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ABSTRACT

Coastal wetlands act as natural buffers against wave energy and storm surges. In the course of
energy dissipation, vegetation stems are exposed to wave action, which may lead to stem breakage.
An integral component of wave attenuation modeling involves quantifying the extent of damaged
vegetation, which relies on determining the maximum drag force (Fp max) and maximum moment
of drag (Mp max) experienced by vegetation stems. Existing closed-form theoretical equations for
Mp max and Fp max are only valid for linear and weakly nonlinear deep water waves. To address this
limitation, this study first establishes an extensive synthetic dataset encompassing 256,450 wave
and vegetation scenarios. Their corresponding wave crests, wave troughs, Mpmax, and Fp max.,
which compose the dataset, are numerically computed through an efficient algorithm capable of
fast computing fully nonlinear surface gravity waves in arbitrary depth. Seven dominant wave
and vegetation related dimensionless parameters that impact Mp max and Fpmax are discerned and
incorporated as input feature parameters into an innovative sparse regression algorithm to reveal the
underlying nonlinear relationships between Mp max, Fp max and the input features. Sparse regression
is a subfield of machine learning that primarily focuses on identifying a subset of relevant feature

functions from a feature function library. Leveraging this synthetic dataset and the power of
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sparse regression, concise yet accurate closed-form equations for Mp max and Fp max are developed.
The discovered equations exhibit good accuracy compared with the ground truth in the synthetic
dataset, with a maximum relative error below 6.6% and a mean relative error below 1.4%. Practical
applications of these equations involve assessment of the extent of damaged vegetation under wave
impact and estimation of Mp max and Fpmax on cylindrical structures.

Keywords: sparse regression, equation discovery, maximum drag/bending moment, vegetation stem

breakage, nonlinear wave theory

INTRODUCTION

Coastal salt marshes play a crucial role in dissipating wave energy, stabilizing sediment along the
shoreline, mitigating the impacts of coastal flooding, and providing vital habitats for plants and animal
species. Designing and implementing nature-based solutions for the protection and restoration of coastal
salt marshes are imperative to the preservation of coastal ecosystems and the advancement of sustainable
shoreline management practices. Coastal salt marshes are subjected to drag force and bending moment
induced by waves. Determining the maximum wave-induced drag force (Fp max) on salt marsh stems and
maximum moment of drag force about the stem base (Mp max) is crucial to evaluate the susceptibility of salt
marshes to stem breakage and to quantify the effectiveness of salt marshes in dissipating wave energy in a
high energy wave environment.

Closed-form analytical approximations of Fp max Or Mp max are desired in engineering application. Salt
marshes are commonly treated as rigid cylinders. Researchers developed simple closed-form analytical
equations for Fp max or Mp max based on linear wave theory (LWT) (e.g., Dalrymple et al. 1984; Vuik et al.
2018) and Stokes 2nd order wave theory (STK2) (Zhu and Chen 2019). However, these wave theories, even
higher order Stokes wave theories (e.g., Stoke’s Sth-order wave theory by Fenton 1985), have limitations
when applied to highly nonlinear waves in intermediate and shallow water regions, rendering the established
closed-form analytical equations or lookup tables unsuitable for salt marshes in these regions. Few attempts
have been made to calculate Fp pmax or Mp max from wave theories applicable to shallow water waves.

Fenton (1988) proposed an algorithm for calculating steady surface waves in deep water or water of
finite depth based on stream function wave theory (SFWT). However, numerical approximations from

Fenton’s algorithm do not converge or converges to ghost solutions with spurious oscillations for waves with
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kh < /15 (Clamond and Dutykh 2018), where k# is the dimensionless wavelength parameter that measures
the wave dispersion. Recently, Clamond and Dutykh (2018) proposed an efficient algorithm, with time
complexity O(N log N) (N is the number of Fourier modes), for fast computation of steady surface gravity
waves in arbitrary depth (i.e., Stokes, cnoidal, and solitary waves) with wave steepness up to approximately
99% of the maximum steepness for all wavelengths. Clamond and Dutykh’s algorithm, denoted as SSGW
(steady surface gravity waves), numerically solves the modified Babenko equation (Babenko 1987) via the
classical Petviashvili method (Petviashvili 1976). Neither Fenton’s algorithm nor SSGW provides explicit
equations of horizontal velocity (x) and surface elevation (77), and thus, it is not possible to theoretically
derive closed-form equations for Mp max and Fp max from these two algorithms.

Instead of deriving theoretical equations, an alternative approach is to formulate semi-theoretical equa-
tions by leveraging machine learning techniques. Recent advances in machine learning, bolstered by the
increasing computational capabilities, facilitate the development of data-driven models capable of harnessing
extensive data to make predictions based on input features. Among them, neural network models give only
implicit relationship between input and output variables. In practical applications, engineers experienced
with the utilization of empirical formulas may prefer an explicit calculation method. Compared to neural
network models, equation discovery techniques provide explicit and interpretable mathematical formulas to
describe the underlying dependencies between variables in a dataset. Equation discovery techniques have
been used to uncover governing partial differential equations of nonlinear dynamical systems from noisy
observation data (e.g., Wang et al. 2011; Raissi et al. 2018; Chen et al. 2021; Wang et al. 2021). Two
popular methods for equation discovery are the genetic algorithm (e.g., Bongard and Lipson 2007; Schmidt
and Lipson 2009; Pourzangbar 2012; Bonakdar et al. 2015; Pourzangbar et al. 2017a; Pourzangbar et al.
2017b; Formentin and Zanuttigh 2019; Lee and Suh 2019; Udrescu and Tegmark 2020; Dalinghaus et al.
2023) and the sparse regression (e.g., Brunton et al. 2016; Lee et al. 2022). The genetic algorithm is
expressive and versatile but does not scale well to large systems and may be prone to overfitting (Brunton
etal. 2016). Sparse regression is considered more efficient or manageable. Brunton et al. (2016) formulated
system identification as sparse regression problems and developed an innovative framework, SINDy (Sparse
Identification of Nonlinear Dynamics). SINDy leverages sparsity-promoting techniques to find out the fewest
active terms from a space of nonlinear candidate functions to accurately represent the data. The resulting

parsimonious models balance accuracy with model complexity while avoiding overfitting the model to data.
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SINDy has been successfully implemented to identify nonlinear dynamical systems in various domains such
as fluid dynamics (Loiseau and Brunton 2018), structural engineering (Li et al. 2019), and chemical systems
(Hoffmann et al. 2019). To the best of the authors’ knowledge, sparse regression has not been previously
applied in the field of coastal and ocean engineering.

The objectives of this study are to: (1) create an extensive synthetic dataset encompassing a wide range
of wave conditions, vegetation submergence, and the corresponding wave crests (1max ), wave troughs (17min),
Mp max, and Fp max based on steady surface waves calculated by using the SSGW algorithm; (2) leverage
the SINDy framework to formulate closed-form equations for Mp max and Fpmax based on the synthetic
dataset; and (3) apply the discovered equations to assess the extent of damaged vegetation under wave
impact and estimate Mp max and Fpmax on cylindrical structures. The created dataset includes 256,450
combinations of wave height, wave period, water depth, vegetation submergence (vegetation height to water
depth ratio), and numerical approximations of Mp max and Fp max. The core processes of equation discovery
involve identifying input feature parameters and utilizing the sparse regression algorithm to achieve a balance
between the sparsity and accuracy of the equations. Given the established exact theoretical equations for
Mp max and Fp pax from LWT and STK2, along with those for 7 and u from SFWT, we discern the dominant
wave and vegetation related dimensionless parameters that impact Mp max and Fp max, and incorporate them
as input features into the SINDy framework to reveal the underlying nonlinear relationships between Mp max.
Fp max and input features.

This paper is structured as follows: in the data and methods section, we outline the procedure for
creating the synthetic dataset, introduce the established theoretical equations for Mp max and Fp max from
LWT and STK2, and identify the input features. Additionally, we briefly introduce the SINDy framework,
focusing on the feature library and hyper-parameter. In the results section, we demonstrate SINDy’s ability to
recover theoretical LW T-based equations for Mp max and Fp max for linear waves, and present the discovered
equations for fully nonlinear waves from shallow to deep waters, along with discussions on generalization
and accuracy. Two case studies are illustrated in the application section. Concluding remarks and future

research topics are presented in the final section.

DATA AND METHODS
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Building a synthetic dataset

The drag force dominates over inertia force because b, < H (Journée and Massie 2001). The drag force
per unit length of the vegetation stem fp can be approximated as a quadratic function of the time-dependent
vertically-varying horizontal velocities u(z, z) (Morison et al. 1950) as fp(¢, z) = % pCpbyulu|, where t is the
time, z is the vertical axis, p is the water density, Cp is the drag coefficient, and b, is the stem width. The
total drag force acting on the vegetation stem Fp(¢) and the moment of drag force about the sea floor Mp(t)

are determined as:

min(r,—h+h,,)

min(n,—h+h,)
Fp(1) = / Fo(t.)dz and Mp(r) = / Folt,2) - (= + hydz ()

h -h

where £ is the water depth, 7 is the surface elevation, and 4, is the vegetation stem height. The integrations
are from the sea floor (z = —h) to either the vegetation stem top (z = —h + h,,) for submerged vegetation
or the free surface i for emergent vegetation (see Fig. 1a). The maximum Fp(¢) and Mp(t) within a wave

cycle, denoted as Fp max and Mp max, Occur at the passage of the wave crest 17max, and are computed as:

min(7max, —h+hy)
Fpmax = / EpCvaumaxlumaxle (2)
-h
min(77max, —1+h,)
Mpmax = / EPCvaumaxlumaxl “(z+ h)dz 3)
-h

where umax(2) is the maximum horizontal velocity within the wave cycle. Given that Cp and b, are usually
considered constants along the stem in numerical models (e.g., Mendez and Losada 2004; Anderson and
Smith 2014; Luhar and Nepf 2016; Zhu et al. 2023) and are factored out of the integrations, we omit % pCpb,
from the dataset but can reintroduce it during applications.

The first step towards generating a dataset with general applicability to non-breaking waves and vegetation
in natural environments is to determine an adequate quantity of representative, impartial scenarios of waves
and vegetation. Waves are characterized with dimensionless parameters. Following the wave classification

presented in LeMehaute (1976), wave characteristics are determined based on conditions as below:
(i) —4 < log,y(h/gT?) < -0.1,

(i) =5 < log;o(H/gT?) < —1,
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(iii) H/L < 0.14tanh kh (Kamphuis 1991) to meet the non-breaking wave criteria,
(iv) kh < 2r because coastal salt marshes rarely experience very deep water waves,
(v) kH/2 is no greater than the highest computable kH /2 by SSGW (see Fig. 2).

where g is the gravitational acceleration, T is the wave period, H is the wave height, L is the wavelength, and
k = 2/ L is the wavenumber. The ranges of log,,(h/gT?) and log,,(H/gT?) are discretized with increments
of 0.2, and 0.17, respectively, to balance the diversity of wave conditions in the dataset and the computational
cost. In the dataset, we let 0.5 < h < 8.0 m. However, later in the generalization of the discovered equations,
we will demonstrate that the discovered equations are applicable to water depth beyond this scope. When
the values of &, log,o(h/gT?) and log,,(H/gT?) are provided, T and H can be easily computed, and L and
k are pragmatically determined from the dispersion relationship based on LWT: w? = gk tanh(kh), where
w = 2x/T is the wave angular frequency. This dispersion relationship is limited to LWT and STK2; however,
it provides a more pragmatic option for users of the equations developed in this study. Therefore, we use k
from linear dispersion relationship to develop the dataset and discover equations. The maximum H /h among
all wave scenarios is 0.837, close to the breaking index of (H/h),,,x = 0.826 proposed in Longuet-Higgins
(1974). All wave scenarios in the dataset are depicted in Fig. 3. The x-axis represents the wave dispersion
and the y-axis represents the wave nonlinearity.

The computations of Mp max and Fp max by definition involve integrations from the sea floor (z = —h)
to the uppermost wetted segment along the vegetation stem (Egs. 2 - 3). The vegetation stem should exceed
h+1max to be fully emergent. Fig. 3 presents the variations of n,.x / H, computed through SSGW. The 1ax / H
ratios distinct across different wave categories, with approximate values of 0.5 for linear waves, up to 0.7
for high-order Stokes waves, and up to 0.9859 for cnoidal waves. Given that (%)max < (%)max . (%)max,
we encompass a comprehensive spectrum of submergence scenarios A, /h from 0 to 1.85 in the dataset, and
discretize this range with an increment of 0.05. The novel synthetic dataset encompasses a total of 256,450
combinations of wave conditions and vegetation submergence.

For each combination of wave conditions (%, H, and T) and vegetation submergence (4, / /) in the dataset,
we apply SSGW to get numerical approximations of 7max, 7min, and umax(z). As the wave steepness or the

wave wavelength increases, SSGW requires a rapidly increasing number of Fourier modes (N) to achieve

spectral accuracy. For instance, for an extreme wave with kh = 0.0885, H/h = 0.82, the required N for
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full spectral accuracy is 2!7 (Clamond and Dutykh 2018). In this study, we adopted N = 2! and numerical
tolerance of 1079 for all waves in the dataset. The time complexity of SSGW algorithm is O(N log N).
Given the swift vertical variations in umax(z) near the free surface of highly nonlinear waves, a 50-point
Gauss-Legendre quadrature is employed for the numerical integrations in the calculations of Mp nax and
Fp max (Egs. 2 and 3). When necessary, the amount of Gauss nodes is reduced to ensure that the free surface
(the first Gauss node) maintains an adequate separation from the next Gauss node (Clamond and Dutykh
2018). The Mp max and Fp max from SSGW, denoted as Mp max,ssew and Fp max ssgw, serve as the ground
truth for assessing the accuracy of the discovered closed-form equations.

To validate the implementation of SSGW, we compare the total horizontal force (Fr) calculated by
SSGW against laboratory measurements obtained from Luhar and Nepf (2016). Their experiment with 5
cm long HDPE (high density polyethylene plastic) blades, T = 2 s, H = 7.8 cm, and 2 = 0.3 m is carefully
selected for validation because the mimic vegetation in this particular experiment is essentially rigid (see
Fig. 6 in Luhar and Nepf 2016). The mimic vegetation width b, is 0.02 m and thickness is 0.4 mm. The
total horizontal force is the sum of drag force and inertia force (see Eq. 22 in Appendix I). The inertia
coefficient Cp; = 1.0 is chosen following Luhar and Nepf (2016), whereas the drag coefficient Cp = 3.6 is
determined from the empirical relationship Cpp = max(10KC~'/3,1.95) in Luhar and Nepf (2016), where

KC = U,T/b, is the Keulegan-Carpenter number (U,, is the orbital wave velocity).

Discovering closed-form equations for Mp ,.x and Fp n.x using SINDy
Existing theoretical closed-form equations for Mp max and Fp max

Following Dalrymple et al. (1984), we can insert umax = % - cosh k(z + h) from LWT into Egs. (2)
and (3), and perform integrations from the sea floor to min(0, —A + h,,) rather than to min(fyax, —h + h,) to

get theoretical closed-form equations as below:

(,()2H2
Mp max = ——— [2kh, sinh2kh, — cosh2kh, + 1 + 2(kh,)* 4
D WT = o | (khy)’] @)
(,()ZHZ
FD max = ——— [2kh, + sinh2kh, 5
DIV = | . ©)

where w = 27t/T is the wave angular frequency. 4, in Egs. (4) and (5) should be min(#,, #). The assumptions
made in the derivation of Eqs. (4)-(5) are: (i) waves can be described by LWT, and (ii) wave heights are so

small that nmax can be replaced with the still water level (z = O m) in the vertical integrations. Fig. 1b presents
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Umax Of a nonlinear wave in shallow water (fall in the cnoidal wave region) computed by LWT, Fenton’s
algorithm, and SSGW. For nonlinear waves in shallow water, the wave shape is distorted (peaky crest and
flat trough). Fig. 1b clearly indicates that LWT is unsuitable for cnoidal waves, and um,x above the still water
level makes a substantial contribution to Mp max and Fp max. Fig. 4a-b illustrates Mp max ssSGW/Mp max LWT
and Fp max.ssew/Fp maxLwT for an emergent vegetation. It clearly shows that the LWT-based theoretical
equations are not applicable to vegetation in shallow water waves. The moment ratio can be as much as 7 in
shallow water waves with large relative wave height (H/h).

Zhu et al. (2019) inserted u = % cosh k(z+ h)cos 6+ 163‘”—HkH cosh 2k(z+ h) cos 26 from STK2

sinh* kh

into Eq. (1) and proposed a STK2-based closed-form equations for Mp max:

M __wH K GHP (6)
DmaeSTR = s k2 sinh? kh | sinh> kh © sinh®kh
where
M; = 2kh,sinh2kh, —cosh2kh, + 1 + 2(kh,)?
M, = 5-3coshkh, —2cosh® kh, + 3kh, sinh kh, + 6kh, sinh kh, cosh® kh, (7
Ms; = 4kh, sinh4kh, — coshdkh, + 1 + 8(kh,)*

STK2 is generally applicable to waves with Ursell number (Ur, defined as Ur = Hh—_fz) less than 26 (Isobe
et al. 1982), where the dimensionless wave parameter Ur indicates the wave nonlinearity with respect to
wave dispersion. For shallow water waves with finite amplitude (Ur > 26), STK?2 introduces a secondary
crest at the wave trough. We should seek nonlinear wave theory and numerical algorithms, such as SSGW,

for computing free surface waves and Mp max and Fp max in arbitrary water depth.

Identification of major dimensionless parameters controlling Mp max and Fp max

A wave can be characterized by dimensionless parameters that represent wave dispersion (kh) and
wave nonlinearity. In deep water and water with finite depth, a wave is usually characterized by kh (wave
dispersion) and kH (wave nonlinearity), while in shallow water, the relative wave height H/h is used in lieu
of kH. Beji (1995) proposed a nonlinearity parameter ka/tanh(kh) (a is the wave amplitude) that is valid

for both deep and shallow water waves. Nevertheless, these dimensionless parameters are not sufficient for
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formulating Mp max and Fp max in scenarios involving general wave conditions.

Fenton’s algorithm, based on SFWT, and SSGW exhibit a close alignment, with an approximate agree-
ment of up to six decimal places for deep water waves (Clamond and Dutykh 2018), and small discrepancies
for finite amplitude shallow water waves (see Fig. 4c-d). Therefore, the theoretical equations for 1y and

umax from SFWT as below (Fenton 1988) can offer valuable insights into the selection of input features:

N cosh jk(z + h)

N
Mmax, SFWT = Z Aj and  Umax SFWT = Zj BjW (3
j=1 i

where 6 = wt + kx is the phase angle, and N represents the number of Fourier modes. Fenton’s algorithm
solves for the coefficients Aj and B; (j = 1,..., N) from a system of 2N + 10 nonlinear equations including
free surface boundary condition, kinematic boundary condition, and stream function equation. It is important
to note that the equations for umax sewt in Eq. (8) only holds for scenarios where the Eulerian time-mean

velocity Cg is equal to 0. Inserting Eq. (8) into Egs. (2) and (3) yields

N N l]BB mm(nm xo—h+h )
M = +h hik(z+ h hjk(z+ h)dz (9
D max, SEWT ,E=1 JEZ coshzkhcosh]kh/ (z + h)coshik(z + h) cosh jk(z + h)dz (9)
N N T R-R. Tmax _h+hv)
ijB;B; /mm(7 , .
F, = hik(z+h hjk(z+ h)d 10
D max, SFWT § E cosh ikl cosh ki coshik(z + h)cosh jk(z + h)dz (10)

I
—_
I
—

i=1j

Using hyperbolic trigonometry identities, the integral in Eq. (9) can be explicitly expressed as the product

of 1/k? and a polynomial function of

sinh(i «+ j)kh,, cosh(i = j)kh,, and kh, if by, <+ Niax
(11)

sinh(i + j)k(h + Nmax), cosh(i + j)k(h + Nmax), kh, and knmax — if hy = B+ Nmax

and the integral in Eq. (10) can be explicitly expressed as the product of 1/k? and a polynomial function of

sinh(i + j)kh,, and kh, if hy, < h + Nmax
(12)

sinh(i £ j)k(h + Nmax), kh, and knmax  if Ay = K + Jmax.

Note that “i + j” inside the hyperbolic functions in (11) and (12) can be further dropped by using hyperbolic

iB: B - in Eqs. (9) and (10) do not have explicit forms;

trigonometry identities. The coefficients cosh ikl cosh kT
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nonetheless, guided by our knowledge on the theoretical equations for Mp max stk2 (Eq. 6), it can be inferred

w?H?
sinh? kh

kH

n .
and sinh? kh

that these coefficients are dependent on

A conjecture regarding the closed-form equations for Mp max and Fp max would be:

w*H? kH \p
Mpmax = —o [ S (——)"
b 3242 sinh2 kh (smh3 kh)

fi (ktimax, kh, khy, sinhk(h + 1max), coshk(h + nmax), sinh kh,, cosh khv)] (13)

2172
W*H kH \a
F - ( ) ‘
P J6k sinh? kh [Z sinh? kh

o (knmax, kh, khy, sinh k(h + fmax), coshk(h + fmax), sinhkh,, cosh khv)l (14)

where p and g are integers, and fi and f, represent polynomial functions. This conjecture is based on the
equations for nmax and umax from SFWT, which has discrepancies with SSGW’s solutions for very steep
waves. We will discuss the feasibility of input features identified by this method, and the potential errors in
the results section.

The dimensionless parameters in Eqgs. (13) and (14) are potential feature parameters to be used in
SINDy. However, It is not feasible to include ny,.x in the feature parameters because it is unknown a priori.
From Fig. 3, it is observed that waves in deep and intermediate water depth with Ur < 40 exhibit a slight
skewness with nm.x = 0.5H ~ 0.7H, whereas shallow water waves with Ur > 40 are strongly skewed with
Mmax = 0.7H ~ 0.9859H. Hence, we divide our synthetic dataset into four distinct subsets following the
criteria in Table 1, and use the mean of npy.x of the subset in the feature parameters. Moreover, given
that nmax is no greater than 0.7H for waves with Ur < 40, the height of wetted stem should be no greater
than h + 0.7H in subset 1. We enforce kh, =~ min(kh,, kh + 0.7kH) in subset II. Similarly, we enforce
kh, ~ min(kh,, kh +0.9859kH) in subset IV.

Eventually, the feature parameters to be used in SINDy for general wave conditions are identified as:

kH
= , xo =k(h+vH), x3 = kh, x4 = sinhk(h +vH),
2 (h+vyH), x3 4 (h+vH)
x5 = coshk(h + yH), x¢ = sinh kh,, x; = coshkh, (15)

10
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and denoted as X = [x1, X2, . . ., 7], in which, y = 0.53 and 0.86 for Stokes and cnoidal waves, respectively.
Among these feature parameters, x; approaches Ur in shallow water, kH is a measure of wave steepness,
x3 is a measure of wave dispersion, and kh,, is the vegetation height to wavelength ratio. In our synthetic
dataset, kh varies from 0.06 to 4.7, and wave steepness kH ranges from 4 x 107 to 0.85. To achieve better

regression results, Mp max and Fp max are normalized as

w?H?
D max DM 3042 sinh? kh sinh? kb,
w*H? ]
- ) (17)
D max F max/ l 16k sinh? ki sinh kh,,

Equation discovery with SINDy

X? (p is an integer) denotes the p-th order polynomial. For instance, when p = 2,
2 2 2 2 2
X* =[x}, xix0, -0, XiX7, X5, XpX3, ccc, XpX7, X3, ccc, Xg|

With a polynomial order K, the feature parameters X can yield a combination of polynomial terms @(X) =
[1, X, X% ... XK ] , referred to as the feature library. The feature library constitutes a space of polynomial
functions, with each function serving as a candidate term in the equation to be discovered. In this study, we

and F}

. . .
aim to express the target y (i.e., M 7 max

D max ) as a sparse linear combination of terms in O(X):

y = 0(X)¢ (18)

O(X) is a n X m matrix, where n is the number of training scenarios in the synthetic dataset, and m is the
number of polynomial functions in the feature library. The targety is a vector of dimension n, and coefficients
¢ is a vector of dimension m. The n > m in the training data, making Eq. (18) an overdetermined system.
The equation sparsity is measured by the count of polynomial terms present in the discovered equation,
which is equivalent to the count of non-zero entries in &, denoted as ||£]|,.

The standard regression method, specifically the least squares regression, yields a solution for & with many
non-zero entries, indicating that many candidate functions in the feature library contribute to y. Contrastingly,

SINDy employs a sequential thresholded least-squares (STLS) algorithm to recursively determine the sparse

11
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& with a cutoff value A (see Algorithm 1 in Appendix I'V). This algorithm is computationally efficient, rapidly
converges to a sparse solution for £ in a few iterations. If coefficient &; of the i-th candidate function in the
feature library is zero, it means that candidate function does not contribute to y. This algorithm is robust with
only one tuning parameter A. To discover the equations with a balance of optimal complexity and accuracy,
we employed the Pareto front analysis (Smits and Kotanchek 2005), which represents a set of solutions that
achieve the best trade-offs between model accuracy and sparsity, enabling the selection of an optimal model
based on the desired level of simplicity and predictive performance.

To exemplify the applicability of SINDy, the algorithm is initially employed to recover Eqgs. (4) and (5)
for small amplitude waves in deep water. The feature parameters X in Eq. (15) is not feasible because Egs.
(4) and (5) are obtained by integrating from sea floor to min(0, —% + h,) rather than to min(fmax, —h + hy),
thus 7max should not be included in the feature parameters. We select X = [kh,,, sinh2kh,, cosh2kh,] and
construct a feature library @(X) that includes quadratic nonlinearity of input features, i.e., K = 2. Scenarios
with Mp max ssgw close to Mp max,LwT are selected from the synthetic dataset for recovering Eqgs. (4) and
(5). Fig. 5 schematizes how sparse coeflicients are identified in a space of polynomial functions.

For the equation discovery of general wave conditions, the feature parameters in Eq. (15) is used. We
reserve scenarios with 0.5 < # < 6.75 m in the synthetic dataset, totaling 215,280 scenarios, for equation
discovery and testing purposes. Specifically, 70% of these scenarios are randomly selected as training data
for equation discovery, while 30% are set aside for testing. A grid search for A from 0 to 10 with the increment
of 0.0025 is performed to obtain the optimal A that balances equation sparsity and accuracy. Moreover, we
reserve scenarios with 7 < & < 8 m in the synthetic dataset, totaling 41,170 scenarios, for further testing the
model’s generalization.

The accuracy of the discovered equations from SINDy is evaluated using two metrics: the coefficient of

determination R? and the relative error €, defined as follows:

19)

where the sum of squares of residual RSS is computed as RSS = 3’7" | (T; - P;)? . The total sum of squares
—\2
TSS is computed as TSS = 37" | (T, - T) . P and T are the predictions and true values, respectively. R> = 1

indicates perfect agreement between the predictions and true values. R> = 0 indicates that the model results
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are as good as random guesses around the mean of the true values.

RESULTS

Validation of SSGW implementation

Fig. 6 shows the temporal variations of the horizontal force. The predominance of drag force over inertia
force is attributed to b, << H (Journée and Massie 2001). Thus, the total horizontal force (Fr) is in phase
with the drag force and Frmax ® Fpmax in this experimental case. The numerically computed Fr, using
u and n from SSGW, compares reasonably well with laboratory measurements throughout the wave cycle.
This validation affirms that F- from SSGW, together with values of Cp and Cjs based on empirical formulas
and previous literature, provide a reliable estimation of the horizontal force acting on the mimic vegetation.
The modeled and measured Fr have R? of 0.92 and normalized root-mean-square error of 11% (normalized
by the difference between the maximum and minimum measurements). The measured Fr pn,x in the wave
cycle is 0.084 N, whereas the computed Fr yax is 0.093 N. There are around 0.0165 ~ 0.0255 N discrepancies
between the computed and measured Fr at the trough around 0.5 ~ 1.7 s. Such discrepancies may stem
from factors including (1) higher swaying velocities of the mimic vegetation at the trough, (2) measurement
uncertainty, such as the 10% accuracy of the load cell, and (3) errors introduced by the Morison equation,

which is fundamentally a parametric formula.

Recovering theoretical equations in Eqgs. (4) and (5) for linear waves

Fig. 4a-b shows contour lines of 30% discrepancies between Mp max,ssgw in the synthetic dataset and
Mp max,Lwt from the LWT-based theoretical equations. For waves with Mp max ssw/Mp max1wt < 30%,
the application of SINDy with A = 0.5 yields Mp max and Fp max €quations closely resembling those in Egs.
(4) and (5). The relevant feature library and the corresponding coefficients can be found in Table 2. We
can also apply the least squares regression (LSQR) method (Barrett et al. 1994) to solve the linear system
y = O(X)¢ for the coefficients &. With tolerance of 10713, the LSQR method leads to a set of dense & that
does not align with the theoretical solutions (see Table 2). SINDy aims to identify a subset of relevant feature
functions (i.e., the feature functions whose coefficients are not zero) from the feature library, whereas the
LSQR method attempts to find coefficients for all feature functions to best fit the data and does not perform
feature selection. Therefore, SINDy identifies that Fpp max is a function of ‘kh,’ and ‘sinh 2kh,,’ and filters

out irrelevant feature functions, whereas the LSQR method keeps all feature functions in the library.
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Discovering closed-form equations for nonlinear waves
In the case of general wave conditions of various nonlinearity up to 99% of the wave breaking threshold,
the feature parameters in Eq. (15) are employed in the SINDy framework to discover equations for both

M T and F[*)

> max SEW ¢ Within each subset of the synthetic dataset. A higher polynomial order K

max, SFW
in the feature library does not necessary lead to greater accuracy, as it may render ®(X) more likely to be
ill-conditioned for least squares regression. Here, the feature library with up to 4th-order polynomials (i.e.,
K = 4) is found to provide the best-fit £&. The library ®(X) consists of a total of 330 candidate polynomial
functions (see Supplemental Material for the complete list). The hyper-parameter A can be fine-tuned to
achieve a balance between equation accuracy, quantified by max €, and equation sparsity, indicated by ||£]|,.
A smaller A typically results in more terms in the equation and higher accuracy, while a larger A tends to yield
fewer terms in the equation and lower accuracy. Fig. 7 shows the variations of equation accuracy with the
equation sparsity for each subset. Table 3 summarizes the optimal values of the hyper-parameter A, ensuring
that max € remains below 7%, and the count of terms in the discovered equations. The discovered equations
exhibit sparsity, containing approximately 34 to 64 terms. A complete list of £ for four subsets is available in
Supplementary Materials. The computation for Mp max and Fp max using the discovered equations has time
complexity O(]|€]|y), where [|£]ly < 64. In comparison, the time complexity of SSGW is O(N log N) with
N =21,

Fig. 8 compares the predicted Mp max and Fp max from the discovered closed-form equations with exact
Mp max,sscw and Fp max sscw. Almost perfect agreement is achieved with R? ~ 1.0 and max € <6.5% for
both training and testing data (Table 3). The discovered equations can also accurately predict Mp max and
Fp max for the reserved scenarios (i.e., h = 7 ~ 8 m) with R? ~ 1.0, max € = 6.7% and mean € = 0.5%.
The up to 6.7% error is partially due to the fact that the input features are identified based on SFWT, which
has discrepancies with SSGW’s solutions for shallow water waves with kh < /15 and for waves with large
steepness (see Figs. 4c-d).

The discovered equations can be generalized to different water depth, beyond the scope of 0.5 < i < 8.0
m, because waves are characterized by dimensionless parameters, such as kh and H/h. The discovered
closed-form equations are applicable as long as waves satisfy: (i) kh < 2x; and (ii) kH/2 < highest

computable waves by SSGW (see Fig. 2).

APPLICATIONS
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Evaluation of vegetation stem breakage

Coastal salt marshes experience wave-induced forces that can lead to stem deformation, buckling, and, in
some cases, breakage. When the wave-induced bending stress (owave) €xceeds the allowable bending stress
threshold for stems (o), as determined through three-point bending tests, stem breakage may occur (e.g.,
Heuner et al. 2015; Vuik et al. 2018). Wetlands with a significant proportion of broken stems would exhibit
diminished wave damping capacity. Given that the vegetation stem width is typically significantly smaller
than the wave heights in energetic wave conditions, the drag force dominates the total force (Journée and

Massie 2001). Thus, owave can be approximated as

M, b
Twave ® 1’% (20)

where I = b} /64 is the second moment of area of a circular cylinder. Vuik et al. (2018) presented an explicit
formula for the critical horizontal velocity (i) for determining whether a vegetation stem can withstand
wave loads without breakage under the following simplifications: (1) u is uniform along the vegetation stem;
(2) u can be represented with LWT; and (3) wave crest is not involved in the vertical integration.

In contrast, the Mp max €quation discovered in this study offers a better tool for general wave conditions,

especially for nonlinear waves in shallow water depth. Eq. (20) becomes:

1 wszME max
Tome & = @1)
vave = 3 PED 1212 sinh? ki sinh? kh,

The discovered equation for M;,  is a function of H, h, T, and h,. In a random wave field, Vuik et al.
(2018) proposed the use of Hy,19, which represents the mean of the highest 10% of waves, as a parameter
to characterize the wave height that causes potential damage to vegetation. These top 10% of waves are
more nonlinear, making them well-suited for the application of our discovered equations. For random waves
with wave height distributions following the Rayleigh distribution, Hy/19 = 1.27H,,0, where H,, is the
zero-moment wave height.

As a demonstration of this application, we consider a problem where we evaluate the percentage of
broken vegetation during a tropical storm. The random wave condition is selected from field data during
Tropical Storm Lee (Jadhav et al. 2013), with the following parameters: H,,0 = 0.7 m, T, = 3.2s, h =

1.04 m. The vegetation species is Spartina alterniflora, with randomly distributed biophysical properties.
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Based on S. alterniflora samples collected in upper Terrebonne Bay, Louisiana, we best-fit the probability
distributions of £,, and b,, to log-normal distributions. These distributions exhibited a correlation coefficient
of 0.2, with mean values of 15.8 cm for £, and 7.9 mm for b,,. In the absence of specific field measurements
for oyeg, we assume a mean value of 6 MPa (the same order of magnitude of oveg as in Vuik et al. 2018),
following a log-normal distribution. Following the approach outlined in Vuik et al. (2018), we conduct
Monte-Carlo simulations to determine the percentage of broken vegetation stems. 2,000 correlated random
samples for h,, by, and oy are drawn, all following lognormal distributions. The drag coefficient Cp is not
included in the synthetic dataset and thus does not play arole in the developed equations. In real applications,
Cp needs to be reintroduced. Here, we compute Cp = 0.88 from the unified drag coefficient formula in Zhu
et al. (2023): Cp = 0.57 + (1546/Re)"-!!, where Re is the Reynolds number. For each set of these random
samples, we compute Owave using Eq. (21) and compare it to ovee. The percentage of broken vegetation
stems is considered the same as the probability of oyaye exceeding oeg. Further details on the Monte Carlo
simulations can be found in (Vuik et al. 2018).

In this particular wave condition, we estimate that 22% of vegetation stems get broken, signifying a
22% reduction in the vegetation-induced energy dissipation rate. When employing the LWT-based equation

for M*

Pmax i1 Eq. (21), 12% of vegetation stems is estimated to be broken. The use of the discovered

equations allows us to obtain these results in approximately 3 minutes following the procedures in Appendix
II, while the SSGW algorithm takes about 1.5 hours (on a 2017 MacBook Pro laptop computer equipped
with 16GB memory and 2.3 GHz Intel Core i5 processor, with N = 2!, tolerance of 107!2). When applying
numerical wave models, such as SWAN (Booij et al. 1999) and CSHORE (Johnson et al. 2012), to determine
the wave attenuation by vegetation, a pragmatic treatment is to divide the vegetation field into segments in
both cross-shore and long-shore directions, with segment length and width of O(10m). For each segment,
we perform Monte Carlo simulations. Our discovered equations offer a low cost, convenient solution for

estimating fractions of broken vegetation and the resulting wave attenuation.

Estimation of Fp ,x and Mp .« on piles
The Coastal Engineering Manual (CEM, U.S. Army Corps of Engineers 2011) estimates Fp max and

Mp max suing SFWT-based graphs developed by Dean (1974). These graphs depict variations in %
2 DOy

or % with 1/gT? and H/H,,, where H, is the breaking wave height. These graphs are available for

specific H/Hp, values, namely, 0, 0.25, 0.5, 0.75, and 1. When H/H,, falls between these values, linear
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interpolations are necessary, which can introduce errors and complicate their use in numerical wave models.
In contrast, the discovered equations offer a reliable and efficient alternative, providing results in milliseconds.

As a demonstration of this application, we consider problems where we calculate the drag force and
bending moment of drag on an emergent, small-diameter cylindrical vertical pile. One problem is the
example problem VI-7-19 from CEM, and another problem is the modified example problem 9.3.6 from
Basco (2020). The cylinder width and wave conditions, together with kA and Ur, as calculated from LWT, are
listed in Table 4. Both examples have cnoidal waves. Following the suggested values of Cp = 0.7 in CEM
and Basco (2020), we calculate Fp max and Mp max using the discovered equations, LWT, Fenton’s algorithm,
and SSGW, as summarized in Table 4. The Fp pmax and Mp max from the discovered equations exhibit a
maximum error of 6% when compared to the ground truth obtained from SSGW. This 6% differences are
consistent with the accuracy of the discovery equations (see Table 3). Procedures to use the discovered

equations with given H, h, T and h,, are provided in Appendix II.

CONCLUDING REMARKS

Vegetated ecosystems play a crucial role in coastal protection by effectively dissipating wave energy.
However, associated with the energy dissipation, the vegetation stems are also exposed to wave forces,
potentially leading to breakage when the wave-induced stress surpasses the allowable bending threshold. An
important aspect of developing precise wave dissipation models lies in accurately considering the proportion
of damaged vegetation within the vegetated area. This study demonstrates a promising application of sparse
regression for predicting the maximum drag force (Fp max) and maximum moment of drag (Mp max) acting
on vegetation stems in nonbreaking waves. Here, a synthetic dataset of Mp max and Fp max for 256,450 wave
and vegetation scenarios is constructed. Inspired by the existing theoretical equations for 7 and u from stream
function wave theory, seven dimensionless parameters characterizing wave dispersion, wave nonlinearity, and
vegetation submergence are identified as feature parameters. Employing the sparse regression framework,
Sparse Identification of Nonlinear Dynamics (SINDy), with one thoughtfully chosen hyper-parameter, yields
the discovery of sparse yet precise closed-form equations for Mp max, Fp max depending on these feature
parameters. The discovered equations exhibit good accuracy, with a maximum relative error below 6.6% and
a mean relative error below 1.4%. These discovered equations can be readily implemented into numerical
wave models and structural analysis software, delivering results within milliseconds. The methodology

elucidated in this study can also be adapted for discovering equations pertaining to other quantities of
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highly nonlinear waves, such as total wave force and moment, wave celerity, maximum crest elevation, and
maximum bottom shear stresses for sediment transport modeling.

The discovered equations are not applicable to the most extreme waves, as SSGW is not designed for
them. For a given water depth with kh up to 2x, the discovered equations works for waves with up to
approximately 99% of the maximum steepness. Several algorithms have been developed for the computation
of the almost highest gravity waves in finite water depth (e.g., Lu et al. 1987; Maklakov 2002). Among
them, the algorithm by Maklakov (2002) can compute waves with wave steepness reaching 99.99997% of
the limiting value in intermediate to deep water depth. These algorithms can be employed to fill the small
data gap of the synthetic dataset in this study.

The computation of Mp max and Fp max relies on an appropriate bulk drag coefficient Cp. Current
empirical Cp formulas are primarily derived from LWT, and thus, the wave nonlinearity is actually lumped
into Cp. It brings inconsistency to use the LWT-based Cp in the closed-form equations that stem from
nonlinear wave theory. As a future endeavor, it is worthwhile to apply SSGW to solve the energy balance
equation, best fit Cp by matching the wave height reduction, and compare the fitted Cp with LWT-based
empirical Cp. Zhu and Chen (2017) applied two nonlinear wave theories (i.e., Stokes second-order and
cnoidal wave theories) to solve the energy balance equation for wave height. They found that wave heights
from different wave theories exhibited disparities of less than 5% for emergent waves but extended to up to
25% for submerged vegetation. A hypothesis arises that, for emergent vegetation, the fitted Cp aligns closely
with the LWT-based empirical Cp, while for submerged vegetation, the fitted Cp may significantly differ
from LWT-based empirical Cp. Numerical experiments are desired to test this hypothesis in future research.

The discovered equations do not account for the reduction in hydrodynamic forces resulting from
vegetation flexibility, or the reduction in orbital velocities within dense canopies. Consequently, the Mp max
and Fp max from this study tend to overestimate real-world field conditions. Luhar and Nepf (2016) introduced
the concept of effective vegetation height (4.), which represents the height of a rigid, vertical vegetation that
produces the same drag as a flexible vegetation of length 4,,. They also conducted laboratory experiments to
establish scaling laws for 4.. A similar concept of effective vegetation height could be introduced regarding
the moment of drag. Future work could involve conducting laboratory experiments to explore scaling laws
for this new effective vegetation height, and integrating it into the closed-form equations presented in this

study for computing Mp max of flexible vegetation. Zhu and Chen (2017) found a reduction in in-canopy
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horizontal velocity compared to horizontal velocity from LWT, with a rate ranging from 6% for waves with
Ur = 11 (Stokes waves) to 46% for waves with Ur = 142 (cnoidal waves). Quantifying the in-canopy velocity
reduction rate relative to horizontal velocity calculated from SSGW is a crucial step towards improving the
accuracy of Mp max and Fp max in future research.

For coastal structures like piles or coastal vegetation with large stem diameters like mangroves, inertia
force may play an important role. The KC parameter serves as a determinant for the dominance of inertia or
drag forces. For KC < 3, the inertia force is dominant and the drag force can be neglected; for 3 < KC < 45,
the full Morison equation should be employed; and for KC > 45, the drag force is dominant and the inertia
can be neglected (Journée and Massie 2001; Zhu and Chen 2015). The methodology developed in this study
can be applied to establish a dataset of the maximum inertia force (F7 max) and maximum total force (Fr max),
along with their moments (M ynax and M7 max). Closed-form equations for Frmax and My max can be obtained
using sparse regression. However, finding closed-form equations for (Fr max) and Mt max can be challenging.
The total force is the sum of drag force and inertia force (Eq. 22), which both involve coefficients (Cp and
Cyr) to be determined based on wave and vegetation conditions. The ratio of Cp/Cys needs to be included
in the dataset and the feature library of the regression model. Additionally, there is a phase difference in
Fp and Fy, attributed to the phase difference in u|u| and %. These aspects are identified as potential future

research topics.
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APPENDIX I. MORISON’S EQUATION FOR THE TOTAL HORIZONTAL FORCE
Morison et al. (1950) proposed that the total horizontal force Fr on a slender cylinder is the sum of the

drag force Fp and inertia force Fy as below :

1 min(r7,—h+h,,) 7Tb2 min(1,—h+h,,) du
Fr ==-pCpb dz+ pC v —d 22
szDv‘[h ululsz4[h 54z (22)
drag, Fp inertia, Fy
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APPENDIX Il. PROCEDURES OF COMPUTING Mp nax AND Fp nax

There are two options to use the discovered equations: (a) the discovered equations have been converted
to symbolic expressions using SymPy (https://www.sympy.org/en/index.html), and these symbolic
expressions can be directly imported and used in a Python script; (b) users can use the functions (in
MATLAB and Python) provided in https://github.com/1zhu5/EquationDiscovery_MDmax_FDmax
to obtain Mp max and Fp max directly with given wave conditions and cylinder height. For the second option,

the following procedures are complied in the functions to compute Mp max and Fp max:

compute k from the linear dispersion relationship w? = gk tanh kh, and compute L = 27/k.

2
e compute Ur = %

e crop h, = min(h,, h+ 0.9859H) and compute A, /.

* determine the subset using Ur and 4,,.

* choose the corresponding coeflicients £ in that subset, compute feature parameters X from Eq. (15),
and compute values of functions in the feature library @(X). The coeflicients £ and codes to generate
the feature library are available at https://github.com/l1zhu5/EquationDiscovery_MDmax_

FDmax.

e compute Mp max OF Fpmax as O(X)E.
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517 APPENDIX lll. NOTATION

518 The following symbols are used in this paper:
Cp = drag coefficient;
Cy = inertia coefficient;
D = cylinder diameter (m);

fp(t,z) = drag force per unit length of cylinder (N/m);

Fpmax = maximum drag force in a wave cycle, without the constant % pCp (m3/ 52)§
Fj, o = normalized Fp max;
F; = inertia force (N);
Fr = total force (N);
g = gravitational acceleration (m/ s2);

= wave number (1/m);

K = maximum order of polynomials in the feature library;
L = wavelength (m);
LWT = linear wave theory;
519 N = number of Fourier modes;

h = water depth (m);
h, = vegetation stem height (m);

H = wave height (m);

I = second moment of area of a vegetation stem (m*);
Mpmax = maximum bending moment in a wave cycle, without the constant % prCp (m*/s2);
My, .. = normalized Mp max;
R%? = coefficient of determination;
SFWT = stream function wave theory;

STK2 = Stokes 2nd-order wave theory;

T = wave period (s);
u = horizontal velocity (m/s);
Umax = maximum horizontal velocity in a wave cycle (m/s);
Ur = Ursell numer;
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Tmax

520

0(X)

Owave

Oveg

feature parameters;

feature parameter vector;

relative error;

surface elevation (m);

maximum surface elevation in a wave cycle (m);
cutoff value in the SINDy algorithm;

feature library;

coefficients of polynomial terms in the discovered equations;
water density (kg/m?);

wave-induced bending stress on vegetation stems (Pa);
allowable bending stress of vegetation stems (Pa);

angular frequency (Hz);
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521 APPENDIX IV. SEQUENTIAL THRESHOLDED LEAST-SQUARES (STLS) ALGORITHM

522 The STLS algorithm is adapted from Brunton et al. (2016) and Rudy et al. (2017).

Algorithm 1 STLS(O, ;y, A4, iters)

¢ = argming |©¢ ~ I3

bigcoefts = {; : |.g9j| > A} > Select large coefficients
[~ bigcoeffs] = 0 > Apply cutoff 1
£[bigeoeffs] = STLS(O[:, bigcoeffs], y, A, iters-1) > Recursively call STLS w/ fewer coefficients
return é
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TABLE 1. Four subsets of the dataset and the corresponding criterion.

subset name criterion
I fully submerged vegetation in Stokes wave regime h, < h+0.5H and Ur < 40
1I nearly submerged or emergent vegetation in Stokes wave regime | #h, > h + 0.5H and Ur < 40
I fully submerged vegetation in cnoidal wave regime hy, < h+0.7H and Ur > 40
v nearly submerged or emergent vegetation in cnoidal wave regime | h, > h + 0.7H and Ur > 40

The contour lines for Ur = 40 and Ur = 26 closely converge, as illustrated in Fig. 3. Isobe et al. (1982) and
Hedges (1995) proposed criteria thresholds of Ur = 26 and 40, respectively, that distinguishes Stokes and

cnoidal waves. Here, we label waves with Ur < 40 as Stokes waves; otherwise, cnoidal waves.
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TABLE 2. Discovered equations from SINDy, and least squares regression method for linear

waves.

Feature library € F0r Mp mas €101 B max
theoretical | SINDy | least squares | theoretical | SINDy | least squares
1 0 0 0.25492 0 0 0.15126
kh, 0 0 0.94197 2 2.0008 0.62292
sinh 2k h, 0 0 -0.38072 1 0.99997 0.59769
cosh2kh, -1 -1.0001 -0.59953 0 0 0.35088
(kh,)? 2 2.0015 1.5905 0 0 0.86042
kh, sinh 2kh,, 2 2 1.0011 0 0 -0.0053816
kh, cosh2kh, 0 0 0.99442 0 0 0.017017
sinh® 2k h, -1 -1.0104 -0.15622 0 0 -0.11503
sinh 2k h,, cosh 2k h,, 0 0 0.057519 0 0 0.078802
cosh? 2kh, 1 1.0104 0.098702 0 0 0.036228
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TABLE 3. The count of terms in discovered equations (||£]|y), hyper-parameter (1), coefficient
of determination of exact and predicted Mp max and Fp max (R?), and the maximum and mean of
relative errors (€).

Subsets  Variables 1€ o A Data types R? max € (%) mean € (%)
. My . 64 (40)* 0.4  training/testing 0.999/0.999 2.27/227 0.22/0.22
FJ) ax 52 0.0875 training / testing 0.999/0.999 249/2.49 0.31/0.31

- My . 36 (33)* 0.8  training/testing 0.999/0.999 1.76/1.76  0.04/0.04
Ff ok 43 0.5 training / testing  0.999/0.999 1.06/1.06 0.01/0.01

- My o 45 (45)*  0.0525 training / testing 0.999/0.999 6.21/6.21 1.20/1.19
Ff ok 45 0.0525 training / testing 0.999/0.999 6.13/6.13  1.21/1.20

v My 35 (34)*F 0.7 training / testing  0.999/0.999 6.63/6.63 1.36/1.36
Ff ax 34 0.6  training/ testing 0.999/0.999 6.47/647 1.44/1.43

# The count of common terms in the discovered equations for My, . and Fjy s listed in parentheses.

max
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TABLE 4. Wave and cylinder conditions and dimensionless wave parameters in the example prob-
lems. Fpmax and Mp max are computed from LWT, Fenton’s algorithm, the discovered equations,

and SSGW.
H=29m,h=50m H=25mh=45m
Example 1: Example 2:
T=8s,b, =70cm T =10s,b, =30cm
kh 0.59 0.44
Ur 65 114
LWT 4651 1552
Fenton’s algorithm 11854 4256
Fp max (N)
Discovered egs. 10561 4220
SSGW 11230 4034
LWT 12288 3602
Fenton’s algorithm 54739 17105
Mp max (Nl’l’l)
Discovered eqs 48941 17270
SSGW 52313 16299
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Fig. 1. (a) A sketch of submerged and emergent vegetation in free surface waves. (b) umax(z) as
calculated from linear wave theory, Fenton’s algorithm, and SSGW for a shallow water wave with
H=08m,42A=2.0m,and 7T = 10.0s.
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