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Abstract—Simplicity and communication independence make
droop control a prevalent choice in industry. Understanding
its steady state gains importance with the increasing size of
microgrids. This paper proposes a fast approach for calculating
the steady state of the droop-controlled AC microgrid. First,
linear power flow equations are used to simplify the problem.
Second, the closed-form steady-state solution is derived given a
specific system frequency. Third, to fully consider the load and
network loss changes due to frequency deviations, an algorithm
is developed for fast assessing of the steady state by frequency
updating based on droop equations in each iteration. Simulation
results on two test systems demonstrate that the proposed method
can provide a rapid solution with acceptable accuracy.

Index Terms—AC microgrid, droop control, frequency devia-
tion, power flow equation, steady-state analysis.

I. INTRODUCTION

Microgrids integrate multiple distributed generators (DGs),
battery storage systems, and loads, operating in either grid-
connected or islanded mode [1]. As the focus on utilizing
renewable energy continues to grow, microgrids are emerging
as a vital platform for renewable energy consumption. Droop
control is the most traditional control strategy deployed for
microgrids. It is proposed as a primary control to achieve
power sharing among DGs by emulating the inertial behavior
of synchronous generators. Although droop control is opera-
tionally simple, it suffers from load-dependent frequency and
voltage deviations, inappropriate reactive power sharing, and
poor dynamic performance [2], [3].

To address these problems, many control strategies emerge.
Virtual impedance based method [4] is designed to compensate
for the feeder impedance difference and reduce the reactive
power sharing mismatch. To achieve proportional active and
reactive power sharing, droop-based secondary controls are
proposed in [5]–[7]. Recently, droop-free controls have also
been proposed in which the primary-level droop control is
eliminated [2], [3], [8].

Despite the emergence of these advanced controls, the
conventional droop control is still the most well-tested and
applied control in reality. Due to its simplicity and ability
to operate independently of communication, it serves as the
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primary control layer in the control hierarchy, ensuring rapid
response and frequency/voltage stability.

With the fast expanding of microgrids, the steady-state anal-
ysis for droop-controlled microgrid system becomes critical,
which provides information of the overall system by solving
power flow equations. On one hand, an accurate steady-state
analysis is required for control performance evaluation, param-
eters tuning, small-signal analysis initialization, and microgrid
planning. On the other hand, a fast, simplified method is
necessary for real-time dispatch and contingency analysis.

Conventional power flow equations cannot be directly ap-
plied to analyze the steady state of the droop-controlled AC
microgrid. In conventional power flow, buses are classified into
slack, PV, and PQ buses, ensuring the number of variables is
equal to the number of equations. However, this classification
is not valid for the droop-controlled microgrid: 1) The terminal
voltage of the inverter bus is not constant; 2) The system
frequency may not be nominal; 3) The inverters’ output active
and reactive powers are not constant.

Several methods have been proposed for the steady-state
analysis of the droop-controlled microgrid. In [9], the phase
angle droop and voltage droop are considered in the power
flow equations. However, phase angle droop is not usually
used. In [10], the steady state is calculated by iterations
including dq frame calculation for inverter output and xy
frame for network impedance, voltage, and current. However,
this method requires heavy computation. In [11], a slack
bus is assumed in the microgrid and two nested loops are
involved in the iteration to repeatedly solve the power flow
equations to eliminate the unbalance of active power and
voltage in the assumed slack bus until accuracy is acceptable.
However, the massive power flow calculation largely increases
the computation burden. In [12], a current injection method is
used to model the load and network changes. But this method
is still complicated and is not compatible with the typical
power flow equations.

In [13], the droop control with virtual impedance is consid-
ered and frequency is considered as a global variable. Loads
are modeled as functions of frequency to guarantee accuracy.
However, the network loss change is ignored and the feeder
parameters are treated as constants. In the distribution system,
with a large R/X ratio, ignoring the network loss change will
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Fig. 1. Typical structure of grid-forming inverter with droop control.

inevitably impact the steady state accuracy.
With the methods mentioned above, a fast and simplified

steady-state analysis for droop-controlled AC microgrid is
lacking. To this end, in this paper we propose a method for
fast-steady state analysis of the droop-controlled AC microgrid
with high efficiency and acceptable accuracy, considering net-
work and load parameter change under different frequencies.
The main contributions are summarized as follows.

1) Linear power flow equations are used to simplify the cal-
culation. A closed-form solution for droop-controlled AC
microgrid under a specific system frequency is derived to
speed up the solving process.

2) A fast algorithm is developed to calculate the final
frequency. The changes in load and network parameters
caused by frequency deviation are considered to improve
the steady-state analysis accuracy.

The remainder of this paper is organized as follows. Sec-
tion II introduces the conventional droop control mechanism.
Section III describes the typical accurate method to calculate
the steady state of the droop-controlled AC microgrid. Section
IV introduces our proposed fast steady-state analysis method.
Section V presents the simulation results. Finally, conclusions
are drawn in Section VI.

II. CONVENTIONAL DROOP CONTROL

A. Inverter Control Structure

Grid-forming inverter operates as a voltage source that
controls its voltage and frequency to support the microgrid.
The typical grid-forming inverter with droop control is shown
in Fig. 1. DG i calculates its active power output Pi and
reactive power output Qi by the power calculation block.
Depending on the filtered Pi and Qi, droop control decides the
final set points v∗i and ω∗

i , and then feeds them into the zero-
level control (e.g., double-loop control). Then the modulation
wave is generated to produce the pulse width modulation
(PWM) signal to drive the inverter.

B. Conventional Grid-Forming Droop Control

The typical power-frequency (P-f) droop and var-voltage
(Q-V) droop for deciding the final set points are illustrated in
Fig. 2 [14]. They regulate the frequency and terminal voltage
of the inverter as:
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Fig. 2. Droop characteristics.

v∗i = vr
i −mqi(Qi −Qset

i ), (2)

where ωr
i and vr

i are the frequency and voltage references; mpi

and mqi are the frequency and voltage droop coefficients; and
P set
i and Qset

i are the active and reactive power set points.
Based on the current active and reactive power outputs, droop
control mimics the generator’s behavior by changing the DG’s
frequency and voltage. For example, as shown in Fig. 2, when
Pi > P set

i , droop control lowers the frequency set point ω∗
i .

Similarly, when Qi > Qset
i , droop control lowers the voltage

set point v∗i . Here P set
i and Qset

i are local constant data that
are selected as an ideal operating point. It is clear that the
frequency and voltage may not be equal to the pre-assigned
reference values, resulting in frequency and voltage deviations.

III. ACCURATE STEADY-STATE CALCULATION FOR
DROOP-CONTROLLED AC MICROGRID

Here we show the method to calculate the accurate steady
state for an AC microgrid with droop control. As the system
frequency will not necessarily be the nominal frequency under
droop control, the feeder and load impedances are not constant
but functions of ω∗, meaning that the admittance matrix is also
a function of ω∗. Let the buses be those in the middle of the
LCL filter of each source and the other buses are eliminated
by Kron reduction. Let the set of the remaining buses be
N = {1, · · · , N} where N is the number of DGs. Then the
bus admittance matrix for the reduced network is denoted by
Y(ω∗) = G(ω∗) + jB(ω∗).

Let Gij(ω
∗) and Bij(ω

∗) be the real and imaginary parts
of Yij(ω

∗), respectively. Then the AC power flow equations
under ω∗ for ∀i ∈ N can be described as:

Pi = v∗i

N∑
j=1

v∗j

(
Gij(ω

∗) cos δij +Bij(ω
∗) sin δij

)
(3)

Qi = v∗i

N∑
j=1

v∗j

(
Gij(ω

∗) sin δij −Bij(ω
∗) cos δij

)
, (4)

where Pi and Qi are the active and reactive powers of the
ith DG, v∗i and v∗j are, respectively, the voltage magnitudes
of buses i and j, δij = δi − δj is the phase angle difference
between buses i and j.

Unlike the bus types in conventional power flow analysis in
which the buses provide either constant v∗i and Pi or constant
Pi and Qi to make sure that the number of variables and



the number of equations are equal, the DG buses with droop
control provide additional ‘constraints’ on the final steady
state. At the steady state, the two droop control equations
(1)–(2) must be satisfied. Since the system should operate
synchronously, all DGs must share the same global frequency
ω∗ at the steady state. Therefore, the droop control adds 2N
additional equations in (5a)–(5b) to the power flow equations
in (3)–(4) to ensure a final steady state as [13], [15]:

ω∗ = ωr
i −mpi

(
Pi − P set

i

)
= ωr

j −mpj

(
Pj − P set

j

)
(5a)

i, j ∈ N , i ̸= j

v∗i = vr
i −mqi

(
Qi −Qset

i

)
, i ∈ N (5b)

(3)–(4). (5c)

Setting δ1 as the reference angle, there are a to-
tal of 4N equations with 4N variables, ω∗, v∗1 , · · · , v∗N ,
δ2, · · · , δN , P1, · · · , PN , Q1, · · · , QN , to be solved for.

IV. FAST STEADY-STATE CALCULATION

A. Linear Power Flow Equations

Due to the nonlinearity, directly solving (5) is challenging
and time-consuming for a large microgrid. Therefore, a linear
equation system is more desirable for a simple and fast
calculation. In (5), the nonlinearity comes from the AC power
flow equations. The linear power flow model in [16] has been
shown to be accurate and robust for distribution systems. We
use this model to simplify (3)–(4) as:

Pi =
N∑
j=1

(
Gij(ω

∗)v∗j −Bij(ω
∗)δj

)
(6)

Qi = −
N∑
j=1

(
Bij(ω

∗)v∗j +Gij(ω
∗)δj

)
, (7)

where the global frequency ω∗ is still involved. Using (6)–(7)
can largely simplify the power flow equations and speed up
the calculation. However, due to the existence of the global
frequency ω∗, (6) and (7) will still be nonlinear.

B. Approximate Linear Equations

To further simplify the problem, we first use constant G and
B at the nominal frequency, ω0, assuming that the frequency
deviation is small. Then we have the following linear equation
system that defines the final steady state:

ωr
i −mpi

(
Pi − P set

i

)
(8a)

= ωr
j −mpj

(
Pj − P set

j

)
, i, j ∈ N , i ̸= j

v∗i = vr
i −mqi

(
Qi −Qset

i

)
, i ∈ N (8b)

Pi =
N∑
j=1

(
Gij(ω0)v

∗
j −Bij(ω0)δj

)
, i ∈ N (8c)

Qi = −
N∑
j=1

(
Bij(ω0)v

∗
j +Gij(ω0)δj

)
, i ∈ N . (8d)

Define the vector of the variables to be solved for as:

x = [v⊤ δ⊤ P⊤ Q⊤]⊤, (9)

where

v = [v∗1 , v
∗
2 , · · · , v∗N ]⊤ (10)

δ = [δ1, δ2, · · · , δN ]⊤ (11)

P = [P1, P2, · · · , PN ]⊤ (12)

Q = [Q1, Q2, · · · , QN ]⊤. (13)

Then (8a)–(8b) can be written as:

AωpP = bω (14)
v +Av∗qQ = bv, (15)

where

Aωp =


−mp1 mp2 . . . 0

... −mp2
mp3

...
. . . . . .

0 . . . −mp(N−1)
mpN

 (16)

bω =


ωr
2 − ωr

1 +mp2P
set
2 −mp1P

set
1

ωr
3 − ωr

2 +mp3
P set
3 −mp2

P set
2

...
ωr
N − ωr

N−1 +mpN
P set
N −mp(N−1)

P set
N−1

 (17)

Av∗q = diag
(
[mq1 ,mq2 , · · · ,mqN ]

)
(18)

bv∗ =


vr
1 +mq1Q

set
1

vr
2 +mq2Q

set
2

...
vr
N +mqNQset

N

 . (19)

Further, (8c)–(8d) can be written in compact form as:

P = G(ω0)v −B(ω0) δ (20)
Q = −B(ω0)v −G(ω0) δ. (21)

In addition, we add the following equation to set the first
phase angle as 0:

Aδ0δδ = 0, (22)

where

Aδ0δ = [1 01×(N−1)]. (23)

Then the compact form of the linear equations in (8) is:

Ax = b, (24)

where

A =


0 Aδ0δ 0 0
0 0 Aωp 0

IN×N 0 0 Av∗q

G(ω0) −B(ω0) −IN×N 0
−B(ω0) −G(ω0) 0 −IN×N

 (25)

b =

[
0 b⊤

ω b⊤
v∗ 0⊤

N 0⊤
N

]⊤
, (26)

and IN×N is an identity matrix.
Since there are 4N equations and 4N variables in (24), it

will produce a closed-form unique solution if there is any. The



accuracy of the solution is acceptable if each DG is outputting
the same active power output as its set point; otherwise,
iterations as presented in the next subsection are needed.

C. Frequency Update and Overall Algorithm

The solution of (24) does not consider the change of the load
and network parameters under different system frequencies. To
address this problem and improve the accuracy, we update the
system frequency when the first equation in (5a) is not satis-
fied. With nominal frequency ω0, solving (24) can estimate the
active power of each DG. Then the approximated frequency
ω∗(1) can be calculated by (5a). By setting the frequency as
the new system frequency ω∗(1), we can resolve (24) to get a
better solution. This process can be described by Algorithm 1
as shown below until the required accuracy

∆ω∗(k) =
∣∣ω∗(k) − ω∗(k−1)

∣∣ (27)

is less than a predetermined threshold ϵ, where k denotes the
current iteration and ω∗(k) is the ω∗ value in iteration k.

Algorithm 1: Fast steady-state calculation for droop-
controlled AC microgrid

1 Initialization: Set k = 0, ω∗(0) = ω0

2 while k < kmax do
3 Calculate G

(
ω∗(k)) and B

(
ω∗(k))

4 Solve (24)
5 Set k = k + 1

6 Update ω∗(k) based on (5a)
7 Calculate ∆ω∗(k) based on (27)
8 if ∆ω∗(k) < ϵ then
9 break

10 end
11 end

Remark. Although the fast method may require iteration,
the final system frequency can be reached by only several
iterations though (5a). Since (24) is linear, this method will
be fast compared with the accurate method especially when
the system size is large. The only error will be produced by
the power flow approximation in (6) and (7) which has been
proved acceptable in [16] for distribution systems.

V. SIMULATION RESULTS

A. Test on A 4-DG Microgrid System

A modified 4-DG test system is shown in Fig. 3. The grid
parameters are the same as those in [3] except that the line
resistances are four times of the original values (R/X ranges
from 2.6 to 4.9) to simulate the highly resistive low-voltage
distribution system with R ≫ X . The system and droop
control parameters are listed in Table I.

Simulation is performed in Matlab/Simulink at a time-step
of 50 µs using the fixed-step discrete ODE-4 solver. The
inverter model is selected as the average model to eliminate
the harmonics in the simulation.

To validate the proposed method, the results calculated by
the accurate method in Section III and the proposed fast
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Fig. 3. Modified 4-DG test system.

TABLE I
4-DG SYSTEM AND DROOP CONTROL PARAMETERS

Symbol Description Value

Z12 Line 1–2 resistance and inductance 3.2 Ω, 0.0036 H
Z23 Line 2–3 resistance and inductance 1.6 Ω, 0.0018 H
Z34 Line 3–4 resistance and inductance 2.8 Ω, 0.0015 H

Z1 Load 1 resistance and inductance
(normal/heavy)

32.8823Ω, 0.0308H /
9.986 Ω, 0.0007H

Z2 Load 2 resistance and inductance
(normal/heavy)

42.747Ω, 0.0401H /
11.9832 Ω, 0.0008H

Z3 Load 3 resistance and inductance
(normal/heavy)

45.5683Ω, 0.0133H /
11.9958 Ω, 0.0004H

Z4 Load 4 resistance and inductance
(normal/heavy)

50.6315Ω, 0.0148H /
9.9965 Ω, 0.0004H

mpi Frequency droop 0.0009 rad/(W·s)
mqi Voltage droop 0.004 Var/V
ωr
i Frequency references 120π (rad/s)

vr
i Voltage references 120 V

P set
i Active power set points 1000 W

Qset
i Reactive power set points 0 Var

TABLE II
THE SOLUTION UNDER NORMAL LOAD

Simulink Accurate Method Fast Method

v (p.u.) δ (rad) v (p.u.) δ (rad) v (p.u.) δ (rad)

0.9878 0 0.9878 0 0.9877 0
0.9939 0.0141 0.9939 0.0141 0.9941 0.0141
0.9962 0.0176 0.9962 0.0176 0.9965 0.0177
0.9994 0.0245 0.9994 0.0245 1.0000 0.025

f (Hz) 60.0084 60.0084 60.0073

TABLE III
THE SOLUTION UNDER HEAVY LOAD

Simulink Accurate Method Fast Method

v (p.u.) δ (rad) v (p.u.) δ (rad) v (p.u.) δ (rad)

0.9877 0 0.9877 0 0.9878 0
0.9972 0.0218 0.9972 0.0218 0.9989 0.022
0.9975 0.0202 0.9975 0.0202 0.9992 0.0206
0.988 0.0026 0.988 0.0026 0.9883 0.0027

f (Hz) 59.5928 59.5928 59.588

method in Section IV are compared with the result from
Simulink simulation. Both normal and heavy loading condi-
tions are considered to show the robustness of the proposed
method under different frequency deviations. As shown in
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Tables II–III, the accurate method can get the same steady
state as the Simulink simulation. The proposed fast steady-
state analysis method can get a steady state that is very close
to that from the Simulink simulation.

B. Test on the Modified IEEE 34-Bus System

We test our proposed method on the modified IEEE 34-bus
test system [8], as shown in Fig. 4. The tests are performed in
Matlab 2020b on a laptop computer with Intel Core i7-1065G7
CPU @1.3GHz and 8GB RAM. The accurate method is
implemented using the trust region method, initiated from a flat
start and with an accuracy tolerance of 10−6. For the proposed
fast method, ϵ = 10−6. The droop control parameters are the
same as those in Table I. Both methods are run for 100 cases
for each of which a random load change following a normal
distribution with zero mean and 10% standard deviation is
added to the initial loads’ resistance and inductance.

The voltage and phase angle root mean square error (RMSE)
of the proposed fast method compared with the accurate
method under the 100 cases are shown in Figs. 5 (a)–(b). The
voltage of the proposed method is almost the same as the
accurate method. The phase angle RMSE is also acceptable.
As in Fig. 5 (c), the steady-state frequency error, defined as
the absolute difference between these two methods, is small.

As shown in Fig. 5(d), the proposed fast method only takes
0.0026 s on average while the accurate method needs 0.0649 s,
achieving a speed-up of almost 25. This clearly demonstrates
the advantage of the proposed fast method in efficient steady-
state analysis of the droop-controlled AC microgrid.

VI. CONCLUSION

This paper proposes a fast method to calculate the steady
state of the droop-controlled AC microgrid. To speed up the
calculation and consider the network changes due to frequency
deviation, linear power flow equations are involved, a closed-
form formula is derived for a given frequency, and an algo-
rithm is developed for frequency updating. The simulations
on a 4-DG microgrid system and the modified IEEE 34-bus
system show that the proposed method can obtain accurate
enough steady states with greatly improved time efficiency,
achieving a speed-up of almost 25 for the IEEE 34-bus system.
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