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Abstract—Recent advancements in research have shown the effi-
cacy of employing sensor measurements, such as voltage and power
data, in identifying line outages within distribution grids. However,
these measurements inadvertently pose privacy risks to electricity
customers by potentially revealing their sensitive information, such
as household occupancy and economic status, to adversaries. To
safeguard raw data from direct exposure to third-party adver-
saries, this paper proposes a novel decentralized data encryption
scheme. The effectiveness of this encryption strategy is validated
via demonstration of its differential privacy attributes by studying
the Gaussian differential privacy. Recognizing that the encryption
of raw data could affect the efficacy of outage detection, this paper
analyzes the performance degradation by examining the Kullback–
Leibler divergence between data distributions before and after the
line outage. This analysis allows us to further alleviate the perfor-
mance degradation by designing an innovative detection statistic
that accurately approximates the optimal one. Manipulating the
variance of this statistic, we demonstrate its ability to approach
the optimal detection performance. The proposed privacy-aware
detection procedure is evaluated using representative distribution
grids and real load profiles, covering 17 distinct outage configura-
tions. Our empirical results confirm the privacy-preserving nature
of our approach and show that it achieves comparable detection
performance to the optimal baseline.

Index Terms—Differential privacy, outage detection, power
distribution networks, privacy aware detection, voltage
measurement.

I. INTRODUCTION

I
N DISTRIBUTION grids, the detection of line outages is

essential for system monitoring and control, playing a critical

role in the restoration of network stability and the mitigation

of customer losses. According to the U.S. Energy Information
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Administration [1], customers experienced over seven hours

of power interruptions in 2021, attributed mainly to severe

weather events and power supply shortages. Traditionally, utility

companies have installed smart meters with Advanced Metering

Infrastructure (AMI) and Fault Location, Isolation, and Service

Restoration (FLISR) systems to report outages in cases of power

absence [2]. However, these “last gasp” notifications are limited

when customers continue to have power after the line outage,

from distributed energy resources such as rooftop solar panels,

battery storage, and electric vehicles, which are now widely

adopted. Additionally, in some urban areas, secondary distribu-

tion grids are mesh networks. In this setup, a single line outage

induced by circuit faults or human interference may not result

in a power outage because of alternative power supply routes.

Consequently, smart meters at customer end also cannot report

outages.

To identify these types of line outages, real-time sensor mea-

surements, including voltage magnitudes, phasor angles, and

load estimates, have been employed and confirmed for their

effectiveness [3], [4], [5], [6], [7], [8]. However, the utilization of

real-time sensor measurements raises privacy concerns, partic-

ularly regarding the potential exposure of sensitive information.

For example, if a customer’s time-series grid data were provided

to an untrusted third party, they could deduce appliance usage [9]

and unveil details about household occupancy and economic sta-

tus (as illustrated in the lower half of Fig. 1) using non-intrusive

load monitoring techniques [10], [11]. Therefore, it is crucial

to safeguard such data against direct disclosure to third parties

during the outage detection process.

In pursuing a privacy-aware outage detection procedure, we

choose to develop a decentralized randomization scheme based

on a probabilistic methodology for encrypting the raw data.

Among the methodologies for utilizing sensor measurements

in outage detection, both deterministic [4], [5] and probabilis-

tic [12], [13] approaches have been proposed. Deterministic

methods typically set a threshold and declare an outage when

data changes exceed this threshold. Although these techniques

are easy to implement, they do not align with our concept

of a randomization scheme for data encryption. In contrast,

probabilistic approaches focus on monitoring changes in the

probability distribution of sensor measurements, providing a

suitable foundation for our approach. The core idea is to al-

ter the absolute values of end-user measurements to protect
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Fig. 1. An overview of the privacy-aware line outage detection problem in the distribution grid.

end-user privacy while preserving the relative changes in data

distribution before and after an outage event (see upper half of

Fig. 1). We also want to point out that while community-level

data, aggregated from individual users, can inherently safeguard

end-user privacy, it complicates the detection of line outages in

large distribution grids and renders the precise localization of

outage branches unattainable.

Specifically, we aim to develop a privacy-aware outage de-

tection procedure based on our prior research [7], [13], which

utilizes a probabilistic change point detection (CPD) method

known for its guaranteed performance. The CPD approach is

adopted for detecting changes in the probabilistic distribution

of sensor measurements while adhering to a predefined false

alarm tolerance constraint [14]. In our problem, the sensor mea-

surements are modeled as a time-series data stream x[n] ∈ R
p,

where n ∈ N corresponds to the time step. These time-series

data are assumed to exhibit distinct probabilistic distributions

before and after an outage time λ ∈ N:

x[n]
i.i.d
∼ g, n < λ and x[n]

i.i.d
∼ f, n ≥ λ, (1)

where g and f represent the distributions before and after the

outage, respectively. The CPD framework with sensor data

defined in (1) has been applied to detect line outages and faults

in transmission grids [15] as well as in DC micro-grids [16].

These applications benefit from theoretical guarantees regarding

optimal detection delay, as studied in [17].

In addition to detecting power line outages using sensor data

from electricity customers, many other applications of the CPD

framework involve similar privacy concerns related to the use

of sensitive data. Such applications include monitoring patient

health based on heart rates [18] and evaluating financial condi-

tions using transaction data [19]. Consequently, the development

of a privacy-aware CPD that preserves its detection performance

has emerged as a substantial area of interest and is the primary

focus of this paper.

To safeguard privacy, recent studies have introduced random-

ization schemes to encrypt data, effectively concealing sensitive

information from potential attackers. In assessing the level of

privacy achieved by such randomization schemes, the differen-

tial privacy framework [20] is employed, offering a worst-case

privacy guarantee. In the context of parametric CPD, where

distributions g and f are known in (1), [21] utilized noisy ap-

proximation algorithms developed by [22] to compute a privately

approximated change-point maximum likelihood estimation. In

non-parametric CPD scenarios where the distributions g and f
are unknown, [23] privately estimated the change points using

the Mann-Whitney test [24]. These studies involved encrypting

the detection statistic with Laplace noise after a trusted third

party collected the raw data x[n]. In cases where a trusted third

party is absent, [25] proposed randomizing the raw data with

Laplace noise, ensuring that the raw data remains inaccessible to

anyone except its original holder. Despite the privacy guarantees

offered by existing randomization approaches, there remain

several limitations due to the complexity of the privacy mecha-

nisms or the intricate structure of the data. First, to pursue the

differential privacy framework, many existing works [21], [23]

choose to apply noise to statistic-level after raw data is collected,

potentially exposing raw data to breaches before encryption.

Second, many existing works lack a rigorous quantification of

how privacy mechanisms affect detection performance [21],

[23], [26], [27]. Third, despite the advances in privacy protection,

there is little exploration of methods to mitigate the negative

effects of these privacy measures on system functionality [28],

[29]. To the best of our knowledge, safeguarding privacy without

compromising detection performance remains out of the reach

of existing theory.

In this paper, we narrow our focus on the parametric setting of

CPD for line outage detection. Having knowledge of the distribu-

tions g and f allows us to quantify the cost associated with intro-

ducing privacy guarantees into the outage detection procedure.

Furthermore, it empowers us to design a novel detection statistic

aimed at mitigating this cost. To secure the privacy at user-level,

our first innovation is developing a decentralized encryption

scheme directly on raw data. Unlike existing work [21], [23]

that introduced noise to statistics after raw data is collected, our
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approach ensures user data’s confidentiality before any external

access. To demonstrate that this scheme adheres to classic differ-

ential privacy, we detour the proof through Gaussian differential

privacy [30], an extension of differential privacy applicable to

arbitrary distributions.

Despite the privacy guarantee, there is an inevitable com-

promise in detection performance due to the encryption of data.

Our second contribution is to quantify the extent of performance

compromise in pursuit of varying privacy levels. By investigat-

ing the Kullback–Leibler divergence between distributions f
and g, we pinpoint how encryption-induced noises extend the

outage detection delays. Our findings provide a foundational

framework for assessing the implications of privacy-enhancing

technologies on operational capabilities.

In our third contribution, we tackle the challenge of perfor-

mance degradation due to privacy measures by devising a novel

detection statistic. This statistic innovatively estimates the opti-

mal statistic achievable with raw data, minimizing detection de-

lays and respecting false alarm constraints. Our analysis, rooted

in Jensen’s inequality, reveals that controlling the variance of

this statistic significantly narrows the performance gap. By

strategically reducing the variance, we demonstrate the potential

to virtually eliminate the adverse impacts of privacy protection

on detection performance, marking a significant advancement

in the field.

In summary, our contributions include: (1) We innovate by

introducing noise directly into end-user-level data while ensur-

ing adherence to the differential privacy framework. It enhances

privacy beyond existing methods that only add noise to statistic-

level after end-user-level data is collected. (2) We rigorously

quantify the impact of privacy-induced noise on outage detection

performance using Kullback-Leibler divergence, providing a de-

tailed analysis of the trade-off between privacy and efficiency. (3)

We propose a novel noise-mitigation technique that significantly

reduces the negative effects of privacy protection on detection

accuracy, achieving near-optimal performance levels. To vali-

date our contributions, we conduct comprehensive experiments

utilizing representative distribution grids and real load profiles,

covering 17 distinct outage configurations.

In the following, Section II introduces the preliminary aspects

of our system modeling, the CPD framework, and the differential

privacy framework. Section III presents our privacy-aware detec-

tion procedure that dose not compromise detection performance.

Section IV assesses our method using four distribution grids and

real-world load profiles. Section V concludes of this paper.

II. PRELIMINARY

System Modeling: To illustrate our probabilistic design for

the privacy-aware detection procedure, we define the following

variables. The voltage magnitude at each bus i ∈ G is modeled

as a random variable Vi, where G := {1, 2, . . . , p} represents

the distribution grid as a graph containing p > 0 buses. At time

step n, we denote the realization of Vi as vi[n] ∈ R in per unit,

and we use v[n] = {v1[n], . . . , vp[n]} ∈ R
p to represent the

collection of voltage magnitudes in the grid G. Finally, we use

the notation x[n] = v[n]− v[n− 1] to denote the incremental

change in voltage magnitudes.1

We utilize voltage increment data because [13] establishes that

this data adheres to two multivariate Gaussian distributions, de-

noted as g ∼ N (µ0,Σ0) and f ∼ N (µ1,Σ1) before and after

a line outage. For the sake of simplicity, we also use the notation

x
1:N = {x[1], . . . ,x[N ]} to represent all the measurements up

to time N .

Based on the modeling, the problem of detecting distribution

grid line outages while preserving privacy is formally defined

as follows (refer to Fig. 1 for visualization):
� Given: A stream of voltage magnitude increments x

1:N

from the smart meters.
� Find: The line outage time λ as quickly as possible.
� Require: Avoid disclosing the raw data x

1:N .

Outage detection based on change point detection: To detect

the outage time λ in (1) using voltage magnitude increments

x
1:N , our previous work [7], [13] follows the Bayesian detection

procedure [14], [17]. That is, identifying the outage time is

equivalent to performing the hypothesis test:

H0 : λ > N and H1 : λ ≤ N

sequentially given data x
1:N = {x[1], . . . ,x[n], . . . ,x[N ]}.

As data is received in a streaming manner (N increases), the

first time hypothesis H0 is rejected reveals the value of λ. To

determine when to reject H0, the posterior probability ratio

Λ(x1:N ) =
P (λ ≤ n|x1:N )

P (λ > n|x1:N )
=

N∑

k=1

πk
N

N∏

n=k

f (x[n])

g (x[n])
(2)

is calculated at each time step N . λ ∈ N is assumed to follow

a prior distribution π, and we define πk
N = π(k)∑∞

k=N+1 π(k)
for

simplicity. The ratio in (2) compares the probabilities of “outage

occurred (λ ≤ N )” and “outage did not occur (λ > N )” given

the historical measurements x1:N . A larger ratio indicates that

“outage occurred” is more likely than “outage did not occur”.

Therefore, we declare the outage time λ when the ratio in (2) ex-

ceeds a predefined threshold. By the Shiryaev-Roberts-Pollaks

procedure [14], [17], the following threshold in Theorem 1

optimally considers the trade-off between the false alarm and

the detection delay.

Theorem 1: When λ follows a geometric prior Geo(ρ), we

declare the outage time when the posterior probability ratio

Λ(x1:N ) exceeds the threshold 1−α
ρα for the first time as

τ = inf

{
N ∈ N : Λ

(
x
1:N

)
≥

1− α

ρα

}
. (3)

The detection procedure (3) constrains that the false alarm

rate (FAR) remains below a pre-defined tolerance level α, i.e.,

FAR(Λ, f, g)
∆
= P (τ < λ) ≤ α. More importantly, as α → 0, τ

is asymptotically optimal for minimizing the average detection

delay (ADD) as

E[τ − λ|τ ≥ λ] = inf
P(τ ∗≤λ)≤α

E[τ ∗ − λ|τ ∗ ≥ λ]

1For simplicity, we use the notation x instead of ∆v.
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=
| logα|

− log(1− ρ) +DKL(f ||g)
∆
= ADD(Λ, f, g), (4)

whereDKL(f‖g) denotes the Kullback–Leibler (KL) divergence

between distributions f and g.

In the practical application of outage detection, the determi-

nation of the threshold α in (3) is achieved through a systematic

and iterative methodology, which is anchored in both statistical

analysis and operational considerations. Initial selection is based

on analyzing sensor data x
1:N to distinguish between normal

variations and potential outages, taking into account the balance

between minimizing detection delays and reducing false alarms.

This choice is refined through iterative testing with historical

data, allowing us to fine-tune α to optimize detection accuracy

while considering the operational impact of false positives.

Moreover, we incorporate the flexibility to adjust α dynam-

ically, accommodating seasonal variations and evolving grid

conditions, ensuring our algorithm remains effective and reliable

across different scenarios.

After detecting the occurrence of a line outage, accurately

localizing the affected branch is vital for system restoration.

In [7], researchers introduced a precise outage localization

method by demonstrating the conditional independence of volt-

age increments between two disconnected buses. Their tech-

nique involved computing the conditional correlation between

all potential bus pairs in the grid and detecting changes from

non-zero to zero values. Unlike methods relying on nodal electric

circuit analysis for fault location estimation, this approach offers

a distinct method that relies solely on the covariance matrices

of the voltage data. This attribute is shown later to be efficient

even in privacy-aware contexts.

To estimate the conditional correlation between bus i and

bus k, the covariance matrix Σ is utilized. Let set I := {i, k}
and K := G\{i, k}, the covariance matrix is decomposed as

Σ = [
ΣII ΣIK

Σ


IK ΣKK

]. Based on this, the conditional correlation ρik
between bus i and bus k is

ρik(Σ) =
ΣI|K(1, 2)√

ΣI|K(1, 1)ΣI|K(2, 2)
, (5)

where the conditional covariance is computed by the Schur

complement [31] as ΣI|K = ΣII −ΣIKΣ
−1
KKΣ



IK.

Theorem 2. (Line outage localization): The conditional cor-

relation is calculated based on (5) for every pair of (i, k) as

ρ−ik = ρik(Σ0)︸ ︷︷ ︸
before outage

and ρ+ik = ρik(Σ̂1)︸ ︷︷ ︸
after outage

. (6)

The branch between bus i and k is out-of-service if |ρ−ik| >
δmax and |ρ+ik| < δmin. The thresholds are set as δmax = 0.5
and δmin = 0.1 based on real-world outage data to check if the

correlation changes from non-zero to near-zero value.

According to Theorem 2, we track the change of covariance

matrices to localize the out-of-service branch. Specifically, an

out-of-service branch between bus i and bus k can be identified

if both of the following conditions are met simultaneously: (1)

|ρ−ik| > δmax indicating the presence of a branch between buses

i and k before the outage, and (2) |ρ+ik| < δmin indicating the

absence of a branch between buses i and k after the outage.

Differential privacy: To assess the level of privacy preserva-

tion, we follow the framework of differential privacy [20], which

offers worst-case privacy guarantees. Specifically, an algorithm

M : R
p → R

p is (ε, δ)-differentially private if, for any neigh-

boring datasetsX andX ′ (differing in at most one element), and

for every subset of possible outputs S , the following inequality

holds:

P [M(X) ∈ S] ≤ exp(ε)P [M(X ′) ∈ S] + δ. (7)

In essence, this property ensures that a potential attacker ob-

serving the outcomes of the algorithm M cannot easily deduce

whether a specific individual’s information is present in the

dataset. While the conventional technique for achieving differ-

ential privacy involves the introduction of Laplace noise [21]

to raw data, the concept of Gaussian differential privacy [30]

extends differential privacy to encompass noises generated from

a broader range of distributions.

III. PRIVACY-AWARE LINE OUTAGE DETECTION WITH

BOOSTED PERFORMANCE

In the aforementioned outage identification procedure (3), the

increments of voltage magnitude data x
1:N are critical. How-

ever, such data may also be used to infer customer’s sensitive

information [10], [11], such as the household occupancy (see

lower half of Fig. 1), e.g., when the house owner arrives or leaves

home. To protect the raw voltage data of customers, at each

time step n when data x[n] is received, we apply a randomizing

scheme to encrypt the raw data directly:

x̃[n] = x[n] + e[n], (8)

where e[n] ∈ R
p is a random noise vector. The randomized ap-

proach stands out for its simplicity and effectiveness over other

techniques like Homomorphic Encryption or Data Anonymiza-

tion. Its introduction of systematic noise e[n] not only facilitates

differential privacy, offering a measurable level of privacy pro-

tection, but also enables the quantification of any impact on

detection performance. This dual capability allows for a finely

tuned balance between ensuring user privacy and maintaining

the accuracy of outage detection efforts.

The noisee[n]has to be sufficiently large to hide the character-

istics of the raw data while not being too large to impact the de-

tection performance. To establish the suitable level of embedded

noise, we evaluate the privacy guarantee within the differential

privacy framework in Section III-A and assess the corresponding

degradation in detection performance in Section III-B. We show

that, in general, the noise added to data makes it harder to

distinguish whether the data comes from the distribution g or f ,

leading to a prolonged detection delay. Integrating these analy-

ses, we propose a new statistic in Section III-C (to replace (2))

such that the new detection procedure is both privacy-preserving

and has comparable detection performance as the optimal case

with access to raw data.

For making the randomizing scheme (8) satisfy the differential

privacy, we generate noise from the same distribution (Gaussian)
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Fig. 2. The decentralized randomizing scheme (8) to protect privacy of each
customer i’s raw data xi[n] in the data vector x[n].

as raw data, i.e., e[n] ∼ N (0,De). The covariance matrix is

designed to be diagonal, i.e., De = diag(σ2
e , . . . , σ

2
e) where

variance σ2
e represents the noise level or amount of noise. A

diagonal covariance indicates that each element in the noise

vector is independent. In doing so, the scheme (8) is equivalent

to adding a random noise scalar to each dimension of the data

vector, ensuring that each customer’s raw data is encrypted

before sending to any third party (see Fig. 2). Notice, unlike

some works that add noise to the statistics (e.g., Λ(x1:N )) [21],

[23] after raw data is collected, our approach ensures no direct

exposure of the raw data.

There is another advantage of using a diagonal noise covari-

ance De, i.e., introducing independent noise into user data.

In fact, this choice allows us to effectively differentiate line

outages from other causes of voltage distribution changes by

examining the voltage data’s covariance matrix Σ. As detailed

in our previous work [13], voltage increments between dis-

connected buses show conditional Independence. Specifically,

if the branch connecting two buses becomes non-operational,

the conditional correlation between these buses shifts from a

non-zero value to zero, highlighting a unique pattern of line

outages in the voltage data’s covariance structure. More im-

portantly, our privacy-preserving technique, when introducing

independent noise to each bus’s data, does not compromise this

unique property, thus maintaining the ability to differentiate line

outages effectively.

A. Differential Privacy Guarantee of the Randomizing Scheme

Applying the randomizing scheme (8), the detection pro-

cedure will be performed on the encrypted data x̃
1:N =

{x̃[1], . . . , x̃[N ]} to find the outage (see Fig. 2). In this sub-

section, we quantify how much privacy is preserved w.r.t. the

noise level σ2
e . To achieve this, we prove that (8) satisfies the

classic (ε, δ)-differential privacy mechanism [20].

A differential privacy scheme indicates that by looking at the

encrypted data x̃[n], an adversary struggles to tell whether any

piece of real data xi[n] is included. The mathematical definition

is given in (7). Since noise e[n] is independent Gaussian to

raw data x[n], the encrypted data x̃[n] also follows Gaussian.

It allows us to detour the proof of classic differential privacy

by the tool of Gaussian differential privacy [30]. Specifically, a

Gµ-Gaussian differential privacy scheme implies the following:

telling whether any piece of real data xi[n] is present in the

encrypted data x̃[n] is more difficult than distinguishing between

distributions N (0, 1) and N (µ, 1). The difficulty is quanti-

fied using the trade-off function T (N (0, 1),N (µ, 1)), which

characterizes the balance between type I and type II errors in

distinguishing these distributions [30]. This particular trade-off

function is also referred to as Gµ. In Lemma 1, we show that

our scheme (8) is Gaussian differential private.

Lemma 1: The randomizing scheme (8) isG ∆
σe

-Gaussian dif-

ferential private [30] where ∆ := supx[n],x′[n] ‖x[n]− x
′[n]‖ is

the sensitivity of raw data, and x[n],x′[n] only differs in exactly

one element.

Proof: The encrypted data x̃[n] and its neighboring data

x̃
′[n] (i.e., they differ in exactly one element) both follow

Gaussian distributions as x̃[n] ∼ N (x[n],De) and x̃
′[n] ∼

N (x′[n],De). Then, we have

T (x̃[n], x̃′[n]) = T (N (x[n],De),N (x′[n],De))

= G‖x[n]−x′[n]‖/σe
≥ G ∆

σe

, (9)

whereT (x̃[n], x̃′[n]) is defined as the trade-off function between

type I and II errors in differentiating data x̃[n] and x̃
′[n]. The

inequality is due to the definition of sensitivity, i.e., ‖(x[n]−
x
′[n])/σe‖ ≤ ∆

σe

. �

Given the foundation of Gaussian differential privacy, we are

ready to demonstrate that our scheme (8) also adheres to the

classic (ε, δ)-differential privacy [20].

Corollary 1: Provided theG ∆
σe

-Gaussian differential privacy,

(8) satisfies the (ε, δ(ε))-differential privacy [30] where

δ(ε) = Φ

(
−
εσe

∆
+

∆

2σe

)
− eεΦ

(
−
εσe

∆
−

∆

2σe

)
,

and Φ is the CDF of the unit normal distribution.

Satisfying the (ε, δ(ε))-differential privacy in Corollary 1, our

proposed scheme (8) ensures that an adversary can not easily

determine if the data he observes is real, thus preserving the

privacy of raw data. Moreover, we can control the amount of

noise to achieve any desired level of privacy guarantee.

In fact, Lemma 1 and Corollary 1 reveal that the degree

of differential privacy is directly related to the noise variance

σ2
e : larger noise results in enhanced privacy protection. The

sensitivity ∆ is determined by the distribution system and can

be approximated using domain expertise. For instance, in power

grid analysis, the sensitivity of voltage data can be computed

based on its standard operational range (ranging from 0 p.u. to

1.1 p.u.).

B. Quantification of Detection Performance Degradation

While (8) enhances privacy protection, it may degrade the

ability to detect line outages, potentially leading to increased

detection delays and a higher false alarm rate. Therefore, it is

crucial to analyze the extent to which detection performance

is compromised when utilizing the encrypted data x̃
1:N . Only

after completing this analysis can we devise a new solution to

mitigate the degradation.
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To study the performance degradation, we first note that the

encrypted data x̃[n] follows Gaussian distribution due to our

choice of independent Gaussian noise for the raw data. Specif-

ically, x̃[n] follows ge ∼ N (µ0,Σ0 +De) before the outage

(n < λ) and follows fe ∼ N (µ1,Σ1 +De) after the outage

(n ≥ λ). We use the notation ge and fe to denote the “encrypted”

distributions, which are the results of introducing independent

noise to distributions g and f , respectively.

Having defined ge and fe, we can now rigorously measure the

performance degradation. In Theorem 3, we demonstrate that

the “distance” between ge and fe is smaller than that between

g and f by evaluating their Kullback-Leibler (KL) divergence.

The “closer” the distributions are, the more challenging it is

to distinguish them in the outage detection procedure, thus

leading to a prolonged detection delay. Intuitively, if the noise

term is infinitely large (σ2
e → ∞), the distributions ge and fe

will be dominated by the same noise distribution and become

impossible to distinguish.

Theorem 3: The randomizing scheme (8) diminishes the KL

divergence between pre- and post-outage distributions:

KL∆ := DKL(f‖g)−DKL(fe‖ge) ≥ 0, (10)

KL∆ ≤ O(σ2
e)

(
‖µ0 − µ1‖

2
2 +

(tr(Σ1)− tr(Σ0))
2

tr(Σ1)

)
. (11)

Proof: For showing KL∆ ≥ 0, we have

2KL∆ =
1

2
(µ0 − µ1)

T [(Σ0)
−1 − (Σe

0)
−1](µ0 − µ1)

+
1

2
log

|Σ0|

|Σ1|

|Σe
1|

|Σe
0|

+
1

2
tr{(Σ0)

−1(Σ1)− (Σe
0)

−1(Σe
1)}

≥
1

2

∑p

i=1
[(νi − log νi)− (ξi − log ξi)] ,

where Σ
e
i = Σi +De for i = 0, 1. ν1, . . . , νp and ξ1, . . . , ξp

are the eigenvalues of (Σ0)
−1
Σ1 and (Σe

0)
−1
Σ

e
1, respectively.

The inequality is due to that matrix (Σ0)
−1 − (Σe

0)
−1 is pos-

itive semi-definite. Moreover, since |ξi − 1| ≤ |νi − 1|, ∀i =
1, . . . , p, we finally obtain KL∆ ≥ 0. Aside from the lower

bound as zero, an upper bound of KL∆ is further derived as

KL∆ ≤
1

2
‖µ0 − µ1‖

2
2

(
1

νmin
0

−
1

νmin
0 + σ2

e

)

+
M

2

(
νmax
1

νmin
0

− log
νmax
1

νmin
0

+ log
νmax
1 +σ2

e

νmin
0 +σ2

e

−
νmax
1 +σ2

e

νmin
0 +σ2

e

)

≤
σ2
e

2(νmin
0 )2

(
‖µ0 − µ1‖

2
2 +M

(νmax
1 − νmin

0 )2

νmax
1

)
,

where νmin
0 is the smallest eigenvalue of Σ0, and νmax

1 is the

largest eigenvalue of Σ1. �

As a corollary of DKL(fe‖ge) ≤ DKL(f‖g) in Theorem 3,

the asymptotic lower bound of average detection delay in (4) is

increased when the randomizing scheme is applied:

ADD(Λ, fe, ge) ≥ ADD(Λ, f, g),

resulting in a prolonged detection delay of finding the outage

time given encrypted data x̃1:N . Theorem 3 not only indicates a

Fig. 3. Outages are reported when the calculated statistic surpasses the thresh-
old 1−α

ρα
. See Table I for a summary of these statistics.

strict performance degradation but also infers the magnitude of

this degradation by deriving the upper bound of KL∆. That is,

we know approximately how much extra delay is brought w.r.t.

the noise variance σ2
e .

To illustrate the prolongation of detection delay, we present

Fig. 3, comparing two scenarios: the application of the statistic

(2) to raw data Λ(x1:N ) (red curve) and its application to

encrypted data Λ(x̃1:N ) (blue curve). Due to the KL diver-

gence reduction established in Theorem 3, Λ(x̃1:N ) is typically

smaller than Λ(x1:N ) (we will show this claim later in the

paper), especially after the outage occurrence. This inequality

has two intuitive consequences. Firstly, it reduces the likelihood

of triggering a false alarm when detecting the outage time

using encrypted data, i.e., FAR(Λ̃, fe, ge) ≤ FAR(Λ, f, g) ≤ α.

Secondly, encrypted data leads to a prolonged detection delay,

i.e., the performance degradation.

To address the performance degradation, as suggested by

Fig. 3, a logical approach is to design a new detection statistic

(represented by a green curve) to process the encrypted data. The

new detection procedure is expected to maintain a comparable

detection delay to the optimal scenario with access to raw data

and still restrict the false alarm rate below α.

C. A New Statistic to Boost the Detection Performance

In this subsection, we formally introduce a noise-mitigation

technique to achieve detection performance comparable to the

optimal scenario with access to raw data. We term it “noise-

mitigation” since the technique essentially alleviates the per-

formance impact resulting from the privacy-protective noise. To

achieve this, we design a new statistic Λ̃ to process the encrypted

data x̃
1:N . The new statistic aims to offer an approximation of

the optimal statistic Λ(x1:N ) (as depicted by the green curve

in Fig. 3), even when raw data is not available. We refer to

the statistic Λ(x1:N ) as “optimal” due to its demonstrated op-

timal detection performance when raw data is available (see

Theorem 1). It’s also important to note that this optimal statistic

doesn’t incorporate privacy protection. To prevent any ambiguity

with these statistics, we present Table I for a comprehensive

summary of the detection statistics used in this paper, along

with their relevant attributes.
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TABLE I
SUMMARIZE OF DETECTION STATISTICS

For designing a new statistic Λ̃ that approximates Λ, we

leverage the following insights. While the noise is generated ran-

domly, its pattern, specifically the distribution parametersσ2
e , are

known to utility operators. This insight prompts us to compute

the expectation of noise-related terms in the statistic Λ(x̃1:N ).
By replacing these terms with their respective expectations, we

can provide an unbiased estimation of Λ(x̃1:N ). Following this

rationale, the new design for the statistic Λ̃(x̃1:N ) is presented

in (12):

Λ̃(x̃1:N ) =

N∑

k=1

πk
N

N∏

n=k

√
|Σ0| exp (β1[n])√
|Σ1| exp (β0[n])

, (12)

where βi[n] := − 1
2 (x̃[n]− µi)

T (Σi)
−1(x̃[n]− µi) +

1
2σe ·

tr(Σ−1
i ) for i = 0, 1. We note thatβi[n] is an unbiased estimation

of the corresponding term in the optimal statistic Λ(x1:N ), i.e.,

Ee∼N (0,De)βi[n] = − 1
2 (x[n]− µi)

T (Σi)
−1(x[n]− µi). By

the unbiased design, the proposed statistic Λ̃(x̃1:N ) serves as

the desired approximation of the optimal statistic Λ(x1:N ). This

effect is shown in Fig. 3 and proved in Lemma 2.

Lemma 2: The proposed statistic Λ̃ in (12) satisfies

Λ(x̃1:N ) ≤ Λ̃(x̃1:N ) ≤ Λ(x1:N ), N ≥ λ. (13)

Proof: For showing Λ(x̃1:N ) ≤ Λ̃(x̃1:N ), it suffices to show
fe(x̃[n])
ge(x̃[n])

≤ |Σ1|
1
2
/|Σ0|

1
2 exp(β1[n]− β0[n]), where these two

terms are denoted as (#e) and (∗). In fact, we have

log(#e) =
p

2
log

s0 + σ2
e

s1 + σ2
e

+

(
a0

s0 + σ2
e

−
a1

s1 + σ2
e

)
,

log(∗) =
p

2
log

s0
s1

+

(
a0
s0

−
a1
s1

)
−

pσ2
e

2

(
1

s0
−

1

s1

)
,

where a0 = 1
2‖x̃[n]− µ0‖

2 and a1 = 1
2‖x̃[n]− µ1‖

2, and

we consider diagonal co-variances Σ0 = diag(s0, . . . , s0) and

Σ1 = diag(s1, . . . , s1). When n ≥ λ (the line outage occurs),

we have a0 
 a1, which results in log(#e) ≤ log(∗).
For showing Λ̃(x̃1:N ) ≤ Λ(x1:N ), it suffices to show

f(x[n])
g(x[n]) ≥ |Σ1|

1
2 /|Σ0|

1
2 exp(β1[n]− β0[n]), where these two

terms are denoted as (#) and (∗). In fact, we have

2 log
(#)

(∗)
= p

(
σ2
e − ‖e[n]‖2

)( 1

s0
−

1

s1

)
+ 2

b1
s1

− 2
b0
s0

,

where b0 = 〈e[n],µ0〉 and b1 = 〈e[n],µ1〉 satisfying Eeb0 =

Eeb1 = 0. It indicates that Ee[log
(#)
(∗) ] = 0, which further gives

us Ee[
(#)
(∗) ] ≥ exp(0) = 1 from Jensen’s inequality. It implies a

higher likelihood that (#) > (∗). Since at every time step n = k

we will randomly generate a noise vector e[n], we can conclude

that Λ̃(x̃1:N ) ≤ Λ(x1:N ). �

From Lemma 2, the proposed statistic Λ̃(x̃1:N ) falls between

the Λ(x̃1:N ) and Λ(x1:N ) after the outage event (n ≥ λ), align-

ing with our expectations in Fig. 3. Consequently, it will exhibit a

reduced false alarm rate (FAR) compared to the optimal scenario

with raw data access, and will help alleviate the prolongation of

average detection delay (ADD).

Corollary 2: The proposed Λ̃ in (12) restricts the FAR below

α, and alleviate the prolongation of ADD, i.e.,

FAR(Λ, fe, ge) ≤ FAR(Λ̃, fe, ge) ≤ FAR(Λ, f, g) ≤ α

ADD(Λ, fe, ge) ≥ ADD(Λ̃, fe, ge) ≥ ADD(Λ, f, g), (14)

As indicated by the proof of Lemma 2, Jensen’s inequality

hinders the attainment of a “perfect” approximation to the op-

timal statistic Λ, resulting in a remaining gap between Λ̃ and

Λ. To address this matter, a logical approach is to seek specific

conditions under which Jensen’s inequality converges toward

equality. With this in mind, we modify the statistic in (12) by

introducing a constant term γ ≥ 1 as

Λ̃γ(x̃
1:N ) =

N∑

k=1

πk
N

N∏

n=k

√
|Σ0| exp (β1[n]/γ)√
|Σ1| exp (β0[n]/γ)

. (15)

We refer to the constant term γ as the variance scaling factor

since it scales the variance of term βi[n] by 1/γ2 times. When

γ = 1, the statistic in (15) degrades to the statistic in (12). We

employ this variance scaling factor because Jensen’s inequality

tends to become equality as the variance of variable approaches

zero. To describe the effect of introducing γ to scale βi, we

provide Lemma 3. From previous discussing, the term βi is an

unbiased estimation of β̄i := − 1
2 (x[n]− µi)

T (Σi)
−1(x[n]−

µi), whose variance is denoted asσ2
i . Thus, the scaled termβi/γ

used in (15) can be modeled in a distribution P with mean β̄i/γ
and variance σ2

i /γ
2. According to the theorem of the Jensen

inequality gap, we have the following upper bound w.r.t. to the

variance scaling factor γ.

Lemma 3: Suppose | exp(βi/γ)− exp(β̄i/γ)| ≤ M |βi/γ −
β̄i/γ|2 for some M and any βi/γ ∈ R, for any convex function

f , we have an upper bound of Jensen gap as
[
E

[
f

(
βi

γ

)]
− f

(
E

[
βi

γ

])]

≤ M

∫ ∣∣∣∣
βi

γ
−

β̄i

γ

∣∣∣∣
2

dP

(
βi

γ

)
≤ M

σ2
i

γ2
.

According to Lemma 3, the variance-reduction technique in

(15) can narrow the gap in the Jensen inequality, consequently

achieving a nearly perfect approximation of the optimal statistic.

In summary, when implementing the randomization scheme (8)

to encrypt raw data and utilizing the new statistic (15) for outage

detection, we outline the privacy-aware line outage detection

procedure, referred to as PLOD, in Algorithm 1. The proposed

PLOD offers two key advantages. First, it ensures privacy preser-

vation by using noise for data encryption. Second, the proposed

statistic provides an approximation to the optimal statistic when

raw data is accessible, thereby achieving a comparable lower
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bound on detection delay while limiting the false alarm rate to

a predefined tolerance level.

Algorithm 1: Privacy-Aware Line Outage Detection

(PLOD) With Boosted Detection Performance.

1: Input: New voltage data x[n]
2: Parameter: Noise variance σ2

e , variance scaling factor

γ
3: Output: Outage time

4: Apply noise to encrypt raw data.

x̃[n] = x[n] + e[n], e[n] ∼ N (0, diag(σ2
e , . . . , σ

2
e))

5: Calculate detection statistic Λ̃(x̃1:n) in (15).

6: if Λ̃γ(x̃
1:n) ≥ 1−α

ρα then

7: for i, k ∈ G do

8: if |ρ−ik| > δmax and |ρ+ik| < δmin then

9: report outage time τ = N and the

out-of-service branch between bus i and k
10: end if

11: end for

12: end if

IV. VALIDATION ON EXTENSIVE OUTAGE SCENARIOS WITH

REAL-WORLD DATA

This section evaluates the privacy guarantee, the average

detection delay, and the false alarm rate of PLOD, comparing it

with recent baselines on privacy-aware detection methods.

Dataset configuration: To assess PLOD across diverse system

sizes and environments, we conduct comprehensive experiments

using various network configurations. The systems include the

IEEE 8-bus and IEEE 123-bus networks [32], along with two

representative European distribution systems: a medium voltage

(MV) network in an urban area and a low voltage (LV) network in

a suburban area [33]. We utilize these two networks from Europe

to contrast with standard IEEE bus networks typical of the U.S.

for the consideration of diverse grid architectures. In these two

networks, we still focus on using the network’s topology to

simulate customer-level voltage data for outage detection. In

each of these networks, we select bus 1 as the slack bus.

In recognition of the complexities in real-world distribution

grid outage scenarios, we explore situations where alternative

power sources come into play following a line outage. In such

scenarios, relying solely on the “last gasp” notification becomes

less effective, rendering the detection of line outages more

challenging. To model this complexity, we conduct simulations

for the following two representative scenarios.
� Mesh networks: Mesh networks are often used to model

networks in urban areas, where most buses retain non-zero

voltages after a line outage as they can receive power

from alternative branches. To simulate mesh networks, we

introduce loops into the aforementioned systems, ensuring

their connectivity remains intact after line outages [7]. As

an example, in the IEEE-123 bus network, we introduce

loops by adding two branches: one between bus 77 and

TABLE II
STATISTICAL ANALYSIS OF DLC POWER DATASET

120 and another between bus 50 and 56, with admittances

matching that of the branch between bus 122 and 123.
� Radial networks with DERs: In such case, some buses con-

tinue to receive power from DERs though isolated from the

main grid after a line outage. This type of outage scenario

is typical in residential areas. To simulate DERs, we select

multiple buses to have solar power panels with batteries as

energy storage. For solar panels, we use power generation

profiles computed using the PVWatts Calculator [34].

To generate more authentic data, we use real residential

power profiles from the Duquesne Light Company (DLC) in

Pittsburgh, USA. The DLC dataset comprises anonymized and

secure hourly (and 15-minute) smart meter readings of active

power from over 5,000 houses throughout the year 2016. Basic

statistics of this dataset are provided in Table II.

Implementing details: The time-series voltage magnitude data

are generated using the MATLAB Power System Simulation

Package (MATPOWER) in MATLAB R2022b. In each distribu-

tion system, we assign active power pi[n] from the DLC power

profile to bus i at time n. The reactive power qi[n] is determined

based on a randomly generated power factor pfi[n], which

follows a uniform distribution Unif(0.9, 1). Using the active and

reactive power values, we employ MATPOWER to solve power

flow equations and derive voltage measurements. Additionally,

we simulate outage scenarios by setting the admittance of one

or multiple branches to zero and solve the power flow equation

again.

For more robust evaluation, each experiment is conducted us-

ing Monte Carlo simulation with over 1000 replications, where

the voltage sequence in (1) is generated by concatenating λ − 1
records from pre-outage data and 50 records from post-outage

data (50 samples are sufficient since the detection delay in our

experiments is lower than 50). The outage time λ is randomly

generated using a geometric distribution Geo(ρ). This geometric

prior is based on our belief that outages can occur independently

at any time step, with an equal probability of ρ. We choose

ρ = 0.04 in our experiments, which is derived from historical

outage data, indicating that each time step has a 4% chance

of experiencing a line outage. Another threshold α is set at

10−2, selected through a cross-validation process that balances

statistical analysis with operational needs, ensuring optimal

trade-off between detection delay and false alarm rates in the

aforementioned grid systems.

After obtaining voltage data from MATLAB, the remaining

calculations for outage detection in Algorithm 1 are imple-

mented using Python 3.8 on a personal computer with a Windows
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Fig. 4. The comparison of trade-off functions of distinguishing unit-variance
Gaussian distributions using DLC data and IEEE 8-bus system simulation.

10 operating system, an Intel Core i7 processor clocked at

2.2 GHz, and 16 GB of RAM.

Baseline methods: In the following experiments, the optimal

Bayesian detection procedure with access to raw data (Λ(x1:N ))
is referred to as benchmark. It should have optimal detection

performance but has no privacy guarantee. The same detection

statistic applied to encrypted data (Λ(x̃1:N )) is referred to as

privacy-only since it degrades the detection performance. To

remove the performance degradation, our proposed method

(Λ̃γ(x̃
1:N )) in Algorithm 1 is referred to as PLOD. The noise

level σ2
e and the variance scaling factor γ will be further

pointed out. We also compare with recent techniques dealing

with privacy concerns, including a private approximation of

the change-point maximum likelihood estimation MLE [21], an

uncertain likelihood ratio ULR proposed to replace the original

detection statistic [35], a sanitize channel method SCM [26]

that adheres to the information leakage requirement [36], and

a private stream aggregation PSA [37] approach to meet the

differential privacy.

A. Visualization of Privacy Guarantee

Before evaluating the detection performance of our privacy-

aware approach, we first visualize how much privacy is pre-

served when using DLC data in the IEEE 8-bus system.

To achieve so, we plot the corresponding trade-off function

within the Gaussian differential privacy framework [30] against

baseline trade-off functions. Specifically, as established in

Theorem 1, applying our privacy-protection scheme (8) yields

G ∆
σe

- Gaussian differential privacy, and produces correspond-

ing trade-off functions T (N (0, 1),N ( ∆
σe

, 1)) at varying lev-

els of noise variance σ2
e . Therefore, we can compare these

trade-off functions with baseline trade-off functions Gµ :=
T (N (0, 1),N (µ, 1)), µ = 0.5, 1, 3. This comparison can tell us

the difficulty an attacker would encounter in compromising user

privacy under our scheme, quantitatively demonstrating how

much privacy is preserved.

Fig. 5. The logarithm of various detection statistics in IEEE 123-bus system.
λ = 30, σ2

e = 4e−2, γ = 1, and α = 1%.

The results are shown in Fig. 4, highlighting our method’s

capability to obscure the distinction between encrypted and raw

data, significantly enhancing privacy. With a noise variance of

σ2
e = 5e− 3, differentiating the encrypted data x̃

1:N from the

raw data x1:N for an attacker becomes more difficult than distin-

guishing distributionsN (0, 1) andN (3, 1). Increasing the noise

variance to σ2
e = 4e− 2 further intensifies this effect, elevating

privacy protection to levels where distinguishing encrypted from

genuine data becomes more challenging than differentiating

between N (0, 1) and N (1, 1).

B. Evaluation of the the Noise-Mitigation Design

Despite the privacy protection shown in Fig. 4, applying the

randomizing scheme (8) will inevitably lead to a decline in de-

tection performance (see Section III-B). Within this subsection,

we assess whether our proposed detection procedure PLOD can

counteract this performance degradation.

To achieve so, we compare between the optimal detection

statistic (2), which lacks privacy protection, and our innovative

statistic (12) with privacy protection. Their logarithmic values

are illustrated in Fig. 5, where the simulation is performed

in the IEEE 123-bus system selected specifically to examine

the efficacy of PLOD in a large-scale network. As we can

see, the optimal statistic Λ(x1:N ) (red) increases dramatically

after the outage time λ = 30, resulting in a near-zero detection

delay. The same statistic applied to encrypted data Λ(x̃1:N )
has a privacy guarantee but postpones the detection (blue). Our

proposed statistic Λ̃(x̃1:N ) (green) in (12) closely approximates

the optimal statistic, thus effectively mitigating the postponing

effect while still preserving privacy. This evaluation elucidates

our method’s dual achievement of maintaining privacy without

compromising the timeliness and accuracy of outage detection.

Meanwhile, it is worth noting that Fig. 5 serves to validate the

conclusions drawn in Lemma 2.
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Fig. 6. The logarithm of detection statistics with different variance scaling
factor γ in the IEEE 123-bus system. λ = 30, σ2

e = 4e−2, and α = 1%.

C. Evaluation of the Variance-Reduction Design

From Fig. 5, even though our proposed statistic (green) serves

to approximate the optimal statistic (red) to mitigate the detec-

tion performance degradation, there is still a gap due to the effect

of Jensen’s inequality. This subsection evaluates PLOD’s ability

to fill this gap. Specifically, our newly designed approach in

(15) aims to reduce the statistic’s variance, ultimately narrowing

this gap. To confirm this improvement, we plot the logarithm

of statistic Λ̃γ(x̃
1:N ) as defined in (15) for various choices

of the variance scaling factor γ, and compare them with the

optimal statistic Λ(x1:N ). The results are shown in Fig. 6. As

γ increases from 1 to 3, Λ̃γ(x̃
1:N ) progressively converges to

a more precise approximation of the optimal statistic Λ(x1:N ).
This convergence is a consequence of the reduced variance in

the detection statistic, as shown in two zoomed-in illustrations

in Fig. 6. This reduction in variance effectively constrains the

error gap in Jensen’s inequality, as elaborated in Lemma 3.

Our findings illustrate that by applying the adjusted statistic

from (15) within PLOD, it’s possible to closely mimic the

optimal statistic derived from raw data x
1:N , even when only

encrypted data x̃
1:N is available. This indicates PLOD’s po-

tential to not just protect customer data privacy but also to

sustain detection performance. The effectiveness of the detection

performance in real-life outage dataset will be further explored

in the following subsection.

D. Evaluation of Detection Performance: Average Detection

Delay and False Alarm Rate

After verifying the effects of our various designs within the

proposed method PLOD, we finally evaluate its overall detection

performance when using encrypted data x̃
1:N . This evaluation

covers both the average detection delay and the false alarm rate,

aiming to provide a holistic view of the system’s performance

under privacy-preserving conditions. To validate the asymptotic

optimality of the detection delay in Theorem 1, we plot in

the upper half of Fig. 7 the average delay E(τ − λ|τ ≥ λ)
divided by | logα| and the theoretical lower bound − log(1−
ρ) +DKL(f ||g). This comparison highlights that the detection

delay of both the benchmark and the PLOD method can achieve

Fig. 7. The average detection delay (upper half) and the false alarm rate (lower
half) in the IEEE 123-bus system. σ2

e = 4e−2, γ = 1, and α = 1%.

the optimal lower bound asymptotically. Notably, this asymp-

totic convergence contrasts with the higher delays observed in

privacy-only approach, emphasizing the effectiveness of PLOD

in balancing privacy with quick detection response.

The detection rule in Theorem 1 is also expected to restrict

the false alarm rate below a predefined threshold α. To confirm

this, we analyze the empirical false alarm rate P (τ < λ) in

comparison to α, as depicted in the lower section of Fig. 7.

Notably, our method parallels the benchmark performance,

consistently keeping the empirical false alarm rate beneath α,

particularly as α approaches zero. This outcome underscores

the efficiency of our algorithm in detecting line outages with

minimal false alarms, demonstrating its reliability even with the

utilization of encrypted data, thereby reinforcing its practical

applicability in maintaining system security while adhering to

privacy constraints.

To evaluate PLOD across diverse grid systems under various

outage configurations, we present a comprehensive summary

of results in Table III. Throughout these experiments, we con-

duct comparisons not only with the benchmark method but

also with two recent relevant techniques that provide privacy-

aware approaches for detecting distribution changes. These

methods are referred to as MLE (Maximum Likelihood Esti-

mation) [21], ULR (Utility Learning-based Rule) [35], SCM

(Sanitize Channel-based Method) [26], and PSA (Private Stream

Aggregation) [37]. To ensure consistency in the level of differen-

tial privacy guarantees across all methods, we apply noise with

a variance of σ2
e = 4e− 2 to the raw data.

Table III showcases PLOD’s ability to handle a variety of out-

age scenarios in both mesh (loopy) networks and radial networks

with DERs penetration. Of particular note is the performance of

PLOD when no access to raw data is available, as it demonstrates

shorter detection delays and lower false alarm rates compared

to MLE and ULR. In contrast to the benchmark method, which

has access to raw data and therefore carries a privacy risk,

PLOD exhibits only marginal degradation in detection delay

and false alarm rate. Moreover, Table I reveals two significant

observations. Firstly, in cases where multiple branches undergo
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TABLE III
PERFORMANCE COMPARISON ON VARIOUS SYSTEMS

TABLE IV
PERFORMANCE COMPARISON AT DIFFERENT NOISE LEVEL IN THE IEEE 8-BUS

SYSTEM

simultaneous outages, the average detection delay tends to be

shorter. This can be attributed to the increased Kullback-Leibler

(KL) distance between the distributions g and f when multiple

lines are disconnected. Secondly, in radial networks with a

greater number of simulated DERs, the detection of line outages

takes more time, primarily due to the smaller KL distance

between g and f in such scenarios.

To assess detection performance under varying levels of

noise introduced to the raw data, we present Table IV, which

includes results for both the average detection delay (ADD)

and false alarm rate (FAR). To ensure consistency in the level

of differential privacy guarantees across all methods, we argue

that implementing noise with a variance of σ2
e = 9e− 2 in the

PLOD, MLE, and ULR techniques achieves a privacy level

comparable to that provided by the SCM and SPA methods.

The analysis from Table IV reveals that our method surpasses

other privacy-preserving techniques in terms of both average

detection delay and false alarm rate. This superior performance

is attributed to our unique statistical design in (12) and (15),

which effectively mitigates the negative effects associated with

the noise from privacy protection mechanisms. The results also

reveal other method’s characteristics. For example, the PSA

method typically results in a longer detection delay and a lower

false alarm rate. This could be due to its reliance on data

aggregation techniques for privacy protection, which, while

safeguarding data privacy, may inadvertently delay the timely

detection of outages. Nonetheless, for operators prioritizing ro-

bust and consistent detection over detection speed, PSA presents

a viable option.

E. Outage Branch Localization With Accuracy

Upon detecting an outage, we proceed to compute the condi-

tional correlation between buses to pinpoint the out-of-service

branch, as outlined in Theorem 2. Illustrated in Fig. 8, the

absolute conditional correlation of every bus pair within the

loopy 8-bus system is depicted both before and after a line outage

at branch 4-7. Notably, the value within the red box transitions

from a non-zero value pre-outage (ρ−47 > δmax) to near zero

post-outage (ρ+47 < δmin), leading to the accurate localization of

the out-of-service branch at 4-7, consistent with the ground truth.

Furthermore, Fig. 8(d) demonstrates that the localization method

using the covariance matrix through PLOD with randomized

data remains as effective as the benchmark scenario. This ef-

fectiveness likely stems from the fact that adding independent

noise to the voltage data does not disrupt the condition where the

voltage data of the two buses become conditionally independent

following the line outage.

Table V displays the localization accuracy rates obtained from

1,000 experiments. It is clear that the proposed method PLOD

consistently achieves a localization accuracy of over 92%, even

when operating in privacy-aware scenarios where voltage data

is subjected to randomized noise.

F. Sensitivity Analysis to Data Coverage

In the distribution grid, access to the data of every bus is not

guaranteed for several reasons. For instance, rural areas may
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Fig. 8. Absolute conditional correlation of the loopy 8-bus system before and
after an outage in branches 4–7. We choose δmax = 0.5 and δmin = 0.1.

TABLE V
OUTAGE LOCALIZATION ACCURACY (%) IN ALGORITHM 1

lack smart meter installations, technical issues can result in data

loss, and privacy concerns might lead to data refusal. Thus, an

analysis of incomplete smart meter data coverage is necessary

to assess PLOD’s real-world detection performance.

Based on records from [38], over 107 million smart meters

have covered 75% of U.S. households by 2021. Therefore,

we simulate the scenario where a fraction of buses (ranging

from 75% to 100%) are randomly selected to provide voltage

measurements for outage detection. The outcomes, illustrated

in Fig. 9, reveal how much additional Average Detection Delay

(ADD) and False Alarm Rate (FAR) is introduced at various

coverage ratios in comparison to 100% data coverage. For

instance, when applying PLOD with variance scaling factors

γ equal to 1, 2, and 3, a 75% data coverage ratio necessitates an

additional 2.5, 1.9, and 1.7 data samples, respectively, to detect

the outage. Simultaneously, the false alarm rate increases by

9.5%, 11.9%, and 13.1%, respectively. It’s noteworthy that when

data coverage is not complete, increasing the variance scaling

factor γ involves a trade-off: it reduces detection delay at the

expense of introducing more false alarms.

Fig. 9. Increased ADD (unit) and FAR (%) under different ratios of data
coverage compared to 100% coverage in 123-bus loopy system α = 1%.

We note that our method doesn’t rely on the assumption of

100% sensor data coverage across the grid. In reality, power

line outages tend to impact a majority of buses in the system,

with the extent of impact varying based on their proximity to

the outage location. It allows us to identify outages by detecting

distribution changes in sensor data from some, rather than all,

buses located near the source of the outage.

V. CONCLUSION

In this paper, we introduce a robust privacy-aware method

for detecting line outages in the distribution grids, effectively

striking a balance between preserving privacy and maintaining

detection performance. Our contributions encompass several

key aspects. First, we ensure the direct protection of raw data

through a randomization scheme embedded within the differ-

ential privacy framework. Second, we quantify the trade-off

between privacy protection and detection performance, consid-

ering factors such as detection delay and false alarm rate. Lastly,

we introduce a novel detection statistic that mitigates the adverse

impact of encrypted data on detection performance, and in some

cases, entirely eliminates it.

To validate our contributions, we conduct extensive experi-

ments across a range of network systems, comprising 17 dis-

tinct outage configurations. The empirical results underscore

the success of our privacy-aware outage detection methodology,

achieving a harmonious blend of privacy preservation and de-

tection performance that is comparable to the optimal case.

We also highlight that the proposed privacy-preserving tech-

nique, developed for outage detection, exhibits a versatile appli-

cability extending beyond its initial scope to encompass various

types of fault and anomaly detection challenges within power

systems. This adaptability stems from the method’s foundational

approach to data protection, ensuring that sensitive information

remains secure while still enabling the accurate identification of

many types of anomalies. Consequently, whether addressing line

faults, equipment malfunctions, or unexpected fluctuations in

power distribution networks, our technique maintains its effec-

tiveness, offering a robust solution for enhancing grid resilience

and reliability without compromising customer privacy.
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