

1 **Developing closed-form equations of maximum drag and moment on rigid**
2 **vegetation stems in fully nonlinear waves**

3 Ling Zhu¹ and Qin Chen²

4 ¹Senior Research Scientist, Civil and Environmental Engineering, Northeastern University,
5 Boston, MA 02115, USA. Email: l.zhu@northeastern.edu

6 ²Professor, Civil and Environmental Engineering, Marine and Environmental Sciences,
7 Northeastern University, Boston, MA 02115, USA. Email: q.chen@northeastern.edu

8 **ABSTRACT**

9 Coastal wetlands act as natural buffers against wave energy and storm surges. In the course of
10 energy dissipation, vegetation stems are exposed to wave action, which may lead to stem breakage.
11 An integral component of wave attenuation modeling involves quantifying the extent of damaged
12 vegetation, which relies on determining the maximum drag force ($F_{D\max}$) and maximum moment
13 of drag ($M_{D\max}$) experienced by vegetation stems. Existing closed-form theoretical equations for
14 $M_{D\max}$ and $F_{D\max}$ are only valid for linear and weakly nonlinear deep water waves. To address this
15 limitation, this study first establishes an extensive synthetic dataset encompassing 256,450 wave
16 and vegetation scenarios. Their corresponding wave crests, wave troughs, $M_{D\max}$, and $F_{D\max}$,
17 which compose the dataset, are numerically computed through an efficient algorithm capable of
18 fast computing fully nonlinear surface gravity waves in arbitrary depth. Seven dominant wave
19 and vegetation related dimensionless parameters that impact $M_{D\max}$ and $F_{D\max}$ are discerned and
20 incorporated as input feature parameters into an innovative sparse regression algorithm to reveal the
21 underlying nonlinear relationships between $M_{D\max}$, $F_{D\max}$ and the input features. Sparse regression
22 is a subfield of machine learning that primarily focuses on identifying a subset of relevant feature
23 functions from a feature function library. Leveraging this synthetic dataset and the power of

24 sparse regression, concise yet accurate closed-form equations for $M_{D \max}$ and $F_{D \max}$ are developed.
25 The discovered equations exhibit good accuracy compared with the ground truth in the synthetic
26 dataset, with a maximum relative error below 6.6% and a mean relative error below 1.4%. Practical
27 applications of these equations involve assessment of the extent of damaged vegetation under wave
28 impact and estimation of $M_{D \max}$ and $F_{D \max}$ on cylindrical structures.

29 **Keywords:** sparse regression, equation discovery, maximum drag/bending moment, vegetation stem
30 breakage, nonlinear wave theory

31 INTRODUCTION

32 Coastal salt marshes play a crucial role in dissipating wave energy, stabilizing sediment along the
33 shoreline, mitigating the impacts of coastal flooding, and providing vital habitats for plants and animal
34 species. Designing and implementing nature-based solutions for the protection and restoration of coastal
35 salt marshes are imperative to the preservation of coastal ecosystems and the advancement of sustainable
36 shoreline management practices. Coastal salt marshes are subjected to drag force and bending moment
37 induced by waves. Determining the maximum wave-induced drag force ($F_{D \max}$) on salt marsh stems and
38 maximum moment of drag force about the stem base ($M_{D \max}$) is crucial to evaluate the susceptibility of salt
39 marshes to stem breakage and to quantify the effectiveness of salt marshes in dissipating wave energy in a
40 high energy wave environment.

41 Closed-form analytical approximations of $F_{D \max}$ or $M_{D \max}$ are desired in engineering application. Salt
42 marshes are commonly treated as rigid cylinders. Researchers developed simple closed-form analytical
43 equations for $F_{D \max}$ or $M_{D \max}$ based on linear wave theory (LWT) (e.g., Dalrymple et al. 1984; Vuik et al.
44 2018) and Stokes 2nd order wave theory (STK2) (Zhu and Chen 2019). However, these wave theories, even
45 higher order Stokes wave theories (e.g., Stoke's 5th-order wave theory by Fenton 1985), have limitations
46 when applied to highly nonlinear waves in intermediate and shallow water regions, rendering the established
47 closed-form analytical equations or lookup tables unsuitable for salt marshes in these regions. Few attempts
48 have been made to calculate $F_{D \max}$ or $M_{D \max}$ from wave theories applicable to shallow water waves.

49 Fenton (1988) proposed an algorithm for calculating steady surface waves in deep water or water of
50 finite depth based on stream function wave theory (SFWT). However, numerical approximations from
51 Fenton's algorithm do not converge or converges to ghost solutions with spurious oscillations for waves with

52 $kh < \pi/15$ (Clamond and Dutykh 2018), where kh is the dimensionless wavelength parameter that measures
53 the wave dispersion. Recently, Clamond and Dutykh (2018) proposed an efficient algorithm, with time
54 complexity $O(N \log N)$ (N is the number of Fourier modes), for fast computation of steady surface gravity
55 waves in arbitrary depth (i.e., Stokes, cnoidal, and solitary waves) with wave steepness up to approximately
56 99% of the maximum steepness for all wavelengths. Clamond and Dutykh's algorithm, denoted as SSGW
57 (steady surface gravity waves), numerically solves the modified Babenko equation (Babenko 1987) via the
58 classical Petviashvili method (Petviashvili 1976). Neither Fenton's algorithm nor SSGW provides explicit
59 equations of horizontal velocity (u) and surface elevation (η), and thus, it is not possible to theoretically
60 derive closed-form equations for $M_{D \max}$ and $F_{D \max}$ from these two algorithms.

61 Instead of deriving theoretical equations, an alternative approach is to formulate semi-theoretical equa-
62 tions by leveraging machine learning techniques. Recent advances in machine learning, bolstered by the
63 increasing computational capabilities, facilitate the development of data-driven models capable of harnessing
64 extensive data to make predictions based on input features. Among them, neural network models give only
65 implicit relationship between input and output variables. In practical applications, engineers experienced
66 with the utilization of empirical formulas may prefer an explicit calculation method. Compared to neural
67 network models, equation discovery techniques provide explicit and interpretable mathematical formulas to
68 describe the underlying dependencies between variables in a dataset. Equation discovery techniques have
69 been used to uncover governing partial differential equations of nonlinear dynamical systems from noisy
70 observation data (e.g., Wang et al. 2011; Raissi et al. 2018; Chen et al. 2021; Wang et al. 2021). Two
71 popular methods for equation discovery are the genetic algorithm (e.g., Bongard and Lipson 2007; Schmidt
72 and Lipson 2009; Pourzangbar 2012; Bonakdar et al. 2015; Pourzangbar et al. 2017a; Pourzangbar et al.
73 2017b; Formentin and Zanuttigh 2019; Lee and Suh 2019; Udrescu and Tegmark 2020; Dalinghaus et al.
74 2023) and the sparse regression (e.g., Brunton et al. 2016; Lee et al. 2022). The genetic algorithm is
75 expressive and versatile but does not scale well to large systems and may be prone to overfitting (Brunton
76 et al. 2016). Sparse regression is considered more efficient or manageable. Brunton et al. (2016) formulated
77 system identification as sparse regression problems and developed an innovative framework, SINDy (Sparse
78 Identification of Nonlinear Dynamics). SINDy leverages sparsity-promoting techniques to find out the fewest
79 active terms from a space of nonlinear candidate functions to accurately represent the data. The resulting
80 parsimonious models balance accuracy with model complexity while avoiding overfitting the model to data.

81 SINDy has been successfully implemented to identify nonlinear dynamical systems in various domains such
82 as fluid dynamics (Loiseau and Brunton 2018), structural engineering (Li et al. 2019), and chemical systems
83 (Hoffmann et al. 2019). To the best of the authors' knowledge, sparse regression has not been previously
84 applied in the field of coastal and ocean engineering.

85 The objectives of this study are to: (1) create an extensive synthetic dataset encompassing a wide range
86 of wave conditions, vegetation submergence, and the corresponding wave crests (η_{\max}), wave troughs (η_{\min}),
87 $M_{D \max}$, and $F_{D \max}$ based on steady surface waves calculated by using the SSGW algorithm; (2) leverage
88 the SINDy framework to formulate closed-form equations for $M_{D \max}$ and $F_{D \max}$ based on the synthetic
89 dataset; and (3) apply the discovered equations to assess the extent of damaged vegetation under wave
90 impact and estimate $M_{D \max}$ and $F_{D \max}$ on cylindrical structures. The created dataset includes 256,450
91 combinations of wave height, wave period, water depth, vegetation submergence (vegetation height to water
92 depth ratio), and numerical approximations of $M_{D \max}$ and $F_{D \max}$. The core processes of equation discovery
93 involve identifying input feature parameters and utilizing the sparse regression algorithm to achieve a balance
94 between the sparsity and accuracy of the equations. Given the established exact theoretical equations for
95 $M_{D \max}$ and $F_{D \max}$ from LWT and STK2, along with those for η and u from SFWT, we discern the dominant
96 wave and vegetation related dimensionless parameters that impact $M_{D \max}$ and $F_{D \max}$, and incorporate them
97 as input features into the SINDy framework to reveal the underlying nonlinear relationships between $M_{D \max}$,
98 $F_{D \max}$ and input features.

99 This paper is structured as follows: in the data and methods section, we outline the procedure for
100 creating the synthetic dataset, introduce the established theoretical equations for $M_{D \max}$ and $F_{D \max}$ from
101 LWT and STK2, and identify the input features. Additionally, we briefly introduce the SINDy framework,
102 focusing on the feature library and hyper-parameter. In the results section, we demonstrate SINDy's ability to
103 recover theoretical LWT-based equations for $M_{D \max}$ and $F_{D \max}$ for linear waves, and present the discovered
104 equations for fully nonlinear waves from shallow to deep waters, along with discussions on generalization
105 and accuracy. Two case studies are illustrated in the application section. Concluding remarks and future
106 research topics are presented in the final section.

107 **DATA AND METHODS**

108 **Building a synthetic dataset**

109 The drag force dominates over inertia force because $b_v \ll H$ (Journée and Massie 2001). The drag force
 110 per unit length of the vegetation stem f_D can be approximated as a quadratic function of the time-dependent
 111 vertically-varying horizontal velocities $u(t, z)$ (Morison et al. 1950) as $f_D(t, z) = \frac{1}{2}\rho C_D b_v u |u|$, where t is the
 112 time, z is the vertical axis, ρ is the water density, C_D is the drag coefficient, and b_v is the stem width. The
 113 total drag force acting on the vegetation stem $F_D(t)$ and the moment of drag force about the sea floor $M_D(t)$
 114 are determined as:

$$115 \quad F_D(t) = \int_{-h}^{\min(\eta, -h+h_v)} f_D(t, z) dz \quad \text{and} \quad M_D(t) = \int_{-h}^{\min(\eta, -h+h_v)} f_D(t, z) \cdot (z + h) dz \quad (1)$$

116 where h is the water depth, η is the surface elevation, and h_v is the vegetation stem height. The integrations
 117 are from the sea floor ($z = -h$) to either the vegetation stem top ($z = -h + h_v$) for submerged vegetation
 118 or the free surface η for emergent vegetation (see Fig. 1a). The maximum $F_D(t)$ and $M_D(t)$ within a wave
 119 cycle, denoted as $F_{D \max}$ and $M_{D \max}$, occur at the passage of the wave crest η_{\max} , and are computed as:

$$120 \quad F_{D \max} = \int_{-h}^{\min(\eta_{\max}, -h+h_v)} \frac{1}{2}\rho C_D b_v u_{\max} |u_{\max}| dz \quad (2)$$

$$121 \quad M_{D \max} = \int_{-h}^{\min(\eta_{\max}, -h+h_v)} \frac{1}{2}\rho C_D b_v u_{\max} |u_{\max}| \cdot (z + h) dz \quad (3)$$

122 where $u_{\max}(z)$ is the maximum horizontal velocity within the wave cycle. Given that C_D and b_v are usually
 123 considered constants along the stem in numerical models (e.g., Mendez and Losada 2004; Anderson and
 124 Smith 2014; Luhar and Nepf 2016; Zhu et al. 2023) and are factored out of the integrations, we omit $\frac{1}{2}\rho C_D b_v$
 125 from the dataset but can reintroduce it during applications.

126 The first step towards generating a dataset with general applicability to non-breaking waves and vegetation
 127 in natural environments is to determine an adequate quantity of representative, impartial scenarios of waves
 128 and vegetation. Waves are characterized with dimensionless parameters. Following the wave classification
 129 presented in LeMehaute (1976), wave characteristics are determined based on conditions as below:

$$130 \quad (i) \quad -4 \leq \log_{10}(h/gT^2) \leq -0.1,$$

$$131 \quad (ii) \quad -5 \leq \log_{10}(H/gT^2) \leq -1,$$

132 (iii) $H/L < 0.14 \tanh kh$ (Kamphuis 1991) to meet the non-breaking wave criteria,

133 (iv) $kh \leq 2\pi$ because coastal salt marshes rarely experience very deep water waves,

134 (v) $kH/2$ is no greater than the highest computable $kH/2$ by SSGW (see Fig. 2).

135 where g is the gravitational acceleration, T is the wave period, H is the wave height, L is the wavelength, and
136 $k = 2\pi/L$ is the wavenumber. The ranges of $\log_{10}(h/gT^2)$ and $\log_{10}(H/gT^2)$ are discretized with increments
137 of 0.2, and 0.17, respectively, to balance the diversity of wave conditions in the dataset and the computational
138 cost. In the dataset, we let $0.5 \leq h \leq 8.0$ m. However, later in the generalization of the discovered equations,
139 we will demonstrate that the discovered equations are applicable to water depth beyond this scope. When
140 the values of h , $\log_{10}(h/gT^2)$ and $\log_{10}(H/gT^2)$ are provided, T and H can be easily computed, and L and
141 k are pragmatically determined from the dispersion relationship based on LWT: $\omega^2 = gk \tanh(kh)$, where
142 $\omega = 2\pi/T$ is the wave angular frequency. This dispersion relationship is limited to LWT and STK2; however,
143 it provides a more pragmatic option for users of the equations developed in this study. Therefore, we use k
144 from linear dispersion relationship to develop the dataset and discover equations. The maximum H/h among
145 all wave scenarios is 0.837, close to the breaking index of $(H/h)_{\max} = 0.826$ proposed in Longuet-Higgins
146 (1974). All wave scenarios in the dataset are depicted in Fig. 3. The x -axis represents the wave dispersion
147 and the y -axis represents the wave nonlinearity.

148 The computations of $M_{D \max}$ and $F_{D \max}$ by definition involve integrations from the sea floor ($z = -h$)
149 to the uppermost wetted segment along the vegetation stem (Eqs. 2 - 3). The vegetation stem should exceed
150 $h + \eta_{\max}$ to be fully emergent. Fig. 3 presents the variations of η_{\max}/H , computed through SSGW. The η_{\max}/H
151 ratios distinct across different wave categories, with approximate values of 0.5 for linear waves, up to 0.7
152 for high-order Stokes waves, and up to 0.9859 for cnoidal waves. Given that $\left(\frac{h_v}{h}\right)_{\max} \leq \left(\frac{\eta_{\max}}{H}\right)_{\max} \cdot \left(\frac{H}{h}\right)_{\max}$,
153 we encompass a comprehensive spectrum of submergence scenarios h_v/h from 0 to 1.85 in the dataset, and
154 discretize this range with an increment of 0.05. The novel synthetic dataset encompasses a total of 256,450
155 combinations of wave conditions and vegetation submergence.

156 For each combination of wave conditions (h , H , and T) and vegetation submergence (h_v/h) in the dataset,
157 we apply SSGW to get numerical approximations of η_{\max} , η_{\min} , and $u_{\max}(z)$. As the wave steepness or the
158 wave wavelength increases, SSGW requires a rapidly increasing number of Fourier modes (N) to achieve
159 spectral accuracy. For instance, for an extreme wave with $kh = 0.0885$, $H/h = 0.82$, the required N for

full spectral accuracy is 2^{17} (Clamond and Dutykh 2018). In this study, we adopted $N = 2^{17}$ and numerical tolerance of 10^{-10} for all waves in the dataset. The time complexity of SSGW algorithm is $O(N \log N)$. Given the swift vertical variations in $u_{\max}(z)$ near the free surface of highly nonlinear waves, a 50-point Gauss-Legendre quadrature is employed for the numerical integrations in the calculations of $M_{D \max}$ and $F_{D \max}$ (Eqs. 2 and 3). When necessary, the amount of Gauss nodes is reduced to ensure that the free surface (the first Gauss node) maintains an adequate separation from the next Gauss node (Clamond and Dutykh 2018). The $M_{D \max}$ and $F_{D \max}$ from SSGW, denoted as $M_{D \max, \text{SSGW}}$ and $F_{D \max, \text{SSGW}}$, serve as the ground truth for assessing the accuracy of the discovered closed-form equations.

To validate the implementation of SSGW, we compare the total horizontal force (F_T) calculated by SSGW against laboratory measurements obtained from Luhar and Nepf (2016). Their experiment with 5 cm long HDPE (high density polyethylene plastic) blades, $T = 2$ s, $H = 7.8$ cm, and $h = 0.3$ m is carefully selected for validation because the mimic vegetation in this particular experiment is essentially rigid (see Fig. 6 in Luhar and Nepf 2016). The mimic vegetation width b_v is 0.02 m and thickness is 0.4 mm. The total horizontal force is the sum of drag force and inertia force (see Eq. 22 in Appendix I). The inertia coefficient $C_M = 1.0$ is chosen following Luhar and Nepf (2016), whereas the drag coefficient $C_D = 3.6$ is determined from the empirical relationship $C_D = \max(10KC^{-1/3}, 1.95)$ in Luhar and Nepf (2016), where $KC = U_w T / b_v$ is the Keulegan-Carpenter number (U_w is the orbital wave velocity).

Discovering closed-form equations for $M_{D \max}$ and $F_{D \max}$ using SINDy

Existing theoretical closed-form equations for $M_{D \max}$ and $F_{D \max}$

Following Dalrymple et al. (1984), we can insert $u_{\max} = \frac{\omega H}{2 \sinh kh} \cdot \cosh k(z + h)$ from LWT into Eqs. (2) and (3), and perform integrations from the sea floor to $\min(0, -h + h_v)$ rather than to $\min(\eta_{\max}, -h + h_v)$ to get theoretical closed-form equations as below:

$$M_{D \max, \text{LWT}} = \frac{\omega^2 H^2}{32k^2 \sinh^2 kh} [2kh_v \sinh 2kh_v - \cosh 2kh_v + 1 + 2(kh_v)^2] \quad (4)$$

$$F_{D \max, \text{LWT}} = \frac{\omega^2 H^2}{16k \sinh^2 kh} [2kh_v + \sinh 2kh_v] \quad (5)$$

where $\omega = 2\pi/T$ is the wave angular frequency. h_v in Eqs. (4) and (5) should be $\min(h_v, h)$. The assumptions made in the derivation of Eqs. (4)-(5) are: (i) waves can be described by LWT, and (ii) wave heights are so small that η_{\max} can be replaced with the still water level ($z = 0$ m) in the vertical integrations. Fig. 1b presents

¹⁸⁷ u_{\max} of a nonlinear wave in shallow water (fall in the cnoidal wave region) computed by LWT, Fenton's
¹⁸⁸ algorithm, and SSGW. For nonlinear waves in shallow water, the wave shape is distorted (peaky crest and
¹⁸⁹ flat trough). Fig. 1b clearly indicates that LWT is unsuitable for cnoidal waves, and u_{\max} above the still water
¹⁹⁰ level makes a substantial contribution to $M_{D \max}$ and $F_{D \max}$. Fig. 4a-b illustrates $M_{D \max, \text{SSGW}}/M_{D \max, \text{LWT}}$
¹⁹¹ and $F_{D \max, \text{SSGW}}/F_{D \max, \text{LWT}}$ for an emergent vegetation. It clearly shows that the LWT-based theoretical
¹⁹² equations are not applicable to vegetation in shallow water waves. The moment ratio can be as much as 7 in
¹⁹³ shallow water waves with large relative wave height (H/h).

¹⁹⁴ Zhu et al. (2019) inserted $u = \frac{\omega H}{2 \sinh kh} \cosh k(z+h) \cos \theta + \frac{3\omega H}{16 \sinh^4 kh} kH \cosh 2k(z+h) \cos 2\theta$ from STK2
¹⁹⁵ into Eq. (1) and proposed a STK2-based closed-form equations for $M_{D \max}$:

$$M_{D \max, \text{STK2}} = \frac{\omega^2 H^2}{32k^2 \sinh^2 kh} \left[M_1 + \frac{kH}{\sinh^3 kh} M_2 + \frac{(kH)^2}{\sinh^6 kh} M_3 \right] \quad (6)$$

¹⁹⁷ where

$$\begin{aligned} M_1 &= 2kh_v \sinh 2kh_v - \cosh 2kh_v + 1 + 2(kh_v)^2 \\ M_2 &= 5 - 3 \cosh kh_v - 2 \cosh^3 kh_v + 3kh_v \sinh kh_v + 6kh_v \sinh kh_v \cosh^2 kh_v \\ M_3 &= 4kh_v \sinh 4kh_v - \cosh 4kh_v + 1 + 8(kh_v)^2 \end{aligned} \quad (7)$$

²⁰¹ STK2 is generally applicable to waves with Ursell number (Ur , defined as $Ur = \frac{HL^2}{h^3}$) less than 26 (Isobe
²⁰² et al. 1982), where the dimensionless wave parameter Ur indicates the wave nonlinearity with respect to
²⁰³ wave dispersion. For shallow water waves with finite amplitude ($Ur > 26$), STK2 introduces a secondary
²⁰⁴ crest at the wave trough. We should seek nonlinear wave theory and numerical algorithms, such as SSGW,
²⁰⁵ for computing free surface waves and $M_{D \max}$ and $F_{D \max}$ in arbitrary water depth.

²⁰⁶ *Identification of major dimensionless parameters controlling $M_{D \max}$ and $F_{D \max}$*

²⁰⁷ A wave can be characterized by dimensionless parameters that represent wave dispersion (kh) and
²⁰⁸ wave nonlinearity. In deep water and water with finite depth, a wave is usually characterized by kh (wave
²⁰⁹ dispersion) and kH (wave nonlinearity), while in shallow water, the relative wave height H/h is used in lieu
²¹⁰ of kH . Beji (1995) proposed a nonlinearity parameter $ka/\tanh(kh)$ (a is the wave amplitude) that is valid
²¹¹ for both deep and shallow water waves. Nevertheless, these dimensionless parameters are not sufficient for

212 formulating $M_{D \max}$ and $F_{D \max}$ in scenarios involving general wave conditions.

213 Fenton's algorithm, based on SFWT, and SSGW exhibit a close alignment, with an approximate agree-
 214 ment of up to six decimal places for deep water waves (Clamond and Dutykh 2018), and small discrepancies
 215 for finite amplitude shallow water waves (see Fig. 4c-d). Therefore, the theoretical equations for η_{\max} and
 216 u_{\max} from SFWT as below (Fenton 1988) can offer valuable insights into the selection of input features:

$$217 \quad \eta_{\max, \text{SFWT}} = \sum_{j=1}^N A_j \quad \text{and} \quad u_{\max, \text{SFWT}} = \sum_{j=1}^N j B_j \frac{\cosh jk(z+h)}{\cosh jkh} \quad (8)$$

218 where $\theta = \omega t + kx$ is the phase angle, and N represents the number of Fourier modes. Fenton's algorithm
 219 solves for the coefficients A_j and B_j ($j = 1, \dots, N$) from a system of $2N + 10$ nonlinear equations including
 220 free surface boundary condition, kinematic boundary condition, and stream function equation. It is important
 221 to note that the equations for $u_{\max, \text{SFWT}}$ in Eq. (8) only holds for scenarios where the Eulerian time-mean
 222 velocity C_E is equal to 0. Inserting Eq. (8) into Eqs. (2) and (3) yields

$$223 \quad M_{D \max, \text{SFWT}} = \sum_{i=1}^N \sum_{j=1}^N \frac{ij B_i B_j}{\cosh ikh \cosh jkh} \int_{-h}^{\min(\eta_{\max}, -h+h_v)} (z+h) \cosh ik(z+h) \cosh jk(z+h) dz \quad (9)$$

$$224 \quad F_{D \max, \text{SFWT}} = \sum_{i=1}^N \sum_{j=1}^N \frac{ij B_i B_j}{\cosh ikh \cosh jkh} \int_{-h}^{\min(\eta_{\max}, -h+h_v)} \cosh ik(z+h) \cosh jk(z+h) dz \quad (10)$$

225 Using hyperbolic trigonometry identities, the integral in Eq. (9) can be explicitly expressed as the product
 226 of $1/k^2$ and a polynomial function of

$$227 \quad \begin{cases} \sinh(i \pm j)kh_v, \cosh(i \pm j)kh_v, \text{ and } kh_v & \text{if } h_v < h + \eta_{\max} \\ \sinh(i \pm j)k(h + \eta_{\max}), \cosh(i \pm j)k(h + \eta_{\max}), kh, \text{ and } k\eta_{\max} & \text{if } h_v \geq h + \eta_{\max}, \end{cases} \quad (11)$$

228 and the integral in Eq. (10) can be explicitly expressed as the product of $1/k^2$ and a polynomial function of

$$229 \quad \begin{cases} \sinh(i \pm j)kh_v, \text{ and } kh_v & \text{if } h_v < h + \eta_{\max} \\ \sinh(i \pm j)k(h + \eta_{\max}), kh, \text{ and } k\eta_{\max} & \text{if } h_v \geq h + \eta_{\max}. \end{cases} \quad (12)$$

230 Note that " $i \pm j$ " inside the hyperbolic functions in (11) and (12) can be further dropped by using hyperbolic
 231 trigonometry identities. The coefficients $\frac{ij B_i B_j}{\cosh ikh \cosh jkh}$ in Eqs. (9) and (10) do not have explicit forms;

232 nonetheless, guided by our knowledge on the theoretical equations for $M_{D \max, \text{STK2}}$ (Eq. 6), it can be inferred
 233 that these coefficients are dependent on $\frac{\omega^2 H^2}{\sinh^2 kh}$ and $\frac{kH}{\sinh^3 kh}$.

A conjecture regarding the closed-form equations for $M_{D \max}$ and $F_{D \max}$ would be:

$$M_{D \max} = \frac{\omega^2 H^2}{32k^2 \sinh^2 kh} \left[\sum \left(\frac{kH}{\sinh^3 kh} \right)^p \cdot f_1(k\eta_{\max}, kh, kh_v, \sinh k(h + \eta_{\max}), \cosh k(h + \eta_{\max}), \sinh kh_v, \cosh kh_v) \right] \quad (13)$$

$$F_{D \max} = \frac{\omega^2 H^2}{16k \sinh^2 kh} \left[\sum \left(\frac{kH}{\sinh^3 kh} \right)^q \cdot f_2(k\eta_{\max}, kh, kh_v, \sinh k(h + \eta_{\max}), \cosh k(h + \eta_{\max}), \sinh kh_v, \cosh kh_v) \right] \quad (14)$$

234 where p and q are integers, and f_1 and f_2 represent polynomial functions. This conjecture is based on the
 235 equations for η_{\max} and u_{\max} from SFWT, which has discrepancies with SSGW's solutions for very steep
 236 waves. We will discuss the feasibility of input features identified by this method, and the potential errors in
 237 the results section.

238 The dimensionless parameters in Eqs. (13) and (14) are potential feature parameters to be used in
 239 SINDy. However, It is not feasible to include η_{\max} in the feature parameters because it is unknown *a priori*.
 240 From Fig. 3, it is observed that waves in deep and intermediate water depth with $Ur \leq 40$ exhibit a slight
 241 skewness with $\eta_{\max} = 0.5H \sim 0.7H$, whereas shallow water waves with $Ur > 40$ are strongly skewed with
 242 $\eta_{\max} = 0.7H \sim 0.9859H$. Hence, we divide our synthetic dataset into four distinct subsets following the
 243 criteria in Table 1, and use the mean of η_{\max} of the subset in the feature parameters. Moreover, given
 244 that η_{\max} is no greater than $0.7H$ for waves with $Ur \leq 40$, the height of wetted stem should be no greater
 245 than $h + 0.7H$ in subset II. We enforce $kh_v \approx \min(kh_v, kh + 0.7kH)$ in subset II. Similarly, we enforce
 246 $kh_v \approx \min(kh_v, kh + 0.9859kH)$ in subset IV.

247 Eventually, the feature parameters to be used in SINDy for general wave conditions are identified as:

$$248 \quad x_1 = \frac{kH}{\sinh^3 kh}, \quad x_2 = k(h + \gamma H), \quad x_3 = kh, \quad x_4 = \sinh k(h + \gamma H), \\ 249 \quad x_5 = \cosh k(h + \gamma H), \quad x_6 = \sinh kh_v, \quad x_7 = \cosh kh_v \quad (15)$$

and denoted as $\mathbf{X} = [x_1, x_2, \dots, x_7]$, in which, $\gamma = 0.53$ and 0.86 for Stokes and cnoidal waves, respectively. Among these feature parameters, x_1 approaches U_r in shallow water, kH is a measure of wave steepness, x_3 is a measure of wave dispersion, and kh_v is the vegetation height to wavelength ratio. In our synthetic dataset, kh varies from 0.06 to 4.7 , and wave steepness kH ranges from 4×10^{-4} to 0.85 . To achieve better regression results, $M_{D \max}$ and $F_{D \max}$ are normalized as

$$M_{D \max}^* = M_{D \max} / \left[\frac{\omega^2 H^2}{32k^2 \sinh^2 kh \sinh^2 kh_v} \right], \quad (16)$$

$$F_{D \max}^* = F_{D \max} / \left[\frac{\omega^2 H^2}{16k \sinh^2 kh \sinh kh_v} \right]. \quad (17)$$

Equation discovery with SINDy

\mathbf{X}^p (p is an integer) denotes the p -th order polynomial. For instance, when $p = 2$,

$$\mathbf{X}^2 = [x_1^2, x_1 x_2, \dots, x_1 x_7, x_2^2, x_2 x_3, \dots, x_2 x_7, x_3^2, \dots, x_7^2]$$

With a polynomial order K , the feature parameters \mathbf{X} can yield a combination of polynomial terms $\Theta(\mathbf{X}) = [1, \mathbf{X}, \mathbf{X}^2, \dots, \mathbf{X}^K]$, referred to as the feature library. The feature library constitutes a space of polynomial functions, with each function serving as a candidate term in the equation to be discovered. In this study, we aim to express the target \mathbf{y} (i.e., $M_{D \max}^*$ and $F_{D \max}^*$) as a sparse linear combination of terms in $\Theta(\mathbf{X})$:

$$\mathbf{y} = \Theta(\mathbf{X})\xi \quad (18)$$

$\Theta(\mathbf{X})$ is a $n \times m$ matrix, where n is the number of training scenarios in the synthetic dataset, and m is the number of polynomial functions in the feature library. The target \mathbf{y} is a vector of dimension n , and coefficients ξ is a vector of dimension m . The $n \gg m$ in the training data, making Eq. (18) an overdetermined system. The equation sparsity is measured by the count of polynomial terms present in the discovered equation, which is equivalent to the count of non-zero entries in ξ , denoted as $\|\xi\|_0$.

The standard regression method, specifically the least squares regression, yields a solution for ξ with many non-zero entries, indicating that many candidate functions in the feature library contribute to \mathbf{y} . Contrastingly, SINDy employs a sequential thresholded least-squares (STLS) algorithm to recursively determine the sparse

ξ with a cutoff value λ (see Algorithm 1 in Appendix IV). This algorithm is computationally efficient, rapidly converges to a sparse solution for ξ in a few iterations. If coefficient ξ_i of the i -th candidate function in the feature library is zero, it means that candidate function does not contribute to \mathbf{y} . This algorithm is robust with only one tuning parameter λ . To discover the equations with a balance of optimal complexity and accuracy, we employed the Pareto front analysis (Smits and Kotanchek 2005), which represents a set of solutions that achieve the best trade-offs between model accuracy and sparsity, enabling the selection of an optimal model based on the desired level of simplicity and predictive performance.

To exemplify the applicability of SINDy, the algorithm is initially employed to recover Eqs. (4) and (5) for small amplitude waves in deep water. The feature parameters \mathbf{X} in Eq. (15) is not feasible because Eqs. (4) and (5) are obtained by integrating from sea floor to $\min(0, -h + h_v)$ rather than to $\min(\eta_{\max}, -h + h_v)$, thus η_{\max} should not be included in the feature parameters. We select $\mathbf{X} = [kh_v, \sinh 2kh_v, \cosh 2kh_v]$ and construct a feature library $\Theta(\mathbf{X})$ that includes quadratic nonlinearity of input features, i.e., $K = 2$. Scenarios with $M_{D \max, SSGW}$ close to $M_{D \max, LWT}$ are selected from the synthetic dataset for recovering Eqs. (4) and (5). Fig. 5 schematizes how sparse coefficients are identified in a space of polynomial functions.

For the equation discovery of general wave conditions, the feature parameters in Eq. (15) is used. We reserve scenarios with $0.5 \leq h \leq 6.75$ m in the synthetic dataset, totaling 215,280 scenarios, for equation discovery and testing purposes. Specifically, 70% of these scenarios are randomly selected as training data for equation discovery, while 30% are set aside for testing. A grid search for λ from 0 to 10 with the increment of 0.0025 is performed to obtain the optimal λ that balances equation sparsity and accuracy. Moreover, we reserve scenarios with $7 \leq h \leq 8$ m in the synthetic dataset, totaling 41,170 scenarios, for further testing the model's generalization.

The accuracy of the discovered equations from SINDy is evaluated using two metrics: the coefficient of determination R^2 and the relative error ϵ , defined as follows:

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}} \quad \text{and} \quad \epsilon = \frac{|T - P|}{T} \quad (19)$$

where the sum of squares of residual RSS is computed as $\text{RSS} = \sum_{i=1}^n (T_i - P_i)^2$. The total sum of squares TSS is computed as $\text{TSS} = \sum_{i=1}^n (T_i - \bar{T})^2$. P and T are the predictions and true values, respectively. $R^2 = 1$ indicates perfect agreement between the predictions and true values. $R^2 = 0$ indicates that the model results

300 are as good as random guesses around the mean of the true values.

301 **RESULTS**

302 **Validation of SSGW implementation**

303 Fig. 6 shows the temporal variations of the horizontal force. The predominance of drag force over inertia
304 force is attributed to $b_v \ll H$ (Journée and Massie 2001). Thus, the total horizontal force (F_T) is in phase
305 with the drag force and $F_{T\max} \approx F_{D\max}$ in this experimental case. The numerically computed F_T , using
306 u and η from SSGW, compares reasonably well with laboratory measurements throughout the wave cycle.
307 This validation affirms that F_T from SSGW, together with values of C_D and C_M based on empirical formulas
308 and previous literature, provide a reliable estimation of the horizontal force acting on the mimic vegetation.
309 The modeled and measured F_T have R^2 of 0.92 and normalized root-mean-square error of 11% (normalized
310 by the difference between the maximum and minimum measurements). The measured $F_{T\max}$ in the wave
311 cycle is 0.084 N, whereas the computed $F_{T\max}$ is 0.093 N. There are around $0.0165 \sim 0.0255$ N discrepancies
312 between the computed and measured F_T at the trough around $0.5 \sim 1.7$ s. Such discrepancies may stem
313 from factors including (1) higher swaying velocities of the mimic vegetation at the trough, (2) measurement
314 uncertainty, such as the 10% accuracy of the load cell, and (3) errors introduced by the Morison equation,
315 which is fundamentally a parametric formula.

316 **Recovering theoretical equations in Eqs. (4) and (5) for linear waves**

317 Fig. 4a-b shows contour lines of 30% discrepancies between $M_{D\max,SSGW}$ in the synthetic dataset and
318 $M_{D\max,LWT}$ from the LWT-based theoretical equations. For waves with $M_{D\max,SSGW}/M_{D\max,LWT} \leq 30\%$,
319 the application of SINDy with $\lambda = 0.5$ yields $M_{D\max}$ and $F_{D\max}$ equations closely resembling those in Eqs.
320 (4) and (5). The relevant feature library and the corresponding coefficients can be found in Table 2. We
321 can also apply the least squares regression (LSQR) method (Barrett et al. 1994) to solve the linear system
322 $\mathbf{y} = \Theta(\mathbf{X})\xi$ for the coefficients ξ . With tolerance of 10^{-15} , the LSQR method leads to a set of dense ξ that
323 does not align with the theoretical solutions (see Table 2). SINDy aims to identify a subset of relevant feature
324 functions (i.e., the feature functions whose coefficients are not zero) from the feature library, whereas the
325 LSQR method attempts to find coefficients for all feature functions to best fit the data and does not perform
326 feature selection. Therefore, SINDy identifies that $F_{D\max}$ is a function of ' kh_v ' and ' $\sinh 2kh_v$ ' and filters
327 out irrelevant feature functions, whereas the LSQR method keeps all feature functions in the library.

328 **Discovering closed-form equations for nonlinear waves**

329 In the case of general wave conditions of various nonlinearity up to 99% of the wave breaking threshold,
330 the feature parameters in Eq. (15) are employed in the SINDy framework to discover equations for both
331 $M_{D \max, \text{SFWT}}^*$ and $F_{D \max, \text{SFWT}}^*$ within each subset of the synthetic dataset. A higher polynomial order K
332 in the feature library does not necessary lead to greater accuracy, as it may render $\Theta(\mathbf{X})$ more likely to be
333 ill-conditioned for least squares regression. Here, the feature library with up to 4th-order polynomials (i.e.,
334 $K = 4$) is found to provide the best-fit ξ . The library $\Theta(\mathbf{X})$ consists of a total of 330 candidate polynomial
335 functions (see *Supplemental Material* for the complete list). The hyper-parameter λ can be fine-tuned to
336 achieve a balance between equation accuracy, quantified by $\max \epsilon$, and equation sparsity, indicated by $\|\xi\|_0$.
337 A smaller λ typically results in more terms in the equation and higher accuracy, while a larger λ tends to yield
338 fewer terms in the equation and lower accuracy. Fig. 7 shows the variations of equation accuracy with the
339 equation sparsity for each subset. Table 3 summarizes the optimal values of the hyper-parameter λ , ensuring
340 that $\max \epsilon$ remains below 7%, and the count of terms in the discovered equations. The discovered equations
341 exhibit sparsity, containing approximately 34 to 64 terms. A complete list of ξ for four subsets is available in
342 *Supplementary Materials*. The computation for $M_{D \max}$ and $F_{D \max}$ using the discovered equations has time
343 complexity $O(\|\xi\|_0)$, where $\|\xi\|_0 \leq 64$. In comparison, the time complexity of SSGW is $O(N \log N)$ with
344 $N = 2^{17}$.

345 Fig. 8 compares the predicted $M_{D \max}$ and $F_{D \max}$ from the discovered closed-form equations with exact
346 $M_{D \max, \text{SSGW}}$ and $F_{D \max, \text{SSGW}}$. Almost perfect agreement is achieved with $R^2 \approx 1.0$ and $\max \epsilon < 6.5\%$ for
347 both training and testing data (Table 3). The discovered equations can also accurately predict $M_{D \max}$ and
348 $F_{D \max}$ for the reserved scenarios (i.e., $h = 7 \sim 8$ m) with $R^2 \approx 1.0$, $\max \epsilon = 6.7\%$ and $\text{mean } \epsilon = 0.5\%$.
349 The up to 6.7% error is partially due to the fact that the input features are identified based on SFWT, which
350 has discrepancies with SSGW's solutions for shallow water waves with $kh < \pi/15$ and for waves with large
351 steepness (see Figs. 4c-d).

352 The discovered equations can be generalized to different water depth, beyond the scope of $0.5 \leq h \leq 8.0$
353 m, because waves are characterized by dimensionless parameters, such as kh and H/h . The discovered
354 closed-form equations are applicable as long as waves satisfy: (i) $kh \leq 2\pi$; and (ii) $kH/2 \leq$ highest
355 computable waves by SSGW (see Fig. 2).

356 **APPLICATIONS**

357 **Evaluation of vegetation stem breakage**

358 Coastal salt marshes experience wave-induced forces that can lead to stem deformation, buckling, and, in
359 some cases, breakage. When the wave-induced bending stress (σ_{wave}) exceeds the allowable bending stress
360 threshold for stems (σ_{veg}), as determined through three-point bending tests, stem breakage may occur (e.g.,
361 Heuner et al. 2015; Vuik et al. 2018). Wetlands with a significant proportion of broken stems would exhibit
362 diminished wave damping capacity. Given that the vegetation stem width is typically significantly smaller
363 than the wave heights in energetic wave conditions, the drag force dominates the total force (Journée and
364 Massie 2001). Thus, σ_{wave} can be approximated as

365
$$\sigma_{\text{wave}} \approx \frac{M_{D \text{ max}} b_v}{2I} \quad (20)$$

366 where $I = \pi b_v^4 / 64$ is the second moment of area of a circular cylinder. Vuik et al. (2018) presented an explicit
367 formula for the critical horizontal velocity (u_{crit}) for determining whether a vegetation stem can withstand
368 wave loads without breakage under the following simplifications: (1) u is uniform along the vegetation stem;
369 (2) u can be represented with LWT; and (3) wave crest is not involved in the vertical integration.

370 In contrast, the $M_{D \text{ max}}$ equation discovered in this study offers a better tool for general wave conditions,
371 especially for nonlinear waves in shallow water depth. Eq. (20) becomes:

372
$$\sigma_{\text{wave}} \approx \frac{1}{2} \rho C_D \frac{\omega^2 H^2 M_{D \text{ max}}^*}{\pi b_v^2 k^2 \sinh^2 kh \sinh^2 kh_v} \quad (21)$$

373 The discovered equation for $M_{D \text{ max}}^*$ is a function of H , h , T , and h_v . In a random wave field, Vuik et al.
374 (2018) proposed the use of $H_{1/10}$, which represents the mean of the highest 10% of waves, as a parameter
375 to characterize the wave height that causes potential damage to vegetation. These top 10% of waves are
376 more nonlinear, making them well-suited for the application of our discovered equations. For random waves
377 with wave height distributions following the Rayleigh distribution, $H_{1/10} = 1.27H_{m0}$, where H_{m0} is the
378 zero-moment wave height.

379 As a demonstration of this application, we consider a problem where we evaluate the percentage of
380 broken vegetation during a tropical storm. The random wave condition is selected from field data during
381 Tropical Storm Lee (Jadhav et al. 2013), with the following parameters: $H_{m0} = 0.7$ m, $T_p = 3.2$ s, $h =$
382 1.04 m. The vegetation species is *Spartina alterniflora*, with randomly distributed biophysical properties.

383 Based on *S. alterniflora* samples collected in upper Terrebonne Bay, Louisiana, we best-fit the probability
 384 distributions of h_v and b_v to log-normal distributions. These distributions exhibited a correlation coefficient
 385 of 0.2, with mean values of 15.8 cm for h_v , and 7.9 mm for b_v . In the absence of specific field measurements
 386 for σ_{veg} , we assume a mean value of 6 MPa (the same order of magnitude of σ_{veg} as in Vuik et al. 2018),
 387 following a log-normal distribution. Following the approach outlined in Vuik et al. (2018), we conduct
 388 Monte-Carlo simulations to determine the percentage of broken vegetation stems. 2,000 correlated random
 389 samples for h_v , b_v , and σ_{veg} are drawn, all following lognormal distributions. The drag coefficient C_D is not
 390 included in the synthetic dataset and thus does not play a role in the developed equations. In real applications,
 391 C_D needs to be reintroduced. Here, we compute $C_D = 0.88$ from the unified drag coefficient formula in Zhu
 392 et al. (2023): $C_D = 0.57 + (1546/Re)^{1.11}$, where Re is the Reynolds number. For each set of these random
 393 samples, we compute σ_{wave} using Eq. (21) and compare it to σ_{veg} . The percentage of broken vegetation
 394 stems is considered the same as the probability of σ_{wave} exceeding σ_{veg} . Further details on the Monte Carlo
 395 simulations can be found in (Vuik et al. 2018).

396 In this particular wave condition, we estimate that 22% of vegetation stems get broken, signifying a
 397 22% reduction in the vegetation-induced energy dissipation rate. When employing the LWT-based equation
 398 for $M_{D \max}^*$ in Eq. (21), 12% of vegetation stems is estimated to be broken. The use of the discovered
 399 equations allows us to obtain these results in approximately 3 minutes following the procedures in Appendix
 400 II, while the SSGW algorithm takes about 1.5 hours (on a 2017 MacBook Pro laptop computer equipped
 401 with 16GB memory and 2.3 GHz Intel Core i5 processor, with $N = 2^{13}$, tolerance of 10^{-12}). When applying
 402 numerical wave models, such as SWAN (Booij et al. 1999) and CSHORE (Johnson et al. 2012), to determine
 403 the wave attenuation by vegetation, a pragmatic treatment is to divide the vegetation field into segments in
 404 both cross-shore and long-shore directions, with segment length and width of $O(10\text{m})$. For each segment,
 405 we perform Monte Carlo simulations. Our discovered equations offer a low cost, convenient solution for
 406 estimating fractions of broken vegetation and the resulting wave attenuation.

407 **Estimation of $F_{D \max}$ and $M_{D \max}$ on piles**

408 The Coastal Engineering Manual (CEM, U.S. Army Corps of Engineers 2011) estimates $F_{D \max}$ and
 409 $M_{D \max}$ suing SFWT-based graphs developed by Dean (1974). These graphs depict variations in $\frac{F_{D \max}}{\frac{1}{2}\rho g C_D b_v H^2}$
 410 or $\frac{M_{D \max}}{F_{D \max} b_v}$ with h/gT^2 and H/H_b , where H_b is the breaking wave height. These graphs are available for
 411 specific H/H_b values, namely, 0, 0.25, 0.5, 0.75, and 1. When H/H_b falls between these values, linear

412 interpolations are necessary, which can introduce errors and complicate their use in numerical wave models.

413 In contrast, the discovered equations offer a reliable and efficient alternative, providing results in milliseconds.

414 As a demonstration of this application, we consider problems where we calculate the drag force and
415 bending moment of drag on an emergent, small-diameter cylindrical vertical pile. One problem is the
416 example problem VI-7-19 from CEM, and another problem is the modified example problem 9.3.6 from
417 Basco (2020). The cylinder width and wave conditions, together with kh and Ur , as calculated from LWT, are
418 listed in Table 4. Both examples have cnoidal waves. Following the suggested values of $C_D = 0.7$ in CEM
419 and Basco (2020), we calculate $F_{D \max}$ and $M_{D \max}$ using the discovered equations, LWT, Fenton's algorithm,
420 and SSGW, as summarized in Table 4. The $F_{D \max}$ and $M_{D \max}$ from the discovered equations exhibit a
421 maximum error of 6% when compared to the ground truth obtained from SSGW. This 6% differences are
422 consistent with the accuracy of the discovery equations (see Table 3). Procedures to use the discovered
423 equations with given H , h , T and h_v are provided in Appendix II.

424 CONCLUDING REMARKS

425 Vegetated ecosystems play a crucial role in coastal protection by effectively dissipating wave energy.
426 However, associated with the energy dissipation, the vegetation stems are also exposed to wave forces,
427 potentially leading to breakage when the wave-induced stress surpasses the allowable bending threshold. An
428 important aspect of developing precise wave dissipation models lies in accurately considering the proportion
429 of damaged vegetation within the vegetated area. This study demonstrates a promising application of sparse
430 regression for predicting the maximum drag force ($F_{D \max}$) and maximum moment of drag ($M_{D \max}$) acting
431 on vegetation stems in nonbreaking waves. Here, a synthetic dataset of $M_{D \max}$ and $F_{D \max}$ for 256,450 wave
432 and vegetation scenarios is constructed. Inspired by the existing theoretical equations for η and u from stream
433 function wave theory, seven dimensionless parameters characterizing wave dispersion, wave nonlinearity, and
434 vegetation submergence are identified as feature parameters. Employing the sparse regression framework,
435 Sparse Identification of Nonlinear Dynamics (SINDy), with one thoughtfully chosen hyper-parameter, yields
436 the discovery of sparse yet precise closed-form equations for $M_{D \max}$, $F_{D \max}$ depending on these feature
437 parameters. The discovered equations exhibit good accuracy, with a maximum relative error below 6.6% and
438 a mean relative error below 1.4%. These discovered equations can be readily implemented into numerical
439 wave models and structural analysis software, delivering results within milliseconds. The methodology
440 elucidated in this study can also be adapted for discovering equations pertaining to other quantities of

441 highly nonlinear waves, such as total wave force and moment, wave celerity, maximum crest elevation, and
442 maximum bottom shear stresses for sediment transport modeling.

443 The discovered equations are not applicable to the most extreme waves, as SSGW is not designed for
444 them. For a given water depth with kh up to 2π , the discovered equations works for waves with up to
445 approximately 99% of the maximum steepness. Several algorithms have been developed for the computation
446 of the almost highest gravity waves in finite water depth (e.g., Lu et al. 1987; Maklakov 2002). Among
447 them, the algorithm by Maklakov (2002) can compute waves with wave steepness reaching 99.99997% of
448 the limiting value in intermediate to deep water depth. These algorithms can be employed to fill the small
449 data gap of the synthetic dataset in this study.

450 The computation of $M_{D \max}$ and $F_{D \max}$ relies on an appropriate bulk drag coefficient C_D . Current
451 empirical C_D formulas are primarily derived from LWT, and thus, the wave nonlinearity is actually lumped
452 into C_D . It brings inconsistency to use the LWT-based C_D in the closed-form equations that stem from
453 nonlinear wave theory. As a future endeavor, it is worthwhile to apply SSGW to solve the energy balance
454 equation, best fit C_D by matching the wave height reduction, and compare the fitted C_D with LWT-based
455 empirical C_D . Zhu and Chen (2017) applied two nonlinear wave theories (i.e., Stokes second-order and
456 cnoidal wave theories) to solve the energy balance equation for wave height. They found that wave heights
457 from different wave theories exhibited disparities of less than 5% for emergent waves but extended to up to
458 25% for submerged vegetation. A hypothesis arises that, for emergent vegetation, the fitted C_D aligns closely
459 with the LWT-based empirical C_D , while for submerged vegetation, the fitted C_D may significantly differ
460 from LWT-based empirical C_D . Numerical experiments are desired to test this hypothesis in future research.

461 The discovered equations do not account for the reduction in hydrodynamic forces resulting from
462 vegetation flexibility, or the reduction in orbital velocities within dense canopies. Consequently, the $M_{D \max}$
463 and $F_{D \max}$ from this study tend to overestimate real-world field conditions. Luhar and Nepf (2016) introduced
464 the concept of effective vegetation height (h_e), which represents the height of a rigid, vertical vegetation that
465 produces the same drag as a flexible vegetation of length h_v . They also conducted laboratory experiments to
466 establish scaling laws for h_e . A similar concept of effective vegetation height could be introduced regarding
467 the moment of drag. Future work could involve conducting laboratory experiments to explore scaling laws
468 for this new effective vegetation height, and integrating it into the closed-form equations presented in this
469 study for computing $M_{D \max}$ of flexible vegetation. Zhu and Chen (2017) found a reduction in in-canopy

470 horizontal velocity compared to horizontal velocity from LWT, with a rate ranging from 6% for waves with
471 $Ur = 11$ (Stokes waves) to 46% for waves with $Ur = 142$ (cnoidal waves). Quantifying the in-canopy velocity
472 reduction rate relative to horizontal velocity calculated from SSGW is a crucial step towards improving the
473 accuracy of $M_{D\max}$ and $F_{D\max}$ in future research.

474 For coastal structures like piles or coastal vegetation with large stem diameters like mangroves, inertia
475 force may play an important role. The KC parameter serves as a determinant for the dominance of inertia or
476 drag forces. For $KC < 3$, the inertia force is dominant and the drag force can be neglected; for $3 \leq KC < 45$,
477 the full Morison equation should be employed; and for $KC \geq 45$, the drag force is dominant and the inertia
478 can be neglected (Journée and Massie 2001; Zhu and Chen 2015). The methodology developed in this study
479 can be applied to establish a dataset of the maximum inertia force ($F_{I\max}$) and maximum total force ($F_{T\max}$),
480 along with their moments ($M_{I\max}$ and $M_{T\max}$). Closed-form equations for $F_{I\max}$ and $M_{I\max}$ can be obtained
481 using sparse regression. However, finding closed-form equations for ($F_{T\max}$) and $M_{T\max}$ can be challenging.
482 The total force is the sum of drag force and inertia force (Eq. 22), which both involve coefficients (C_D and
483 C_M) to be determined based on wave and vegetation conditions. The ratio of C_D/C_M needs to be included
484 in the dataset and the feature library of the regression model. Additionally, there is a phase difference in
485 F_D and F_I , attributed to the phase difference in $u|u|$ and $\frac{du}{dt}$. These aspects are identified as potential future
486 research topics.

487 DATA AVAILABILITY STATEMENT

488 All data, models, and code that support the findings of this study are available at https://github.com/lzhu5/EquationDiscovery_MDmax_FDmax.

490 ACKNOWLEDGMENTS

491 This paper is based upon work supported by the National Science Foundation under Award No.
492 2139882/2052443. Any opinions, findings and conclusions or recommendations expressed in this paper
493 are those of the authors and do not necessarily reflect the views of the National Science Foundation. Any use
494 of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S.
495 Government. The authors thank Zhao Chen and Steve Brandt for their helpful suggestions and discussions
496 in the early stages of this manuscript.

497 **APPENDIX I. MORISON'S EQUATION FOR THE TOTAL HORIZONTAL FORCE**

498 Morison et al. (1950) proposed that the total horizontal force F_T on a slender cylinder is the sum of the

499 drag force F_D and inertia force F_I as below :

500

$$F_T = \underbrace{\frac{1}{2} \rho C_D b_v \int_{-h}^{\min(\eta, -h+h_v)} u|u| dz}_{\text{drag, } F_D} + \underbrace{\rho C_M \frac{\pi b_v^2}{4} \int_{-h}^{\min(\eta, -h+h_v)} \frac{du}{dt} dz}_{\text{inertia, } F_I} \quad (22)$$

501 **APPENDIX II. PROCEDURES OF COMPUTING $M_{D \max}$ AND $F_{D \max}$**

502 There are two options to use the discovered equations: (a) the discovered equations have been converted
503 to symbolic expressions using *SymPy* (<https://www.sympy.org/en/index.html>), and these symbolic
504 expressions can be directly imported and used in a Python script; (b) users can use the functions (in
505 MATLAB and Python) provided in https://github.com/lzhu5/EquationDiscovery_MDmax_FDmax
506 to obtain $M_{D \max}$ and $F_{D \max}$ directly with given wave conditions and cylinder height. For the second option,
507 the following procedures are complied in the functions to compute $M_{D \max}$ and $F_{D \max}$:

- 508 • compute k from the linear dispersion relationship $\omega^2 = gk \tanh kh$, and compute $L = 2\pi/k$.
- 509 • compute $Ur = \frac{HL^2}{h^3}$.
- 510 • crop $h_v = \min(h_v, h + 0.9859H)$ and compute h_v/h .
- 511 • determine the subset using Ur and h_v .
- 512 • choose the corresponding coefficients ξ in that subset, compute feature parameters \mathbf{X} from Eq. (15),
513 and compute values of functions in the feature library $\Theta(\mathbf{X})$. The coefficients ξ and codes to generate
514 the feature library are available at https://github.com/lzhu5/EquationDiscovery_MDmax_FDmax.
- 516 • compute $M_{D \max}$ or $F_{D \max}$ as $\Theta(\mathbf{X})\xi$.

APPENDIX III. NOTATION

The following symbols are used in this paper:

C_D = drag coefficient;

C_M = inertia coefficient;

D = cylinder diameter (m);

$f_D(t, z)$ = drag force per unit length of cylinder (N/m);

$F_{D \max}$ = maximum drag force in a wave cycle, without the constant $\frac{1}{2}\rho C_D (m^3/s^2)$;

$F_{D \max}^*$ = normalized $F_{D \max}$;

F_I = inertia force (N);

F_T = total force (N);

g = gravitational acceleration (m/s²);

k = wave number (1/m);

K = maximum order of polynomials in the feature library;

L = wavelength (m);

LWT = linear wave theory;

N = number of Fourier modes;

h = water depth (m);

h_v = vegetation stem height (m);

H = wave height (m);

I = second moment of area of a vegetation stem (m⁴);

$M_{D \max}$ = maximum bending moment in a wave cycle, without the constant $\frac{1}{2}\rho C_D (m^4/s^2)$;

$M_{D \max}^*$ = normalized $M_{D \max}$;

R^2 = coefficient of determination;

SFWT = stream function wave theory;

STK2 = Stokes 2nd-order wave theory;

T = wave period (s);

u = horizontal velocity (m/s);

u_{\max} = maximum horizontal velocity in a wave cycle (m/s);

Ur = Ursell numer;

x_1, \dots, x_7 = feature parameters;
 \mathbf{X} = feature parameter vector;
 ϵ = relative error;
 η = surface elevation (m);
 η_{\max} = maximum surface elevation in a wave cycle (m);
 λ = cutoff value in the SINDy algorithm;
520 $\Theta(\mathbf{X})$ = feature library;
 ξ = coefficients of polynomial terms in the discovered equations;
 ρ = water density (kg/m^3);
 σ_{wave} = wave-induced bending stress on vegetation stems (Pa);
 σ_{veg} = allowable bending stress of vegetation stems (Pa);
 ω = angular frequency (Hz);

APPENDIX IV. SEQUENTIAL THRESHOLDED LEAST-SQUARES (STLS) ALGORITHM

The STLS algorithm is adapted from Brunton et al. (2016) and Rudy et al. (2017).

Algorithm 1 STLS(Θ , \mathbf{y} , λ , iters)

```

 $\hat{\xi} = \arg \min_{\xi} \|\Theta \xi - \mathbf{y}\|_2^2$ 
bigcoeffs =  $\{j : |\hat{\xi}_j| \geq \lambda\}$                                 ▷ Select large coefficients
 $\hat{\xi}_{[\sim \text{bigcoeffs}]} = 0$                                          ▷ Apply cutoff  $\lambda$ 
 $\hat{\xi}[\text{bigcoeffs}] = \text{STLS}(\Theta[:, \text{bigcoeffs}], \mathbf{y}, \lambda, \text{iters}-1)$  ▷ Recursively call STLS w/ fewer coefficients
return  $\hat{\xi}$ 

```

523 **REFERENCES**

524 Anderson, M. and Smith, J. (2014). "Wave attenuation by flexible, idealized salt marsh vegetation." *Coastal*
525 *Engineering*, 83, 82–92.

526 Babenko, K. I. (1987). "Some remarks on the theory of surface waves of finite amplitude." *Dokl. Akad. Nauk*
527 *SSSR*, (5), 1033–1037.

528 Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C.,
529 and der Vorst, H. V. (1994). *Templates for the Solution of Linear Systems: Building Blocks for Iterative*
530 *Methods, 2nd Edition*. SIAM, Philadelphia, PA.

531 Basco, D. (2020). *Design of Coastal Hazard Mitigation Alternatives for Rising Seas*. WORLD SCIENTIFIC,
532 <<https://www.worldscientific.com/doi/abs/10.1142/11462>>.

533 Beji, S. (1995). "Note on a nonlinearity parameter of surface waves." *Coastal Engineering*, 25(1), 81–85.

534 Bonakdar, L., Oumeraci, H., and Etemad-Shahidi, A. (2015). "Wave load formulae for prediction of wave-
535 induced forces on a slender pile within pile groups." *Coastal Engineering*, 102, 49–68.

536 Bongard, J. and Lipson, H. (2007). "Automated reverse engineering of nonlinear dynamical systems."
537 *Proceedings of the National Academy of Sciences*, 104(24), 9943–9948.

538 Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). "A third-generation wave model for coastal regions: 1.
539 model description and validation." *Journal of Geophysical Research: Oceans*, 104(C4), 7649–7666.

540 Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). "Discovering governing equations from data by
541 sparse identification of nonlinear dynamical systems." *Proceedings of the National Academy of Sciences*,
542 113(15), 3932–3937.

543 Chen, Z., Liu, Y., and Sun, H. (2021). "Physics-informed learning of governing equations from scarce data."
544 *Nature Communication*, 12, 6136.

545 Clamond, D. and Dutykh, D. (2018). "Accurate fast computation of steady two-dimensional surface gravity
546 waves in arbitrary depth." *Journal of Fluid Mechanics*, 844, 491–518.

547 Dalinghaus, C., Coco, G., and Higuera, P. (2023). *Using genetic programming for ensemble predictions of*
548 *wave setup*. 1933–1939.

549 Dalrymple, R., Kirby, J., and Hwang, P. (1984). "Wave diffraction due to areas of energy dissipation." *Journal*
550 *of Waterway, Port, Coastal and Ocean Engineering*, 110(1), 67–79.

551 Dean, R. (1974). "Evaluation and development of water wave theories for engineering application, volume i

552 and volume ii.” *Report No. Technical Report No. 14*, U. S. Army Coastal Engineering Research Center.

553 Fenton, J. (1988). “The numerical solution of steady water wave problems.” *Computers & Geosciences*,

554 14(3), 357–368.

555 Fenton, J. D. (1985). “A fifth-order stokes theory for steady waves.” *Journal of Waterway, Port, Coastal, and*

556 *Ocean Engineering*, 111(2), 216–234.

557 Formentin, S. M. and Zanuttigh, B. (2019). “A genetic programming based formula for wave overtopping by

558 crown walls and bullnoses.” *Coastal Engineering*, 152, 103529.

559 Hedges, T. S. (1995). “Regions of validity of analytical wave theories..” *Proceedings of the Institution of*

560 *Civil Engineers - Water, Maritime and Energy*, 112(2), 111–114.

561 Heuner, M., Silinski, A., Schoelynck, J., Bouma, T., Puijalon, S., Troch, P., Fuchs, E., Schröder, B., Schröder,

562 U., Meire, P., and Temmerman, S. (2015). “Ecosystem engineering by plants on wave-exposed intertidal

563 flats is governed by relationships between effect and response traits.” *PLoS ONE*, 10, e0138086.

564 Hoffmann, M., Fröhner, C., and Noé, F. (2019). “Reactive sindy: Discovering governing reactions from

565 concentration data.” *The Journal of Chemical Physics*, 150(2), 025101.

566 Isobe, M., Nishimura, H., and Horikawa, K. (1982). “Theoretical considerations on perturbation solutions

567 for waves of permanent type.” *Bull. Faculty of Engng, Yokohama National University*, 29–57.

568 Jadhav, R. S., Chen, Q., and Smith, J. M. (2013). “Spectral distribution of wave energy dissipation by salt

569 marsh vegetation.” *Coastal Engineering*, 77, 99–107.

570 Johnson, B., Kobayashi, N., and Gravens, M. (2012). “Cross-shore numerical model cshore for waves,

571 currents, sediment transport, and beach profile evolution.” *Report No. ERDC/CHL TR-12-22*, Vicksburg,

572 MS: US Army Engineer Research and Development Center.

573 Journée, J. M. J. and Massie, W. W. (2001). *Offshore hydromechanics*. Delft University of Technology, 1st

574 edition.

575 Journée, J. M. J. and Massie, W. W. (2001). *Offshore hydromechanics*. Delft Univ. of Technology, Delft,

576 Netherlands, 1st ed edition, 1st ed edition.

577 Kamphuis, J. (1991). “Wave transformation.” *Coastal Engineering*, 15, 173–184.

578 Lee, J.-S. and Suh, K.-D. (2019). “Development of stability formulas for rock armor and tetrapods using

579 multigene genetic programming.” *Journal of Waterway, Port, Coastal and Ocean Engineering*, 146(1),

580 04019027.

581 Lee, K., Trask, N., and Stinis, P. (2022). “Structure-preserving sparse identification of nonlinear dynam-
582 ics for data-driven modeling.” *Proceedings of Mathematical and Scientific Machine Learning, PMLR*,
583 <<https://arxiv.org/abs/2109.05364>>.

584 LeMehaute, B. (1976). *An introduction to hydrodynamics and water waves*. Springer Science + Business
585 Media, LLC.

586 Li, S., Kaiser, E., Laima, S., Li, H., Brunton, S. L., and Kutz, J. N. (2019). “Discovering time-varying
587 aerodynamics of a prototype bridge by sparse identification of nonlinear dynamical systems.” *Phys. Rev.*
588 *E*, 100, 022220.

589 Loiseau, J.-C. and Brunton, S. L. (2018). “Constrained sparse galerkin regression.” *Journal of Fluid Me-*
590 *chanics*, 838, 42–67.

591 Longuet-Higgins, M. S. (1974). “On the mass, momentum, energy and circulation of a solitary wave.”
592 *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*, 337(1608), 1–13.

593 Lu, C., Wang, J. D., and Mehaute, B. L. (1987). “Boundary integral equation method for limit surface gravity
594 waves.” *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 113(4), 347–363.

595 Luhar, M. and Nepf, H. (2016). “Wave-induced dynamics of flexible blades.” *Journal of Fluids and Structures*,
596 61, 20–41.

597 Maklakov, D. V. (2002). “Almost-highest gravity waves on water of finite depth.” *European Journal of*
598 *Applied Mathematics*, 13(1), 67–93.

599 Mendez, F. J. and Losada, I. J. (2004). “An empirical model to estimate the propagation of random breaking
600 and nonbreaking waves over vegetation fields.” *Coastal Engineering*, 51(2), 103–118.

601 Morison, J. R., Johnson, J. W., and Schaaf, S. A. (1950). “The force exerted by surface waves on piles.”
602 *Journal of Petroleum Technology*, 2, 149–154.

603 Petviashvili, V. I. (1976). “Equation of an extraordinary soliton.” *Fizika Plazmy*, 2, 469–472.

604 Pourzangbar, A. (19-21 Nov., 2012). “Determination of the most effective parameters on scour depth at
605 seawalls using genetic programming (gp).” *The 10th International Conference on Coasts, Ports and*
606 *Marine Structures (ICOPMASS 2012)*, Tehran, Iran.

607 Pourzangbar, A., Brocchini, M., Saber, A., Mahjoobi, J., Mirzaaghasi, M., and Barzegar, M. (2017a).
608 “Prediction of scour depth at breakwaters due to non-breaking waves using machine learning approaches.”
609 *Applied Ocean Research*, 63, 120–128.

610 Pourzangbar, A., Saber, A., Yeganeh-Bakhtiary, A., and Ahari, L. R. (2017b). “Predicting scour depth at
611 seawalls using GP and ANNs.” *Journal of Hydroinformatics*, 19(3), 349–363.

612 Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2018). “Multistep neural networks for data-driven discovery
613 of nonlinear dynamical systems, <<https://arxiv.org/abs/1801.01236>>.

614 Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2017). “Data-driven discovery of partial differential
615 equations.” *Science Advances*, 3(4), e1602614.

616 Schmidt, M. and Lipson, H. (2009). “Distilling free-form natural laws from experimental data.” *Science*,
617 324(5923), 81–85.

618 Smits, G. F. and Kotanchek, M. (2005). “Pareto-front exploitation in symbolic regression.” *Genetic pro-
619 gramming theory and practice II*, Springer, 283–299.

620 Udrescu, S.-M. and Tegmark, M. (2020). “Ai feynman: A physics-inspired method for symbolic regression.”
621 *Science Advances*, 6(16), eaay2631.

622 U.S. Army Corps of Engineers (2011). “Coastal Engineering Manual - Part VI (September 28, 2011, Change
623 3).” *EM 1110-2-1100 (Part VI)*.

624 Vuik, V., Heo, H. Y. S., Zhu, Z., Borsje, B. W., and Jonkman, S. N. (2018). “Stem breakage of salt marsh
625 vegetation under wave forcing: A field and model study.” *Estuarine, Coastal and Shelf Science*, 200,
626 41–58.

627 Wang, W.-X., Yang, R., Lai, Y.-C., Kovaxis, V., and Grebogi, C. (2011). “Predicting catastrophes in nonlinear
628 dynamical systems by compressive sensing.” *Physical Review Letters*, 106(15).

629 Wang, Z., Estrada, J., Arruda, E., and Garikipati, K. (2021). “Inference of deformation mechanisms and
630 constitutive response of soft material surrogates of biological tissue by full-field characterization and
631 data-driven variational system identification.” *Journal of the Mechanics and Physics of Solids*, 153,
632 104474.

633 Zhu, L. and Chen, Q. (2015). “Numerical modeling of surface waves over submerged flexible vegetation.”
634 *Journal of Engineering Mechanics*, 141(8), A4015001.

635 Zhu, L. and Chen, Q. (2017). “Attenuation of nonlinear waves by rigid vegetation: Comparison of different
636 wave theories.” *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 143(5), 04017029.

637 Zhu, L. and Chen, Q. (2019). “Phase-averaged drag force of nonlinear waves over submerged and through
638 emergent vegetation.” *Journal of Geophysical Research: Oceans*, 124(7), 4368–4388.

639 Zhu, L., Chen, Q., Ding, Y., Jafari, N., and Rosati, J. D. (2019). “Semianalytical model of depth-integrated
640 vegetal drag force based on stokes second-order wave theory.” *Journal of Waterway, Port, Coastal, and*
641 *Ocean Engineering*, 145(2), 04018041.

642 Zhu, L., Chen, Q., Ding, Y., Jafari, N., Wang, H., and Johnson, B. D. (2023). “Towards a unified drag
643 coefficient formula for quantifying wave energy reduction by salt marshes.” *Coastal Engineering*, 180,
644 104256.

645 **List of Tables**

646 1	Four subsets of the dataset and the corresponding criterion.	31
647 2	Discovered equations from SINDy, and least squares regression method for linear	
648 waves.		32
649 3	The count of terms in discovered equations ($\ \xi\ _0$), hyper-parameter (λ), coefficient	
650 of determination of exact and predicted $M_{D\max}$ and $F_{D\max}$ (R^2), and the maximum		
651 and mean of relative errors (ϵ).		33
652 4	Wave and cylinder conditions and dimensionless wave parameters in the example	
653 problems. $F_{D\max}$ and $M_{D\max}$ are computed from LWT, Fenton's algorithm, the		
654 discovered equations, and SSGW.		34

TABLE 1. Four subsets of the dataset and the corresponding criterion.

subset	name	criterion
I	fully submerged vegetation in Stokes wave regime	$h_v < h + 0.5H$ and $Ur \leq 40$
II	nearly submerged or emergent vegetation in Stokes wave regime	$h_v \geq h + 0.5H$ and $Ur \leq 40$
III	fully submerged vegetation in cnoidal wave regime	$h_v < h + 0.7H$ and $Ur > 40$
IV	nearly submerged or emergent vegetation in cnoidal wave regime	$h_v \geq h + 0.7H$ and $Ur > 40$

The contour lines for $Ur = 40$ and $Ur = 26$ closely converge, as illustrated in Fig. 3. Isobe et al. (1982) and Hedges (1995) proposed criteria thresholds of $Ur = 26$ and 40 , respectively, that distinguishes Stokes and cnoidal waves. Here, we label waves with $Ur < 40$ as Stokes waves; otherwise, cnoidal waves.

TABLE 2. Discovered equations from SINDy, and least squares regression method for linear waves.

Feature library	ξ for $M_{D \max}^*$			ξ for $F_{D \max}^*$		
	theoretical	SINDy	least squares	theoretical	SINDy	least squares
1	0	0	0.25492	0	0	0.15126
kh_v	0	0	0.94197	2	2.0008	0.62292
$\sinh 2kh_v$	0	0	-0.38072	1	0.99997	0.59769
$\cosh 2kh_v$	-1	-1.0001	-0.59953	0	0	0.35088
$(kh_v)^2$	2	2.0015	1.5905	0	0	0.86042
$kh_v \sinh 2kh_v$	2	2	1.0011	0	0	-0.0053816
$kh_v \cosh 2kh_v$	0	0	0.99442	0	0	0.017017
$\sinh^2 2kh_v$	-1	-1.0104	-0.15622	0	0	-0.11503
$\sinh 2kh_v \cosh 2kh_v$	0	0	0.057519	0	0	0.078802
$\cosh^2 2kh_v$	1	1.0104	0.098702	0	0	0.036228

TABLE 3. The count of terms in discovered equations ($\|\xi\|_0$), hyper-parameter (λ), coefficient of determination of exact and predicted $M_{D \max}$ and $F_{D \max}$ (R^2), and the maximum and mean of relative errors (ϵ).

Subsets	Variables	$\ \xi\ _0$	λ	Data types	R^2	max ϵ (%)	mean ϵ (%)
I	$M_{D \max}^*$	64 (40) [‡]	0.4	training / testing	0.999 / 0.999	2.27 / 2.27	0.22 / 0.22
	$F_{D \max}^*$	52	0.0875	training / testing	0.999 / 0.999	2.49 / 2.49	0.31 / 0.31
II	$M_{D \max}^*$	36 (33) [‡]	0.8	training / testing	0.999 / 0.999	1.76 / 1.76	0.04 / 0.04
	$F_{D \max}^*$	43	0.5	training / testing	0.999 / 0.999	1.06 / 1.06	0.01 / 0.01
III	$M_{D \max}^*$	45 (45) [‡]	0.0525	training / testing	0.999 / 0.999	6.21 / 6.21	1.20 / 1.19
	$F_{D \max}^*$	45	0.0525	training / testing	0.999 / 0.999	6.13 / 6.13	1.21 / 1.20
IV	$M_{D \max}^*$	35 (34) [‡]	0.7	training / testing	0.999 / 0.999	6.63 / 6.63	1.36 / 1.36
	$F_{D \max}^*$	34	0.6	training / testing	0.999 / 0.999	6.47 / 6.47	1.44 / 1.43

[‡] The count of common terms in the discovered equations for $M_{D \max}^*$ and $F_{D \max}^*$ is listed in parentheses.

TABLE 4. Wave and cylinder conditions and dimensionless wave parameters in the example problems. $F_{D\max}$ and $M_{D\max}$ are computed from LWT, Fenton's algorithm, the discovered equations, and SSGW.

		Example 1: $H = 2.9 \text{ m}$, $h = 5.0 \text{ m}$ $T = 8 \text{ s}$, $b_v = 70 \text{ cm}$	Example 2: $H = 2.5 \text{ m}$, $h = 4.5 \text{ m}$ $T = 10 \text{ s}$, $b_v = 30 \text{ cm}$
kh		0.59	0.44
Ur		65	114
$F_{D\max} (\text{N})$	LWT	4651	1552
	Fenton's algorithm	11854	4256
	Discovered eqs.	10561	4220
	SSGW	11230	4034
$M_{D\max} (\text{N}\cdot\text{m})$	LWT	12288	3602
	Fenton's algorithm	54739	17105
	Discovered eqs	48941	17270
	SSGW	52313	16299

655 **List of Figures**

656	1	(a) A sketch of submerged and emergent vegetation in free surface waves. (b)	
657		$u_{\max}(z)$ as calculated from linear wave theory, Fenton's algorithm, and SSGW for	
658		a shallow water wave with $H = 0.8$ m, $h = 2.0$ m, and $T = 10.0$ s.	36
659	2	Highest computable waves by SSGW, indicated by $kH/2$, vary as a function of kh . .	37
660	3	Crest elevation to wave height ratios, as computed from SSGW. The blue dashed	
661		line represents the contour of $\eta_{\max}/H = 0.7$. The red line represents the contour of	
662		$U_r = 40$. Black dots represent wave scenarios in the synthetic dataset.	38
663	4	$M_{D \max, \text{SSGW}}/M_{D \max, \text{LWT}}$ and $F_{D \max, \text{SSGW}}/F_{D \max, \text{Fenton}}$ on an emergent vegetation. .	39
664	5	Schematic of the SINDy algorithm for discovering the theoretical equations for	
665		$M_{D \max, \text{LWT}}^*$	40
666	6	Computed and measured horizontal forces exerted on the mimic vegetation.	41
667	7	Pareto front for $M_{D \max}^*$ and $F_{D \max}^*$. Red symbols represent the best trade-offs	
668		between accuracy and sparsity.	42
669	8	Comparisons between predictions and ground truth for $M_{D \max}$ (upper panel) and	
670		$F_{D \max}$ (lower panel).	43

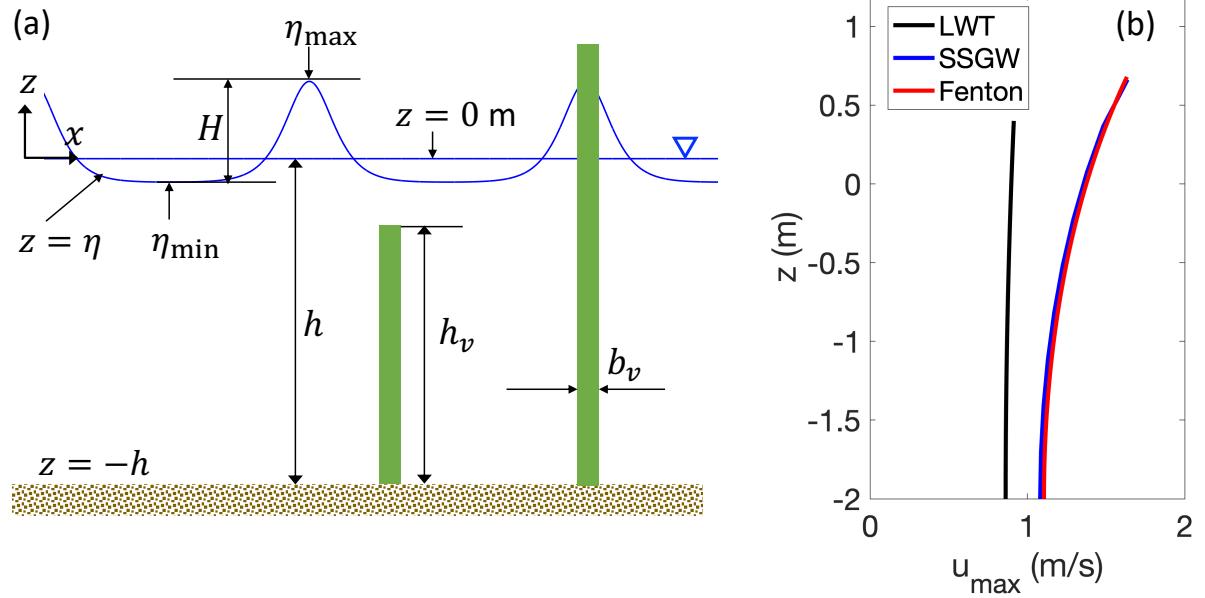


Fig. 1. (a) A sketch of submerged and emergent vegetation in free surface waves. (b) $u_{\max}(z)$ as calculated from linear wave theory, Fenton's algorithm, and SSGW for a shallow water wave with $H = 0.8 \text{ m}$, $h = 2.0 \text{ m}$, and $T = 10.0 \text{ s}$.

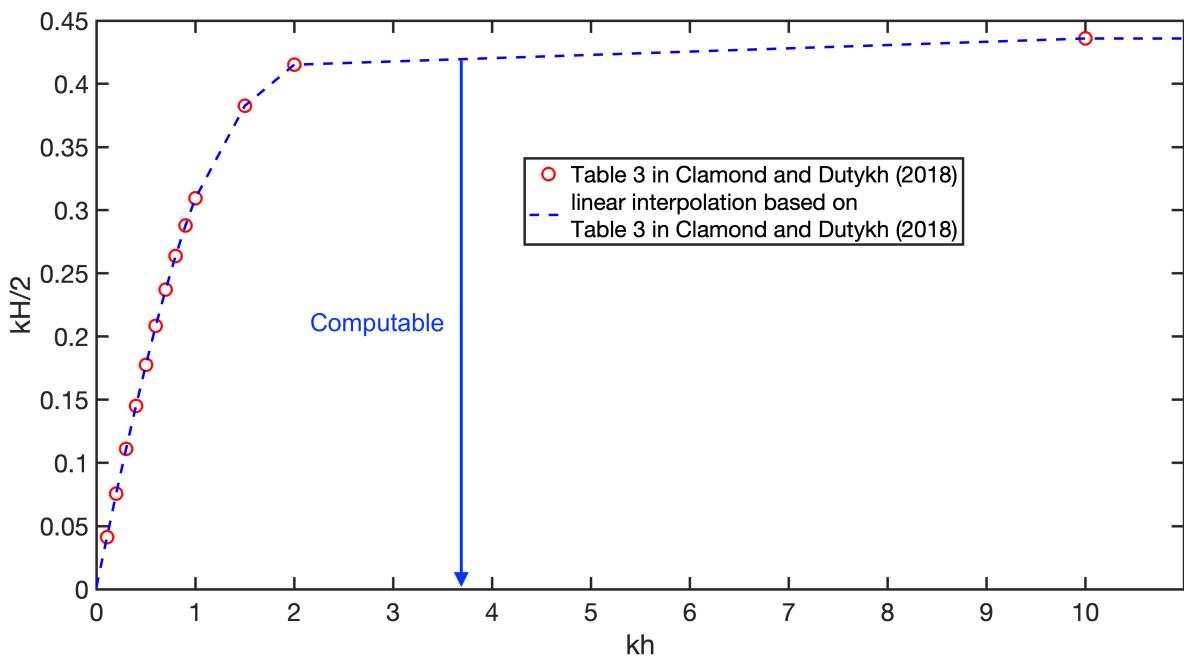


Fig. 2. Highest computable waves by SSGW, indicated by $kH/2$, vary as a function of kh .

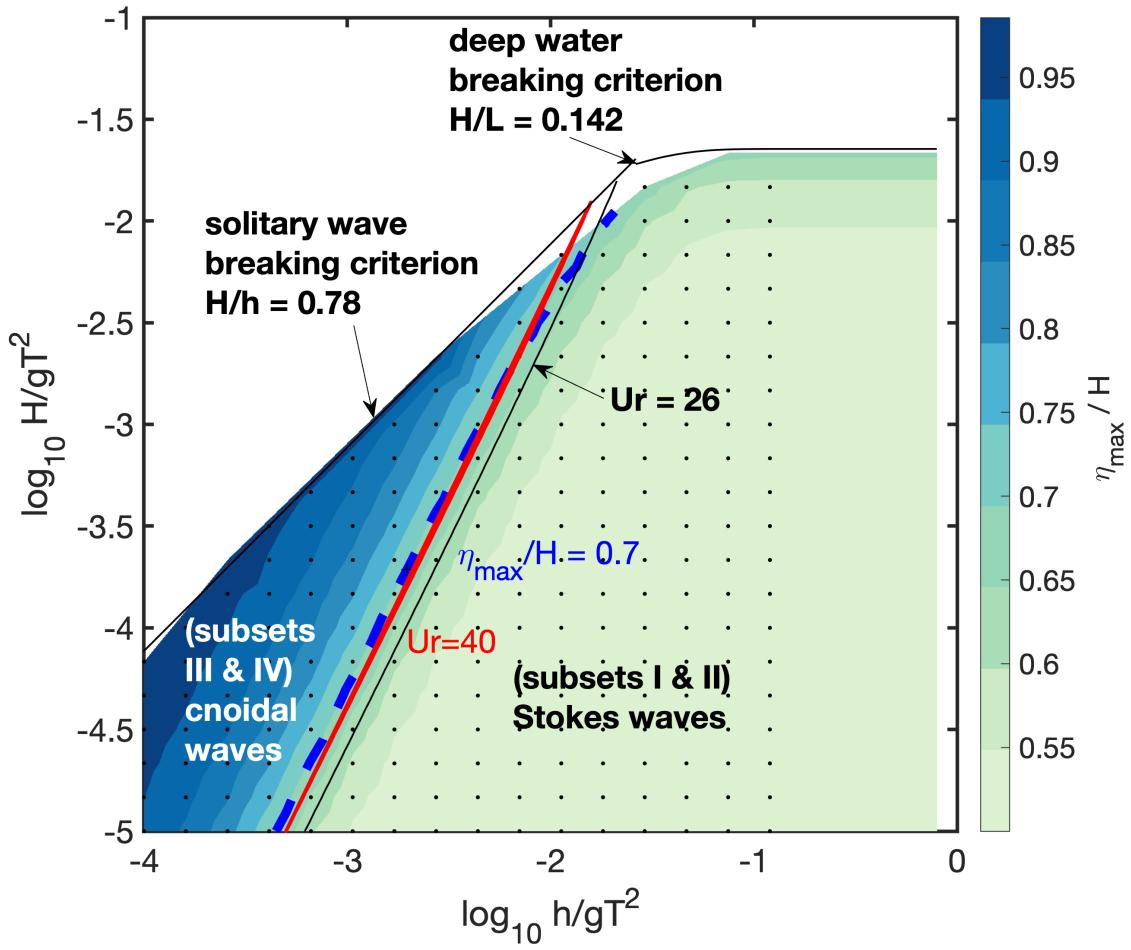


Fig. 3. Crest elevation to wave height ratios, as computed from SSGW. The blue dashed line represents the contour of $\eta_{\max}/H = 0.7$. The red line represents the contour of $Ur = 40$. Black dots represent wave scenarios in the synthetic dataset.

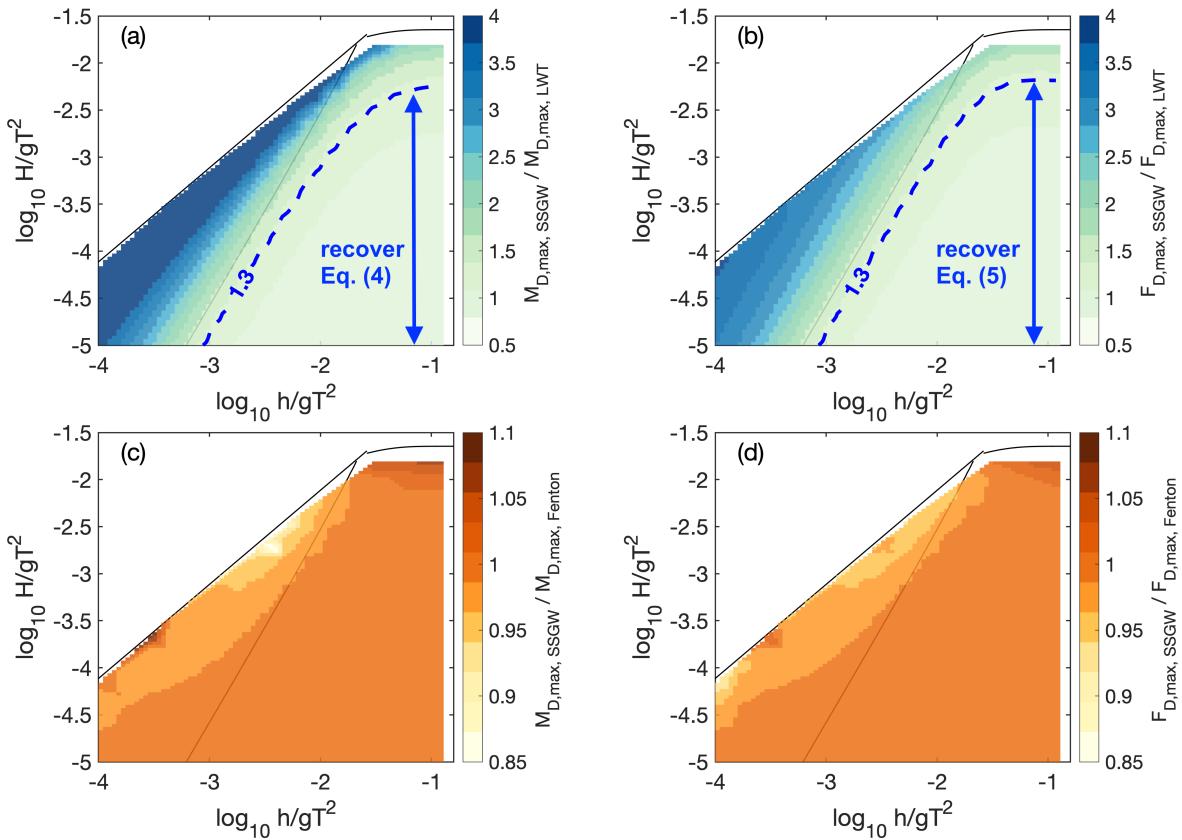


Fig. 4. $M_{D,\max, \text{SSGW}} / M_{D,\max, \text{LWT}}$ and $F_{D,\max, \text{SSGW}} / F_{D,\max, \text{Fenton}}$ on an emergent vegetation.

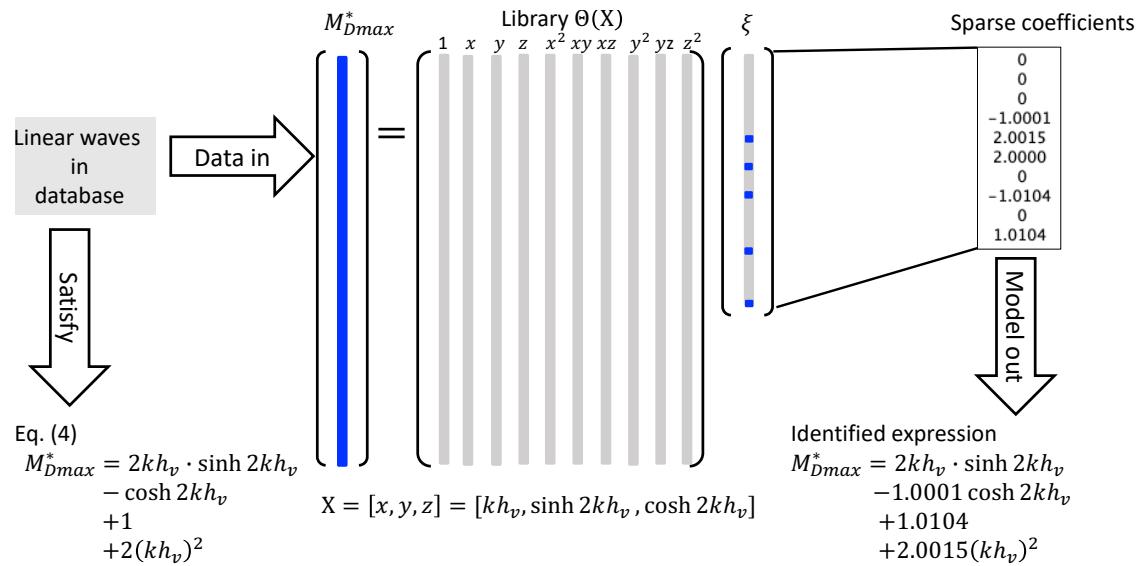


Fig. 5. Schematic of the SINDy algorithm for discovering the theoretical equations for $M_{D \max, \text{LWT}}^*$.

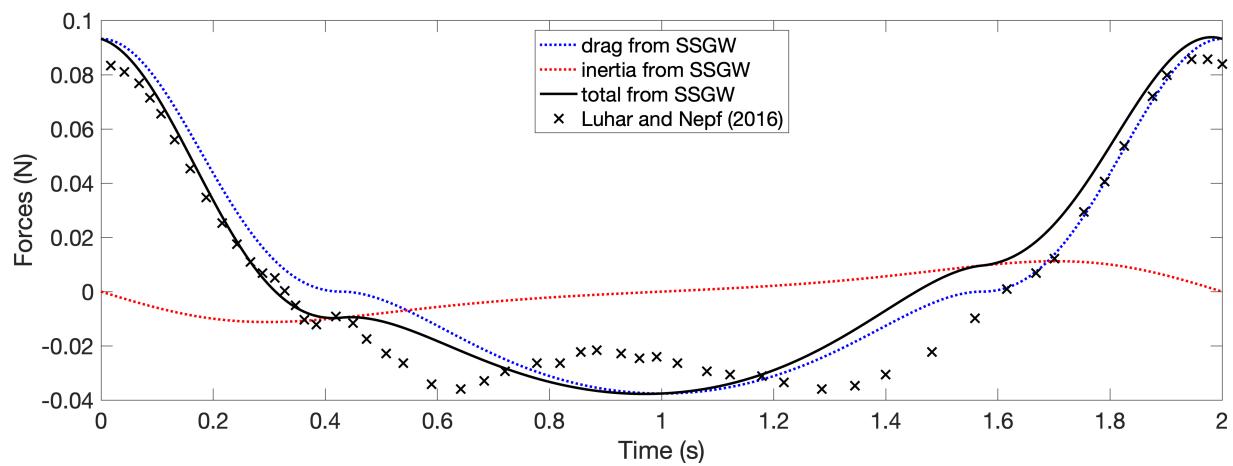


Fig. 6. Computed and measured horizontal forces exerted on the mimic vegetation.

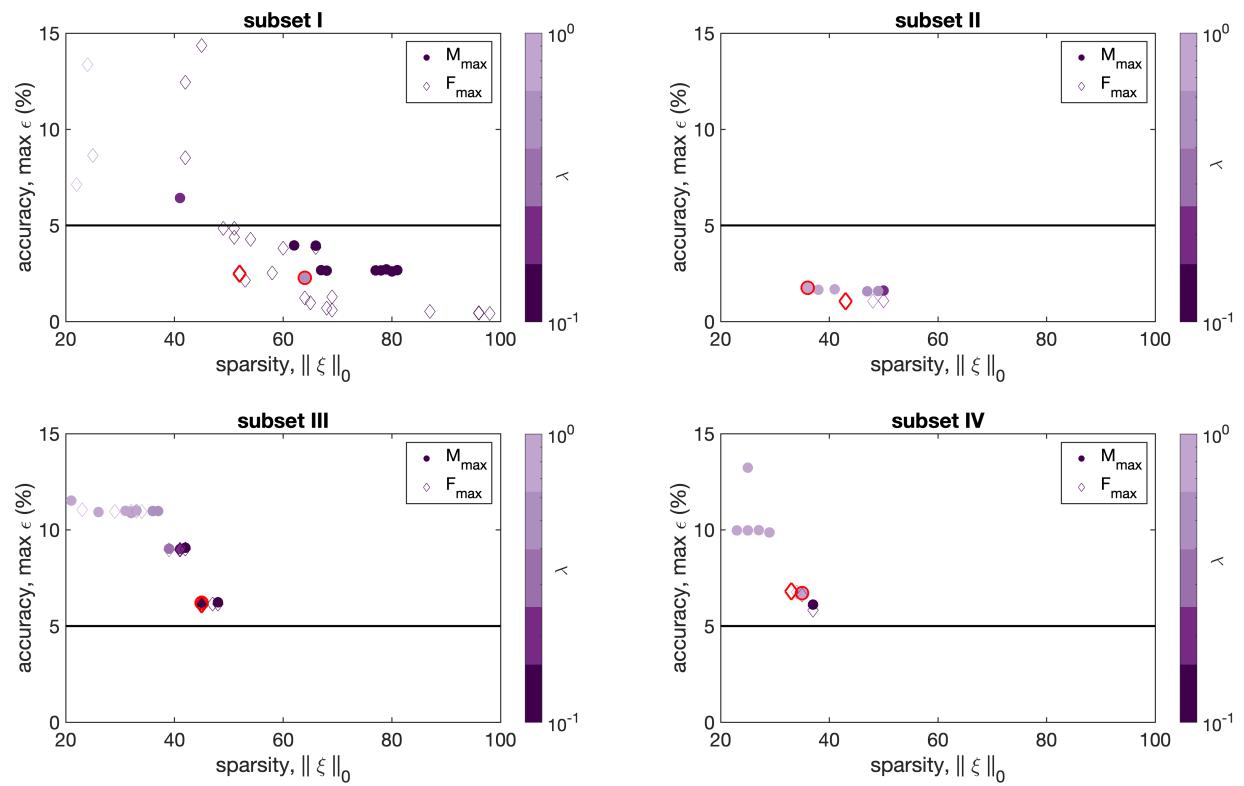


Fig. 7. Pareto front for $M_{D\max}^*$ and $F_{D\max}^*$. Red symbols represent the best trade-offs between accuracy and sparsity.

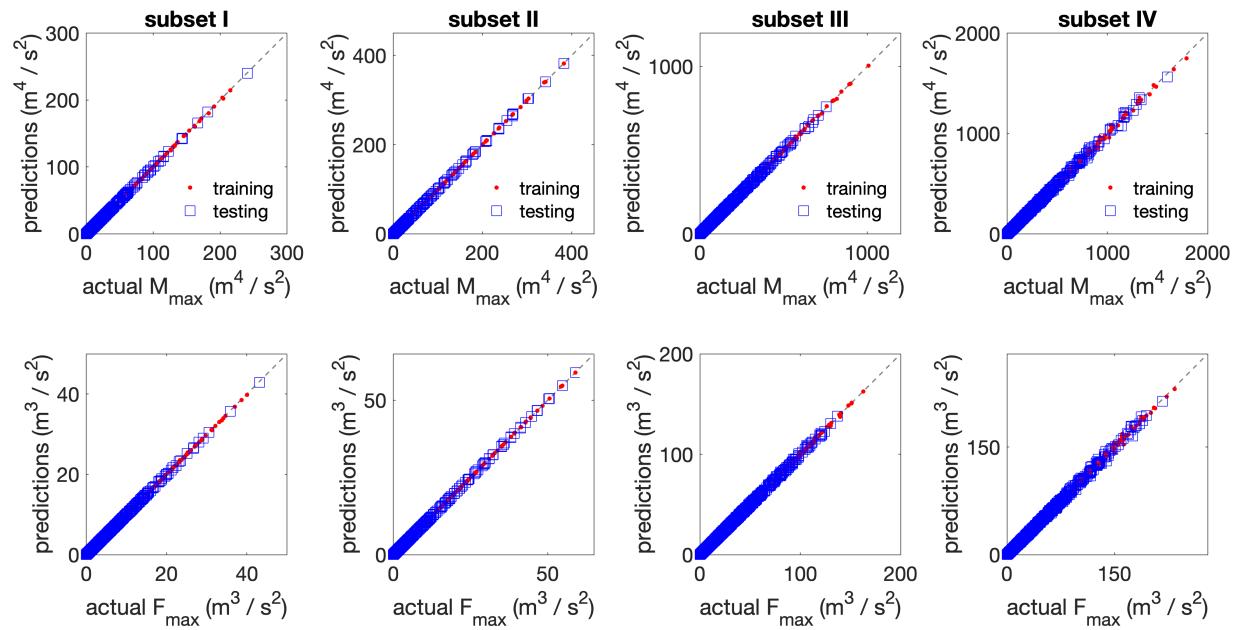


Fig. 8. Comparisons between predictions and ground truth for $M_{D\max}$ (upper panel) and $F_{D\max}$ (lower panel).