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Abstract
In a developing embryo, information about the position of cells is encoded in the concentrations 
of morphogen molecules. In the fruit fly, the local concentrations of just a handful of proteins 
encoded by the gap genes are sufficient to specify position with a precision comparable to the 
spacing between cells along the anterior–posterior axis. This matches the precision of downstream 
events such as the striped patterns of expression in the pair-rule genes, but is not quite sufficient to 
define unique identities for individual cells. We demonstrate theoretically that this information gap 
can be bridged if positional errors are spatially correlated, with correlation lengths ~ 20% of the 
embryo length. We then show experimentally that these correlations are present, with the required 
strength, in the fluctuating positions of the pair-rule stripes, and this can be traced back to the 
gap genes. Taking account of these correlations, the available information matches the information 
needed for unique cellular specification, within error bars of ~ 2%. These observation support a 
precisionist view of information flow through the underlying genetic networks, in which accurate 
signals are available from the start and preserved as they are transformed into the final spatial 
patterns.

I. INTRODUCTION
During the development of an embryo, cell fates are determined in part by the concentrations 
of specific morphogen molecules that carry information about position [1–3]. For the early 
stages of fruit fly development, all of these molecules have been identified [4–6]. For 
patterning along the main body axis, spanning from anterior to posterior (AP), information 
flows from primary maternal morphogens to an interacting network of gap genes to the 
pair-rule genes [7, 8], whose striped patterns of expression provide a precursor of the 
segmented body plan in the fully developed organism, visible within three hours after the 
egg is laid (Fig. 1). It has been known for some time that, at this stage in development, 

HHS Public Access
Author manuscript
PRX Life. Author manuscript; available in PMC 2024 December 11.

Published in final edited form as:
PRX Life. 2024 ; 2(1): . doi:10.1103/prxlife.2.013016.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



essentially every cell “knows” it’s fate [9], so it is natural to ask how this information is 
encoded, quantitatively, in the concentrations of the relevant morphogens.

Expression levels of the gap genes provide enough information to specify the positions 
of individual cells with an accuracy ~ 1% of the embryo’s length [11]. This matches the 
precision with which the stripes of pair-rule expression are positioned, and the precision 
of macroscopic developmental events such as the formation of the cephalic furrow [12]. 
Further, the algorithm that extracts optimal estimates of position from the expression levels 
of the gap genes also predicts, quantitatively, distortions of the striped pattern in mutant flies 
with deletions of the maternal inputs [13]. At the moment when pair-rule stripes are fully 
formed, just before gastrulation, there are fewer than one hundred rows of cells along the 
length of the embryo, so it is tempting to think that positional signals with 1% accuracy 
define unique cellular identities. In fact, this is not quite correct [11]: if each cell makes 
independent positional errors drawn from a Gaussian distribution, then there is a small but 
significant probability that neighboring cells will get “crossed signals,” driving errors in cell 
fate determination.

The small difference between 1% positional errors and unique cellular identities provides a 
test case in the search for a more quantitative understanding of living systems. In physics, 
we are used to the idea that small quantitative discrepancies can be signs of qualitatively 
new ideas or mechanisms. But in complex biological systems one might worry that small 
discrepancies reflect experimental errors or over–simplifications in interpretation. If correct, 
these concerns would limit our ambitions for quantitative theory in the physics tradition. 
But small discrepancies need to be re-examined in light of dramatic improvements in 
experimental precision [14–16].

Here we revisit the small quantitative discrepancy in positional information. On the 
theoretical side, we clarify the problem, defining an “information gap,” and show that 
this gap can be closed if errors in the positional signals are spatially correlated over 
relatively long distances. Early work by Lott and colleagues [17] detected such correlations 
in mRNA levels of gap and pair-rule genes; subsequent work found that noise in different 
combinations of protein levels in the gap gene network are correlated significantly over the 
entire length of the embryo [18]. On the experimental side we re–examine these correlations, 
measuring the positions of stripes in the concentrations of pair-rule proteins. We find that the 
extent of these correlations is what is needed to close the information gap between positional 
errors and unique cellular identities, quantitatively.

II. DEFINING THE PROBLEM
In the early fly embryo, cells have access to the concentrations of morphogens, and these 
concentrations are continuously graded. From these concentrations, it is possible to decode 
an estimate of position, which we label as x̂n in cell n [13]. We expect that these estimates 
are correct on average, so that x̂n = nL/N, where there are N cells along the length L of the 
embryo.1 However the signals are noisy, so decoding in one cell will have errors,

x̂n = nL/N + δxn,
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(1)

δxn 2 = σx2 .

(2)

For simplicity, but guided by the experimental observations [11, 13, 21], we assume that σx is 
the same for all cells and that the distribution of δxn is Gaussian (Appendix A). Here we are 
interested in the question of whether cells get signals that define the correct ordering along 
the axis so that x̂n+1 > x̂n for all cells, or whether they can get “crossed signals” such that 
x̂n+1 < x̂n.

If we look at two neighboring cells, then the probability of incorrect ordering is

Pcross ≡ Pr x̂n+1 < x̂n .

(3)

To find the probability of a wrong ordering we can take a look at the distribution of the 
distance to the next cell y = x̂n+1 − x̂n. But since x̂n+1 and x̂n both are Gaussian, their difference 
y is also Gaussian, with mean equal to y = L/N. If the noise is independent in each cell, 

then the variance of this difference signal will be δy 2 = 2σx
2. Incorrect ordering happens 

when y < 0, which then has probability

Pcross =
−∞

0
dy
4πσx2

e− y − L/N 2/4σx2

(4)

= 1
4π 1/z

∞
dxe−x2/4,

(5)

with z = σx N /L , as shown in Fig. 2. If positional errors are comparable to the spacing 
between cells, σx L/N, the probability of an error is nearly 24%.

To make more quantitative statements we need a precise estimate of the number of cells N. 
Observations on the spacing between nuclei, or their areal density, reach back forty years 
[22]. Recent measurements are broadly consistent, but with substantial variations [23, 24]; it 
is not clear whether variations in density are correlated with variations in embryo length to 
result in more reproducible values of N. As explained in Appendix A, we have used images 

1For simplicity we imagine that the problem is one-dimensional so that cells need to know their position only along one axis. In the 
early fly embryo, patterning signals along the two major axes are largely independent [19, 20], justifying this simplification.
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such as those in Fig. 1B to count the number of nuclei in the central 80% of the embryo, 
along the relatively straight dorsal side; the standard deviation across embryos is less than 
five percent. Assuming that the same density continues to the ends of the embryo we have 
N = 90 ± 4, which means that positional error is slightly less than the spacing between cells 
σx 0.9 L/N . Figure 2 then predicts that neighboring cells will cross signals with ~ 20% 
chance, and if the signals are independent the probability that all N come in the right order is 
vanishingly small.

This failure to specify unique cellular identities can be given a simple information-theoretic 
interpretation. To specify one cell uniquely out of N requires Iunique = log2 N bits of 
information [25, 26]. On the other hand, if we have signals that represent a continuous 
position x drawn uniformly from the range 0 < x ≤ L, and these signals have Gaussian noise 
with (small) standard deviation σx, as described above, then the amount of information the 
signal conveys about position is

Iposition = log2 L − log2 2πeσx ,

(6)

where the first term is the entropy of the uniform distribution of positions and the second 
term is the entropy of the Gaussian noise distribution [26]. Combining these we can define 
an “information gap”

Igap ≡ Iunique − Iposition = log2
Nσx
L 2πe .

(7)

As discussed below, we obtain a more accurate estimate of the information gap by averaging 
over measurements of σx at multiple points along the embryo, defined by the pair-rule 
stripes, and we find Igap = 1.68 ± 0.07 bits (Appendix A). Importantly this gap is measured per 
cell: it is not that the embryo is missing ~ 1.7 bits of information, but rather that every cell is 
missing this information.

III. EXTRA INFORMATION FROM CORRELATIONS: THEORY
To address the information gap directly, we leverage the concept that correlated noise 
can facilitate enhanced information transmission. Correlated noise typically is viewed as 
challenging because it resists being averaged away. But in the context of neighboring cells 
making errors in position, correlations mitigate the probability of receiving “crossed signals” 
as previously defined. Here we develop these considerations more formally.

Information is roughly the difference in entropy between the signal and the noise, where 
entropy measures the (log) volume in phase space that is occupied by a set of points. When 
random variables become correlated, the volume and hence the entropy is reduced, even if 
the variances of the individual variables are unchanged. In our example, with correlations, 
the full pattern of points x̂1, x̂2,⋯, x̂N  fills a smaller volume in the space 0,L N of possible 
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positions for all the cells, and thus the embryo as a whole has access to more positional 
information.

More formally, we can define the correlation matrix C,

δxnδxm = σx2Cnm,

(8)

with diagonal elements Cnn = 1. Assuming again that the noise δxn is Gaussian, the reduction 
in noise entropy for the entire set of variables δxn  is given by the determinant of this matrix 
[26],

ΔS = − 1
2log2 detC bits,

(9)

and this reduction in entropy is the gain in information. Entropy is an extensive quantity, so 
that when N is large the information gain per cell ΔS /N is finite. Can this be large enough to 
compensate for the information gap Igap?

We expect that the correlation between fluctuations of positional signals in different cells 
depends on their spatial separation. Then Cnm is a function of the distance between cells n 
and m, dnm = n − m L/N. A natural functional form is an exponential decay of correlations,

Cnm = e−dnm/ξ,

(10)

with correlation length ξ. This is what we would see if signals were encoded in the gradient 
of a single molecular species that has a lifetime τ and diffusion constant D, with ξ = Dτ. 
Although this is over–simplified, it is useful for building intuition about how the range of 
correlations determines the additional information. Within this model it is straightforward to 
evaluate ΔS numerically, with results shown in Fig. 3A.

We can also give an analytic theory for ΔS in the large N limit, leading to Eq. (15), below. If 
we define eigenvalues and eigenvectors of the matrix Cnm,

m
Cnmϕm

μ = λμϕn
μ,

(11)

then we have

ΔS = − 1
2 μ

log2 λμ bits .
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(12)

In the limit of large N at fixed N /L, the ends of the embryo are far away, and there 
is an effective translation invariance. This means that the eigenvectors ϕn

μ are complex 
exponentials, ϕn

μ ∝ exp iqμn , or equivalently that the matrix Cnm is diagonalized by a discrete 
Fourier transform;2 allowed values of qμ are in the interval −π ≤ q < π. Then as N ∞ we 
find the eigenvalues

λ q
n = −∞

∞
e− n L/Nξeiqn = sinh L/Nξ

cosh L/Nξ − cos q ,

(13)

and the change in entropy

ΔS /N − 1
2 −π

π dq
2π log2 λ q

(14)

= − 1
2log2 1 − e−2L/Nξ .

(15)

In Fig. 3A we see that this analytic result agrees with numerical results at N = 50 and 
N = 100, which agree with one another, confirming that the fly embryo is large enough 
for the entropy to be extensive. We conclude that an information gap of ~1.7 bits can be 
closed if correlations extend over distances ξ = 19.5 ± 1.9 L/N 0.2L. Lott and colleagues 
saw significant correlations across this range of distances for all the genes that they probed 
[17], and combinations of gap gene protein levels have even longer correlation lengths [18].

Beyond the perhaps abstract information theoretic measures, we can evaluate the probability 
that all cells receive signals that are in the correct order, that is x̂n+1 > x̂n for all n = 1,2,⋯,N. 
If correlations extend over a distance ξ 19.5 L/N , then all signals will have the correct 
ordering in ~ 98% of embryos, as illustrated in Fig. 3B.

We emphasize that correlations extending over ξ 0.2L do not require special mechanisms 
to connect these long distances. As noted above, if the relevant signals are carried by a 
single molecule with diffusion constant D and lifetime τ, we expect that fluctuations in 
concentration will have a correlation length ξ Dτ. In a network of interacting molecules, 
as with the gap genes in the fly embryo, the role of τ is played by relaxation times for the 
network as a whole, and these emergent timescales can be much longer than the lifetime of 
the individual species because of feedback [18, 28].

2The discreteness is important. If we take a continuum limit, so that the sum in Eq. (13) becomes an integral, the calculation is a bit 
simpler but leads to a significant over-estimate of ΔS, even at large values of ξN /L.

McGough et al. Page 6

PRX Life. Author manuscript; available in PMC 2024 December 11.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



IV. EXTRA INFORMATION FROM CORRELATIONS: EXPERIMENT
To close the positional information gap, we predict that the noise in positional signals 
should be correlated over distances ξ 0.2L. These distances are long compared to the 
separation between neighboring cells. The first indication that such correlations exist came 
from experiments marking the boundaries of gene expression domains as seen through 
measurements of mRNA for selected gap genes and the pair-rule gene eve [17]. At the same 
time, it was reported that fluctuations in the concentration of a single gap gene product 
protein are correlated only over short distances [27]. Analyzing simultaneous measurements 
on protein concentrations of four gap genes demonstrated that different combinations or 
modes of the network have different correlation lengths [18]; the longest correlation lengths 
are a significant fraction of the length of the embryo. Finally, errors in the position inferred 
from gap gene expression levels are reduced if we allow for alignment by translation along 
the x/L axis, indicating that errors in relative position are smaller than errors in absolute 
position [21]. All of this suggests that the noise in positional signals is spatially correlated. 
Can we make this more quantitative?

We analyze the experiments in Ref [13], which used immunofluorescence stainings to 
measure spatial profiles of protein concentration for three of the pair-rule genes eve, prd, and 
rnt (Fig. 1). The data include Nem = 109 embryos, fixed and stained in the time window from 
35 to 60 min after the start of nuclear cycle 14. This is the period of cellularization, and as 
in previous work the progress of the cellularization membrane provides a time marker with 
an accuracy of one minute [16]. For each of the three genes, the seven peaks in the striped 
concentration profile can be found automatically, and their locations vary linearly with time 
throughout this period [29]. If we don’t correct for this systematic dynamical behavior, the 
variance of stripe positions will be large and their fluctuations will be correlated, artificially. 
We consider the noise in position to be the deviation from the best fit linear relation for 
each individual stripe marker. The standard deviations then are consistently slightly below 
σx 0.01L, and the distribution of fluctuations is well approximated by a Gaussian. These 
results agree with previous work [11, 13, 29], and are summarized in Appendix A.

Before analyzing correlations, we can use these data to make a more precise estimate of the 
information gap. If each cell has access to a positional signal with errors σx n , that might 
vary with n, the average positional information available to a single cell is

Iposition = log2 L − log2 2πeσx n n,

(16)

where ⋯ n denotes an average over cells, generalizing Eq. (6). Rather than making 
inferences about single cells, we have direct access to the signals that mark the locations 
of the stripes in the expression of three pair-rule genes, for a total of 21 features spread 
across half the AP axis. The mean separation between the nearest stripes is Δx‾ = 0.023L, 
just a few times larger than the spacing between cells. Rather than introducing a model 
that would interpolate, we take the stripe positions themselves as the signals xn, now with 
n = 1,2 ⋯ , 21, and the average in Eq. (16) becomes an average over stripes.
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The challenge in evaluating the positional information is that random errors in our estimates 
of the errors σx n  become systematic errors in estimates of information. This problem 
of systematic errors was appreciated in the very first efforts to use information theoretic 
concepts to analyze biological experiments [30]. The analysis of neural codes has been 
an important testing ground for methods to address these errors [31–33]; for a review see 
Appendix A.8 of Ref [26]. The approach we take here uses the fact that naive entropy 
estimates depend systematically on the size of the sample; if we can detect this systematic 
dependence then we can extrapolate to infinite data, as described in Appendix A. The result 
is that Igap = 1.68 ± 0.07bits/cell.

The idea of positional information is that cells have access to a signal that represents 
position along the axis of the embryo [2, 21]. In the discussion above we have taken this 
idea at face value, identifying the signal in each cell as x̂n. But the signals we observe are the 
positions of stripes in three different pair-rule genes, and the different stripes for each gene 
are controlled by different enhancers responding to distinct combinations of transcription 
factors. We need to test the hypothesis that these multidimensional molecular concentrations 
encode a single positional variable.

We are looking at fluctuations in the positions of the stripes, δxn. Figure 4 shows the 
elements of the correlation matrix

Cnm ≡ δxnδxm
δxn 2 δxm 2 1/2 ,

(17)

as a function of the mean separation Δx‾nm between stripes n and m measured along the dorsal 
side of the embryo, starting with images as in Fig. 1. We see that, within experimental 
error, the correlations really are a function of distance. There is no obvious pattern linked 
to the identity of the enhancers that control these different features, or to the identity 
of the transcription factors to which the enhancers respond: nearby stripes are highly 
correlated, the decay of correlations with distance is the same whether we are looking 
at correlations between the same or different genes, and different pairs of stripes with 
same mean separation have the same correlation.3 This suggests that, as in the theoretical 
discussion above, we can think about an abstract positional signal that is transmitted to each 
cell and controls the placement of the pair-rule stripes. Correspondingly, there are strong 
indications that the correlations are inherited from the structure of the noise in gap gene 
expression (Appendix D). We see the same results along the ventral side of the embryo, 
though with larger errors because of difficulties associated with curvature of the contour.

3We see hints of weak negative correlations at long distances, also in our analysis of the gap genes (Appendix D), although the error 
bars make these measurements consistent with zero. Negative correlations between individual gene expression levels emerge naturally 
in networks with mutually repressive interactions, as with the gap genes, but it is unclear how these would project into errors in 
position. Small negative correlations at long distances could also be spurious, resulting from imperfect azimuthal alignment of the 
embryos (Appendix A).
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Qualitatively, the correlations that we see in Fig. 4 decay over distances ξ 0.2L, consistent 
with the scale needed to close the information gap, and with early measurements [17]. 
Quantitatively, the decay of correlations is not well described by a single exponential 
function of distance, so we cannot simply transcribe the predictions of the theory. Instead, 
we would like to make a direct estimate of the positional information from the data. 
Conceptually this is simple: we estimate the correlation matrix from the data, then compute 
the (log) determinant of this matrix following Eq. (9). As with the information gap itself 
(above), the problem is that random errors in our estimates of individual matrix elements 
become systematic errors in the entropy. We follow the same strategy of identifying the 
dependence of this error on the number of embryos that we include in our analysis and 
extrapolating to large data sets (Appendix C).

We emphasize that our estimates of ΔS /N are based on the joint distribution of the stripe 
positions, ultimately including all 21 measured stripes. We are able to make progress 
because the distribution of positional noise is well approximated as Gaussian (Appendix A), 
so that the 21–dimensional distribution is summarized by the 21 × 21 matrix Cnm and we can 
thus estimate the information per stripe contained in the entire pattern. These information 
measures are independent of the molecular mechanisms that give rise to the underlying 
correlations.

By definition, to see the extra information hidden in correlations we have to look at the 
positions of multiple stripes. We start with two neighboring stripes, and gradually work out 
toward all N = 21 stripes; results are shown in Fig. 5. Note that at each N we are measuring 
an information gain per stripe, and small differences among the stripes are included in 
our error bars. The added information grows to ΔS /N = 1.65 ± 0.08 bits/stripe, and we see 
that this is relatively constant for N ≥ 19 stripes. This suggests that our analysis includes 
distances long enough to capture all of the relevant correlations, so that ΔS becomes truly 
proportional to N, as in the discussion of Fig. 3A. Strikingly, this plateau matches the 
information gap, Igap = 1.68 ± 0.07bits/cell, within errors.

V. DISCUSSION
There is strong evidence that, early in embryonic development, each cell acquires a distinct 
identity [9]; it is less clear how this information is encoded. In the fruit fly embryo, 
positional information along the anterior–posterior axis is orchestrated through a sequential 
cascade involving three primary maternal inputs, a select number of gap genes, and the 
pair-rule genes. The conventional perspective suggests that the information flow through this 
cascade entails a gradual refinement, with noisy inputs ultimately generating a precise and 
reproducible pattern [34, 35], in the spirit of the Waddington landscape [36].

In contrast to the picture of noisy inputs and precise outputs, at least one maternal input 
itself exhibits a high level of precision, consistently reproducible across embryos [27, 
37]. Moreover, the expression levels of gap genes within a single cell prove sufficient 
to determine positions with an error smaller the distance between neighboring cells [11, 
13]. Notably, this precision agrees with that observed in downstream events such as 
the pair-rule stripes. In parallel, crucial developmental events exhibit highly reproducible 
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temporal trajectories [38]. These quantitative observations challenge the conventional view 
of refinement and error correction, supporting instead a precisionist perspective in which 
locally available information is processed and preserved with near optimal efficiency. 
Given that all relevant molecules are present at low copy numbers, this places significant 
constraints on the architecture of the underlying networks [38–41].

Despite their precision, local signals in the fly embryo do not quite provide enough 
information to uniquely specify all N = 90 ± 4 cellular identities along the AP axis, 
Iunique = log2 N: errors in the position that a cell can infer from molecular concentrations 
come from a distribution, and distributions have tails [11]. The result is that there is a 
substantial (~ 25%) gap between the information provided by the gap genes, or the pair-rule 
stripes, and Iunique.

Previous measurements have characterized the noise in local estimates of position for each 
cell individually. But there are many hints from previous work that this noise is correlated 
[11, 17, 18]. Extra information can be hiding in these correlations, and we have seen in 
§III that if correlations extend over distances ξ 0.2L then this would be enough to close the 
information gap. This prompts a more detailed examination of the noise correlations, which 
really do seem to be a function of distance independent of gene identity (Fig. 4).

The perhaps surprising conclusion of §IV is that the extra information contained in the 
correlations, ΔS /N, matches the information gap Igap almost perfectly, with an error bar of 
less than 2%:

Igap − ΔS
N = 0.0048 ± 0.0162 Iunique .

(18)

This agreement supports, strongly, the precisionist view of information flow in this system.

Historically, the lack of precise data on gene expression levels, with uncertainties extending 
to factors of two, led to skepticism regarding the relevance of more refined measurements to 
general mechanisms of genetic control. These expectations stood in contrast, for example, to 
our understanding of signaling in rod photoreceptors, where the quantitative reproducibility 
of responses to single molecular events provides important constraints on the underlying 
biochemical mechanisms [42].

The fly embryo has provided a laboratory within which to explore precision vs. noisiness 
in the function of an intact living system. We have seen reproducible protein and 
mRNA concentrations across embryos with an accuracy of 10% [16, 27, 37], and these 
concentrations encode position with an accuracy of ~ 1% of the embryo’s length [11, 
13, 21]. The current study adds a layer to this understanding, demonstrating that the 
available positional information, including the subtle effects of correlated noise, matches 
the threshold for specifying unique cellular identities, and this match itself has an accuracy 
of better than two percent. Beyond the fly embryo, these results suggest a more general 

McGough et al. Page 10

PRX Life. Author manuscript; available in PMC 2024 December 11.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



conclusion: quantitative measurements in living systems merit serious consideration, even at 
high precision, as in other areas of physics.
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Appendix A: Statistics of individual stripes
The raw data for our analyses are the profiles of fluorescence intensity vs position along 
the length of the embryo, as in Fig. 1. These embryos have been fixed and stained with 
antibodies against the proteins encoded by the pair-rule genes eve, prd, and rnt, and 
fluorescently tagged antibodies against those antibodies [13]. Independent experiments 
demonstrate that these classical staining methods, used carefully, yield fluorescence 
intensities that are linear in protein concentrations [16]. The data set used here, which 
contains a large number of wild type embryos, comes from Ref [13].

We briefly summarize the imaging protocol and describe the procedure for localizing the 
stripe positions. Images are taken in the midsaggital plane showing a row of nuclei along 
the dorsal and ventral side of the embryo. For consistency and to avoid geometric distortion, 
we focus on the dorsal profiles, as was done previously (but see Fig. A6 below). In order 
to include the entire embryos in a single image, large field-of-view images, with pixel size 
445 nm are acquired with a 20× 0.7NA objective on a Leica SP5 confocal microscope. 
Fluorescence intensity is averaged inside a sliding window of the size of a nucleus and the 
position of the window center is recorded. In a given embryo, positions of the 7 stripes are 
first roughly identified by finding local maxima in the profile of an individual embryo. To 
make this quantitative, we tried several methods. First, we used an iterative procedure in 
which the mean peak shape is used as a template [29]. Second, we fitted a model of seven 
Gaussians with variable amplitudes and widths to the entire profile. Finally, we fit individual 
Gaussians to each stripe, using a window centered on the local maximum with width of 5% 
embryo length. These methods give consistent results, and importantly global fits do not 
generate larger correlations than local fits. In the end we use the local Gaussian fits, as in 
Fig. A1A.

The age of embryos is estimated to 1 minute precision in nuclear cycle 14 by measuring the 
length of the cellularization membrane [11]. At 30 min into this cycle, the stripes of prd first 
start to become visible and the other two genes have a well defined stripes by that time, so 
we confine our attention to t > 30min.

Stripe patterns are dynamic, with positions that depend on time. If we don’t take account of 
this systematic variation, then across an ensemble of embryos with different ages we would 
see artificial correlations among fluctuations in stripe position. For example, we would see 
an artificial negative correlation between first and last stripe position because they move in 
the opposite direction (towards the middle of the embryo) during the course of the nuclear 
cycle 14. Stripe movement is small, however, and we can use a linear fit to remove the 
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effect of the temporal shifts, separately for each of the 21 stripes, across the population of 
embryos:

xn t = xn t0 + sn t − t0 .

(A1)

Results are shown in Fig. A1B and C. For each embryo we find an equivalent position of all 
the stripes at a reference time t0 = 45 min [29]. Attempts to fit the shifts with more complex 
functions of time do not reduce the variance σx

2 n  nor do they change the correlations Cnm.

Another possible experimental source of artificial correlations is the azimuthal orientation of 
the embryo. Pair–rule stripes splay outward from the dorsal to the ventral side, and errors 
in azimuthal orientation would generate correlated errors in position. The errors are small 
for nearby stripes, and negative for the most separated stripes. If we make azimuthal errors 
of ~ 10°, then for the first and seventh stripes there would be positional errors ± 0.003L, 

which would generate a correlation coefficient − 0.003/0.01 2 − 0.09; importantly this is 
much smaller for stripes that are closer together. Even though long distance correlations 
in Fig. 4 and Fig. A5C are both zero within the error bar, the experimental uncertainty in 
azimuthal orientation might explain why the mean correlation coefficient dips below zero 
when Δx/L > 0.35.

With xn the position of each pair-rule stripe, we have the mean and variance

x‾n = xn

(A2)

σx2 n = xn − x‾n
2 ,

(A3)

where ⋯  denotes an average over our complete experimental ensemble of Nem = 109
embryos. Results are shown in Fig. A1 D, where we confirm that positional errors are almost 
all smaller than 1% of the embryo length.

Beyond measuring the variance, we can estimate the distribution of positional errors. Since 
the different stripes have slightly different σx, we normalize the positional errors for each 
stripe individually,

zn = xn − x‾n /σx n .

(A4)

With this normalization we can pool across all 21 stripes, and we estimate the distribution 
of z as usual by making bins and counting the number of examples in each bin, with results 
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shown at left in Fig. A2. Qualitatively the distribution is close to being Gaussian, but what 
matters for our analysis is the entropy of this distribution.

When we estimate a probability distribution and use this estimate to compute the entropy, 
the random errors in the distribution that arise from the finiteness of our sample become 
systematic errors in the entropy. The general version of this problem goes back to the 
very first efforts to use information theoretic concepts to analyze biological experiments 
[30]; for a review see Appendix A.8 of Ref [26]. Briefly, naive entropy estimates depend 
systematically on the size of the sample, and if we can detect this systematic dependence we 
can extrapolate to infinite data, thus providing an unbiased estimate of the entropy. At right 
in Fig. A2 we show the difference between the entropy of the estimated distribution P z  and 
the entropy of a Gaussian. We see that when we base our estimates on Nem embryos there is 
a (small) term 1/Nem, as expected. Extrapolating Nem ∞ we see that the entropy difference 
goes to zero within the small (< 0.01 bit) error bars. We conclude, for the purposes of our 
discussion, that it is safe to approximate the positional errors as being Gaussian.

Finally we can use the same extrapolation methods to provide a better estimate of the 
“information gap” defined in the main text. Equation (16) defines the positional information 
contained in the local signals, Iposition, and the information gap is the difference between this 
and Iunique = log2 N. Figure A2C shows the values of

Igap = Iunique − Iposition = log2 2πeNσx n
L n

(A5)

estimated from fractions of our data set and then extrapolated. The result is 
Igap = 1.68 ± 0.07bits/cell.
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FIG. A1: 
pair-rule stripe positions. (A) Concentration of Eve protein in a single embryo. Colored 
circles indicate regions which were fitted with a Gaussian function to calculate the stripe 
position. Each stripe is fitted individually, with fits shown in red. Red triangles indicate 
centers of each fitted peak. (B) Stripe positions as a function of time in the nuclear cycle 
14. Linear fits from Eq. (A1) are shown as black lines. (C) Peak positions xn t0  corrected 
to t0 = 45 min. (D) Positional error of the pair-rule stripes. Magnitude of the error σx n  is 
plotted against the mean position x‾n for each of the eve, prd, and rnt stripes. Errors in x‾n are 
standard errors of the mean; errors in σx are standard deviations across random halves of the 
data. Dashed line marks the rough estimate σx/L 0.01.
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FIG. A2: 
(A) Positional errors are well approximated as Gaussian. An estimate of the distribution of 
normalized errors, Eq. (A4). Open circles are means pooled across all stripes and embryos; 
error bars are standard deviations across random halves of the embryos; and the line is 
the Gaussian with zero mean and unit variance. (B) The entropy difference between this 
estimated distribution and the Gaussian, as a function of the (inverse) number of embryos 
we include in our analysis. Points (cyan) are examples from random choices out of the full 
ensemble of embryos; open circles with error bars are the mean and standard deviations 
of these points; and the line is a linear extrapolation [26, 30–33]. (C) Estimates of the 
information gap, Eq. (A5). Points (cyan) are examples from random choices out of the 
full ensemble of embryos; open circles (blue) with error bars are the mean and standard 
deviations of these points; and the line is a linear extrapolation to Igap = 1.68 ± 0.07bits/cell.
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FIG. A3: 
Counting nuclei in nuclear cycle 14. (A) Fluorescence image of an embryo with labeled 
histones highlighting the nuclei underlaid with a brightfield image of the same embryo. 
Focus is in the midsagittal plane. (B) Zoom in to central 80% on the dorsal side, showing 
that we can count nuclei by hand. (C) Results from n = 26 embryos. Histogram has mean ± 
std of 72 ± 3.
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FIG. A4: 
Entropy reduction by correlations among the pair-rule stripe fluctuations, estimated from 
different numbers of embryos Nem; N = 10 stripes at left and N = 20 stripes at right. Points 
(cyan) are examples from random choices out of the full ensemble of embryos; open circles 
(blue) with error bars are the mean and standard deviations of these points; and the line is a 
linear extrapolation to the square.
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FIG. A5: 
Decoding gap gene expression levels in a single embryo and correlations in the resulting 
pattern of positional errors. (A) Expression of Hb (blue), Kr (green), Gt (red), and 
Kni (cyan). Thin solid lines are means across Nem = 38 embryos in a small window 
40 ≤ t ≤ 44 min in nuclear cycle 14; dense points are data from a single embryo [13]. (B) 
Positional errors computed from Eq. (D9). (C) Correlations in the positional noise inferred 
from gap gene expression. For each embryo α we compute the correlation function in Eq. 
(D12) and then normalize to give C Δx = C Δx /C 0 . Blue circles with error bars are mean 
and standard error across Nem = 38 embryos; solid red line is a smooth curve to guide the 
eye.
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FIG. A6: 
Correlations between noise in peak positions of the eve, run, and prd stripe patterns, as in 
Fig. 4, but with stripe positions measured along the ventral side of the embryo. Error bars 
estimated from the standard deviation across random halves of the data. With three genes, 
each having seven stripes, we observe (21 × 20)/2 = 210 distinct elements of the correlation 
matrix Cnm. Solid red line is a smooth curve to guide the eye.

Appendix B: Counting nuclei
We quantify the number of nuclei in a single row (1D) along the AP axis using living 
Drosophila embryos that express a transgene with fluorescently labelled Histone on the 
second chromosome (his-RFP/CyO). Embryos were imaged in a Zeiss LSM880 confocal 
microscope with a 20× 0.8NA objective and pinhole equivalent to 1 Airy unit. Pixel size 
was 0.35 μm, corresponding to about 7% of the size of the nucleus. We acquired a z-stack 

McGough et al. Page 19

PRX Life. Author manuscript; available in PMC 2024 December 11.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



that included the mid-sagittal plane during the middle of nuclear cycle 14. Both fluorescent 
and brightfield image stacks were collected using a z-step of 1 μm. From this stack, the 
mid-sagittal plane was identified by inspection of the largest extent of the embryo, where the 
embryo edge is in focus.

A mask of the embryo was created from the brightfield image using edge detection to 
separate the embryo from the uniform background (custom code in Python). The embryo 
length L was measured as the length of the straight line from the most anterior to the most 
posterior points of the mask. This line defines the AP axis, from which we determined 
the central 80% (Fig. A3A). We manually counted the number of nuclei along the middle 
80% (from 10% to 90% of L) of the dorsal side (Fig. A3B). We count 72±3 nuclei (n=26 
embryos) in the middle 80% (Fig. A3C), which corresponds to 90 ± 4 nuclei for the entire 
length of the AP axis assuming uniform nuclear density along the 1D line. The error bar 
of the nuclear count includes both embryo-to-embryo variability and ambiguities in nuclear 
identification during counting.

Appendix C: Entropy estimates
Figure A4 shows estimates of the extra information ΔS /N [Eq. (9)] based on measurements 
in different numbers of embryos, for N = 10 and N = 20 contiguous pair-rule stripes. We see 
the expected dependence on 1/Nem, and the steepness of this dependence is twice as large 
at N = 20 than at N = 10, as expected [26]. This gives us confidence in the extrapolation 
Nem ∞ [26, 30–33].

Appendix D: Origin of the correlations
The precision of pair-rule stripe placement matches, quantitatively, the noise in optimal 
estimates of position based on the local expression levels of the gap genes [11, 13]. To be 
consistent with this result, the correlations should also be visible in the gap genes. As noted 
above, Lott and colleagues saw correlations in expression boundaries for selected gap genes 
[17], and later measurements showed that combinations of gap gene expression levels have 
correlations extending over a significant fraction of the embryo [18]. Here we revisit these 
measurements and connect fluctuations in gap gene expression to positional noise. Notice 
that for the pair-rule genes we can work directly with the positions of the stripes, but for the 
gap genes we have to think more carefully about how positions are encoded in expression 
levels.

We start with a brief review of ideas about decoding positional information [13]. 
Measurements of gap gene expression in multiple embryos provide samples from the 
conditional distribution P gi ∣ x , at all values of the position x along the anterior–
posterior axis; we focus on the d = 4 gap genes expressed in the middle ~ 80% of the 
embryo, hunchback, giant, krüppel, and knirps. To a good approximation this distribution is 
Gaussian,

P gi ∣ x = 1
Z x exp − 1

2χ
2 gi ; x
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(D1)

Z x = 2π ddet Ĉ x
1/2

(D2)

χ2 gi ; x =
i, j = 1

d
gi − g‾i x Ĉ−1 x

ij
gj − g‾j x ,

(D3)

where g‾i x  is the mean expression level of gene i at position x and

Ĉ x ij = δgiδgj x

(D4)

is the covariance matrix of fluctuations around these means. To decode the position of a cell 
from the local expression levels we need to construct

P x ∣ gi = P gi ∣ x P x
P gi

.

(D5)

But because nuclei are arrayed uniformly along the length of the embryo, P x  is uniform 
and hence the dependence on x is captured in Eq. (D1).

A cell at the actual position xtrue has expression levels

gi = g‾i xtrue + δgi,

(D6)

and if the positional noise is small we can write

g‾i x = g‾i xtrue + x − xtrue
dg‾i x
dx x = xtrue

+⋯,

(D7)

which we substitute into P x ∣ gi . With uniform prior P x = 1/L, the best estimate of x
maximizes P gi ∣ x . In principle there is a contribution from the normalization Z x , or 
more generally from derivatives of the covariance matrix Ĉ x . But if the noise level is small 

these contributions to maximizing P gi ∣ x  are suppressed by a factor of the noise variance 
itself. Unless Ĉ x  varies very rapidly with x—and we have checked that it does not—this 
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is sufficient to make minimizing χ2 a good approximation to maximizing P gi ∣ x . This 
estimate can be written as

x̂ = xtrue + δx

(D8)

δx xtrue = σx2(x) ∑
i, j = 1

d
δgi Ĉ

−1 x
ij

dg‾j x
dx

x = xtrue

,

(D9)

where the variance of positional noise is defined by

1
σx2 x

=
i, j = 1

d dg‾i x
dx Ĉ−1 x

ij

dg‾j x
dx ;

(D10)

for consistency we have

δx x 2 = σx2 x .

(D11)

Note the connection to Eqs (1) and (2) in §II.

Previous work has emphasized the scale of positional errors σx [11, 13, 21]. But the optimal 
decoding of gap gene expression levels [13] maps the deviation of expression levels from the 
mean into a decoding error for each embryo individually, as in Eq. (D9). An example is in 
Fig. A5, where the small fluctuations of expression levels around the mean (A) translate into 
proportionally small errors δx (B).

For each embryo α we can take the positional errors δxα x  and compute the correlation 
function

Cα Δx = 1
L − Δx∫ dxδxα x δxα x + Δx .

(D12)

Fig. A5C shows the mean and standard error of the normalized correlation function 
across all Nem = 38 embryos in our experimental ensemble. Qualitatively, correlations in the 
positional noise encoded by the gap genes extend over distances similar to the correlation 
in positional noise of the pair-rule stripes (Fig. 4). Quantitatively, the gap gene correlations 
include an additional component with a short correlation length. One possibility is that this 
component is averaged away by interactions among neighboring cells during expression 

McGough et al. Page 22

PRX Life. Author manuscript; available in PMC 2024 December 11.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



of the pair-rule stripes. Another possibility is that a modest fraction of the noise in gap 
gene expression reflects local noise in the measurements, as discussed previously [16]; this 
measurement noise has only a small impact on our estimates of the effective noise σx but 
a larger impact on the shape of the correlation function. It seems likely that both effects 
contribute. Nonetheless, it is clear that relatively long ranged correlations, which are crucial 
to closing the information gap, are present already in the gap gene expression levels, as 
suggested in earlier work [11, 17, 18].

While new experiments will be needed to estimate the information that is encoded in the 
gap gene correlations, one can ask how the different gap genes are contributing to these 
correlations. In particular, it is interesting that the correlations at long distances depend on 
correlations among different combinations of genes. As an example, near x/L = 0.4 only 
Hb and Gt have strongly nonzero expression, so it is some combination of fluctuations 
in the expression levels of these two genes that determine the local positional error. Near 
x/L = 0.6, however, only Kr and Kni have significant expression, and so positional errors 
are determined by a combination of expression fluctuations in these two genes. But the data 
show that positional noises at points separated by Δx/L 0.2 are correlated. Thus not only 
are fluctuations in gene expression levels correlated over long distances, but the relevant 
correlations are among different genes, as emphasized previously by Krotov et al (2014). It 
is plausible that these inter–gene correlations are a signature of interactions in the gap gene 
network, which can propagate along the length of the embryo via diffusion.

Finally, as a check, we redo the analysis of Fig. 4 using measurements of stripe positions 
along the ventral edge of the embryo. We expect to see essentially the same pattern of 
correlations, although with larger errors since measurements along a curved contour are 
more challenging. This is what is shown in Fig. A6.
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FIG. 1: 
Segmented Drosophila body plan. (A) Brightfield color image of a 5 mm long 3rd instar 
larva of the fruit fly Drosophila melanogaster [10] with clearly visible segments. (B) An 
optical section through an embryo stained for three of the pair-rule proteins, 50 min into 
nuclear cycle 14 (~ 3 h after oviposition), showing striped patterns that align with the body 
segments; data from Ref [13]. (C) As in (B), from multiple embryos, illustrating the pattern 
reproducibility. Time in nuclear cycle 14 indicated at bottom right of each profile. Asterisk 
marks the image in (B).
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FIG. 2: 
Probability of “crossed signals” between two neighboring cells as a function of the 
positional error, assuming that noise is independent in each cell, from Eq. (5). Dashed 
vertical line marks the experimental value of positional noise, σx 0.01L, which corresponds 
to less than the mean distance between neighboring cells L/N [11].
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FIG. 3: 
Extra information from correlations, as a function of the correlation length. (A) Numerical 
results for N = 50 and N = 100 from Eq. (9) with the correlation matrix in Eq. (10); analytic 
results for N ∞ from Eq. (15). Compare with the information gap from Appendix A (solid 
black line bracketed by dashed error bars). Intersection at ξ = 19.5 ± 1.9 L/N  marked by 
vertical line and arrow. (B) Probability Perror of at least two signals being “crossed,” x̂n+1 < x̂n, 
in a line of N = 90 cells, with σx/L = 0.01.
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FIG. 4: 
Correlations between noise in peak positions of the eve, run, and prd stripe patterns, from 
Eq. (17), as a function of the mean separation between stripes. Error bars estimated from the 
standard deviation across random halves of the data. With three genes, each having seven 
stripes, we observe (21×20)/2 = 210 distinct elements of the correlation matrix Cnm. Solid red 
line is a smooth curve to guide the eye.
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FIG. 5: 
Extra information from correlations, ΔS /N, computed from the observed correlations in 
pair-rule stripe fluctuations Cnm through Eq. (9), including different numbers of contiguous 
stripes. Circles and error bars (blue) are the extrapolated estimates from Appendix C. 
Red dashed lines are ± one s.e.m. around the best estimate of the information gap 
Igap = 1.68 ± 0.07bits/cell from Appendix A.
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