
Developing closed-form equations of maximum drag and moment on rigid1

vegetation stems in fully nonlinear waves2

Ling Zhu1 and Qin Chen2
3

1Senior Research Scientist, Civil and Environmental Engineering, Northeastern University,4

Boston, MA 02115, USA. Email: l.zhu@northeastern.edu5

2Professor, Civil and Environmental Engineering, Marine and Environmental Sciences,6

Northeastern University, Boston, MA 02115, USA. Email: q.chen@northeastern.edu7

ABSTRACT8

Coastal wetlands act as natural bu�ers against wave energy and storm surges. In the course of9

energy dissipation, vegetation stems are exposed to wave action, which may lead to stem breakage.10

An integral component of wave attenuation modeling involves quantifying the extent of damaged11

vegetation, which relies on determining the maximum drag force (FD max) and maximum moment12

of drag (MD max) experienced by vegetation stems. Existing closed-form theoretical equations for13

MD max and FD max are only valid for linear and weakly nonlinear deep water waves. To address this14

limitation, this study first establishes an extensive synthetic dataset encompassing 256,450 wave15

and vegetation scenarios. Their corresponding wave crests, wave troughs, MD max, and FD max,16

which compose the dataset, are numerically computed through an e�cient algorithm capable of17

fast computing fully nonlinear surface gravity waves in arbitrary depth. Seven dominant wave18

and vegetation related dimensionless parameters that impact MD max and FD max are discerned and19

incorporated as input feature parameters into an innovative sparse regression algorithm to reveal the20

underlying nonlinear relationships between MD max, FD max and the input features. Sparse regression21

is a subfield of machine learning that primarily focuses on identifying a subset of relevant feature22

functions from a feature function library. Leveraging this synthetic dataset and the power of23
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sparse regression, concise yet accurate closed-form equations for MD max and FD max are developed.24

The discovered equations exhibit good accuracy compared with the ground truth in the synthetic25

dataset, with a maximum relative error below 6.6% and a mean relative error below 1.4%. Practical26

applications of these equations involve assessment of the extent of damaged vegetation under wave27

impact and estimation of MD max and FD max on cylindrical structures.28

Keywords: sparse regression, equation discovery, maximum drag/bending moment, vegetation stem29

breakage, nonlinear wave theory30

INTRODUCTION31

Coastal salt marshes play a crucial role in dissipating wave energy, stabilizing sediment along the32

shoreline, mitigating the impacts of coastal flooding, and providing vital habitats for plants and animal33

species. Designing and implementing nature-based solutions for the protection and restoration of coastal34

salt marshes are imperative to the preservation of coastal ecosystems and the advancement of sustainable35

shoreline management practices. Coastal salt marshes are subjected to drag force and bending moment36

induced by waves. Determining the maximum wave-induced drag force (FD max) on salt marsh stems and37

maximum moment of drag force about the stem base (MD max) is crucial to evaluate the susceptibility of salt38

marshes to stem breakage and to quantify the e�ectiveness of salt marshes in dissipating wave energy in a39

high energy wave environment.40

Closed-form analytical approximations of FD max or MD max are desired in engineering application. Salt41

marshes are commonly treated as rigid cylinders. Researchers developed simple closed-form analytical42

equations for FD max or MD max based on linear wave theory (LWT) (e.g., Dalrymple et al. 1984; Vuik et al.43

2018) and Stokes 2nd order wave theory (STK2) (Zhu and Chen 2019). However, these wave theories, even44

higher order Stokes wave theories (e.g., Stoke’s 5th-order wave theory by Fenton 1985), have limitations45

when applied to highly nonlinear waves in intermediate and shallow water regions, rendering the established46

closed-form analytical equations or lookup tables unsuitable for salt marshes in these regions. Few attempts47

have been made to calculate FD max or MD max from wave theories applicable to shallow water waves.48

Fenton (1988) proposed an algorithm for calculating steady surface waves in deep water or water of49

finite depth based on stream function wave theory (SFWT). However, numerical approximations from50

Fenton’s algorithm do not converge or converges to ghost solutions with spurious oscillations for waves with51
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kh < ⇡/15 (Clamond and Dutykh 2018), where kh is the dimensionless wavelength parameter that measures52

the wave dispersion. Recently, Clamond and Dutykh (2018) proposed an e�cient algorithm, with time53

complexity O(N log N) (N is the number of Fourier modes), for fast computation of steady surface gravity54

waves in arbitrary depth (i.e., Stokes, cnoidal, and solitary waves) with wave steepness up to approximately55

99% of the maximum steepness for all wavelengths. Clamond and Dutykh’s algorithm, denoted as SSGW56

(steady surface gravity waves), numerically solves the modified Babenko equation (Babenko 1987) via the57

classical Petviashvili method (Petviashvili 1976). Neither Fenton’s algorithm nor SSGW provides explicit58

equations of horizontal velocity (u) and surface elevation (⌘), and thus, it is not possible to theoretically59

derive closed-form equations for MD max and FD max from these two algorithms.60

Instead of deriving theoretical equations, an alternative approach is to formulate semi-theoretical equa-61

tions by leveraging machine learning techniques. Recent advances in machine learning, bolstered by the62

increasing computational capabilities, facilitate the development of data-driven models capable of harnessing63

extensive data to make predictions based on input features. Among them, neural network models give only64

implicit relationship between input and output variables. In practical applications, engineers experienced65

with the utilization of empirical formulas may prefer an explicit calculation method. Compared to neural66

network models, equation discovery techniques provide explicit and interpretable mathematical formulas to67

describe the underlying dependencies between variables in a dataset. Equation discovery techniques have68

been used to uncover governing partial di�erential equations of nonlinear dynamical systems from noisy69

observation data (e.g., Wang et al. 2011; Raissi et al. 2018; Chen et al. 2021; Wang et al. 2021). Two70

popular methods for equation discovery are the genetic algorithm (e.g., Bongard and Lipson 2007; Schmidt71

and Lipson 2009; Pourzangbar 2012; Bonakdar et al. 2015; Pourzangbar et al. 2017a; Pourzangbar et al.72

2017b; Formentin and Zanuttigh 2019; Lee and Suh 2019; Udrescu and Tegmark 2020; Dalinghaus et al.73

2023) and the sparse regression (e.g., Brunton et al. 2016; Lee et al. 2022). The genetic algorithm is74

expressive and versatile but does not scale well to large systems and may be prone to overfitting (Brunton75

et al. 2016). Sparse regression is considered more e�cient or manageable. Brunton et al. (2016) formulated76

system identification as sparse regression problems and developed an innovative framework, SINDy (Sparse77

Identification of Nonlinear Dynamics). SINDy leverages sparsity-promoting techniques to find out the fewest78

active terms from a space of nonlinear candidate functions to accurately represent the data. The resulting79

parsimonious models balance accuracy with model complexity while avoiding overfitting the model to data.80
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SINDy has been successfully implemented to identify nonlinear dynamical systems in various domains such81

as fluid dynamics (Loiseau and Brunton 2018), structural engineering (Li et al. 2019), and chemical systems82

(Ho�mann et al. 2019). To the best of the authors’ knowledge, sparse regression has not been previously83

applied in the field of coastal and ocean engineering.84

The objectives of this study are to: (1) create an extensive synthetic dataset encompassing a wide range85

of wave conditions, vegetation submergence, and the corresponding wave crests (⌘max), wave troughs (⌘min),86

MD max, and FD max based on steady surface waves calculated by using the SSGW algorithm; (2) leverage87

the SINDy framework to formulate closed-form equations for MD max and FD max based on the synthetic88

dataset; and (3) apply the discovered equations to assess the extent of damaged vegetation under wave89

impact and estimate MD max and FD max on cylindrical structures. The created dataset includes 256,45090

combinations of wave height, wave period, water depth, vegetation submergence (vegetation height to water91

depth ratio), and numerical approximations of MD max and FD max. The core processes of equation discovery92

involve identifying input feature parameters and utilizing the sparse regression algorithm to achieve a balance93

between the sparsity and accuracy of the equations. Given the established exact theoretical equations for94

MD max and FD max from LWT and STK2, along with those for ⌘ and u from SFWT, we discern the dominant95

wave and vegetation related dimensionless parameters that impact MD max and FD max, and incorporate them96

as input features into the SINDy framework to reveal the underlying nonlinear relationships between MD max,97

FD max and input features.98

This paper is structured as follows: in the data and methods section, we outline the procedure for99

creating the synthetic dataset, introduce the established theoretical equations for MD max and FD max from100

LWT and STK2, and identify the input features. Additionally, we briefly introduce the SINDy framework,101

focusing on the feature library and hyper-parameter. In the results section, we demonstrate SINDy’s ability to102

recover theoretical LWT-based equations for MD max and FD max for linear waves, and present the discovered103

equations for fully nonlinear waves from shallow to deep waters, along with discussions on generalization104

and accuracy. Two case studies are illustrated in the application section. Concluding remarks and future105

research topics are presented in the final section.106

DATA AND METHODS107
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Building a synthetic dataset108

The drag force dominates over inertia force because bv ⌧ H (Journée and Massie 2001). The drag force109

per unit length of the vegetation stem fD can be approximated as a quadratic function of the time-dependent110

vertically-varying horizontal velocities u(t, z) (Morison et al. 1950) as fD(t, z) =
1
2 ⇢CDbvu|u|, where t is the111

time, z is the vertical axis, ⇢ is the water density, CD is the drag coe�cient, and bv is the stem width. The112

total drag force acting on the vegetation stem FD(t) and the moment of drag force about the sea floor MD(t)113

are determined as:114

FD(t) =

π min(⌘,�h+hv )

�h

fD(t, z)dz and MD(t) =

π min(⌘,�h+hv )

�h

fD(t, z) · (z + h)dz (1)115

where h is the water depth, ⌘ is the surface elevation, and hv is the vegetation stem height. The integrations116

are from the sea floor (z = �h) to either the vegetation stem top (z = �h + hv) for submerged vegetation117

or the free surface ⌘ for emergent vegetation (see Fig. 1a). The maximum FD(t) and MD(t) within a wave118

cycle, denoted as FD max and MD max, occur at the passage of the wave crest ⌘max, and are computed as:119

FD max =

π min(⌘max,�h+hv )

�h

1
2
⇢CDbvumax |umax |dz (2)120

MD max =

π min(⌘max,�h+hv )

�h

1
2
⇢CDbvumax |umax | · (z + h)dz (3)121

where umax(z) is the maximum horizontal velocity within the wave cycle. Given that CD and bv are usually122

considered constants along the stem in numerical models (e.g., Mendez and Losada 2004; Anderson and123

Smith 2014; Luhar and Nepf 2016; Zhu et al. 2023) and are factored out of the integrations, we omit 1
2 ⇢CDbv124

from the dataset but can reintroduce it during applications.125

The first step towards generating a dataset with general applicability to non-breaking waves and vegetation126

in natural environments is to determine an adequate quantity of representative, impartial scenarios of waves127

and vegetation. Waves are characterized with dimensionless parameters. Following the wave classification128

presented in LeMehaute (1976), wave characteristics are determined based on conditions as below:129

(i) �4  log10(h/gT
2
)  �0.1,130

(ii) �5  log10(H/gT
2
)  �1,131

5



(iii) H/L < 0.14 tanh kh (Kamphuis 1991) to meet the non-breaking wave criteria,132

(iv) kh  2⇡ because coastal salt marshes rarely experience very deep water waves,133

(v) kH/2 is no greater than the highest computable kH/2 by SSGW (see Fig. 2).134

where g is the gravitational acceleration, T is the wave period, H is the wave height, L is the wavelength, and135

k = 2⇡/L is the wavenumber. The ranges of log10(h/gT
2
) and log10(H/gT

2
) are discretized with increments136

of 0.2, and 0.17, respectively, to balance the diversity of wave conditions in the dataset and the computational137

cost. In the dataset, we let 0.5  h  8.0 m. However, later in the generalization of the discovered equations,138

we will demonstrate that the discovered equations are applicable to water depth beyond this scope. When139

the values of h, log10(h/gT
2
) and log10(H/gT

2
) are provided, T and H can be easily computed, and L and140

k are pragmatically determined from the dispersion relationship based on LWT: !2 = gk tanh(kh), where141

! = 2⇡/T is the wave angular frequency. This dispersion relationship is limited to LWT and STK2; however,142

it provides a more pragmatic option for users of the equations developed in this study. Therefore, we use k143

from linear dispersion relationship to develop the dataset and discover equations. The maximum H/h among144

all wave scenarios is 0.837, close to the breaking index of (H/h)max = 0.826 proposed in Longuet-Higgins145

(1974). All wave scenarios in the dataset are depicted in Fig. 3. The x-axis represents the wave dispersion146

and the y-axis represents the wave nonlinearity.147

The computations of MD max and FD max by definition involve integrations from the sea floor (z = �h)148

to the uppermost wetted segment along the vegetation stem (Eqs. 2 - 3). The vegetation stem should exceed149

h+⌘max to be fully emergent. Fig. 3 presents the variations of ⌘max/H, computed through SSGW. The ⌘max/H150

ratios distinct across di�erent wave categories, with approximate values of 0.5 for linear waves, up to 0.7151

for high-order Stokes waves, and up to 0.9859 for cnoidal waves. Given that
⇣
hv
h

⌘
max


�⌘max

H

�
max ·

�
H

h

�
max,152

we encompass a comprehensive spectrum of submergence scenarios hv/h from 0 to 1.85 in the dataset, and153

discretize this range with an increment of 0.05. The novel synthetic dataset encompasses a total of 256,450154

combinations of wave conditions and vegetation submergence.155

For each combination of wave conditions (h, H, and T) and vegetation submergence (hv/h) in the dataset,156

we apply SSGW to get numerical approximations of ⌘max, ⌘min, and umax(z). As the wave steepness or the157

wave wavelength increases, SSGW requires a rapidly increasing number of Fourier modes (N) to achieve158

spectral accuracy. For instance, for an extreme wave with kh = 0.0885,H/h = 0.82, the required N for159
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full spectral accuracy is 217 (Clamond and Dutykh 2018). In this study, we adopted N = 217 and numerical160

tolerance of 10�10 for all waves in the dataset. The time complexity of SSGW algorithm is O(N log N).161

Given the swift vertical variations in umax(z) near the free surface of highly nonlinear waves, a 50-point162

Gauss-Legendre quadrature is employed for the numerical integrations in the calculations of MD max and163

FD max (Eqs. 2 and 3). When necessary, the amount of Gauss nodes is reduced to ensure that the free surface164

(the first Gauss node) maintains an adequate separation from the next Gauss node (Clamond and Dutykh165

2018). The MD max and FD max from SSGW, denoted as MD max,SSGW and FD max,SSGW, serve as the ground166

truth for assessing the accuracy of the discovered closed-form equations.167

To validate the implementation of SSGW, we compare the total horizontal force (FT ) calculated by168

SSGW against laboratory measurements obtained from Luhar and Nepf (2016). Their experiment with 5169

cm long HDPE (high density polyethylene plastic) blades, T = 2 s, H = 7.8 cm, and h = 0.3 m is carefully170

selected for validation because the mimic vegetation in this particular experiment is essentially rigid (see171

Fig. 6 in Luhar and Nepf 2016). The mimic vegetation width bv is 0.02 m and thickness is 0.4 mm. The172

total horizontal force is the sum of drag force and inertia force (see Eq. 22 in Appendix I). The inertia173

coe�cient CM = 1.0 is chosen following Luhar and Nepf (2016), whereas the drag coe�cient CD = 3.6 is174

determined from the empirical relationship CD = max(10KC
�1/3, 1.95) in Luhar and Nepf (2016), where175

KC = UwT/bv is the Keulegan-Carpenter number (Uw is the orbital wave velocity).176

Discovering closed-form equations for MD max and FD max using SINDy177

Existing theoretical closed-form equations for MD max and FD max178

Following Dalrymple et al. (1984), we can insert umax =
!H

2 sinh kh · cosh k(z + h) from LWT into Eqs. (2)179

and (3), and perform integrations from the sea floor to min(0,�h + hv) rather than to min(⌘max,�h + hv) to180

get theoretical closed-form equations as below:181

MD max,LWT =
!2

H
2

32k2 sinh2
kh

⇥
2khv sinh 2khv � cosh 2khv + 1 + 2(khv)

2⇤ (4)182

FD max,LWT =
!2

H
2

16k sinh2
kh

[2khv + sinh 2khv] (5)183

where! = 2⇡/T is the wave angular frequency. hv in Eqs. (4) and (5) should be min(hv, h). The assumptions184

made in the derivation of Eqs. (4)-(5) are: (i) waves can be described by LWT, and (ii) wave heights are so185

small that ⌘max can be replaced with the still water level (z = 0 m) in the vertical integrations. Fig. 1b presents186
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umax of a nonlinear wave in shallow water (fall in the cnoidal wave region) computed by LWT, Fenton’s187

algorithm, and SSGW. For nonlinear waves in shallow water, the wave shape is distorted (peaky crest and188

flat trough). Fig. 1b clearly indicates that LWT is unsuitable for cnoidal waves, and umax above the still water189

level makes a substantial contribution to MD max and FD max. Fig. 4a-b illustrates MD max,SSGW/MD max,LWT190

and FD max,SSGW/FD max,LWT for an emergent vegetation. It clearly shows that the LWT-based theoretical191

equations are not applicable to vegetation in shallow water waves. The moment ratio can be as much as 7 in192

shallow water waves with large relative wave height (H/h).193

Zhu et al. (2019) inserted u = !H

2 sinh kh cosh k(z+ h) cos ✓+ 3!H

16 sinh4
kh

kH cosh 2k(z+ h) cos 2✓ from STK2194

into Eq. (1) and proposed a STK2-based closed-form equations for MD max:195

MD max,STK2 =
!2

H
2

32k2 sinh2
kh


M1 +

kH

sinh3
kh

M2 +
(kH)

2

sinh6
kh

M3

�
(6)196

where197

M1 = 2khv sinh 2khv � cosh 2khv + 1 + 2(khv)
2

198

M2 = 5 � 3 cosh khv � 2 cosh3
khv + 3khv sinh khv + 6khv sinh khv cosh2

khv (7)199

M3 = 4khv sinh 4khv � cosh 4khv + 1 + 8(khv)
2

200

STK2 is generally applicable to waves with Ursell number (Ur, defined as Ur = HL
2

h3 ) less than 26 (Isobe201

et al. 1982), where the dimensionless wave parameter Ur indicates the wave nonlinearity with respect to202

wave dispersion. For shallow water waves with finite amplitude (Ur > 26), STK2 introduces a secondary203

crest at the wave trough. We should seek nonlinear wave theory and numerical algorithms, such as SSGW,204

for computing free surface waves and MD max and FD max in arbitrary water depth.205

Identification of major dimensionless parameters controlling MD max and FD max206

A wave can be characterized by dimensionless parameters that represent wave dispersion (kh) and207

wave nonlinearity. In deep water and water with finite depth, a wave is usually characterized by kh (wave208

dispersion) and kH (wave nonlinearity), while in shallow water, the relative wave height H/h is used in lieu209

of kH. Beji (1995) proposed a nonlinearity parameter ka/tanh(kh) (a is the wave amplitude) that is valid210

for both deep and shallow water waves. Nevertheless, these dimensionless parameters are not su�cient for211
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formulating MD max and FD max in scenarios involving general wave conditions.212

Fenton’s algorithm, based on SFWT, and SSGW exhibit a close alignment, with an approximate agree-213

ment of up to six decimal places for deep water waves (Clamond and Dutykh 2018), and small discrepancies214

for finite amplitude shallow water waves (see Fig. 4c-d). Therefore, the theoretical equations for ⌘max and215

umax from SFWT as below (Fenton 1988) can o�er valuable insights into the selection of input features:216

⌘max,SFWT =

N’
j=1

Aj and umax,SFWT =

N’
j=1

jBj

cosh j k(z + h)

cosh j kh
(8)217

where ✓ = !t + k x is the phase angle, and N represents the number of Fourier modes. Fenton’s algorithm218

solves for the coe�cients Aj and Bj ( j = 1, . . . , N) from a system of 2N + 10 nonlinear equations including219

free surface boundary condition, kinematic boundary condition, and stream function equation. It is important220

to note that the equations for umax,SFWT in Eq. (8) only holds for scenarios where the Eulerian time-mean221

velocity CE is equal to 0. Inserting Eq. (8) into Eqs. (2) and (3) yields222

MD max,SFWT =

N’
i=1

N’
j=1

i jBiBj

cosh ikh cosh j kh

π min(⌘max,�h+hv )

�h

(z + h) cosh ik(z + h) cosh j k(z + h)dz (9)223

FD max,SFWT =

N’
i=1

N’
j=1

i jBiBj

cosh ikh cosh j kh

π min(⌘max,�h+hv )

�h

cosh ik(z + h) cosh j k(z + h)dz (10)224

Using hyperbolic trigonometry identities, the integral in Eq. (9) can be explicitly expressed as the product225

of 1/k
2 and a polynomial function of226

8>>>><
>>>>:

sinh(i ± j)khv, cosh(i ± j)khv, and khv if hv < h + ⌘max

sinh(i ± j)k(h + ⌘max), cosh(i ± j)k(h + ⌘max), kh, and k⌘max if hv � h + ⌘max,

(11)227

and the integral in Eq. (10) can be explicitly expressed as the product of 1/k
2 and a polynomial function of228

8>>>><
>>>>:

sinh(i ± j)khv, and khv if hv < h + ⌘max

sinh(i ± j)k(h + ⌘max), kh, and k⌘max if hv � h + ⌘max.

(12)229

Note that “i ± j” inside the hyperbolic functions in (11) and (12) can be further dropped by using hyperbolic230

trigonometry identities. The coe�cients i jBiB j

cosh ikh cosh jkh
in Eqs. (9) and (10) do not have explicit forms;231
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nonetheless, guided by our knowledge on the theoretical equations for MD max,STK2 (Eq. 6), it can be inferred232

that these coe�cients are dependent on !2
H

2

sinh2
kh

and kH

sinh3
kh

.233

A conjecture regarding the closed-form equations for MD max and FD max would be:

MD max =
!2

H
2

32k2 sinh2
kh

"’ ⇣
kH

sinh3
kh

⌘p
·

f1
�
k⌘max, kh, khv, sinh k(h + ⌘max), cosh k(h + ⌘max), sinh khv, cosh khv

� #
(13)

FD max =
!2

H
2

16k sinh2
kh

"’ ⇣
kH

sinh3
kh

⌘q
·

f2
�
k⌘max, kh, khv, sinh k(h + ⌘max), cosh k(h + ⌘max), sinh khv, cosh khv

� #
(14)

where p and q are integers, and f1 and f2 represent polynomial functions. This conjecture is based on the234

equations for ⌘max and umax from SFWT, which has discrepancies with SSGW’s solutions for very steep235

waves. We will discuss the feasibility of input features identified by this method, and the potential errors in236

the results section.237

The dimensionless parameters in Eqs. (13) and (14) are potential feature parameters to be used in238

SINDy. However, It is not feasible to include ⌘max in the feature parameters because it is unknown a priori.239

From Fig. 3, it is observed that waves in deep and intermediate water depth with Ur  40 exhibit a slight240

skewness with ⌘max = 0.5H ⇠ 0.7H, whereas shallow water waves with Ur > 40 are strongly skewed with241

⌘max = 0.7H ⇠ 0.9859H. Hence, we divide our synthetic dataset into four distinct subsets following the242

criteria in Table 1, and use the mean of ⌘max of the subset in the feature parameters. Moreover, given243

that ⌘max is no greater than 0.7H for waves with Ur  40, the height of wetted stem should be no greater244

than h + 0.7H in subset II. We enforce khv ⇡ min(khv, kh + 0.7kH) in subset II. Similarly, we enforce245

khv ⇡ min(khv, kh + 0.9859kH) in subset IV.246

Eventually, the feature parameters to be used in SINDy for general wave conditions are identified as:247

x1 =
kH

sinh3
kh

, x2 = k(h + �H), x3 = kh, x4 = sinh k(h + �H),248

x5 = cosh k(h + �H), x6 = sinh khv, x7 = cosh khv (15)249
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and denoted as X = [x1, x2, . . . , x7], in which, � = 0.53 and 0.86 for Stokes and cnoidal waves, respectively.250

Among these feature parameters, x1 approaches Ur in shallow water, kH is a measure of wave steepness,251

x3 is a measure of wave dispersion, and khv is the vegetation height to wavelength ratio. In our synthetic252

dataset, kh varies from 0.06 to 4.7, and wave steepness kH ranges from 4 ⇥ 10�4 to 0.85. To achieve better253

regression results, MD max and FD max are normalized as254

M
⇤

D max = MD max/


!2

H
2

32k2 sinh2
kh sinh2

khv

�
, (16)255

F
⇤

D max = FD max/


!2

H
2

16k sinh2
kh sinh khv

�
. (17)256

Equation discovery with SINDy257

Xp (p is an integer) denotes the p-th order polynomial. For instance, when p = 2,258

X2 =
⇥
x

2
1, x1x2, · · · , x1x7, x

2
2, x2x3, · · · , x2x7, x

2
3, · · · , x

2
7
⇤

259

With a polynomial order K , the feature parameters X can yield a combination of polynomial terms ⇥(X) =260 ⇥
1,X,X2, · · · ,XK

⇤
, referred to as the feature library. The feature library constitutes a space of polynomial261

functions, with each function serving as a candidate term in the equation to be discovered. In this study, we262

aim to express the target y (i.e., M
⇤

D max and F
⇤

D max) as a sparse linear combination of terms in ⇥(X):263

y = ⇥(X)⇠ (18)264

⇥(X) is a n ⇥ m matrix, where n is the number of training scenarios in the synthetic dataset, and m is the265

number of polynomial functions in the feature library. The target y is a vector of dimension n, and coe�cients266

⇠ is a vector of dimension m. The n � m in the training data, making Eq. (18) an overdetermined system.267

The equation sparsity is measured by the count of polynomial terms present in the discovered equation,268

which is equivalent to the count of non-zero entries in ⇠, denoted as k⇠k0.269

The standard regression method, specifically the least squares regression, yields a solution for ⇠ with many270

non-zero entries, indicating that many candidate functions in the feature library contribute to y. Contrastingly,271

SINDy employs a sequential thresholded least-squares (STLS) algorithm to recursively determine the sparse272
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⇠ with a cuto� value � (see Algorithm 1 in Appendix IV). This algorithm is computationally e�cient, rapidly273

converges to a sparse solution for ⇠ in a few iterations. If coe�cient ⇠i of the i-th candidate function in the274

feature library is zero, it means that candidate function does not contribute to y. This algorithm is robust with275

only one tuning parameter �. To discover the equations with a balance of optimal complexity and accuracy,276

we employed the Pareto front analysis (Smits and Kotanchek 2005), which represents a set of solutions that277

achieve the best trade-o�s between model accuracy and sparsity, enabling the selection of an optimal model278

based on the desired level of simplicity and predictive performance.279

To exemplify the applicability of SINDy, the algorithm is initially employed to recover Eqs. (4) and (5)280

for small amplitude waves in deep water. The feature parameters X in Eq. (15) is not feasible because Eqs.281

(4) and (5) are obtained by integrating from sea floor to min(0,�h + hv) rather than to min(⌘max,�h + hv),282

thus ⌘max should not be included in the feature parameters. We select X = [khv, sinh 2khv, cosh 2khv] and283

construct a feature library ⇥(X) that includes quadratic nonlinearity of input features, i.e., K = 2. Scenarios284

with MD max,SSGW close to MD max,LWT are selected from the synthetic dataset for recovering Eqs. (4) and285

(5). Fig. 5 schematizes how sparse coe�cients are identified in a space of polynomial functions.286

For the equation discovery of general wave conditions, the feature parameters in Eq. (15) is used. We287

reserve scenarios with 0.5  h  6.75 m in the synthetic dataset, totaling 215,280 scenarios, for equation288

discovery and testing purposes. Specifically, 70% of these scenarios are randomly selected as training data289

for equation discovery, while 30% are set aside for testing. A grid search for � from 0 to 10 with the increment290

of 0.0025 is performed to obtain the optimal � that balances equation sparsity and accuracy. Moreover, we291

reserve scenarios with 7  h  8 m in the synthetic dataset, totaling 41,170 scenarios, for further testing the292

model’s generalization.293

The accuracy of the discovered equations from SINDy is evaluated using two metrics: the coe�cient of294

determination R
2 and the relative error ✏ , defined as follows:295

R
2 = 1 �

RSS
TSS

and ✏ =
|T � P |

T
(19)296

where the sum of squares of residual RSS is computed as RSS =
Õ

n

i=1 (Ti � Pi)
2 . The total sum of squares297

TSS is computed as TSS =
Õ

n

i=1

⇣
Ti � T

⌘2
. P and T are the predictions and true values, respectively. R

2 = 1298

indicates perfect agreement between the predictions and true values. R
2 = 0 indicates that the model results299
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are as good as random guesses around the mean of the true values.300

RESULTS301

Validation of SSGW implementation302

Fig. 6 shows the temporal variations of the horizontal force. The predominance of drag force over inertia303

force is attributed to bv ⌧ H (Journée and Massie 2001). Thus, the total horizontal force (FT ) is in phase304

with the drag force and FT max ⇡ FD max in this experimental case. The numerically computed FT , using305

u and ⌘ from SSGW, compares reasonably well with laboratory measurements throughout the wave cycle.306

This validation a�rms that FT from SSGW, together with values of CD and CM based on empirical formulas307

and previous literature, provide a reliable estimation of the horizontal force acting on the mimic vegetation.308

The modeled and measured FT have R
2 of 0.92 and normalized root-mean-square error of 11% (normalized309

by the di�erence between the maximum and minimum measurements). The measured FT max in the wave310

cycle is 0.084 N, whereas the computed FT max is 0.093 N. There are around 0.0165 ⇠ 0.0255 N discrepancies311

between the computed and measured FT at the trough around 0.5 ⇠ 1.7 s. Such discrepancies may stem312

from factors including (1) higher swaying velocities of the mimic vegetation at the trough, (2) measurement313

uncertainty, such as the 10% accuracy of the load cell, and (3) errors introduced by the Morison equation,314

which is fundamentally a parametric formula.315

Recovering theoretical equations in Eqs. (4) and (5) for linear waves316

Fig. 4a-b shows contour lines of 30% discrepancies between MD max,SSGW in the synthetic dataset and317

MD max,LWT from the LWT-based theoretical equations. For waves with MD max,SSGW/MD max,LWT  30%,318

the application of SINDy with � = 0.5 yields MD max and FD max equations closely resembling those in Eqs.319

(4) and (5). The relevant feature library and the corresponding coe�cients can be found in Table 2. We320

can also apply the least squares regression (LSQR) method (Barrett et al. 1994) to solve the linear system321

y = ⇥(X)⇠ for the coe�cients ⇠. With tolerance of 10�15, the LSQR method leads to a set of dense ⇠ that322

does not align with the theoretical solutions (see Table 2). SINDy aims to identify a subset of relevant feature323

functions (i.e., the feature functions whose coe�cients are not zero) from the feature library, whereas the324

LSQR method attempts to find coe�cients for all feature functions to best fit the data and does not perform325

feature selection. Therefore, SINDy identifies that FD max is a function of ‘khv’ and ‘sinh 2khv’ and filters326

out irrelevant feature functions, whereas the LSQR method keeps all feature functions in the library.327
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Discovering closed-form equations for nonlinear waves328

In the case of general wave conditions of various nonlinearity up to 99% of the wave breaking threshold,329

the feature parameters in Eq. (15) are employed in the SINDy framework to discover equations for both330

M
⇤

D max,SFWT and F
⇤

D max,SFWT within each subset of the synthetic dataset. A higher polynomial order K331

in the feature library does not necessary lead to greater accuracy, as it may render ⇥(X) more likely to be332

ill-conditioned for least squares regression. Here, the feature library with up to 4th-order polynomials (i.e.,333

K = 4) is found to provide the best-fit ⇠. The library ⇥(X) consists of a total of 330 candidate polynomial334

functions (see Supplemental Material for the complete list). The hyper-parameter � can be fine-tuned to335

achieve a balance between equation accuracy, quantified by max ✏ , and equation sparsity, indicated by k⇠k0.336

A smaller � typically results in more terms in the equation and higher accuracy, while a larger � tends to yield337

fewer terms in the equation and lower accuracy. Fig. 7 shows the variations of equation accuracy with the338

equation sparsity for each subset. Table 3 summarizes the optimal values of the hyper-parameter �, ensuring339

that max ✏ remains below 7%, and the count of terms in the discovered equations. The discovered equations340

exhibit sparsity, containing approximately 34 to 64 terms. A complete list of ⇠ for four subsets is available in341

Supplementary Materials. The computation for MD max and FD max using the discovered equations has time342

complexity O(k⇠k0), where k⇠k0  64. In comparison, the time complexity of SSGW is O(N log N) with343

N = 217.344

Fig. 8 compares the predicted MD max and FD max from the discovered closed-form equations with exact345

MD max,SSGW and FD max,SSGW. Almost perfect agreement is achieved with R
2
⇡ 1.0 and max ✏ <6.5% for346

both training and testing data (Table 3). The discovered equations can also accurately predict MD max and347

FD max for the reserved scenarios (i.e., h = 7 ⇠ 8 m) with R
2
⇡ 1.0, max ✏ = 6.7% and mean ✏ = 0.5%.348

The up to 6.7% error is partially due to the fact that the input features are identified based on SFWT, which349

has discrepancies with SSGW’s solutions for shallow water waves with kh < ⇡/15 and for waves with large350

steepness (see Figs. 4c-d).351

The discovered equations can be generalized to di�erent water depth, beyond the scope of 0.5  h  8.0352

m, because waves are characterized by dimensionless parameters, such as kh and H/h. The discovered353

closed-form equations are applicable as long as waves satisfy: (i) kh  2⇡; and (ii) kH/2  highest354

computable waves by SSGW (see Fig. 2).355

APPLICATIONS356
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Evaluation of vegetation stem breakage357

Coastal salt marshes experience wave-induced forces that can lead to stem deformation, buckling, and, in358

some cases, breakage. When the wave-induced bending stress (�wave) exceeds the allowable bending stress359

threshold for stems (�veg), as determined through three-point bending tests, stem breakage may occur (e.g.,360

Heuner et al. 2015; Vuik et al. 2018). Wetlands with a significant proportion of broken stems would exhibit361

diminished wave damping capacity. Given that the vegetation stem width is typically significantly smaller362

than the wave heights in energetic wave conditions, the drag force dominates the total force (Journée and363

Massie 2001). Thus, �wave can be approximated as364

�wave ⇡
MD maxbv

2I
(20)365

where I = ⇡b
4
v
/64 is the second moment of area of a circular cylinder. Vuik et al. (2018) presented an explicit366

formula for the critical horizontal velocity (ucrit) for determining whether a vegetation stem can withstand367

wave loads without breakage under the following simplifications: (1) u is uniform along the vegetation stem;368

(2) u can be represented with LWT; and (3) wave crest is not involved in the vertical integration.369

In contrast, the MD max equation discovered in this study o�ers a better tool for general wave conditions,370

especially for nonlinear waves in shallow water depth. Eq. (20) becomes:371

�wave ⇡
1
2
⇢CD

!2
H

2
M

⇤

D max

⇡b
2
vk2 sinh2

kh sinh2
khv

(21)372

The discovered equation for M
⇤

D max is a function of H, h, T , and hv. In a random wave field, Vuik et al.373

(2018) proposed the use of H1/10, which represents the mean of the highest 10% of waves, as a parameter374

to characterize the wave height that causes potential damage to vegetation. These top 10% of waves are375

more nonlinear, making them well-suited for the application of our discovered equations. For random waves376

with wave height distributions following the Rayleigh distribution, H1/10 = 1.27Hm0, where Hm0 is the377

zero-moment wave height.378

As a demonstration of this application, we consider a problem where we evaluate the percentage of379

broken vegetation during a tropical storm. The random wave condition is selected from field data during380

Tropical Storm Lee (Jadhav et al. 2013), with the following parameters: Hm0 = 0.7 m, Tp = 3.2 s, h =381

1.04 m. The vegetation species is Spartina alterniflora, with randomly distributed biophysical properties.382
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Based on S. alterniflora samples collected in upper Terrebonne Bay, Louisiana, we best-fit the probability383

distributions of hv and bv to log-normal distributions. These distributions exhibited a correlation coe�cient384

of 0.2, with mean values of 15.8 cm for hv and 7.9 mm for bv. In the absence of specific field measurements385

for �veg, we assume a mean value of 6 MPa (the same order of magnitude of �veg as in Vuik et al. 2018),386

following a log-normal distribution. Following the approach outlined in Vuik et al. (2018), we conduct387

Monte-Carlo simulations to determine the percentage of broken vegetation stems. 2,000 correlated random388

samples for hv, bv, and �veg are drawn, all following lognormal distributions. The drag coe�cient CD is not389

included in the synthetic dataset and thus does not play a role in the developed equations. In real applications,390

CD needs to be reintroduced. Here, we compute CD = 0.88 from the unified drag coe�cient formula in Zhu391

et al. (2023): CD = 0.57 + (1546/Re)
1.11, where Re is the Reynolds number. For each set of these random392

samples, we compute �wave using Eq. (21) and compare it to �veg. The percentage of broken vegetation393

stems is considered the same as the probability of �wave exceeding �veg. Further details on the Monte Carlo394

simulations can be found in (Vuik et al. 2018).395

In this particular wave condition, we estimate that 22% of vegetation stems get broken, signifying a396

22% reduction in the vegetation-induced energy dissipation rate. When employing the LWT-based equation397

for M
⇤

D max in Eq. (21), 12% of vegetation stems is estimated to be broken. The use of the discovered398

equations allows us to obtain these results in approximately 3 minutes following the procedures in Appendix399

II, while the SSGW algorithm takes about 1.5 hours (on a 2017 MacBook Pro laptop computer equipped400

with 16GB memory and 2.3 GHz Intel Core i5 processor, with N = 213, tolerance of 10�12). When applying401

numerical wave models, such as SWAN (Booij et al. 1999) and CSHORE (Johnson et al. 2012), to determine402

the wave attenuation by vegetation, a pragmatic treatment is to divide the vegetation field into segments in403

both cross-shore and long-shore directions, with segment length and width of O(10m). For each segment,404

we perform Monte Carlo simulations. Our discovered equations o�er a low cost, convenient solution for405

estimating fractions of broken vegetation and the resulting wave attenuation.406

Estimation of FD max and MD max on piles407

The Coastal Engineering Manual (CEM, U.S. Army Corps of Engineers 2011) estimates FD max and408

MD max suing SFWT-based graphs developed by Dean (1974). These graphs depict variations in FD max
1
2⇢gCDbvH

2409

or MD max
FD maxbv

with h/gT
2 and H/Hb, where Hb is the breaking wave height. These graphs are available for410

specific H/Hb values, namely, 0, 0.25, 0.5, 0.75, and 1. When H/Hb falls between these values, linear411
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interpolations are necessary, which can introduce errors and complicate their use in numerical wave models.412

In contrast, the discovered equations o�er a reliable and e�cient alternative, providing results in milliseconds.413

As a demonstration of this application, we consider problems where we calculate the drag force and414

bending moment of drag on an emergent, small-diameter cylindrical vertical pile. One problem is the415

example problem VI-7-19 from CEM, and another problem is the modified example problem 9.3.6 from416

Basco (2020). The cylinder width and wave conditions, together with kh and Ur, as calculated from LWT, are417

listed in Table 4. Both examples have cnoidal waves. Following the suggested values of CD = 0.7 in CEM418

and Basco (2020), we calculate FD max and MD max using the discovered equations, LWT, Fenton’s algorithm,419

and SSGW, as summarized in Table 4. The FD max and MD max from the discovered equations exhibit a420

maximum error of 6% when compared to the ground truth obtained from SSGW. This 6% di�erences are421

consistent with the accuracy of the discovery equations (see Table 3). Procedures to use the discovered422

equations with given H, h, T and hv are provided in Appendix II.423

CONCLUDING REMARKS424

Vegetated ecosystems play a crucial role in coastal protection by e�ectively dissipating wave energy.425

However, associated with the energy dissipation, the vegetation stems are also exposed to wave forces,426

potentially leading to breakage when the wave-induced stress surpasses the allowable bending threshold. An427

important aspect of developing precise wave dissipation models lies in accurately considering the proportion428

of damaged vegetation within the vegetated area. This study demonstrates a promising application of sparse429

regression for predicting the maximum drag force (FD max) and maximum moment of drag (MD max) acting430

on vegetation stems in nonbreaking waves. Here, a synthetic dataset of MD max and FD max for 256,450 wave431

and vegetation scenarios is constructed. Inspired by the existing theoretical equations for ⌘ and u from stream432

function wave theory, seven dimensionless parameters characterizing wave dispersion, wave nonlinearity, and433

vegetation submergence are identified as feature parameters. Employing the sparse regression framework,434

Sparse Identification of Nonlinear Dynamics (SINDy), with one thoughtfully chosen hyper-parameter, yields435

the discovery of sparse yet precise closed-form equations for MD max, FD max depending on these feature436

parameters. The discovered equations exhibit good accuracy, with a maximum relative error below 6.6% and437

a mean relative error below 1.4%. These discovered equations can be readily implemented into numerical438

wave models and structural analysis software, delivering results within milliseconds. The methodology439

elucidated in this study can also be adapted for discovering equations pertaining to other quantities of440
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highly nonlinear waves, such as total wave force and moment, wave celerity, maximum crest elevation, and441

maximum bottom shear stresses for sediment transport modeling.442

The discovered equations are not applicable to the most extreme waves, as SSGW is not designed for443

them. For a given water depth with kh up to 2⇡, the discovered equations works for waves with up to444

approximately 99% of the maximum steepness. Several algorithms have been developed for the computation445

of the almost highest gravity waves in finite water depth (e.g., Lu et al. 1987; Maklakov 2002). Among446

them, the algorithm by Maklakov (2002) can compute waves with wave steepness reaching 99.99997% of447

the limiting value in intermediate to deep water depth. These algorithms can be employed to fill the small448

data gap of the synthetic dataset in this study.449

The computation of MD max and FD max relies on an appropriate bulk drag coe�cient CD . Current450

empirical CD formulas are primarily derived from LWT, and thus, the wave nonlinearity is actually lumped451

into CD . It brings inconsistency to use the LWT-based CD in the closed-form equations that stem from452

nonlinear wave theory. As a future endeavor, it is worthwhile to apply SSGW to solve the energy balance453

equation, best fit CD by matching the wave height reduction, and compare the fitted CD with LWT-based454

empirical CD . Zhu and Chen (2017) applied two nonlinear wave theories (i.e., Stokes second-order and455

cnoidal wave theories) to solve the energy balance equation for wave height. They found that wave heights456

from di�erent wave theories exhibited disparities of less than 5% for emergent waves but extended to up to457

25% for submerged vegetation. A hypothesis arises that, for emergent vegetation, the fitted CD aligns closely458

with the LWT-based empirical CD , while for submerged vegetation, the fitted CD may significantly di�er459

from LWT-based empirical CD . Numerical experiments are desired to test this hypothesis in future research.460

The discovered equations do not account for the reduction in hydrodynamic forces resulting from461

vegetation flexibility, or the reduction in orbital velocities within dense canopies. Consequently, the MD max462

and FD max from this study tend to overestimate real-world field conditions. Luhar and Nepf (2016) introduced463

the concept of e�ective vegetation height (he), which represents the height of a rigid, vertical vegetation that464

produces the same drag as a flexible vegetation of length hv. They also conducted laboratory experiments to465

establish scaling laws for he. A similar concept of e�ective vegetation height could be introduced regarding466

the moment of drag. Future work could involve conducting laboratory experiments to explore scaling laws467

for this new e�ective vegetation height, and integrating it into the closed-form equations presented in this468

study for computing MD max of flexible vegetation. Zhu and Chen (2017) found a reduction in in-canopy469
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horizontal velocity compared to horizontal velocity from LWT, with a rate ranging from 6% for waves with470

Ur = 11 (Stokes waves) to 46% for waves with Ur = 142 (cnoidal waves). Quantifying the in-canopy velocity471

reduction rate relative to horizontal velocity calculated from SSGW is a crucial step towards improving the472

accuracy of MD max and FD max in future research.473

For coastal structures like piles or coastal vegetation with large stem diameters like mangroves, inertia474

force may play an important role. The KC parameter serves as a determinant for the dominance of inertia or475

drag forces. For KC < 3, the inertia force is dominant and the drag force can be neglected; for 3  KC < 45,476

the full Morison equation should be employed; and for KC � 45, the drag force is dominant and the inertia477

can be neglected (Journée and Massie 2001; Zhu and Chen 2015). The methodology developed in this study478

can be applied to establish a dataset of the maximum inertia force (FI max) and maximum total force (FT max),479

along with their moments (MI max and MT max). Closed-form equations for FI max and MI max can be obtained480

using sparse regression. However, finding closed-form equations for (FT max) and MT max can be challenging.481

The total force is the sum of drag force and inertia force (Eq. 22), which both involve coe�cients (CD and482

CM ) to be determined based on wave and vegetation conditions. The ratio of CD/CM needs to be included483

in the dataset and the feature library of the regression model. Additionally, there is a phase di�erence in484

FD and FI , attributed to the phase di�erence in u|u| and du

dt
. These aspects are identified as potential future485

research topics.486
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APPENDIX I. MORISON’S EQUATION FOR THE TOTAL HORIZONTAL FORCE497

Morison et al. (1950) proposed that the total horizontal force FT on a slender cylinder is the sum of the498

drag force FD and inertia force FI as below :499

FT =
1
2
⇢CDbv

π min(⌘,�h+hv )

�h

u|u|dz

|                                  {z                                  }
drag,FD

+ ⇢CM

⇡b
2
v

4

π min(⌘,�h+hv )

�h

du

dt
dz

|                                  {z                                  }
inertia,FI

(22)500
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APPENDIX II. PROCEDURES OF COMPUTING MD max AND FD max501

There are two options to use the discovered equations: (a) the discovered equations have been converted502

to symbolic expressions using SymPy (https://www.sympy.org/en/index.html), and these symbolic503

expressions can be directly imported and used in a Python script; (b) users can use the functions (in504

MATLAB and Python) provided in https://github.com/lzhu5/EquationDiscovery_MDmax_FDmax505

to obtain MD max and FD max directly with given wave conditions and cylinder height. For the second option,506

the following procedures are complied in the functions to compute MD max and FD max:507

• compute k from the linear dispersion relationship !2 = gk tanh kh, and compute L = 2⇡/k.508

• compute Ur = HL
2

h3 .509

• crop hv = min(hv, h + 0.9859H) and compute hv/h.510

• determine the subset using Ur and hv.511

• choose the corresponding coe�cients ⇠ in that subset, compute feature parameters X from Eq. (15),512

and compute values of functions in the feature library ⇥(X). The coe�cients ⇠ and codes to generate513

the feature library are available at https://github.com/lzhu5/EquationDiscovery_MDmax_514

FDmax.515

• compute MD max or FD max as ⇥(X)⇠.516
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APPENDIX III. NOTATION517

The following symbols are used in this paper:518

CD = drag coe�cient;

CM = inertia coe�cient;

D = cylinder diameter (m);

fD(t, z) = drag force per unit length of cylinder (N/m);

FD max = maximum drag force in a wave cycle, without the constant 1
2 ⇢CD(m3/s2);

F
⇤

D max = normalized FD max;

FI = inertia force (N);

FT = total force (N);

g = gravitational acceleration (m/s2);

k = wave number (1/m);

K = maximum order of polynomials in the feature library;

L = wavelength (m);

LWT = linear wave theory;

N = number of Fourier modes;

h = water depth (m);

hv = vegetation stem height (m);

H = wave height (m);

I = second moment of area of a vegetation stem (m4);

MD max = maximum bending moment in a wave cycle, without the constant 1
2 ⇢CD (m4/s2);

M
⇤

D max = normalized MD max;

R
2 = coe�cient of determination;

SFWT = stream function wave theory;

STK2 = Stokes 2nd-order wave theory;

T = wave period (s);

u = horizontal velocity (m/s);

umax = maximum horizontal velocity in a wave cycle (m/s);

Ur = Ursell numer;

519
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x1, . . . , x7 = feature parameters;

X = feature parameter vector;

✏ = relative error;

⌘ = surface elevation (m);

⌘max = maximum surface elevation in a wave cycle (m);

� = cuto� value in the SINDy algorithm;

�(X) = feature library;

⇠ = coe�cients of polynomial terms in the discovered equations;

⇢ = water density (kg/m3);

�wave = wave-induced bending stress on vegetation stems (Pa);

�veg = allowable bending stress of vegetation stems (Pa);

! = angular frequency (Hz);

520
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APPENDIX IV. SEQUENTIAL THRESHOLDED LEAST-SQUARES (STLS) ALGORITHM521

The STLS algorithm is adapted from Brunton et al. (2016) and Rudy et al. (2017).522

Algorithm 1 STLS(⇥, ; y, �, iters)

⇠̂ = arg min⇠ k⇥⇠ � yk2
2

bigcoe�s = { j : |⇠̂ j | � �} . Select large coe�cients
⇠̂[⇠ bigcoe�s] = 0 . Apply cuto� �
⇠̂[bigcoe�s] = STLS(⇥[:, bigcoe�s], y, �, iters-1) . Recursively call STLS w/ fewer coe�cients
return ⇠̂
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TABLE 1. Four subsets of the dataset and the corresponding criterion.

subset name criterion

I fully submerged vegetation in Stokes wave regime hv < h + 0.5H and Ur  40

II nearly submerged or emergent vegetation in Stokes wave regime hv � h + 0.5H and Ur  40

III fully submerged vegetation in cnoidal wave regime hv < h + 0.7H and Ur > 40

IV nearly submerged or emergent vegetation in cnoidal wave regime hv � h + 0.7H and Ur > 40

The contour lines for Ur = 40 and Ur = 26 closely converge, as illustrated in Fig. 3. Isobe et al. (1982) and

Hedges (1995) proposed criteria thresholds of Ur = 26 and 40, respectively, that distinguishes Stokes and

cnoidal waves. Here, we label waves with Ur < 40 as Stokes waves; otherwise, cnoidal waves.
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TABLE 2. Discovered equations from SINDy, and least squares regression method for linear
waves.

Feature library
⇠ for M

⇤

D max ⇠ for F
⇤

D max

theoretical SINDy least squares theoretical SINDy least squares

1 0 0 0.25492 0 0 0.15126

khv 0 0 0.94197 2 2.0008 0.62292

sinh 2khv 0 0 -0.38072 1 0.99997 0.59769

cosh 2khv -1 -1.0001 -0.59953 0 0 0.35088

(khv)
2 2 2.0015 1.5905 0 0 0.86042

khv sinh 2khv 2 2 1.0011 0 0 -0.0053816

khv cosh 2khv 0 0 0.99442 0 0 0.017017

sinh2 2khv -1 -1.0104 -0.15622 0 0 -0.11503

sinh 2khv cosh 2khv 0 0 0.057519 0 0 0.078802

cosh2 2khv 1 1.0104 0.098702 0 0 0.036228
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TABLE 3. The count of terms in discovered equations (k⇠k0), hyper-parameter (�), coe�cient
of determination of exact and predicted MD max and FD max (R2), and the maximum and mean of
relative errors (✏).

Subsets Variables k⇠k0 � Data types R
2 max ✏ (%) mean ✏ (%)

I
M

⇤

D max 64 (40)‡ 0.4 training / testing 0.999 / 0.999 2.27 / 2.27 0.22 / 0.22

F
⇤

D max 52 0.0875 training / testing 0.999 / 0.999 2.49 / 2.49 0.31 / 0.31

II
M

⇤

D max 36 (33)‡ 0.8 training / testing 0.999 / 0.999 1.76 / 1.76 0.04 / 0.04

F
⇤

D max 43 0.5 training / testing 0.999 / 0.999 1.06 / 1.06 0.01 / 0.01

III
M

⇤

D max 45 (45)‡ 0.0525 training / testing 0.999 / 0.999 6.21 / 6.21 1.20 / 1.19

F
⇤

D max 45 0.0525 training / testing 0.999 / 0.999 6.13 / 6.13 1.21 / 1.20

IV
M

⇤

D max 35 (34)‡ 0.7 training / testing 0.999 / 0.999 6.63 / 6.63 1.36 / 1.36

F
⇤

D max 34 0.6 training / testing 0.999 / 0.999 6.47 / 6.47 1.44 / 1.43

‡ The count of common terms in the discovered equations for M
⇤

D max and F
⇤

D max is listed in parentheses.
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TABLE 4. Wave and cylinder conditions and dimensionless wave parameters in the example prob-
lems. FD max and MD max are computed from LWT, Fenton’s algorithm, the discovered equations,
and SSGW.

Example 1:
H = 2.9 m, h = 5.0 m

Example 2:
H = 2.5 m, h = 4.5 m

T = 8 s, bv = 70 cm T = 10 s, bv = 30 cm

kh 0.59 0.44

Ur 65 114

FD max (N)

LWT 4651 1552

Fenton’s algorithm 11854 4256

Discovered eqs. 10561 4220

SSGW 11230 4034

MD max (N·m)

LWT 12288 3602

Fenton’s algorithm 54739 17105

Discovered eqs 48941 17270

SSGW 52313 16299
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Fig. 1. (a) A sketch of submerged and emergent vegetation in free surface waves. (b) umax(z) as
calculated from linear wave theory, Fenton’s algorithm, and SSGW for a shallow water wave with
H = 0.8 m, h = 2.0 m, and T = 10.0 s.
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Fig. 2. Highest computable waves by SSGW, indicated by kH/2, vary as a function of kh.
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Fig. 3. Crest elevation to wave height ratios, as computed from SSGW. The blue dashed line
represents the contour of ⌘max/H = 0.7. The red line represents the contour of Ur = 40. Black dots
represent wave scenarios in the synthetic dataset.
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Fig. 4. MD max,SSGW/MD max,LWT and FD max,SSGW/FD max,Fenton on an emergent vegetation.

39



Eq. (4)
!!"#$∗ = 2$ℎ& & sinh 2$ℎ&
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Fig. 5. Schematic of the SINDy algorithm for discovering the theoretical equations for M

⇤

D max,LWT.
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Fig. 6. Computed and measured horizontal forces exerted on the mimic vegetation.
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Fig. 7. Pareto front for M
⇤

D max and F
⇤

D max. Red symbols represent the best trade-o�s between
accuracy and sparsity.
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Fig. 8. Comparisons between predictions and ground truth for MD max (upper panel) and FD max
(lower panel).
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