

1 Preferential Occurrence of Fast Radio Bursts in Massive Star- 2 Forming Galaxies

3 Kritti Sharma^{1,*}, Vikram Ravi^{1,2}, Liam Connor¹, Casey Law^{1,2}, Stella Koch Ocker^{1,3},
4 Myles Sherman¹, Nikita Kosogorov^{1,2}, Jakob Faber¹, Gregg Hallinan^{1,2}, Charlie
5 Harnach^{1,2}, Greg Hellbourg^{1,2}, Rick Hobbs^{1,2}, David Hodge^{1,2}, Mark Hodges^{1,2},
6 James Lamb^{1,2}, Paul Rasmussen^{1,2}, Jean Somalwar¹, Sander Weinreb¹, David
7 Woody^{1,2}, Joel Leja^{4,5,6}, Shreya Anand¹, Kaustav Kashyap Das¹, Yu-Jing Qin¹,
8 Sam Rose¹, Dillon Z. Dong^{1,7}, Jessie Miller¹, Yuhan Yao^{1,8}

9 ¹*Cahill Center for Astronomy and Astrophysics, MC 249-17 California Institute of Technology,
10 Pasadena, CA 91125, USA.*

11 ²*Owens Valley Radio Observatory, California Institute of Technology, Big Pine, CA 93513, USA.*

12 ³*The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101, USA.*

13 ⁴*Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park,
14 PA 16802, USA.*

15 ⁵*Institute for Computational & Data Sciences, The Pennsylvania State University, University Park,
16 PA, USA.*

17 ⁶*Institute for Gravitation & the Cosmos, The Pennsylvania State University, University Park, PA
18 16802, USA.*

19 ⁷*National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM, 87801, USA.*

20 ⁸*Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA.*

21 *Correspondence email: kritti@caltech.edu

22 **Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky
23 Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars,
24 as the sources¹, as evidenced by FRB-like bursts from a galactic magnetar^{2,3}, and the star-
25 forming nature of FRB host galaxies^{4,5}. However, the processes that produce FRB sources
26 remain unknown⁶. Although galactic magnetars are often linked to core-collapse super-
27 novae (CCSNe)⁷, it's uncertain what determines which supernovae result in magnetars.
28 The galactic environments of FRB sources can be harnessed to probe their progenitors.
29 Here, we present the stellar population properties of 30 FRB host galaxies discovered by
30 the Deep Synoptic Array. Our analysis shows a significant deficit of low-mass FRB hosts
31 compared to the occurrence of star-formation in the universe, implying that FRBs are a bi-
32 ased tracer of star-formation, preferentially selecting massive star-forming galaxies. This
33 bias may be driven by galaxy metallicity, which is positively correlated with stellar mass⁸.
34 Metal-rich environments may favor the formation of magnetar progenitors through stellar
35 mergers^{9,10}, as higher metallicity stars are less compact and more likely to fill their Roche
36 lobes, leading to unstable mass transfer. Although massive stars do not have convective**

37 **interiors to generate strong magnetic fields by dynamo**¹¹, merger remnants are thought
38 to have the requisite internal magnetic-field strengths to result in magnetars^{11,12}. The
39 preferential occurrence of FRBs in massive star-forming galaxies suggests that CCSN of
40 merger remnants preferentially forms magnetars.

41 The Deep Synoptic Array (DSA-110), situated at the Owens Valley Radio Observatory (OVRO)
42 near Bishop, California, is a radio interferometer built for simultaneous FRB discovery and arcsec-
43 ond -scale localization. The DSA-110 underwent science commissioning and performed observa-
44 tions between February 2022 and March 2024 with a coherent core of 48 4.65 m antennas used for
45 FRB searching combined with 15 outrigger antennas (maximum baseline of 2.5 km) used for local-
46 ization. Each antenna is equipped with a dual-polarization ambient-temperature 1.28–1.53 GHz
47 receiver. A custom low-noise amplifier design delivering 7 K noise temperature¹³ was central
48 to achieving sensitivity to 1.9 Jy ms FRBs (for millisecond-duration events). A real-time search
49 for FRBs with 0.262 ms sampling and a dispersion-measure (DM) range up to 1500 pc cm⁻³ was
50 conducted. Localization accuracies of better than ± 2 arcsecond (90% confidence) were achieved
51 by comparison with coeval observations of standard astrometric reference sources (see Methods
52 and Supplementary Fig. 1, 2). During these observations, 60 FRBs were successfully localized.

53 In this work, we limit our analysis to FRBs discovered up to November 2023 which have redshifts
54 for all hosts detectable down to $r = 23.5$ mag, to ensure a uniform sample selection. The follow-
55 up of a subset of FRBs discovered post November 2023 is presented in our companion paper
56 (Connor et al.). Among the 42 FRBs localized by DSA-110 up to November 2023, 30 had a
57 potential host-galaxy candidate in the vicinity of the FRB localization (within 10''), detectable at
58 ≤ 23.5 mag in archival r-band data from PanSTARRS1 (PS1)¹⁴ or the Beijing-Arizona Sky Survey
59 (BASS) from the Dark Energy Survey¹⁵. We complement these archival data with deeper ground-
60 based optical or near-infrared imaging observations with the Wafer-Scale Imager for Prime focus
61 (WaSP)¹⁶ and the Wide Field Infrared Camera (WIRC)¹⁷ instruments, mounted on the 200-inch
62 Hale Telescope at the Palomar Observatory in our follow-up campaigns (see Methods). We use
63 the Bayesian Probabilistic Association of Transients to their Hosts (PATH) formalism¹⁸ on the
64 deepest available imaging data to estimate the association probability (P_{host}) of the most likely
65 host galaxy (see Methods). The PATH analysis finds secure host associations for 26 FRBs with
66 $P_{\text{host}} \geq 90\%$ (see Extended Data Fig. 1). Of the remaining four events, FRBs 20221027A and
67 20220330D have two possible hosts, one of which is favored by both the localizations and the
68 DMs (see Methods). FRB 20230216A is found at a large offset from the preferred host, which
69 lowers the association probability according to the chosen PATH setup, and the localization of
70 FRB 20220208A is confused by the presence of a faint (23.4 mag in J-band data, spectroscopic
71 redshift not available) alternative host. We further validate our host associations in Methods and
72 Supplementary Fig. 3, 4. We also discuss the hostless FRBs in Methods and Supplementary
73 Fig. 5. The imaging mosaic of 30 FRB hosts included in our sample is displayed in Fig. 1 (see

74 Supplementary Fig. 6 for labeled axes), and the discovery properties of the host galaxies are
75 tabulated in Extended Data Table 1. For all quantitative arguments in our work, we only consider
76 secure host associations with $P_{\text{host}} \geq 90\%$.

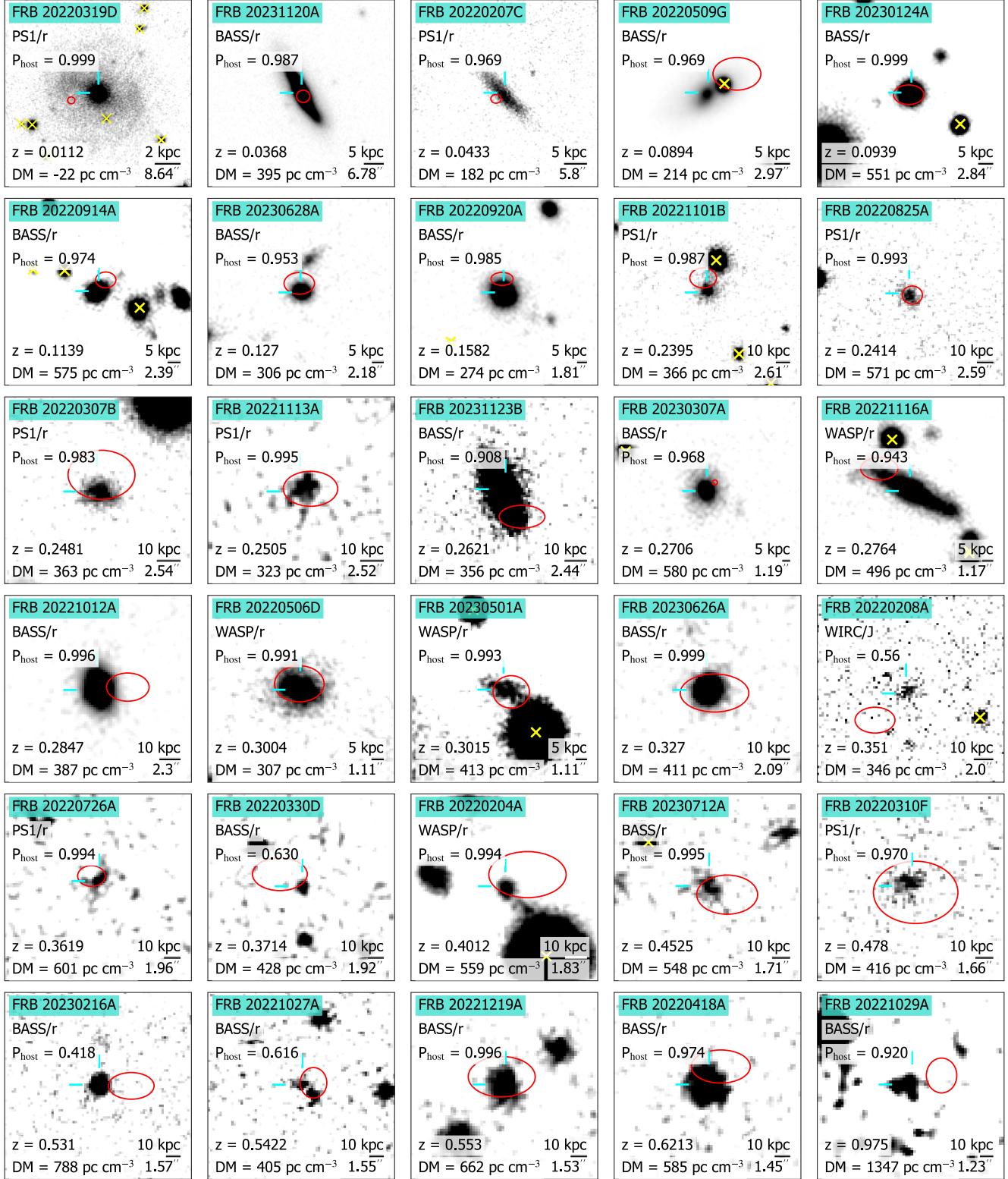
77 Having identified the most probable host galaxies, we obtained optical spectroscopy with the Low
78 Resolution Imaging Spectrometer (LRIS)¹⁹ on Keck-I, DEep Imaging Multi-Object Spectrograph
79 (DEIMOS)²⁰ on Keck-II at W. M. Keck Observatory and the Double Spectrograph (DBSP)²¹ on
80 the 200-inch Hale Telescope at Palomar Observatory (see Methods). The spectroscopic red-
81 shifts (z) and emission line fluxes are measured by jointly fitting the stellar continuum and nebular
82 emission using the penalized PiXel-Fitting (pPXF) software²² (see Supplementary Fig. 7 and Ta-
83 ble 1). Next, we model the spectral energy distributions (SEDs) of the FRB host galaxies using the
84 Prospector software²³, where we jointly forward model the observed spectra, archival photome-
85 try from PS1, BASS, Mayall z-band Legacy Survey (MzLS)²⁴, Sloan Digital Sky Survey (SDSS)²⁵,
86 Two Micron All Sky Survey (2MASS)²⁶, Wide-field Infrared Survey Explorer (WISE)²⁷, and Galaxy
87 Evolution Explorer (GALEX)²⁸ surveys and photometry of data obtained with WaSP and WIRC
88 instruments (see Supplementary Table 2). We model the galaxies with a seven-component non-
89 parametric star-formation history (SFH), a two-component dust attenuation model, a flexible dust
90 attenuation curve, dust emission, and a self-consistent nebular emission model (see Methods and
91 Supplementary Table 3 for a summary of model parameters). Using standard empirical optical
92 emission-line diagnostic diagrams^{29,30} (see Extended Data Fig. 2) and WISE color-color galaxy
93 classifications³¹ (see Extended Data Fig. 3), we find that the dominant ionization mechanism
94 in FRB host galaxies is consistent with the locus of star-forming galaxies (late-type spirals) and
95 emission line galaxies with active galactic nuclei (AGN, either LINERs or Seyferts) (see Methods
96 and Supplementary Table 4). Therefore, we also include the emission from dust-enshrouded AGN
97 in our SED modeling. The derived properties from our SED fits (see Supplementary Fig. 8) and
98 constrained SFHs (see Supplementary Fig. 9) for FRB host galaxies are tabulated in Extended
99 Data Table 2 and their distributions are shown in Extended Data Fig. 4.

100 To contextualize FRB host galaxies within the broader framework of star-formation and stellar
101 mass in the universe, we compare them with the background galaxy population. In our compari-
102 son sample, alongside our 26 secure host associations, we include a complete literature sample
103 of 26 FRB hosts^{4,5} that adhere to our selection criteria of r-band magnitude ≤ 23.5 mag and
104 secure host association ($P_{\text{host}} \geq 90\%$). To address incompleteness inherent in magnitude-limited
105 galaxy surveys, we adopted a hybrid approach to simulate the complete background galaxy pop-
106 ulation. We sample the galaxy stellar masses, M_* , from the stellar mass function, $\Phi(M_*, z)$ ³² and
107 then compute the corresponding star-formation rate (SFR) using the star-forming main sequence,
108 $\text{SFR}(M_*, z)$ ³³ and the distribution of galaxies in $\log M_* - \log \text{SFR} - z$ space³³ (see Methods and
109 Supplementary Fig. 10, 11). We compare the stellar mass distribution of FRB hosts with the

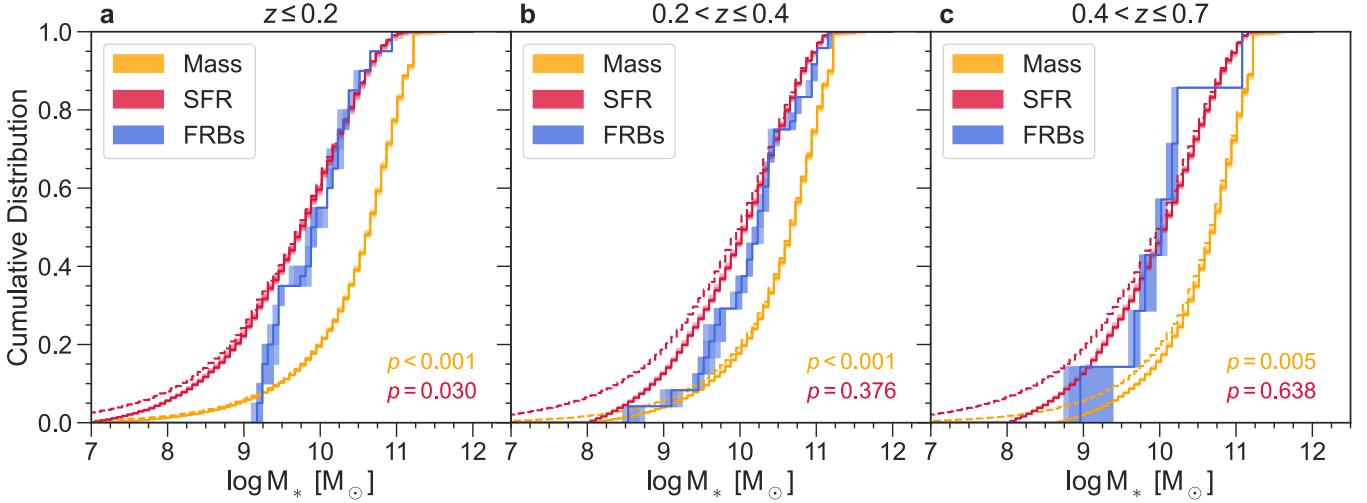
110 distributions of stellar mass of background galaxies selected by two methods – weighted by SFR
111 and weighted by stellar mass. We split the FRB comparison sample into three redshift bins to
112 mitigate biases from the evolution of the background galaxy population: $z \leq 0.2$ with 20 FRBs,
113 $0.2 < z \leq 0.4$ with 24 FRBs, and $0.4 < z \leq 0.7$ with 7 FRBs. The lowest redshift bin edge was
114 chosen based on our capability to confidently identify low mass galaxies, given the optical imaging
115 depths (see Methods). Notably, FRB 20221029A was excluded from this analysis due to its soli-
116 tary occurrence at $z \sim 1$, rendering meaningful comparisons challenging at high redshifts owing
117 to limited statistical power. We perform one-sample Kolmogorov-Smirnov (KS) tests between the
118 sample of FRB stellar masses, and the background distributions corrected for optical selection
119 effect of r-band magnitude ≤ 23.5 mag (see Methods). The results are shown in Fig. 2.

120 We find that the sample of FRB host-galaxy stellar masses is inconsistent with the stellar mass
121 distribution in the universe, but broadly consistent with the distribution of galaxies selected ac-
122 cording to SFR. In all three redshift bins, the KS-test p-value from the comparison between FRBs
123 and galaxies selected according to stellar mass is < 0.001 (i.e., $> 3\sigma$ significance). Conversely,
124 the comparison with the stellar mass distribution of galaxies selected according to SFR yields
125 p-values greater than 0.01 in all the three redshift bins. This similarity to galaxies selected by SFR
126 is further emphasized by the close alignment of FRB host galaxies with the star-forming main
127 sequence of galaxies⁴³⁴ (see Extended Data Fig. 5). However, for $z \leq 0.2$, despite our sensitivity
128 to optically faint galaxies, we observe a notable scarcity of FRBs in the galaxies with $\log M_* \lesssim 9$
129 (see Fig. 2a). This is indicated by the low associated KS-test result of $p = 0.030$; we note that
130 the KS-test is not optimal to quantify the significance of this claim. Radio selection effects are not
131 expected to contribute to this scarcity of low-mass FRB hosts at $z \leq 0.2$ ³⁵ (see Methods).

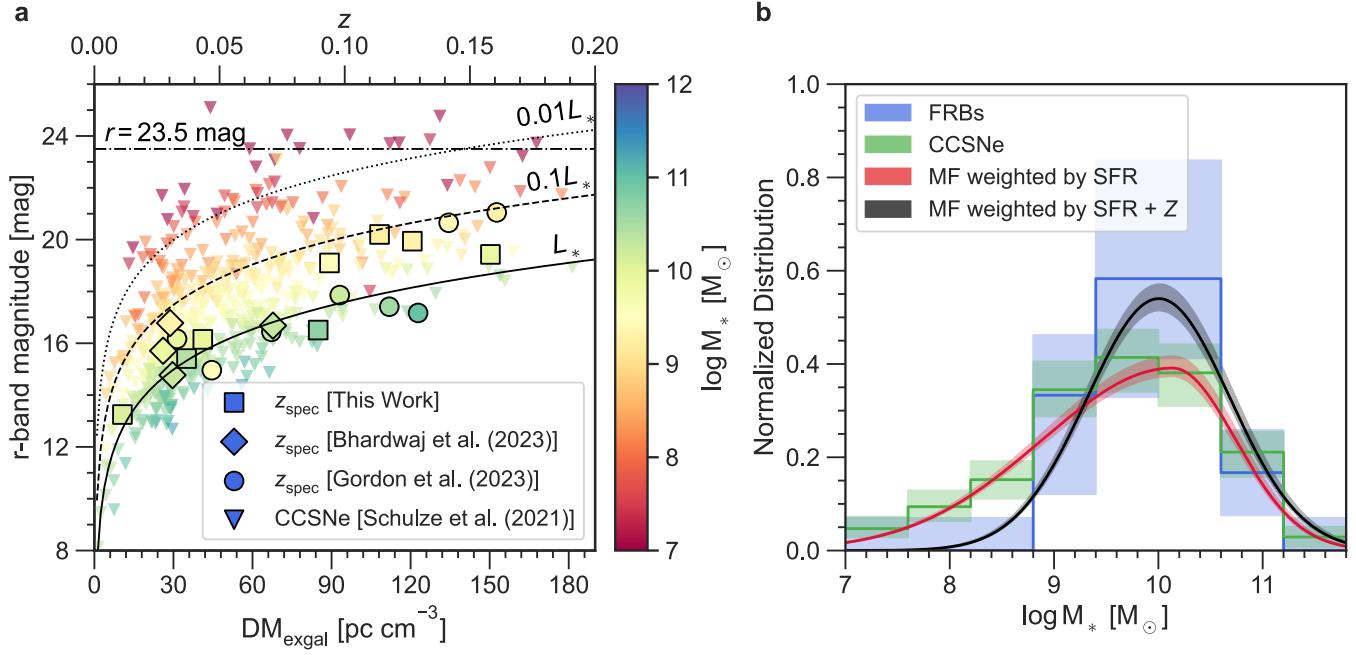
132 The dearth of $z \leq 0.2$ low-mass FRB host galaxies becomes even clearer when we compare
133 them to host galaxies of the most prevalent class of CCSNe (Type II), which trace the occurrence
134 of star-formation in the universe, with no dependence on other galaxy properties³⁶ (see Fig. 3b).
135 We show the distribution of stellar masses of Type II CCSNe and FRB host galaxies in the r-band
136 magnitude and redshift space in Fig. 3a. FRB hosts trace the locus of $0.1 - 1 L_*$ background
137 galaxies, and are more massive than typical Type II CCSNe host galaxies. To contextualize the
138 rarity of the occurrence of Type II CCSNe in only massive galaxies on the scale of our $z \leq 0.2$
139 FRB sample size (N_{FRB}), we perform 1,000 Monte-Carlo simulations where we sample N_{FRB}
140 galaxy stellar masses from the Type II CCSNe host distributions. We compute the fraction of
141 these samples with all stellar masses above a particular stellar mass $\log M_*$ (see Extended Data
142 Fig. 6). We find that for our complete local universe FRB sample of size $N_{\text{FRB}} = 20$, the probability
143 that all Type II CCSNe occur in galaxies more massive than $10^9 M_\odot$ is $p = 0.0014$ ($\sim 3.2\sigma$ signifi-
144 cance). If FRBs were an unbiased tracer of star-formation in the universe, then this quantifies the
145 significance of the deficit of low-mass FRB hosts.


146 We have shown that FRBs trace the occurrence of star-formation in the universe in preferentially
147 massive galaxies. This could point to an environment-dependent production efficiency of FRB
148 sources. The primary driver of changes in stellar population properties with galaxy mass is the
149 galaxy mass-metallicity relation⁸. Increased metallicity affects the evolution of massive stars by
150 line-driven stellar winds, where the mass-loss rate positively correlates with metallicity. Certain
151 classes of supernova preferentially occur in low-metallicity environments³⁷, such as those that
152 produce long-duration gamma-ray bursts (IGRBs) and superluminous supernovae (SLSNe)³⁶. We
153 quantify the effect of metallicity on the selection of FRB host galaxies by constructing background
154 stellar mass distributions weighted by SFR together with a metallicity-dependent FRB source for-
155 mation efficiency $\rho = (1 + (-M/M_c)^\beta)^{-1}$. Here, M_c is a characteristic cut-off mass that regulates
156 the production of FRB sources, ceasing their occurrence in lower stellar mass (and hence, lower
157 metallicity) galaxies and β regulates the strength of the metallicity cutoff. The best-fitting model
158 suggests a strong cutoff with $\log M_c = 8.86$ (see Fig. 3b), thus implying that the formation effi-
159 ciency of FRB sources is suppressed at oxygen abundances below $12 + \log \text{O/H} \sim 8.09^{+0.60}_{-0.51}$,
160 corresponding to a cutoff metallicity of $\log(Z/Z_\odot) = -0.60^{+0.60}_{-0.51}$. We determine this threshold
161 metallicity by employing the galaxy mass-metallicity relation⁸, which is incorporated as a prior
162 in our SED modeling methodology (see Methods).

163 We have interpreted the preferential occurrence of FRBs in massive star-forming galaxies as a
164 preference for high metallicity environments, as inferred from the positive correlation between
165 galaxy stellar mass and metallicity⁸. Magnetars are known to be potential FRB sources¹ and
166 the preferential occurrence of FRBs in higher metallicity environments may be expected in the
167 scenario¹ that FRBs are emitted by magnetars formed in a sub-population of CCSNe. First, for
168 single-star progenitors, elevated metallicity would favor the formation of neutron star remnants
169 over black holes due to increased mass-loss in higher metallicity stars³⁸. Further, stellar merg-
170 ers have been theoretically demonstrated as the origin of magnetic blue straggler stars, which
171 undergo rejuvenation by burning the accreted fuel from their companions, and are believed to
172 be potential progenitors of magnetars due to the amplified magnetic fields of the merger rem-
173 nants¹². The increase in the metallicity of intermediate-mass progenitor stars evolving in such
174 binaries, which eventually culminate in CCSNe, increases the proportion of CCSNe occurring
175 through this delayed binary evolution channel^{9,10}. The heightened efficiency of CCSN formation
176 through binary interactions in high-metallicity settings likely stems from the association between
177 metallicity and stellar size¹⁰. A star with higher metallicity is less compact as it evolves beyond the
178 main sequence, thereby affecting the progression of mass transfer in binary systems³⁹. At high
179 metallicity, stars in binaries are more likely to evolve to fill their Roche lobes, leading to unstable
180 mass transfer and stellar mergers that potentially produce magnetar progenitors. A stellar-merger
181 formation channel for magnetar progenitors may indeed be observationally favored for the Galactic
182 magnetar population⁴⁰.


183 We broaden our understanding of FRB sources by comparing the distributions of host-normalized
184 projected galactocentric offsets and host galaxy stellar mass with various classes of transients
185 (see Fig. 4 and Methods for a description of the literature samples used). We limit our compar-
186 isons to the local universe ($z \leq 0.2$) to potentially mitigate any unknown incompleteness that
187 might be inherent to other transients at high redshifts. We also show the distribution for the entire
188 redshift range in Extended Data Fig. 7 and 8. We correct the galaxy stellar mass distributions for
189 the redshift evolution and perform two-sample KS-tests to quantify the potential similarities (see
190 Methods and Supplementary Table 5). In contrast to FRBs, the SLSNe and IGRBs predominantly
191 manifest in the central star-forming regions of low-mass galaxies characterized by low metallic-
192 ity and high specific SFR, thus underscoring the dissimilarities with FRBs. Although the offset
193 distribution of ultra-luminous X-ray (ULX) sources is consistent with FRBs ($p_{KS} = 0.09$), they
194 demonstrate a preference for occurrence in massive galaxies and trace the background galaxy
195 population selected by stellar mass, not star-formation. The stellar mass distribution of FRB host
196 galaxies is comparable to those of other classes of transient that trace star-formation, including
197 Type II CCSNe, Type Ia supernovae, and short-duration GRBs (sGRBs), but with the deficit of
198 low-mass galaxies.

199 Some differences are apparent in the offset distributions of FRBs and classes of transients that
200 trace star formation. Although FRBs are systematically found at larger offsets than Type II CCSNe
201 and Type Ia supernovae, but smaller offsets than sGRBs, the host-normalized offsets are consis-
202 tent with these three transient classes, owing to massive FRB host galaxies and the positive galaxy
203 stellar mass - radius correlation. The larger absolute offset values may be a consequence of the
204 radio-observation bias, where bursts originating closer to the center of star-forming spiral galaxies
205 are over-dispersed and exhibit higher scattering timescales³⁵, thus preventing their detection. If
206 FRBs were to trace the locations of star-formation within their host galaxies, this radio selection
207 bias may shift the FRB offset distribution to lower offsets by up to ~ 1 kpc⁴¹. On the other hand,
208 the larger FRB offsets may be indicative of the long delays in CCSNe involving interacting binaries,
209 which would imply that the CCSNe occur significantly displaced from the birth sites⁹. For example,
210 if the typical stellar motions at the birth site are ~ 10 km s⁻¹ and the delay-time is 75 Myr, then the
211 system would have drifted by 750 pc before the explosion. Alternatively, the larger offsets of FRBs
212 may also arise from the contribution of non-CCSNe formation channels, such as the accretion-
213 or merger-induced collapse (AIC/MIC) of massive white dwarfs and binary neutron star mergers,
214 towards FRB sources. The existence of these FRB source formation channels is indicated by
215 the globular cluster FRB source 20201120E^{42,43}, and early DSA-110 results³⁴. To conclude, the
216 larger offsets of FRBs may either be due to delayed pre-CCSNe stellar merger magnetar formation
217 scenario, or due to contributions from non-CCSN formation channels. However, we note that the
218 current data shows no evidence for the existence of multiple statistically different FRB host galaxy
219 populations (see Methods).


220 Further insight into source formation channels may be gained through a detailed analysis of the
221 distribution of FRB delay-times with respect to the formation of their stellar progenitors⁴⁴. Non-
222 CCSN channels (e.g., AIC/MIC of white dwarfs) are expected to have extended delay-time distri-
223 butions of several Gyr⁴⁵, whereas CCSNe of isolated stars occur on $\sim 3-50$ Myr stellar lifetimes,
224 and the CCSNe of stellar-merger remnants are expected to occur promptly within $\sim 50-250$ Myr
225 of the birth of binary components⁹. The preferential occurrence of FRBs in massive star-forming
226 galaxies is a constraint that applies to any model for FRB source formation. The influence of
227 metallicity on the formation of FRB sources can be independently corroborated using forthcom-
228 ing surveys. Given that star-formation in the early universe predominantly occurs within low-mass
229 galaxies, and galaxies of the same stellar mass at higher redshifts are less chemically enriched⁴⁶,
230 the preference of FRBs for metal-rich environments implies a suppression of the proposed FRB
231 source formation channel at high redshifts. However, scenarios proposed for the repeating FRB
232 121102⁴⁷, which is found in a low-metallicity dwarf star-forming galaxy, may become more com-
233 mon at high redshifts. If most FRBs are emitted by magnetars like those observed in the Milky
234 Way, our results favor a scenario where magnetars are generally formed from the CCSN of stellar
235 merger remnants in interacting binaries.

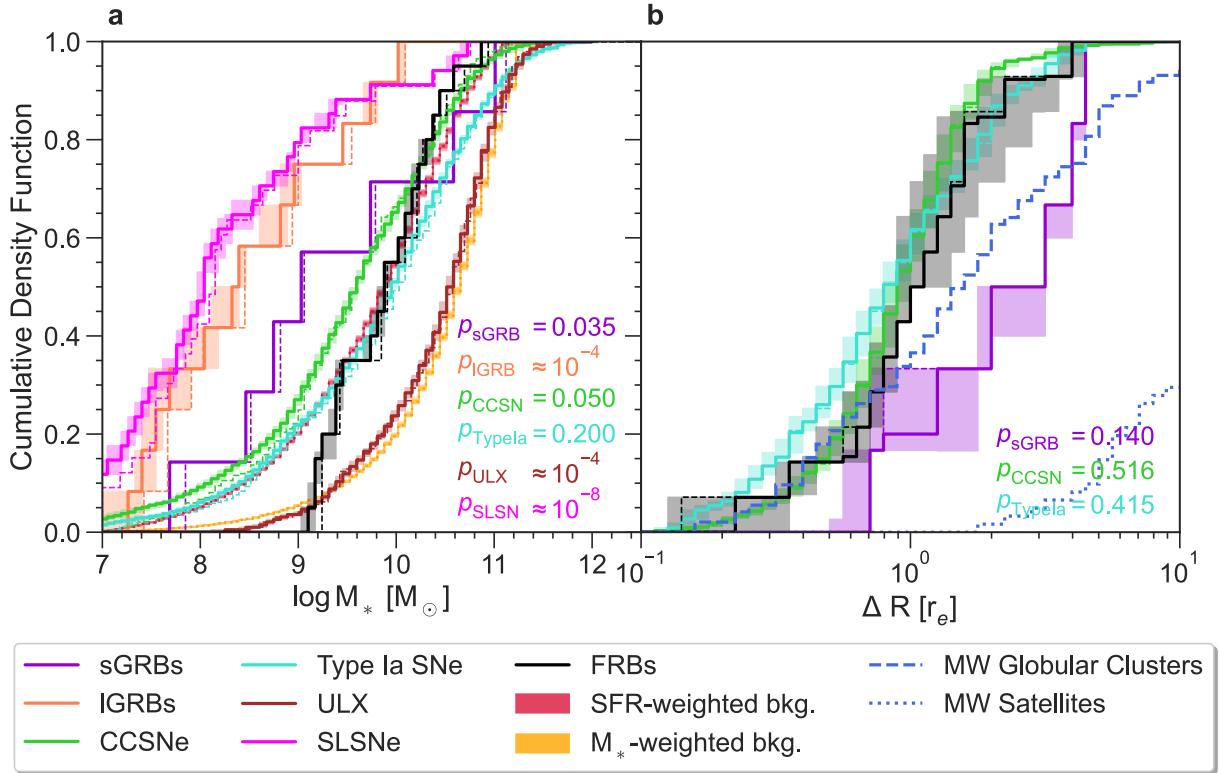

Fig.1: Optical/IR imaging of the fields of DSA-110 discovered FRBs. The images are centered on the PATH-identified host galaxies (cyan crosshairs), and panels are arranged in increasing order of redshifts (see Extended Data Table 1). The 90% confidence FRB localization regions are marked as red ellipses and stars are marked as yellow crosses. These images reach 3σ depths of $\gtrsim 23 - 24$ mag and are oriented with north up and east to the left. The imaging instrument, association probability, extragalactic DM, redshift, and physical scales are marked on the panels for reference. All images were smoothed with a Gaussian kernel of $\sigma = 0''.15$ to improve visibility.

Fig.2: Comparison of FRB host galaxies with the distribution of galaxies in the Universe selected by stellar mass and star-formation. We show cumulative distributions of galaxy stellar mass of samples selected in three ways: the occurrence of FRBs (blue), SFR (red), and stellar mass (orange). We correct the background stellar mass distributions for optical selection effects by employing an r-band magnitude threshold of 23.5 mag (solid lines, see Methods). For reference, we also plot the distributions without this selection (dashed lines). The shaded regions represent the $1, 2, 3\sigma$ bands. Along with 26 secure host associations of DSA-110 FRBs from this work, we also include the Gordon et al. ⁴ and Bhardwaj et al. ⁵ sample of FRB host galaxies that follow our selection criterion. The distribution of FRB-host stellar masses is inconsistent with the distribution of background galaxies selected by stellar mass in all redshift bins with $> 3\sigma$ confidence. The p-value computed using the KS-test for similarity with the distribution of background galaxies selected by SFR (red) is $\gtrsim 0.01$ in all redshift bins, indicating that the occurrence of FRBs is correlated with the occurrence of star-formation. However, despite our sensitivity, there is a deficit of low-mass FRB hosts in $z \leq 0.2$ bin.

Fig.3: Investigation of whether FRBs trace star-formation in the universe using the $z \leq 0.2$ sample. The panel **a** shows the distribution of the r-band magnitude and redshift of FRB hosts published in this work (squares), alongside Gordon et al.⁴ (circles) and Bhardwaj et al.⁵ (diamonds) FRB host galaxies samples with r-band magnitude $\lesssim 23.5$ mag (dashdot line) and $z \leq 0.2$. On comparing with the redshift evolution of galaxies with characteristic luminosities L_* (solid line), $0.1L_*$ (dashed line), and $0.01L_*$ (dotted line) , we find that the FRB hosts trace $\sim 0.1\text{--}1L_*$ galaxies. A comparison with the host galaxies of Type II CCSNe³⁶ (triangles) reveals that FRB host galaxies are relatively massive. This result is also evident in panel **b**, where we show the host galaxy mass distributions (solid lines) with Poisson errors (shaded regions). Since Type II CCSNe (green) are unbiased tracers of star-formation in the universe, the SFR-weighted galaxy mass distribution (red) provides an adequate description of their host mass distribution. On the other hand, the host galaxies of FRBs (blue) show a clear dearth of low-mass galaxies. This absence can be accounted for by adding a metallicity-dependent FRB progenitor formation efficiency (black), which is stifled in environments with oxygen abundances, $12+\log(\text{O/H}) \leq 8.09^{+0.60}_{-0.51}$, corresponding to a cutoff metallicity of $\log(Z/Z_\odot) = -0.60^{+0.60}_{-0.51}$.

Fig.4: Comparison of FRB host galaxy properties with those of various transient classes at $z \leq 0.2$. We compare host galaxy stellar mass (panel a) and host-normalized galactocentric offset (panel b) distributions of FRBs with Type Ia supernovae, ultra-luminous X-ray sources (ULX), superluminous supernovae (SLSNe), core-collapse supernovae (CCSNe), short-duration gamma ray bursts (sGRBs) and long-duration gamma ray bursts (IGRBs) (see Methods for a description of the comparison samples). For comparisons, we only use our secure FRB host associations, together with the literature sample of FRB host galaxies and offset measurements (see Methods). We correct stellar masses for redshift evolution⁴¹ (see Methods). The measured values (dashed lines), median (thick lines) and 1σ errors (shaded regions) computed using 1,000 Monte Carlo samples of measurements reported in literature are plotted. For reference, we also plot the background population selected by stellar mass (orange) and SFR (red) in panel a (see Fig. 2) and offsets of the satellites and globular clusters of Milky Way (MW) in panel b.

236 References

238 [1] Zhang, B. The physics of fast radio bursts. *Reviews of Modern Physics* **95**, 035005, DOI:
239 <https://dx.doi.org/10.1103/RevModPhys.95.035005> (2023). 2212.03972

240 [2] CHIME/FRB Collaboration *et al.* A bright millisecond-duration radio burst from a Galactic
241 magnetar. *Nature* **587**, 54–58, DOI: <https://dx.doi.org/10.1038/s41586-020-2863-y> (2020). 2005.
242 10324

243 [3] Bochenek, C. D. *et al.* A fast radio burst associated with a Galactic magnetar. *Nature* **587**,
244 59–62, DOI: <https://dx.doi.org/10.1038/s41586-020-2872-x> (2020). 2005.10828

245 [4] Gordon, A. C. *et al.* The Demographics, Stellar Populations, and Star Formation Histories of
246 Fast Radio Burst Host Galaxies: Implications for the Progenitors. *The Astrophysical Journal*
247 **954**, 80, DOI: <https://dx.doi.org/10.3847/1538-4357/ace5aa> (2023). 2302.05465

248 [5] Bhardwaj, M. *et al.* Host Galaxies for Four Nearby CHIME/FRB Sources and the Local
249 Universe FRB Host Galaxy Population. *arXiv e-prints* arXiv:2310.10018, DOI: <https://dx.doi.org/10.48550/arXiv.2310.10018> (2023). 2310.10018

250 [6] Popov, S. B. High magnetic field neutron stars and magnetars in binary systems. In Troja, E. & Baring, M. G. (eds.) *Neutron Star Astrophysics at the Crossroads: Magnetars and the Multimessenger Revolution*, vol. 363, 61–71, DOI: <https://dx.doi.org/10.1017/S1743921322000308> (2023). 2201.07507

251 [7] Kaspi, V. M. & Beloborodov, A. M. Magnetars. *Annual Review of Astron and Astrophys* **55**,
252 261–301, DOI: <https://dx.doi.org/10.1146/annurev-astro-081915-023329> (2017). 1703.00068

253 [8] Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. *Monthly Notices of the Royal Astronomical Society* **362**, 41–58, DOI: <https://dx.doi.org/10.1111/j.1365-2966.2005.09321.x> (2005). astro-ph/0506539

254 [9] Zapartas, E. *et al.* Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction. *Astronomy and Astrophysics* **601**, A29, DOI: <https://dx.doi.org/10.1051/0004-6361/201629685> (2017). 1701.07032

255 [10] Zapartas, E. *et al.* The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: the role of binary interaction. *Astronomy and Astrophysics* **631**, A5, DOI: <https://dx.doi.org/10.1051/0004-6361/201935854> (2019). 1907.06687

256 [11] Frost, A. J. *et al.* A magnetic massive star has experienced a stellar merger. *Science* **384**,
257 214–217, DOI: <https://dx.doi.org/10.1126/science.adg7700> (2024). 2404.10167

269 [12] Schneider, F. R. N. *et al.* Stellar mergers as the origin of magnetic massive stars. *Nature*
270 **574**, 211–214, DOI: <https://dx.doi.org/10.1038/s41586-019-1621-5> (2019). 1910.14058.

271 [13] Weinreb, S. & Shi, J. Low Noise Amplifier With 7-K Noise at 1.4 GHz and 25 °C.
272 *IEEE Transactions on Microwave Theory Techniques* **69**, 2345–2351, DOI: <https://dx.doi.org/10.1109/TMTT.2021.3061459> (2021).

273

274 [14] Chambers, K. C. *et al.* The Pan-STARRS1 Surveys. *arXiv e-prints* arXiv:1612.05560 (2016).
275 1612.05560.

276 [15] Zou, H. *et al.* Project Overview of the Beijing-Arizona Sky Survey. *Publications of the ASP*
277 **129**, 064101, DOI: <https://dx.doi.org/10.1088/1538-3873/aa65ba> (2017). 1702.03653.

278 [16] Nikzad, S. *et al.* High-efficiency UV/optical/NIR detectors for large aperture telescopes
279 and UV explorer missions: development of and field observations with delta-doped ar-
280 rays. *Journal of Astronomical Telescopes, Instruments, and Systems* **3**, 036002, DOI: <https://dx.doi.org/10.1117/1.JATIS.3.3.036002> (2017). 1612.04734.

281

282 [17] Wilson, J. C. *et al.* A Wide-Field Infrared Camera for the Palomar 200-inch Telescope.
283 In Iye, M. & Moorwood, A. F. M. (eds.) *Instrument Design and Performance for Optical/Infrared Ground-based Telescopes*, vol.
284 4841 of *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*,
285 451–458, DOI: <https://dx.doi.org/10.1117/12.460336> (2003).

286

287 [18] Aggarwal, K. *et al.* Probabilistic Association of Transients to their Hosts (PATH).
288 *The Astrophysical Journal* **911**, 95, DOI: <https://dx.doi.org/10.3847/1538-4357/abe8d2> (2021).
289 2102.10627.

290 [19] Oke, J. B. *et al.* The Keck Low-Resolution Imaging Spectrometer. *Publications of the ASP*
291 **107**, 375, DOI: <https://dx.doi.org/10.1086/133562> (1995).

292 [20] Faber, S. M. *et al.* The DEIMOS spectrograph for the Keck II Tele-
293 scope: integration and testing. In Iye, M. & Moorwood, A. F. M. (eds.) *Instrument Design and Performance for Optical/Infrared Ground-based Telescopes*, vol.
294 4841 of *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*,
295 1657–1669, DOI: <https://dx.doi.org/10.1117/12.460346> (2003).

296

297 [21] Oke, J. B. & Gunn, J. E. An Efficient Low Resolution and Moderate Resolution Spectro-
298 graph for the Hale Telescope. *Publications of the ASP* **94**, 586, DOI: <https://dx.doi.org/10.1086/131027> (1982).

299

300 [22] Cappellari, M. Full spectrum fitting with photometry in PPXF: stellar population versus
301 dynamical masses, non-parametric star formation history and metallicity for 3200 LEGA-C

302 galaxies at redshift $z \approx 0.8$. *Monthly Notices of the Royal Astronomical Society* **526**, 3273–
303 3300, DOI: <https://dx.doi.org/10.1093/mnras/stad2597> (2023). 2208.14974.

304 [23] Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar Population Inference with
305 Prospector. *The Astrophysical Journal Supplement Series* **254**, 22, DOI: <https://dx.doi.org/10.3847/1538-4365/abef67> (2021). 2012.01426

306

307 [24] Dey, A. *et al.* Overview of the DESI Legacy Imaging Surveys. *The Astronomical Journal* **157**,
308 168, DOI: <https://dx.doi.org/10.3847/1538-3881/ab089d/10.48550/arXiv.1804.08657> (2019). 1804.
309 08657

310 [25] Alam, S. *et al.* The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey:
311 Final Data from SDSS-III. *The Astrophysical Journal Supplement Series* **219**, 12, DOI: <https://dx.doi.org/10.1088/0067-0049/219/1/12> (2015). 1501.00963

312

313 [26] Skrutskie, M. F. *et al.* The Two Micron All Sky Survey (2MASS). *The Astronomical Journal*
314 **131**, 1163–1183, DOI: <https://dx.doi.org/10.1086/498708> (2006).

315 [27] Cutri, R. M. *et al.* VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013).
316 *VizieR Online Data Catalog* II/328 (2021).

317 [28] Martin, D. C. *et al.* The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission.
318 *The Astrophysical Journal Letters* **619**, L1–L6, DOI: <https://dx.doi.org/10.1086/426387> (2005).
319 astro-ph/0411302

320 [29] Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line
321 spectra of extragalactic objects. *Publications of the ASP* **93**, 5–19, DOI: <https://dx.doi.org/10.1086/130766> (1981).

322

323 [30] Kewley, L. J., Groves, B., Kauffmann, G. & Heckman, T. The host galaxies and classification
324 of active galactic nuclei. *Monthly Notices of the Royal Astronomical Society* **372**, 961–976,
325 DOI: <https://dx.doi.org/10.1111/j.1365-2966.2006.10859.x> (2006). astro-ph/0605681

326

327 [31] Wright, E. L. *et al.* The Wide-field Infrared Survey Explorer (WISE): Mission Description and
328 Initial On-orbit Performance. *The Astronomical Journal* **140**, 1868–1881, DOI: <https://dx.doi.org/10.1088/0004-6256/140/6/1868> (2010). 1008.0031

329

330 [32] Leja, J. *et al.* A New Census of the $0.2 < z < 3.0$ Universe. I. The Stellar Mass Function.
331 *The Astrophysical Journal* **893**, 111, DOI: <https://dx.doi.org/10.3847/1538-4357/ab7e27> (2020).
332 1910.04168

333

334 [33] Leja, J. *et al.* A New Census of the $0.2 < z < 3.0$ Universe. II. The Star-forming Sequence.
335 *The Astrophysical Journal* **936**, 165, DOI: <https://dx.doi.org/10.3847/1538-4357/ac887d> (2022).
336 2110.04314

335 [34] Law, C. J. *et al.* Deep Synoptic Array Science: First FRB and Host Galaxy Catalog.
336 *The Astrophysical Journal* **967**, 29, DOI: <https://dx.doi.org/10.3847/1538-4357/ad3736> (2024).
337 [2307.03344].

338 [35] Ocker, S. K., Cordes, J. M., Chatterjee, S. & Gorsuch, M. R. Radio Scattering Horizons
339 for Galactic and Extragalactic Transients. *The Astrophysical Journal* **934**, 71, DOI: <https://dx.doi.org/10.3847/1538-4357/ac75ba> (2022). [2203.16716].

340

341 [36] Schulze, S. *et al.* The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sam-
342 ple. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse
343 Supernovae. *The Astrophysical Journal Supplement Series* **255**, 29, DOI: <https://dx.doi.org/10.3847/1538-4365/abff5e> (2021). [2008.05988].

344

345 [37] Taggart, K. & Perley, D. A. Core-collapse, superluminous, and gamma-ray burst supernova
346 host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies.
347 *Monthly Notices of the Royal Astronomical Society* **503**, 3931–3952, DOI: <https://dx.doi.org/10.1093/mnras/stab174> (2021). [1911.09112].

348

349 [38] Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How Massive Single
350 Stars End Their Life. *The Astrophysical Journal* **591**, 288–300, DOI: <https://dx.doi.org/10.1086/375341> (2003). [astro-ph/0212469].

351

352 [39] Klencki, J., Nelemans, G., Istrate, A. G. & Pols, O. Massive donors in interacting binaries:
353 the effect of metallicity. *Astronomy and Astrophysics* **638**, A55, DOI: <https://dx.doi.org/10.1051/0004-6361/202037694> (2020). [2004.00628].

354

355 [40] Sherman, M. B. *et al.* Searching for magnetar binaries disrupted by core-collapse su-
356 pernovae. *Monthly Notices of the Royal Astronomical Society* **531**, 2379–2414, DOI: <https://dx.doi.org/10.1093/mnras/stae1289> (2024). [2404.05135].

357

358 [41] Seebeck, J. *et al.* The Effects of Selection Biases on the Analysis of Localised Fast Ra-
359 dio Bursts. *arXiv e-prints* arXiv:2112.07639, DOI: <https://dx.doi.org/10.48550/arXiv.2112.07639>
360 (2021). [2112.07639].

361

362 [42] Bhardwaj, M. *et al.* A Nearby Repeating Fast Radio Burst in the Direction of M81.
363 *The Astrophysical Journal Letters* **910**, L18, DOI: <https://dx.doi.org/10.3847/2041-8213/abeaa6>
364 (2021). [2103.01295].

365

366 [43] Kremer, K., Piro, A. L. & Li, D. Dynamical Formation Channels for Fast Radio Bursts in
367 Globular Clusters. *The Astrophysical Journal Letters* **917**, L11, DOI: <https://dx.doi.org/10.3847/2041-8213/ac13a010.48550/arXiv.2107.03394> (2021). [2107.03394].

367 [44] Sharma, K. et al. Deep Synoptic Array Science: A Massive Elliptical Host Among Two Galaxy-
368 cluster Fast Radio Bursts. *The Astrophysical Journal* **950**, 175, DOI: <https://dx.doi.org/10.3847/1538-4357/accf1d> (2023). 2302.14782.

370 [45] Tauris, T. M., Sanyal, D., Yoon, S. C. & Langer, N. Evolution towards and beyond
371 accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars.
372 *Astronomy and Astrophysics* **558**, A39, DOI: <https://dx.doi.org/10.1051/0004-6361/201321662>
373 (2013). 1308.4887.

374 [46] Ma, X. et al. The origin and evolution of the galaxy mass-metallicity relation.
375 *Monthly Notices of the Royal Astronomical Society* **456**, 2140–2156, DOI: <https://dx.doi.org/10.1093/mnras/stv2659> (2016). 1504.02097.

377 [47] Margalit, B. & Metzger, B. D. A Concordance Picture of FRB 121102 as a Flaring Magnetar
378 Embedded in a Magnetized Ion-Electron Wind Nebula. *The Astrophysical Journal Letters*
379 **868**, L4, DOI: <https://dx.doi.org/10.3847/2041-8213/aaedad> (2018). 1808.09969.

380 [48] Zhang, Z. J., Yan, K., Li, C. M., Zhang, G. Q. & Wang, F. Y. Intergalactic Medium Dispersion
381 Measures of Fast Radio Bursts Estimated from IllustrisTNG Simulation and Their Cosmologi-
382 cal Applications. *The Astrophysical Journal* **906**, 49, DOI: <https://dx.doi.org/10.3847/1538-4357/abceb9> (2021). 2011.14494.

384 [49] Fong, W.-f. et al. Short GRB Host Galaxies. I. Photometric and Spectroscopic Catalogs, Host
385 Associations, and Galactocentric Offsets. *The Astrophysical Journal* **940**, 56, DOI: <https://dx.doi.org/10.3847/1538-4357/ac91d010.48550/arXiv.2206.01763> (2022). 2206.01763