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Colorectal cancer (CRC) is a highly prevalent and lethal cancer worldwide.
Approximately 45% of CRC patients harbor a gain-in-function mutation in
KRAS. KRAS is the most frequently mutated oncogene accounting for
approximately 25% of all human cancers. Gene mutations in KRAS cause
constitutive activation of the KRAS protein and MAPK/AKT signaling, resulting
in unregulated proliferation and survival of cancer cells and other aspects of
malignant transformation, progression, and metastasis. While KRAS has long
been considered undruggable, the FDA recently approved two direct acting
KRAS inhibitors, Sotorasib and Adagrasib, that covalently bind and inactivate
KRASC2C. Both drugs showed efficacy for patients with non-small cell lung
cancer (NSCLC) diagnosed with a KRASS™2< mutation, but for reasons not well
understood, were considerably less efficacious for CRC patients diagnosed with
the same mutation. Thus, it is imperative to understand the basis for resistance to
KRASS2< inhibitors, which will likely be the same limitations for other mutant
specific KRAS inhibitors in development. This review provides an update on
clinical trials involving CRC patients treated with KRASS2C inhibitors as a
monotherapy or combined with other drugs. Mechanisms that contribute to
resistance to KRASCC inhibitors and the development of novel RAS inhibitors
with potential to escape such mechanisms of resistance are also discussed.
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Introduction

Colorectal cancer (CRC) is the third most prevalent cancer and the second leading
cause of cancer related mortality worldwide, according to Global Cancer Statistics 2018 (1).
CRC is recognized as a heterogenous malignancy with a complex mutational landscape in
which over 45% of cases harbor KRAS mutations but with additional mutations, for
example, in components of the APC/B-catenin pathway. While only 3% of CRC patients
are diagnosed with the KRASS** mutation, this type of CRC is often associated with rapid
progression and shorter overall survival rate compared to patients diagnosed with non-
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KRASC®!2¢ mutations (2-4). KRASY!2¢ mutations result from a
glycine-to-cysteine substitution at position 12 of KRAS protein
leading to constitutive activation of KRAS (5).

Under physiological conditions, wild-type (WT) RAS functions
enzymatically as a GTPase to regulate normal cell proliferation, for
example, in the colonic mucosa to regenerate surface epithelium.
RAS is often described as a molecular switch that is “off” when
bound to GDP or “on” when GTP is bound, whereby “off” and “on”
refer to different conformations of RAS that regulate its capacity to
bind effectors such as RAF or PI3K that activate downstream
signaling. Upstream of RAS, endogenous mitogens such as
epidermal growth factor (EGF), that are enriched in the tumor
microenvironment, bind to cell surface receptor tyrosine kinases
(RTKs) and activate a cascade of events, starting with removal of
GDP from WT RAS isozymes by guanine nucleotide exchange
factors (GEFs). When in a nucleotide-free conformation, high
intracellular concentrations of GTP rapidly bind and switch RAS
“on”, to stimulate MAPK/AKT signaling, culminating in the
transcription of genes that encode for proteins essential for
normal cell turnover and replacement (6). RAS mutations result
in appreciably slower rates of GDP/GTP exchange caused by
preventing GTPase activating proteins (GAPs) from removing
GTP to turn RAS “off”, resulting in hyperactivation of
downstream MAPK/AKT signaling (6). WT RAS isozymes, NRAS
and HRAS, are co-expressed in KRAS mutant cancer cells whereby
their proliferation can be driven not only by mutant KRAS, but also
by extracellular mitogens that activate WT RAS isozymes.
Nonetheless, KRASS'? inhibitors have been shown to have
exquisite selectively in inhibiting the growth of tumors harboring
KRASS2C and, consequently, would not be expected to affect the
growth of tumors with other KRAS mutations (or other RAS
isozymes). However, unchecked activity from WT RAS isozymes
might contribute to intrinsic or acquired resistance. Further,
because KRASS2C mutations only account for 3% of CRC cases,
there is an urgent medical need to treat CRC patients harboring
other KRAS mutations, including patients with G12D (30.1%),
G12V (24.2%), G12R (2.1%), or other (19.6%) mutations (7).
Thus, a pan-KRAS inhibitor would be expected to have broader
use for CRC and other RAS driven cancers given its additional
potential to circumvent resistance from unchecked activity of WT
RAS isozymes. Nonetheless, both approaches would require a
mechanism to selectively inhibit mutant RAS in cancer cells
without affecting the activity of WT RAS in normal cells, essential
for turnover and replacement in rapidly dividing tissues.

RAS signaling

As a membrane bound small guanine nucleotide binding
protein, RAS can readily switch between an active GTP-bound
state and an inactive GDP-bound conformation under normal
physiological conditions. This cascade is modulated by RTKs
whereby dimerization is induced by ligand binding. Receptor
dimerization leads to the activation of intrinsic tyrosine kinase
and autophosphorylation of tyrosine residues. The phosphorylated
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receptor interacts with GRB2 (growth factor receptor bound protein
2) and GEFs such as SOS (Son of Sevenless), that catalyze GDP/
GTP exchange, leading to the active conformation of RAS. RAS-
GTP activates several pathways such as RAF-MEK-ERK and PI3K-
AKT-mTOR promoting cell proliferation and survival. In normal
cells, RAS is switched off by GAPs inducing GTP hydrolysis and
forming inactive RAS-GDP. But this is impeded in cancer cells by
the inability of GAPs to bind RAS, thereby reducing the hydrolysis
of GTP, favoring RAS to be in a constitutively activated
conformation (8).

The KRAS protein has a molecular weight of 21 KD and is
composed of six beta strands and 5 alpha helices, which form 2
major domains, referred to as the G-domain and the C-terminal (9).
The G-domain, which is highly conserved contains the switch I and
switch II loops that are responsible for GDP/GTP exchange (10).

Figure 1 illustrates the RAS signaling pathways. The upstream
and downstream signaling mechanism of RAS are depicted in
Figures 2, 3 respectively.

SGlZC

Development of KRA inhibitors

for colorectal cancer

Until recently, KRAS was considered undruggable as the
protein apparently lacked deep pockets for small molecule
binding, apart from the nucleotide binding domain (13). In
addition, the high affinity of KRAS for GTP makes it difficult to
develop competitive small molecule inhibitors to block GTP
activation of RAS. Despite these challenges, multiple attempts
have been made to discover small molecules to directly inhibit
RAS. Early clinical trials of Sotorasib (the first FDA approved
KRASS'?C inhibitor) in CRC patients with a KRAS®'*® mutation
resulted in lack of response as well as in non-small cell lung cancer
(NSCLC) patients with the same mutation. For example, Sotorasib
monotherapy in CRC KRASS'*C patients previously treated with
fluoropyrimidine, oxaliplatin, and irinotecan, demonstrated 9.7%
objective response rate (ORR) in 62 patients (14). Another study
evaluated the effect of Adagrasib (the second FDA approved
KRAS®'?C inhibitor) in 43 CRC patients in KRYSTAL-1
(NCT03785249) trial (Table 1) which demonstrated 19% response
rates (15). The reasons underlying the lower response to the drugs
in CRC targeting G12C may be the rapid development of treatment
related adaptive signaling resistance as these tumors undergo
significant rebound in ERK phosphorylation (16). Another
hypothesis for this contradictory response is the presence of
higher levels of upstream receptor tyrosine phosphorylation
compared to NSCLC, specifically in EGFR (16). Thus,
combination therapies with small molecule KRAS inhibitors and
anti-EGFR monoclonal antibodies have gained traction recently. In
line with this, CodeBreak 101 (NCT04185883) reported an overall
survival of 30% in 40 metastatic CRC patients (Table 1) treated with
Panitumumab and Sotorasib combination therapy (17). Similarly,
Adagrasib in combination with Cetuximab demonstrated an ORR
of 46% compared to Adagrasib monotherapy with ORR of
19% (18).
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Extracellular

FIGURE 1

RAS signaling is versatile as it involves numerous cellular functions. The key RAS effector pathway is the mitogen-activated protein kinase (MAPK),
Raf-MEK-ERK pathway (11). Reproduced here from Oncotarget (Ruth Nussinov et al.,, 2014) under Creative Commons Attribution license.

Mechanisms of resistance to
KRASSC inhibitors

The limited response of CRC patients to KRAS** inhibitors
may be attributed to multiple mechanisms of resistance, both
upstream and downstream of KRAS as well as co-lateral pathways

Nature Reviews | Cancer

FIGURE 2

Signaling upstream of RAS (12). The RAS activation is controlled by
the cycle of hydrolysis of bound GTP, catalyzed by GTPase
activating proteins and the replacement of bound GDP with fresh
GTP, which is catalyzed by guanine nucleotide exchange factors.
Reproduced here from Nature Reviews Cancer (Julian Downward
2003) under Creative Commons Attribution license.
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(e.g., Wnt/B-catenin) that can compensate for the effects of a
mutant specific KRAS inhibitor. In addition, co-occurring
mutations such as G13D, R68M, and A59S/T confer resistance
selectively to Sotorasib, while Q99L alteration is selective to
Adagrasib (19). The most common X96D/S mutation confers
strongest resistance to both drugs (20). A frequently identified
mechanism of resistance that diminishes the therapeutic efficacy
of KRAS inhibitors is the induction of bypass MAPK signaling to
overcome KRAS blockade. Initial studies revealed significant
suppression of negative regulators of MAPK signaling and that
ERK dependent signaling is reactivated to bypass KRASS!'2“
treatment. Further insights into resistance mechanism suggest
that only the cells with KRAS®**“ in the inactive confirmation
are strongly inhibited by novel KRASS'?“ inhibitors. This leads to
non-uniform rates of inactive to active KRAS®'*“ cycling.
Subsequently, these cells with KRAS®'?“ preferentially held in
active confirmation could be insensitive to treatment and could
mediate reactivation of MAPK signaling (21, 22).

Furthermore, CRC cells show early development of adaptive
resistance to KRASS'< inhibitors by rapid upregulation of p-MEK
and p-ERK and increased basal phosphorylation and activation of
EGFR. CRC cells respond to EGF stimulation by activating RAS-
MAPK signaling even in the presence of an activating KRAS®'*“
mutation, which contrasts with NSCLC cells. In line with this,
preclinical studies suggest that primary resistance to KRAS
inhibition is less likely, and the predominant issue appears to be
drug-induced (acquired) resistance. This contrasts with NSCLC
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FIGURE 3
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Signaling downstream of RAS (12). The main effector proteins with which RAS interacts, once in its active GTP-bound state, is shown. Reproduced
here from Nature Reviews Cancer (Julian Downward 2003) under Creative Commons Attribution license

where the key issue is primary (intrinsic) resistance. In summary,
EGFR specifically mediates adaptive resistance response in CRC
cells. Finally, resistance is also observed by induction of epithelial to
mesenchymal transition in conjunction with increased PI3K/AKT
signaling due to upregulated EGFR signaling and subsequently
leading to increased MAPK signaling via FGFR (23).

Thus, increased RTK signaling coupled with other mechanisms
such as increased GTP-bound KRAS®'*“ leads to tumor
progression and triggers further downstream signaling. Alternate
pathways such as Wnt/B-catenin signaling is activated interacting
with mutant KRAS signaling further promoting oncogenic signaling
and increased resistance (24).

Primary resistance also plays a role in lack of efficacy of KRAS
inhibitors driven by multiple mechanisms. This includes rapid
adaptive feedback RTK-RAS-MAPK reactivation signaling upon
deficit host immune system. The formation of active GTP-bound
KRASS'*C from non-uniform cycling between GTP-bound active
and GDP-bound inactive states driven by EGF and persistent
upstream RTK activity with signaling through alternative wild-
type RAS forms in CRC. The induction of EMT and disinhibition of
cell-cycle transition by co-occurring alterations in CDKN2A also
contribute to low efficacy of KRAS inhibitors. The differences in
pharmacokinetic properties of different KRAS inhibitors also
contribute to low efficacy of some of these inhibitors (25).

Early phase clinical trials of
KRASS< inhibitors

The first human phase 1 trial on Sotorasib at a daily dose of 960 mg
in 42 CRC patients (CodeBreak 100, NCT03600883) demonstrated
modest clinical activity (ORR of 7.1%) compared to NSCLC patients
with ORR of 32.3% (26). The phase 2 CodeBreak 100 trial with the
same dose of Sotorasib demonstrated an ORR of 9.7% in patients with
metastatic KRAS®'?“ mutant CRC with prior fluoropyrimidine,
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oxaliplatin, and irinotecan treatment (14). The KRYSTAL-1 phase 1/
2 trial (NCT03785249) investigating Adagrasib in patients previously
treated with chemotherapy or anti-PD1 showed ORR of 22% and
disease control rate (DCR) of 87% in 45 CRC patients (15).

Current clinical trials involving
KRASS2< inhibitors

There are 12 different KRASS'?“ inhibitors currently under
clinical investigation. In total, there are 76 entries for KRASE12¢
trials, out of which 39 were trials in CRC patients, while 33 were
trials involving lung cancer patients. (Two trials were excluded as
they are not specific to KRASS'*® mutant tumors, and 2 others were
excluded as they are only diagnostic studies).

Noteworthy, Novartis JDQ443 binds KRAS without involving
H95 residue and maintains activity among tumors with a dual
G12C and H95 KRAS mutation. This non-selectivity may reduce or
alleviate acquired resistance (27, 28). On a similar note, JNJ-
74699157 binds near the switch II pocket through a different
cysteine residue interaction and may also mitigate resistance (29).
More recently, a striking finding on Eli Lilly’s LY3537982,
demonstrated that this novel KRAS inhibitor in combination with
Cetuximab showed 45% ORR in 11 CRC patients (30). As would be

SS12€ inhibitors and inhibitors of

expected, combinations of KRA
other downstream components of RAS/MAPK pathways such as
BRAF or MEK offer promising approaches as well (31). Another
combination strategy was based on KRAS inhibition triggering pro-
inflammatory changes in the tumor microenvironment. This was
shown by combining anti-PD1 therapy and Sotorasib, which
demonstrated increased CD8+ T-cell infiltration in the tumor
microenvironment and promising efficacy (32).

Figure 4 shows the structure of KRAS surfaces targeted by
KRAS inhibitors. a) switch II pocket of KRASG12¢ bound to
AMG510 b) MRTX1133 with KRASG12D/GDP.
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TABLE 1 Summary of key clinical trials of KRASS'2€ inhibitors in CRC, advanced solid tumors, and NSCLC patients.

NUMBER
CLINICAL TRIAL OF PATIENTS INTERVENTION ORR (95% Cl) MEDIAN PFS (95% Cl)
NCT03600883
CodeBreak100 62 Sotorasib 9.7% 10.6 months
Phase IT
NCT04185883 CodeBreak 101 . .
Phase I 40 Sotorasib + Panitumumab 30% Not reported
NCT03785249 KRYSTAL-1
Phase I 43 Adagrasib 19% 5.6 months
NCT03785249 KRYSTAL-1
Phase [ 28 Adagrasib + Cetuximab 46% 6.9 months
NCT04613596 KRYSTAL-7 53 Adagrasib + Pembrolizumab 49% Not reported

Combination treatment strategies

Considering mechanisms of resistance upstream of RAS,
combined treatment of Sotorasib or Adagrasib with EGFR
inhibitors is currently being evaluated in clinical trials. Preclinical
studies reported that the EGRF inhibitor, Cetuximab, sensitizes
KRAS2 mutated CRC cell lines to Sotorasib, leading to sustained
downregulation of phosphorylated MEK and ERK proteins, causing
cell proliferation arrest and apoptosis (16). The KRYSTAL-1
(NCT03785249) trial conducted in 28 CRC patients reported
ORR of 46% and DCR of 100% in patients treated with
Cetuximab and Adagrasib (16).

CodeBreak 101 umbrella trial tested Sotorasib with inhibitors of
MEK, CDK4/6, mTOR, or VEGEFR in additional cohorts. Similarly,
KRYSTAL-1 trial is also exploring similar combination strategies.
Combinations of Sotorasib and the MEK inhibitor, Trametinib were
tested in 18 CRC patients with promising efficacy and safety (34).
Similarly, KRAS®'*“ inhibitors in combination with CDK4/6
inhibitors such as Palbociclib demonstrated significant

downregulation of KRAS pathway phosphorylation (35). Another
emerging strategy includes simultaneously targeting other
components of the KRAS pathway. One such target is the SHP2
which promotes KRAS signaling and CRC progression. SHP2
inhibition increases GDP-bound KRASS'*“ and shows synergism
with KRAS inhibitors in vitro (36, 37).

Ongoing phase 1 trials are actively progressing on novel SHP2
inhibitors such as TN0155, BBP-398 and RMC-4630 with plans to
test in combination with KRAS inhibitors (38-40). BI-3406, an
SOS1 inhibitor demonstrates increased response in combination
with Trametinib (20).

A phase 1b trial (NCT04449874) reported the activity of
Divarasib, a covalent KRAS®'?“ inhibitor (Table 2) that turns off
oncogenic signaling by irreversibly locking the protein in an
inactive state, and Cetuximab in 29 CRC patients with KRASS'*“
mutation. The ORR was 62.5% and median duration of response
was 6.9 months. This encouraging anti-tumor activity of the
combination therapy supports further investigation (41).
Strikingly, Divarasib is also shown to be 5 to 20 times more
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FIGURE 4
Structures of KRAS surfaces targeted by KRAS mutant inhibitors. a Switch-Il pocket (purple) of KRAS (G12C) bound to AMG510 (PDB: 60IM). b MRTX1133
with KRAS G12D/GDP (PDB: 7RPZ). (33) Reproduced here from Molecular Cancer (Weidong Zhang et al., 2022) under Creative Commons Attribution license.
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TABLE 2 A summary of registered trials listed on clinicaltrials.gov. as of
March 24, 2024.

Clinical candidate Clinical Sponsor
trial

BPI-421286 NCT05315180 Betta Pharmaceuticals
D3S-001 NCT05410145 D3 Bio (Wuxi) Co.
Jab-21822 NCT05002270 Jacobio Pharmaceuticals
JNJ-74699157 NCT04006301 Janssen
GFH925 NCT05756153  Zhejiang

Genfleet Therapeuticals
HBI-2438 NCT05485974 Huyabio International
JDQ443 NCT05445843 Novartis Pharmaceuticals
YL-15293 NCT05119933 Shanghai

Yingli Pharmaceutical
GDC-6036 NCT04449874 Genentech
MK-1084 NCT05067283 Merck Sharp & Dohme
LY3537982 NCT04956640 Eli Lilly and Company
HS-10370 NCT05367778 Jiangsu

Hansoh Pharmaceutical

potent and fifty times more selective than Sotorasib and
Adagrasib (42).

KRYSTAL-10 (NCT04793958) is a randomized phase 3 trial to
test Adagrasib (600mg BID) and Cetuximab (500mg) in patients
with KRAS®"*¢ metastatic CRC. This combination therapy is being
compared with standard chemotherapy receiving FOLFIRI
(leucovorin calcium (folinic acid), fluorouracil, and irinotecan
hydrochloride). Another phase 3 randomized trial NCT05198934
is testing Sotorasib and Panitumumab and comparing with Tipiracil
or Regorafenib is underway (Table 3) in previously treated
metastatic KRAS®!?® mutant CRC patients (43).

Other targets

BAY-293, an SOSI1 inhibitor exhibits synergistic activity when
combined with ARS-1620 in KRAS®'*“ mutant CRC cancer cell
lines proving that targeting the inactive GDP-bound form is a
promising approach for generating anti-RAS therapeutics. Another
novel SOS1 inhibitor BI-1701963 is currently under investigation as
a single agent or in combination with Trametinib (NCT04111458)
or Adagrasib (NCT04975256) (44, 45). Recently, BI-3406, another
SOSI inhibitor was demonstrated to be more potent and selective

TABLE 3 A summary of current clinical trials in patients with KRASG'2¢
mutant CRC listed on clinicaltrials.gov. as of March 24, 2024.

Trial Treatment Arms

CodeBreak 300 (NCT05198934)
phase IIT

Sotorasib + Panitumumab versus
Investigator’s choice

KRYSTAL-10 (NCT04793958)
phase IIT

Adagrasib + Cetuximab versus
Folfox/Folfiri
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for inhibiting SOS1, decreasing KRAS-GTP levels and suppressing
cancer cell proliferation (46). The tyrosine phosphorylation of
SHP2 recruits GRB2-SOS complex promoting RAS nucleotide
exchange acting as a scaffold protein. Currently, SHP2 inhibitors
have gained attention and several of them are in the early phase of
clinical trials. For example, RMC-4630 in combination with ERK
inhibitors L'Y3214996 is in phase 1 clinical trial for KRAS®'*“ CRC.
(NCT04916236). Another inhibitor, TN0155 is in phase 1b/2
clinical trial (NCT0469918) in combination with KRASC!2¢
inhibitor, JDQ443 in KRASS'?“ mutant CRC patients.

A phase 1 trial (NCT01085331) evaluated the effects of MEK
inhibitor Pimasertib combined with FOLFIRI as a second line
treatment of KRAS metastatic CRC. However, GI and skin
toxicity were reported with Pimasertib (47). A novel RAF dimer
inhibitor, Lifirefenib, demonstrated acceptable safety in phase 1
trials, but no activity was observed in KRAS mutant CRC patients
(48). Three enzymes engage in post-translational modifications of
KRAS which is the 1** step of membrane localization, FTase, RCE1
and (Isoprenylcysteine carboxymethyltransferase) ICMT.
Inhibitors of ICMT such as cysmethynil and UCM-1336 showed
potential to inhibit KRAS activity and impair the growth of KRAS
mutant cell lines (49). However, clinical data are not yet available in
patients with KRAS'*“ mutant CRC.

Current CRC treatment and limitations

The primary therapeutic strategy for resectable colorectal cancer
is surgical removal and in non-resectable CRC, the strategies include
chemotherapy, radiotherapy, and immunotherapy along with
combination therapies. However, these approaches do not come
without limitations such as relapse of acquired multi-drug
resistance CRC. Recently, immune checkpoint inhibitors, T cell
receptor alterations, cytokine therapy, RNA-based therapies such as
siRNA and miRNA have yielded promising results (50).

Radiotherapy

Two of the adjuvant radiotherapies, a short course and long
course are currently available, which are better options for treating
stage II and stage III CRC. However, acute toxicity rates are high
with long course radiotherapy. Decreased toxicity is observed with
new delivery methods such as intensity-modulated radiotherapy
(51, 52).

Chemotherapy

The commonly approved chemotherapy medications for stage
IIT and IV CRC include fluoropyrimidines (capecitabine,
Fluorouracil), topoisomerase I inhibitors (irinotecan, oxaliplatin)
and tri-fluridine/tipiracil). After surgery for CRC, adjuvant
fluoropyrimidine based chemotherapy is standard to reduce
tumor recurrence and increases survival rate (53). Topoisomerase
I inhibitor irinotecan and oxaliplatin are added to 5-flurouracil and
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folinic acid (leucovorin) as combination therapy regimens for
metastatic CRC (known as FLOFOX and FOLFIRI) or to
capecitabine (CAPOX). Regorafenib is an FDA approved
tyrokinase inhibitor targeting VEGF, platelet derived growth
factor, fibroblast growth factor in metastatic CRC (54).

Target specific treatment

Monoclonal antibodies such as Cetuximab, Panitumumab etc.
are epidermal growth factor receptor inhibitors, while Bevacizumab
and Ramucirumab target vascular epidermal growth factor and its
receptor respectively (55). Cetuximab and Panitumumab are FDA
approved first line treatment for CRC (56). CTLA-4 inhibition
could inhibit tumor progression by upregulating effector T cell
activity and suppressing regulatory T cells. FDA approved low dose
Ipilimumab in combination with Nivolumab is used for previously
treated microsatellite instability-high and deficient mismatch repair
metastatic CRC. Pembrolizumab and Nivolumab (PD1 inhibitors)
are also used in CRC (57).

Vaccines

Several clinical trials are conducted on introducing vaccines
against CRC. The tumor associated antigens that are targeted
include surviving, EGFR, VEGFRI etc. These vaccines could
activate local immune cells, releasing tumor antigens, increasing
T cells and dendritic cell infiltration to the site of action (58).

Thus, in summary every patient has a unique tumor
microenvironment, and individualized approaches to treating
CRC are needed. Although conventional cytotoxic drugs are the
first line of agents for CRC, their shortcomings include, toxicity and
drug resistance leading to recurrent CRC. In addition to these,
chemotherapy is associated with systemic toxicity, fever, stomatitis,
mucositis, leukopenia, and thrombocytopenia. New approaches are
emerging for treating CRC to overcome these drawbacks.

RAS PROTAC study

Despite the clinical success of KRASS'?“ inhibitors, acquired
resistance is the major drawback with these agents. RAS was
considered undruggable initially due to its insufficient binding
pockets. The 1°" half of the RAS protein is referred to as effector
lobe (residues 1-85) while the second half of the G-domain
(residues 86-166) is referred to as allosteric lobe. The exploration
of high affinity macromolecular binders against the effector lobe
potentially to inhibit RAS signaling is in the spotlight recently.
Effective targets on the effector lobe include switch regions for
which GDP and GTP specific binders have been identified (59). By
genetically fusing E3-ligase subunits such as Von Hippel-Lindau
tumor suppressor to monobodies NS1 and 12VC1, RAS degrader
constructs were generated. These degraders have potent RAS
signaling suppression and anti-proliferative activities (60).
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These degraders emulate PROTAC (proteolysis targeting
chimera) mode of action. Compared with competitive inhibitors,
PROTAC:s instruct the degradation of protein by recruiting
ubiquitin-proteasome system to target protein. They can therefore
bind outside of an active protein site and after degradation abrogate
any scaffolding functions of the target. This is attributed to their
hybrid structure, containing one bonder (the warhead) for the
target protein that is tethered via a linker to a moiety recuring the
E3 ligase (61). PROTACsS can be reused after reversible binding and
degradation of target proteins. Current RAS targeting protacs (XX-
4-88, LC-2, KP-14) are all built on covalent G12C inhibitor and
cannot be beneficial as these inhibitors are consumed due to
covalent cysteine engagement (62).

A remarkable development in this line is the reversible covalent
inhibitor YF135 which employs cyanoacrylamide for cystine linkage
(63). However, optimization of linker length requires further
research and developmental efforts (64).

Given the spatial temporal distinct expression of E3 ligase in
tissues and cells. PROTACs may provide a more controlled drug
action and it remains to be seen if any of the RAS ligands can be
converted to PROTACs.

Japanese guidelines for KRASS12¢

The increase in targeted therapy for CRC based on genomic
status has led to the clinical development of new agents which could
be potentially used in patients with microsatellite instability and/or
mismatch repair and metastatic CRC (mCRC) due to BRAFV60E
mutations. In Japan, Trastuzumab combined with Pertuzumab was
approved in March 2022, for ERBB2 (ErbB2 Receptor Tyrosine
Kinase 2) positive mCRC. This development devised a better
strategy for precision oncology for rare genomic alterations. The
tumor genomic status in mCRC was determined for KRAS and
NRAS, BRAFV®%E mutations, ERBB2 and microsatellite instability
(MSI)/mismatch repair (MMR) (65, 66).

The SCRUM-Japan GI-SCREEN was launched in Japan by the
National cancer center hospital East in 2015. Approximately, 30,000
patients were screened using tissue and plasma assays in this
nationwide screening project. In 2017, the regulatory graded
registry platform (SCRUM-Japan-Registry) was established to
collect efficacy data of standard therapy in patients with rare
molecular alterations. Their treatment strategy was based on the 4
genomic status, along with the primary tumor location (67, 68).

In this SCRUM-Japan-Gl-screen, the phase II TRIUMPH study,
demonstrated the efficacy of Trastuzumab plus Pertuzumab in patients
with ERBB2 amplification and this study showed ORR of 30% in 27
patients who were ERBB2 positive in tissues (69). Another interesting
ongoing randomized multicenter phase II trial SWOG S1613 is
recruiting patients with RAS and RAF wild type ERBB2 positive
mCRC who received at least one prior line of therapy. The aim of
this study is to compare the efficacy of trastuzumab plus Pertuzumab
versus Cetuximab plus Irinotecan (NCT03365882) (65). A combination
of chemotherapy plus anti-VEGF therapy along with immune oncology
therapy could potentially be more effective in triggering immunogenic
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cell death and release of tumor antigens (70). In summary, for patients
with MSI/MMR or BRAF V600E mCRC, Pembrolizumab is the first
line therapy and Encoratinib plus Cetuximab with or without
Binimetinib is considered as the second line therapy. New agents are
proposed for rare molecular fractions such as ERBB2 amplification.
While the efficacies of Trastuzumab plus Pertuzumab were indicated in
single -arm trails, no anti-ERBB2 therapies are approved in the United
States and European Union (65).

Conclusion

The understanding of KRAS signaling, structural biology, and
biochemistry over the last several years has led to FDA approval of
the first direct acting KRAS®'* inhibitors. While KRAS®'*¢
inhibitors are efficacious for NSCLC, their use for CRC faces
challenges due primarily to the development of resistance.
Although the monotherapy response rates remain low in CRC
patients, combination therapies are more promising. Another
option recently explored are the pan-KRAS and pan-RAS
inhibitors which inhibit RAS regardless of the mutated allele, or
in the latter case, also independent of the RAS isozyme, which may
compensate for effects of mutant specific KRAS inhibitors (71, 72).

The development of KRAS®'*“ inhibitors for CRC is ongoing
and larger randomized clinical trials may reveal more promising
approaches. The recent development of KRASS' targeted therapy
in CRC has clearly ignited the field to develop new RAS inhibitors
potentially with broader scope and reduced potential for resistance.
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