, a logical approach is to seek specific
conditions under which Jensen’s inequality converges toward
equality. With this in mind, we modify the statistic in (12) by
introducing a constant term y > 1 as

Z H \/ |20“3Xp 51 n (15)

o VIE exp 50["]/7)

We refer to the constant term v as the variance scaling factor
since it scales the variance of term 3;[n] by 1/4? times. When
v = 1, the statistic in (15) degrades to the statistic in (12). We
employ this variance scaling factor because Jensen’s inequality
tends to become equality as the variance of variable approaches
zero. To describe the effect of introducing ~ to scale 3;, we
provide Lemma 3. From previous discussing, the term [3; is an
unbiased estimation of j3; := —2(x[n] — ;)T (%;) ! (x[n] —
1;), whose variance is denoted as 7. Thus, the scaled term 3; /7y
used in (15) can be modeled in a distribution P with mean §3; /7
and variance o2 /2. According to the theorem of the Jensen
inequality gap, we have the following upper bound w.r.t. to the
variance scaling factor .

' Lemma3: Suppose | exp(B:/~) — exp(Bi/7)| < M|B/v —
Bi/~|? for some M and any 3; /v € R, for any convex function
f, we have an upper bound of Jensen gap as

=G5

_ 9 )
gM/ Bi _ B dP(ﬁz) <Mz
v gl gl

According to Lemma 3, the variance-reduction technique in
(15) can narrow the gap in the Jensen inequality, consequently
achieving a nearly perfect approximation of the optimal statistic.
In summary, when implementing the randomization scheme (8)
to encrypt raw data and utilizing the new statistic (15) for outage
detection, we outline the privacy-aware line outage detection
procedure, referred to as PLOD, in Algorithm 1. The proposed
PLOD offers two key advantages. First, it ensures privacy preser-
vation by using noise for data encryption. Second, the proposed
statistic provides an approximation to the optimal statistic when
raw data is accessible, thereby achieving a comparable lower
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bound on detection delay while limiting the false alarm rate to
a predefined tolerance level.

Algorithm 1: Privacy-Aware Line Outage Detection
(PLOD) With Boosted Detection Performance.

1: Input: New voltage data x[n]
2:  Parameter: Noise variance o

v

2

2, variance scaling factor

3:  Output: Outage time
4:  Apply noise to encrypt raw data.
%[n] = x[n] + e[n], eln] ~ A(0, diag(0,...,0?))

5:  Calculate detection statistic A(X5™) in (15).

6: if A, (x'™) > 122 then

7: for i,k € G do

8: if [0;,.] > Omax and |p;.| < dmin then

9: report outage time 7 = N and the

out-of-service branch between bus ¢ and k

10: end if
11: end for
12:  end if

IV. VALIDATION ON EXTENSIVE OUTAGE SCENARIOS WITH
REAL-WORLD DATA

This section evaluates the privacy guarantee, the average
detection delay, and the false alarm rate of PLOD, comparing it
with recent baselines on privacy-aware detection methods.

Dataset configuration: To assess PLOD across diverse system
sizes and environments, we conduct comprehensive experiments
using various network configurations. The systems include the
IEEE 8-bus and IEEE 123-bus networks [32], along with two
representative European distribution systems: a medium voltage
(MV) network in an urban area and alow voltage (LV) network in
asuburban area [33]. We utilize these two networks from Europe
to contrast with standard IEEE bus networks typical of the U.S.
for the consideration of diverse grid architectures. In these two
networks, we still focus on using the network’s topology to
simulate customer-level voltage data for outage detection. In
each of these networks, we select bus 1 as the slack bus.

In recognition of the complexities in real-world distribution
grid outage scenarios, we explore situations where alternative
power sources come into play following a line outage. In such
scenarios, relying solely on the “last gasp” notification becomes
less effective, rendering the detection of line outages more
challenging. To model this complexity, we conduct simulations
for the following two representative scenarios.

® Mesh networks: Mesh networks are often used to model

networks in urban areas, where most buses retain non-zero
voltages after a line outage as they can receive power
from alternative branches. To simulate mesh networks, we
introduce loops into the aforementioned systems, ensuring
their connectivity remains intact after line outages [7]. As
an example, in the IEEE-123 bus network, we introduce
loops by adding two branches: one between bus 77 and

TABLE II
STATISTICAL ANALYSIS OF DLC POWER DATASET

Statistics |  Value
Minimum Value —2.6040
Maximum Value 26.6860

Mean 0.8473
Standard Deviation 0.6387
Skewness 1.7441

120 and another between bus 50 and 56, with admittances
matching that of the branch between bus 122 and 123.

® Radial networks with DERs: In such case, some buses con-
tinue to receive power from DERs though isolated from the
main grid after a line outage. This type of outage scenario
is typical in residential areas. To simulate DERs, we select
multiple buses to have solar power panels with batteries as
energy storage. For solar panels, we use power generation
profiles computed using the PVWatts Calculator [34].

To generate more authentic data, we use real residential
power profiles from the Duquesne Light Company (DLC) in
Pittsburgh, USA. The DLC dataset comprises anonymized and
secure hourly (and 15-minute) smart meter readings of active
power from over 5,000 houses throughout the year 2016. Basic
statistics of this dataset are provided in Table II.

Implementing details: The time-series voltage magnitude data
are generated using the MATLAB Power System Simulation
Package (MATPOWER) in MATLAB R2022b. In each distribu-
tion system, we assign active power p;[n] from the DLC power
profile to bus ¢ at time n. The reactive power ¢;[n] is determined
based on a randomly generated power factor pf;[n], which
follows a uniform distribution Unif(0.9, 1). Using the active and
reactive power values, we employ MATPOWER to solve power
flow equations and derive voltage measurements. Additionally,
we simulate outage scenarios by setting the admittance of one
or multiple branches to zero and solve the power flow equation
again.

For more robust evaluation, each experiment is conducted us-
ing Monte Carlo simulation with over 1000 replications, where
the voltage sequence in (1) is generated by concatenating A — 1
records from pre-outage data and 50 records from post-outage
data (50 samples are sufficient since the detection delay in our
experiments is lower than 50). The outage time A is randomly
generated using a geometric distribution Geo(p). This geometric
prior is based on our belief that outages can occur independently
at any time step, with an equal probability of p. We choose
p = 0.04 in our experiments, which is derived from historical
outage data, indicating that each time step has a 4% chance
of experiencing a line outage. Another threshold « is set at
1072, selected through a cross-validation process that balances
statistical analysis with operational needs, ensuring optimal
trade-off between detection delay and false alarm rates in the
aforementioned grid systems.

After obtaining voltage data from MATLAB, the remaining
calculations for outage detection in Algorithm 1 are imple-
mented using Python 3.8 on a personal computer with a Windows
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Fig. 4. The comparison of trade-off functions of distinguishing unit-variance
Gaussian distributions using DLC data and IEEE 8-bus system simulation.

10 operating system, an Intel Core i7 processor clocked at
2.2 GHz, and 16 GB of RAM.

Baseline methods: In the following experiments, the optimal
Bayesian detection procedure with access to raw data (A (x'*V))
is referred to as benchmark. It should have optimal detection
performance but has no privacy guarantee. The same detection
statistic applied to encrypted data (A(x'V)) is referred to as
privacy-only since it degrades the detection performance. To
remove the performance degradation, our proposed method
(A, (%x"N)) in Algorithm 1 is referred to as PLOD. The noise
level 02 and the variance scaling factor v will be further
pointed out. We also compare with recent techniques dealing
with privacy concerns, including a private approximation of
the change-point maximum likelihood estimation MLE [21], an
uncertain likelihood ratio ULR proposed to replace the original
detection statistic [35], a sanitize channel method SCM [26]
that adheres to the information leakage requirement [36], and
a private stream aggregation PSA [37] approach to meet the
differential privacy.

A. Visualization of Privacy Guarantee

Before evaluating the detection performance of our privacy-
aware approach, we first visualize how much privacy is pre-
served when using DLC data in the IEEE 8-bus system.
To achieve so, we plot the corresponding trade-off function
within the Gaussian differential privacy framework [30] against
baseline trade-off functions. Specifically, as established in
Theorem 1, applying our privacy-protection scheme (8) yields
G A- Gaussian differential privacy, and produces correspond-
ing trade-off functions T'(N (0, 1),]\/(0%, 1)) at varying lev-
els of noise variance af. Therefore, we can compare these
trade-off functions with baseline trade-off functions G, :=
T(N(0,1), M (i, 1)), = 0.5,1, 3. This comparison can tell us
the difficulty an attacker would encounter in compromising user
privacy under our scheme, quantitatively demonstrating how
much privacy is preserved.
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Fig. 5. The logarithm of various detection statistics in IEEE 123-bus system.

»=130,02 =4e—2,v=1,and o = 1%.

The results are shown in Fig. 4, highlighting our method’s
capability to obscure the distinction between encrypted and raw
data, significantly enhancing privacy. With a noise variance of
02 = 5e — 3, differentiating the encrypted data X'V from the
raw data x ¥ for an attacker becomes more difficult than distin-
guishing distributions (0, 1) and V/(3, 1). Increasing the noise
variance to 02 = 4e — 2 further intensifies this effect, elevating
privacy protection to levels where distinguishing encrypted from
genuine data becomes more challenging than differentiating
between A/(0, 1) and MV (1, 1).

B. Evaluation of the the Noise-Mitigation Design

Despite the privacy protection shown in Fig. 4, applying the
randomizing scheme (8) will inevitably lead to a decline in de-
tection performance (see Section III-B). Within this subsection,
we assess whether our proposed detection procedure PLOD can
counteract this performance degradation.

To achieve so, we compare between the optimal detection
statistic (2), which lacks privacy protection, and our innovative
statistic (12) with privacy protection. Their logarithmic values
are illustrated in Fig. 5, where the simulation is performed
in the IEEE 123-bus system selected specifically to examine
the efficacy of PLOD in a large-scale network. As we can
see, the optimal statistic A(x'*") (red) increases dramatically
after the outage time A = 30, resulting in a near-zero detection
delay. The same statistic applied to encrypted data A(x'V)
has a privacy guarantee but postpones the detection (blue). Our
proposed statistic A(x'*V) (green) in (12) closely approximates
the optimal statistic, thus effectively mitigating the postponing
effect while still preserving privacy. This evaluation elucidates
our method’s dual achievement of maintaining privacy without
compromising the timeliness and accuracy of outage detection.
Meanwhile, it is worth noting that Fig. 5 serves to validate the
conclusions drawn in Lemma 2.
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Fig. 6. The logarithm of detection statistics with different variance scaling

factor v in the IEEE 123-bus system. A = 30, ag =4e—2,and o = 1%.

C. Evaluation of the Variance-Reduction Design

From Fig. 5, even though our proposed statistic (green) serves
to approximate the optimal statistic (red) to mitigate the detec-
tion performance degradation, there is still a gap due to the effect
of Jensen’s inequality. This subsection evaluates PLOD’s ability
to fill this gap. Specifically, our newly designed approach in
(15) aims to reduce the statistic’s variance, ultimately narrowing
this gap. To confirm this improvement, we plot the logarithm
of statistic /N\W(fcl‘N ) as defined in (15) for various choices
of the variance scaling factor ~, and compare them with the
optimal statistic A(x*?). The results are shown in Fig. 6. As
v increases from 1 to 3, /~\7(>~<1:N ) progressively converges to
a more precise approximation of the optimal statistic A(x*™).
This convergence is a consequence of the reduced variance in
the detection statistic, as shown in two zoomed-in illustrations
in Fig. 6. This reduction in variance effectively constrains the
error gap in Jensen’s inequality, as elaborated in Lemma 3.

Our findings illustrate that by applying the adjusted statistic
from (15) within PLOD, it’s possible to closely mimic the
optimal statistic derived from raw data x*"V, even when only
encrypted data X' is available. This indicates PLOD’s po-
tential to not just protect customer data privacy but also to
sustain detection performance. The effectiveness of the detection
performance in real-life outage dataset will be further explored
in the following subsection.

D. Evaluation of Detection Performance: Average Detection
Delay and False Alarm Rate

After verifying the effects of our various designs within the
proposed method PLOD, we finally evaluate its overall detection
performance when using encrypted data X'~ This evaluation
covers both the average detection delay and the false alarm rate,
aiming to provide a holistic view of the system’s performance
under privacy-preserving conditions. To validate the asymptotic
optimality of the detection delay in Theorem 1, we plot in
the upper half of Fig. 7 the average delay E(r — A|7 > 1)
divided by |log | and the theoretical lower bound — log(1 —
p) + Dxi(f||g). This comparison highlights that the detection
delay of both the benchmark and the PLOD method can achieve
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—e— privacy-only

bound(opt)
—— bound(degraded)

bound
—&— benchmark

—e— privacy-only
—&— PLOD

|log

Fig.7. The average detection delay (upper half) and the false alarm rate (lower
half) in the IEEE 123-bus system. Ug =4e—2,v=1,and a = 1%.

the optimal lower bound asymptotically. Notably, this asymp-
totic convergence contrasts with the higher delays observed in
privacy-only approach, emphasizing the effectiveness of PLOD
in balancing privacy with quick detection response.

The detection rule in Theorem 1 is also expected to restrict
the false alarm rate below a predefined threshold «. To confirm
this, we analyze the empirical false alarm rate P(7 < A) in
comparison to «, as depicted in the lower section of Fig. 7.
Notably, our method parallels the benchmark performance,
consistently keeping the empirical false alarm rate beneath «,
particularly as « approaches zero. This outcome underscores
the efficiency of our algorithm in detecting line outages with
minimal false alarms, demonstrating its reliability even with the
utilization of encrypted data, thereby reinforcing its practical
applicability in maintaining system security while adhering to
privacy constraints.

To evaluate PLOD across diverse grid systems under various
outage configurations, we present a comprehensive summary
of results in Table III. Throughout these experiments, we con-
duct comparisons not only with the benchmark method but
also with two recent relevant techniques that provide privacy-
aware approaches for detecting distribution changes. These
methods are referred to as MLE (Maximum Likelihood Esti-
mation) [21], ULR (Utility Learning-based Rule) [35], SCM
(Sanitize Channel-based Method) [26], and PSA (Private Stream
Aggregation) [37]. To ensure consistency in the level of differen-
tial privacy guarantees across all methods, we apply noise with
a variance of 02 = 4e — 2 to the raw data.

Table III showcases PLOD’s ability to handle a variety of out-
age scenarios in both mesh (loopy) networks and radial networks
with DERs penetration. Of particular note is the performance of
PLOD when no access to raw data is available, as it demonstrates
shorter detection delays and lower false alarm rates compared
to MLE and ULR. In contrast to the benchmark method, which
has access to raw data and therefore carries a privacy risk,
PLOD exhibits only marginal degradation in detection delay
and false alarm rate. Moreover, Table I reveals two significant
observations. Firstly, in cases where multiple branches undergo
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TABLE III
PERFORMANCE COMPARISON ON VARIOUS SYSTEMS
System System information Average Detection Delay (1 unit) | Empirical False Alarm Rate (%) |
Mesh network #Branches #DERs Outage | bench. MLE [21] ULR [35] PLOD | bench. MLE [21] ULR [35] PLOD
8-bus 9 0 4-7 3.10  3.83T078 39414084 335+0.25 | (g 45136 40+3.3 19103
8-bus 9 8 4-7 3.82 4767091 4861104 411+0.29 1.4 3.812:4 3.8124 16102
123-bus 124 0 73-74 0.89 1.11+0-22 1.0910-2  0.94+0.05 0.6 1.510:9 1.6+10  0.81+0:2
123-bus 124 0 73-74,14-15| 0.88  1.1610-28 1161028 (941006 | (5 1.4109 1.4109 7102
123-bus 124 0 5 branches | 0.84  1.1610:32 1071028 (911007 | (5 1.4109 1.3108 . 710.2
LV suburban 129 0 26-95 3.80  5.21TL4l 4 88FLO08 4 11+0.31 1.5 3.6121 34119 20105
LV suburban 129 30 26-95 3.89 5351146 491+102 4 1910.30 1.3 3.1+1:8 3.0T17  1.7t04
MV urban 48 0 34-35 0.83 1.0810:25  1.12%0:29  (,89+0.06 0.4 1.0+0:6 1.0106 05101
MV urban 48 7 34-35 145 1871042 1911046 1 55+0.10 | (8 1,911 2.21+14 11103
Radial network  # Branches # DERs Outage | bench. MLE [21] ULR [35] PLOD | bench. MLE [21] ULR [35] PLOD
8-bus 7 8 4-7 3.5 4.88F1:38  4.41+091 3.810:3 0.8 19111 1.9ttt 10102
8-bus 7 8 2-6 3.58  4.93tL35 4611103 3.8410.26 0.9 2,112 2.3F14 11102
123-bus 122 12 73-74 1.29 1.73+0-44 1.6910-4 1.3910-1 0.5 1.310:8 13108 06101
123-bus 122 122 73-74 6.75  9.221247  gg3tL88  7.31+0.56 2.8 7.815:0 6.7t3:9  3.8+10
LV suburban 114 30 26-95 3.25  4.43F118 434109 353+0.28 1.4 3.3119 3.8124 18104
LV suburban 114 113 26-95 8.87  11.761289  11.641277  9.581+0.71 4.0 10.116-1  10.616:6  54+14
MV urban 38 7 34-35 1.45 1.9610:51 1.9310:48 1 57+0.12 0.7 1.7+1.0 1.9t12 09102
MV urban 38 7 23-35 1.69 2.310.61 2.1510-46  1.89+0.13 1.1 3.21+21 26115 15104
02 = 4e-2and o =1%.
TABLE IV the noise from privacy protection mechanisms. The results also
PERFORMANCE COMPARISON AT DIgi‘il;iI;[T NoISE LEVEL IN THE IEEE 8-Bus reveal other method’s characteristics. For example, the PSA
method typically results in a longer detection delay and a lower
Noise Method ADD(unit) FAR(%) false alarm rate. This could be due to its reliance on data
PLOD 2711053 1.03+002 aggregatl(?n technlqges for privacy protection, which, yvhﬂe
02 =001 MLE[21] 3414+0.72 1.12+0.15 safeguarding data privacy, may inadvertently delay the timely
ULR [35] 3.80+£0.89 1.57=+0.19 detection of outages. Nonetheless, for operators prioritizing ro-
PLOD 3.67+0.65 0.95+0.03 bust and consistent detection over detection speed, PSA presents
02 =0.04 MLE 412+0.83  1.06 +£0.37 a viable option.
ULR 469 +£1.01 2.16+0.74
PLOD 4.56+0.77 3.82+7.39 E O ot :
. Outage Branch Localization With Accurac
02=009 MLE  485+081 4.45+081 § < Y
ULR 4.69+£1.01  3.994+0.74 Upon detecting an outage, we proceed to compute the condi-
SCM [26] 4.64+0.92 4.0240.85 tional correlation between buses to pinpoint the out-of-service
SPA [37] 5.35 +1.30 2.88+£0.19

o=1%and y=3.

simultaneous outages, the average detection delay tends to be
shorter. This can be attributed to the increased Kullback-Leibler
(KL) distance between the distributions ¢ and f when multiple
lines are disconnected. Secondly, in radial networks with a
greater number of simulated DERs, the detection of line outages
takes more time, primarily due to the smaller KL distance
between g and f in such scenarios.

To assess detection performance under varying levels of
noise introduced to the raw data, we present Table IV, which
includes results for both the average detection delay (ADD)
and false alarm rate (FAR). To ensure consistency in the level
of differential privacy guarantees across all methods, we argue
that implementing noise with a variance of o2 = 9¢ — 2 in the
PLOD, MLE, and ULR techniques achieves a privacy level
comparable to that provided by the SCM and SPA methods.
The analysis from Table IV reveals that our method surpasses
other privacy-preserving techniques in terms of both average
detection delay and false alarm rate. This superior performance
is attributed to our unique statistical design in (12) and (15),
which effectively mitigates the negative effects associated with

branch, as outlined in Theorem 2. Illustrated in Fig. 8, the
absolute conditional correlation of every bus pair within the
loopy 8-bus system is depicted both before and after a line outage
at branch 4-7. Notably, the value within the red box transitions
from a non-zero value pre-outage (p,; > dmax) t0 near zero
post-outage ( pL < Omin), leading to the accurate localization of
the out-of-service branch at 4-7, consistent with the ground truth.
Furthermore, Fig. 8(d) demonstrates that the localization method
using the covariance matrix through PLOD with randomized
data remains as effective as the benchmark scenario. This ef-
fectiveness likely stems from the fact that adding independent
noise to the voltage data does not disrupt the condition where the
voltage data of the two buses become conditionally independent
following the line outage.

Table V displays the localization accuracy rates obtained from
1,000 experiments. It is clear that the proposed method PLOD
consistently achieves a localization accuracy of over 92%, even
when operating in privacy-aware scenarios where voltage data
is subjected to randomized noise.

FE. Sensitivity Analysis to Data Coverage

In the distribution grid, access to the data of every bus is not
guaranteed for several reasons. For instance, rural areas may
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Fig. 8.  Absolute conditional correlation of the loopy 8-bus system before and
after an outage in branches 4—7. We choose dpax = 0.5 and i = 0.1.

TABLE V
OUTAGE LOCALIZATION ACCURACY (%) IN ALGORITHM 1

System | bench. | MLE  PLOD
8-bus 97.7 92.9 94.3
123-bus 95.0 90.1 92.7
LV suburban 96.1 91.4 94.4
MYV urban 95.8 92.6 93.8
a=1%,0,,, =0.5and g ; =0.1.

lack smart meter installations, technical issues can result in data
loss, and privacy concerns might lead to data refusal. Thus, an
analysis of incomplete smart meter data coverage is necessary
to assess PLOD’s real-world detection performance.

Based on records from [38], over 107 million smart meters
have covered 75% of U.S. households by 2021. Therefore,
we simulate the scenario where a fraction of buses (ranging
from 75% to 100%) are randomly selected to provide voltage
measurements for outage detection. The outcomes, illustrated
in Fig. 9, reveal how much additional Average Detection Delay
(ADD) and False Alarm Rate (FAR) is introduced at various
coverage ratios in comparison to 100% data coverage. For
instance, when applying PLOD with variance scaling factors
vyequal to 1, 2, and 3, a 75% data coverage ratio necessitates an
additional 2.5, 1.9, and 1.7 data samples, respectively, to detect
the outage. Simultaneously, the false alarm rate increases by
9.5%, 11.9%, and 13.1%, respectively. It’s noteworthy that when
data coverage is not complete, increasing the variance scaling
factor v involves a trade-off: it reduces detection delay at the
expense of introducing more false alarms.

2.5— 13.1
PLOD(y =1) 11.9
= PLOD(; = 2) 12
22 PLOD(y = 3) 1.9
E/ 173 9.5
a -4
: \ :
3 .
< <
[} [}
5 5
£ =
0 0
95 90 8 80 75 9% 90 8 80 75
Coverage ratio (%) Coverage ratio (%)
Fig. 9. Increased ADD (unit) and FAR (%) under different ratios of data

coverage compared to 100% coverage in 123-bus loopy system « = 1%.

We note that our method doesn’t rely on the assumption of
100% sensor data coverage across the grid. In reality, power
line outages tend to impact a majority of buses in the system,
with the extent of impact varying based on their proximity to
the outage location. It allows us to identify outages by detecting
distribution changes in sensor data from some, rather than all,
buses located near the source of the outage.

V. CONCLUSION

In this paper, we introduce a robust privacy-aware method
for detecting line outages in the distribution grids, effectively
striking a balance between preserving privacy and maintaining
detection performance. Our contributions encompass several
key aspects. First, we ensure the direct protection of raw data
through a randomization scheme embedded within the differ-
ential privacy framework. Second, we quantify the trade-off
between privacy protection and detection performance, consid-
ering factors such as detection delay and false alarm rate. Lastly,
we introduce a novel detection statistic that mitigates the adverse
impact of encrypted data on detection performance, and in some
cases, entirely eliminates it.

To validate our contributions, we conduct extensive experi-
ments across a range of network systems, comprising 17 dis-
tinct outage configurations. The empirical results underscore
the success of our privacy-aware outage detection methodology,
achieving a harmonious blend of privacy preservation and de-
tection performance that is comparable to the optimal case.

We also highlight that the proposed privacy-preserving tech-
nique, developed for outage detection, exhibits a versatile appli-
cability extending beyond its initial scope to encompass various
types of fault and anomaly detection challenges within power
systems. This adaptability stems from the method’s foundational
approach to data protection, ensuring that sensitive information
remains secure while still enabling the accurate identification of
many types of anomalies. Consequently, whether addressing line
faults, equipment malfunctions, or unexpected fluctuations in
power distribution networks, our technique maintains its effec-
tiveness, offering a robust solution for enhancing grid resilience
and reliability without compromising customer privacy.
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