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Abstract: Artificial intelligence (AI) has the ability to predict rheological properties and constituent
composition of 3D-printed materials with appropriately trained models. However, these models are
not currently available for use. In this work, we trained deep learning (DL) models to (1) predict the
rheological properties, such as the storage (G’) and loss (G”) moduli, of 3D-printed polyacrylamide
(PAA) substrates, and (2) predict the composition of materials and associated 3D printing parameters
for a desired pair of G’ and G”. We employed a multilayer perceptron (MLP) and successfully
predicted G’ and G” from seven gel constituent parameters in a multivariate regression process. We
used a grid-search algorithm along with 10-fold cross validation to tune the hyperparameters of
the MLP, and found the R2 value to be 0.89. Next, we adopted two generative DL models named
variational autoencoder (VAE) and conditional variational autoencoder (CVAE) to learn data patterns
and generate constituent compositions. With these generative models, we produced synthetic data
with the same statistical distribution as the real data of actual hydrogel fabrication, which was then
validated using Student’s t-test and an autoencoder (AE) anomaly detector. We found that none
of the seven generated gel constituents were significantly different from the real data. Our trained
DL models were successful in mapping the input–output relationship for the 3D-printed hydrogel
substrates, which can predict multiple variables from a handful of input variables and vice versa.

Keywords: deep learning; generative AI; 3D printing; polyacrylamide; rheology

1. Introduction

Traditionally made PAA hydrogels show linear elastic properties and have been
widely used in mechanobiology studies [1]. Recently, we have demonstrated that 3D-
printed PAA substrates show viscoelastic properties similar to living tissues [2], which
opens exciting avenues for future explorations of mechanobiology studies. Using 3D
printing techniques, the hydrogel properties can be tuned to get the desired mechanical
and rheological properties that can be very beneficial to many investigations. However,
3D printing has several parameters, such as acrylamide concentration, bis-acrylamide
concentration, photo-initiator concentration, layer height, and layer exposure time, to name
a few. Each of these parameters has a profound impact on the mechanical and rheological
properties of the substrate. Experimentation with each of the parameters and determining
the corresponding outcome can be technically challenging, expensive, and time-consuming.
This is where DL models can contribute by eliminating the need for experimental validation
to determine the effect of each of the parameters.

DL is a subset of AI (or machine learning) that involves human brain-like architectures
to mimic how our brain learns patterns [3]. It has achieved, and in some cases surpassed,
human-level accuracy in complex tasks such as pattern recognition, computer vision, and
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natural language processing [4]. For finding patterns in high dimensional data, DL acts as
an immensely powerful tool. Herein, we utilized an MLP, which is a DL model to predict
rheological properties, namely G’ and G”, of 3D-printed PAA hydrogel substrates. Next, to
predict gel constituents and printing parameters for a specified G’ and G”, we employed
two generative models, namely VAE [5] and CVAE [6], to generate multiple combinations
of gel constituents from a single value of G’ and G”. We validated our methodology for
generating synthetic data with Student’s t-test and an AE [7] anomaly detector. With
these models, the process of 3D printing of PAA hydrogel substrates will become more
convenient and readily accessible.

2. Results and Discussion
2.1. The Overall Workflow Is Divided into Four Stages

The first stage involved working in the wet lab, where the PAA hydrogel substrates
were manufactured with variations in the gel constituents and printing parameters
(Figure 1a). The printing parameters include acrylamide concentration, bis-acrylamide
concentration, photo-initiator concentration, layer height, bottom layer exposure time, and
remaining layer exposure time. Next, we characterized their rheological properties, namely
G’ and G”, at different frequencies of oscillation of the rheometer. We performed several
replicates of experiments so that we could train our DL models reliably and without any
underfitting or overfitting [8].
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ative correlations between all variables. We see that G’ and G” are positively correlated 
with both acrylamide and bis-acrylamide, and negatively correlated with layer height 
(Supplementary Figure S3b,c, respectively). Hence, the modulation of these parameters 
during the 3D printing of hydrogels highly affects the rheological properties. 

To understand the feature importance for predicting a variable, we used an XGBoost 
regressor [12], and the result is summarized in Figure 2a,b. It is to be noted that, while the 
correlation matrix refers to the actual relations among variables during fabrication, the 
feature importance indicates the features that the machine learning (ML) algorithm finds 
impactful for predicting a particular variable during training. 

Finally, we have the best parameters for the tuned MLP in Figure 2c, which were 
obtained using a grid-search algorithm with a 10-fold cross-validation [13,14]. We found 
that the Huber Loss function [15], which is a combination of Mean Squared Error (MSE) 
and Mean Absolute Error (MAE) losses, worked the best for our model. The MSE loss did 
not work well for our study and led to exploding gradients and subsequent instability 
during training [16]. By adopting Huber Loss as a loss function, we obtained good results 
in every performance metric as shown in Figure 2d. Since we are performing a multivari-
ate regression analysis, we used the Mean Absolute Percentage Error (MAPE) in addition 
to the MAE, to address the different scales of the output parameters. The high R2 score 
indicates that our model was successful in mapping the outputs from the inputs. As we 
employed a 10-fold cross-validation, it is important to make sure that we do not have high 
deviations between the folds in the performance metrics, which would indicate a lack of 
generalization for our MLP. From the results, we see that the deviation is very low, which 
means that our model is likely to perform well on unseen data. 

Figure 1. The workflow of our experiment is shown here. (a) Shows the method of data generation
for AI model training. We 3D-printed hydrogel substrates using different material compositions,
and printing parameters, and tested them to find their rheological properties, namely G’ and G”, at
different frequencies. (b) An MLP regressor was used to predict G’ and G” from the hydrogel material
constituents. (c) We predicted the hydrogel constituents from G’ and G” with an MLP. (d) Finally, we
utilized VAE and CVAE to generate hydrogel material constituents that matched the original data.

Our second stage of experiment (the first AI-based experiment) involved predicting
the G’ and G” values from the hydrogel constituents and printing parameters. Using a mul-
tivariate MLP regressor [9], we predicted the output variables (G’ and G”) from the input
variables (material constituents and printing parameters) (Figure 1b). But before proceed-
ing with the training, we plotted the dataset and explored any correlation or pattern that
may exist. Next, we trained the MLP with appropriate tuning of the hyperparameters [10]
to predict G’ and G” reliably.
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In the third stage of the experiment (second AI experiment), we predicted the hydrogel
material parameters based on a pair of G’ and G” for a single combination of material
constituents and printing parameters (Figure 1c) using an MLP. This would allow us to
design and fabricate any hydrogels with desired rheological properties. However, this
experiment did not pan out as expected; hence, we decided to utilize generative models in
our experiment.

In the fourth stage (third and final AI experiment) of our experiment, we generated the
gel constituents and printing parameters using generative models (Figure 1d). After testing
several generative models, we decided to use a VAE and a CVAE. They reliably generated
multiple combinations of gel constituents for a single G’ and G” value pair. Figure 1 shows
the different stages of the workflow in a unified scheme.

2.2. Determining the Contribution of Each Parameter for Predicting G’ and G”

Supplementary Figure S1 shows the statistical distribution of our entire dataset, in-
cluding the number of unique values in each column, column mean, median, standard
deviation, and lower and upper quartiles. Supplementary Figure S2 shows the pair plots
between every variable in our dataset. These values can later be compared to the synthetic
data produced by the generative models to ensure that both have similar distributions.
In Figure S3a, we utilized Pearson’s correlation matrix [11] to visualize the positive and
negative correlations between all variables. We see that G’ and G” are positively correlated
with both acrylamide and bis-acrylamide, and negatively correlated with layer height
(Supplementary Figure S3b,c, respectively). Hence, the modulation of these parameters
during the 3D printing of hydrogels highly affects the rheological properties.

To understand the feature importance for predicting a variable, we used an XGBoost
regressor [12], and the result is summarized in Figure 2a,b. It is to be noted that, while
the correlation matrix refers to the actual relations among variables during fabrication, the
feature importance indicates the features that the machine learning (ML) algorithm finds
impactful for predicting a particular variable during training.

Finally, we have the best parameters for the tuned MLP in Figure 2c, which were
obtained using a grid-search algorithm with a 10-fold cross-validation [13,14]. We found
that the Huber Loss function [15], which is a combination of Mean Squared Error (MSE)
and Mean Absolute Error (MAE) losses, worked the best for our model. The MSE loss
did not work well for our study and led to exploding gradients and subsequent instability
during training [16]. By adopting Huber Loss as a loss function, we obtained good results
in every performance metric as shown in Figure 2d. Since we are performing a multivariate
regression analysis, we used the Mean Absolute Percentage Error (MAPE) in addition
to the MAE, to address the different scales of the output parameters. The high R2 score
indicates that our model was successful in mapping the outputs from the inputs. As we
employed a 10-fold cross-validation, it is important to make sure that we do not have high
deviations between the folds in the performance metrics, which would indicate a lack of
generalization for our MLP. From the results, we see that the deviation is very low, which
means that our model is likely to perform well on unseen data.
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fore, we included frequency of oscillation during rheological measurements as an addi-
tional input variable. As a result, MAPE was improved, but not MAE or R2 scores (Figure 

Figure 2. Results of the data analysis and G’ and G” prediction from hydrogel materials and printing
parameters are presented. (a,b) show the feature importance of different variables for predicting G’
and G”, respectively, obtained from an XGBoost regressor. The feature importance of all variables
adds up to 1. (c) Presents the hyperparameters of the MLP for the best result metrics. (d) Shows the
results of the tuned MLP.

2.3. Predicting the Hydrogel Constituents Using an MLP for a Specific Pair of G’ and G”

Our second AI experiment was to predict the gel composition for a paired G’ and
G” combination. We predicted the gel composition from G’ and G” using an MLP in a
similar fashion to our first AI experiment. However, it turned out to be challenging to
predict seven output variables (the gel constituents) from only two input variables (G’
and G”). Therefore, we included frequency as an additional input variable. We presented
the correlation among different features along with their respective statistical significance
in Supplementary Figure S4, and the feature importance of the input variables (G’, G”,
and frequency) for predicting each of the gel constituents in Supplementary Figure S5.
Figure 3a displays the distribution of the predicting variables, which varies by several
decades, and can make predicting and interpreting the output variables and results quite
difficult. Although we anticipated these challenges, we proceeded with the training of the
MLP, and Figure 3b,c shows the best hyperparameters for training the MLP and its results.
From Figure 3b, we observed that while using only two variables (G’ and G”) as input
parameters, the MLP did not perform well in predicting the hydrogel printing parameters.
Therefore, we included frequency of oscillation during rheological measurements as an
additional input variable. As a result, MAPE was improved, but not MAE or R2 scores
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(Figure 3c). We concluded that regression with an MLP model might not be suitable for our
purpose and thus opted to use generative models.
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Figure 3. Results of prediction of the gel components from G’ and G” values using an MLP are
delineated. (a) Shows the boxplots of the variables we predicted. (b) Shows the best hyperparameters
and results for predicting the hydrogel materials from only G’ and G”. (c) Shows the optimum
hyperparameters and results for predicting the gel parameters from G’, G” and frequency.

2.4. Using Generative Models to Produce Multiple Gel Constituent Compositions for Paired G’ and
G” Values

In this section, we produced the gel constituents from only G’ and G” using generative
models. We leveraged two classes of AE, namely the VAE and the CVAE. Both VAEs
were successful in producing multiple gel constituents for a paired G’ and G”. The use of
VAE and CVAE were particularly advantageous over MLP as they can generate multiple
sets of gel constituents from a single pair of G’ and G”, as opposed to a single set of
values predicted by an MLP. Next, we verified our generated data in two ways. First, we
utilized the Student’s t-test to determine if the generated and the real data are statistically
similar. Second, we used an AE anomaly detector that learned the pattern of the real
values and compared those against the generated values. The AE anomaly detector flags a
generated sample as an anomaly if it is significantly distinct compared to the real values.
Figure 4a shows the histograms and boxplots for each constituent of the hydrogel for both
the real and generated data by the VAE. We observe that the histograms, for both synthetic
and real data, overlap for acrylamide concentration, bis-acrylamide concentration, photo-
initiator concentration, layer height, bottom layer exposure time, subsequent layer exposure
time, and frequency. Figure 4b shows the p-values of each distribution, as determined
by Student’s t-test, which indicates that the real and generated values are not statistically
different. From Figure 4c, we also note that the anomaly detector found 0 aberration among
the 25 sample data points generated by the VAE.
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Figure 4. Similarities and distributions of the actual and synthetic data samples generated by the
VAE are presented. (a) Shows histograms and boxplots of actual and VAE-generated synthetic data.
(b) Shows the statistical similarities between actual and VAE-generated synthetic data based on
Student’s t-test. (c) Shows the results of anomaly detection by the AE for the VAE-generated data
when compared against actual data.

CVAE allows for setting bounds on data generation and provides more control over
the generated data [17]. The results of CVAE data generation are displayed in Figure 5.
In Figure 5a, we observe that the CVAE data histograms overlap better with the real data
when compared with VAE-generated data. In addition, the AE did not find any anomaly in
the generated samples (Figure 5c). Overall, CVAE captured the distribution of the real data
better than the VAE.

The current work provides an excellent prediction capability for the 3D printing of
PAA hydrogels. Our trained models can predict the rheological properties (G’ and G”) of
PAA hydrogels from a combination of PAA gel constituents and printing parameters. In
addition, we also demonstrated that we can generate the PAA gel constituents and printing
parameters for paired G’ and G” values. However, there are caveats to our experiments
as with any ML/AI applications. Our trained models performed well with high precision
based on the modest dataset that we generated. In principle, if we had a larger dataset, the
variations in input and output parameters could be captured even better. With more data,
we could make the model even more accurate and generalized.
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We selected seven input parameters to design our DL studies to provide two key
rheological properties, G’ and G”. These parameters include resin composition (acrylamide,
bis-acrylamide, photo-initiator concentrations), 3D printing parameters (layer height, bot-
tom layer exposure time, exposure time), and frequency of oscillation of the rheometer.
The composition of the resin plays a critical role in determining the mechanical properties
of the hydrogel. Specifically, the ratios of the monomer, crosslinker, and photo-initiator
in the resin govern the degree of polymerization that occurs in each layer during curing.
The monomer provides the building blocks for the polymer network, while the crosslinker
controls the degree of network connectivity, affecting viscoelasticity. The photo-initiator
initiates polymerization when exposed to ultraviolet (UV) light, and its concentration influ-
ences the reaction kinetics. A careful balance of these components is necessary to optimize
the gel’s mechanical properties. In stereolithography (SLA) 3D printing, structures are
built by layer-by-layer polymerization. The thickness of each layer plays a significant role
in determining how much UV light penetrates the gel, thereby affecting the degree of
polymerization within that layer. The exposure time to UV light for each individual layer is
also a critical factor. In typical SLA printing, the first few layers are exposed to UV light
for a longer duration to ensure a robust foundation for printing. This extended exposure
results in higher polymerization and thus increased mechanical stability in the foundational
layers. However, for the remaining layers, the duration of UV exposure continues to dictate
the degree of polymerization, directly impacting the mechanical properties of the gel, such
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as G’ and G”. By controlling parameters like layer thickness and UV exposure time, we can
fine-tune the properties of the hydrogel, making it suitable for specific biological or me-
chanical applications. Finally, we selected frequency of oscillation as an input parameter for
predicting G’ and G” because viscoelasticity is a time-dependent property, which describes
the materials’ elastic (solid-like) and dissipative (fluid-like) behaviors when subjected to
deformation. The frequency sweep test is essential for characterizing viscoelastic mate-
rials because it provides detailed insights into how the material behaves across different
timescales.

The generative models (VAE and CVAE), as opposed to the MLP, capture data as a
distribution, while MLP models capture and predict data as discrete points for regression
operation. This is potentially a reason why the MLP failed to perform well in predicting
the hydrogel constituents, which have a varying value range, in addition to the challenge
of predicting a high number of variables from a handful of input variables. In addition
to VAE and CVAE, we worked with two additional generative models, namely the Gen-
erative Adversarial Network (GAN) [18] and the Conditional Generative Adversarial
Network (cGAN) [19]. However, training these models led to some instability, as evident
in Supplementary Figure S6a,b. We expected the generator loss to be decreasing, while the
discriminator loss should be increasing, which is clearly not the case [20,21]. Since VAE
and CVAE are more pertinent to our data type and had already generated reliable synthetic
data, we limited our effort to optimize the training of GAN and cGAN.

In a recent work, Verheyen and co-workers incorporated experimental data and AI-
based methods into 3D printing processes to produce controlled structures, rheological
properties, and injectability profiles for granular matrices of alginate bio-blocks [22]. Similar
to their approach, we also combined data-driven AI methods for predicting rheological
properties for the 3D printing of PAA hydrogels. However, in our study, we mainly
focused on 1) predicting the rheological properties (G’ and G”) of PAA hydrogels from
a combination of PAA gel materials and printing parameters, and 2) generating the PAA
gel constituents for paired G’ and G” rheological properties. PAA hydrogels are more
heavily studied and have garnered a lot of interest in the mechanobiology field, which
makes our study relevant to a larger scientific community [23–31]. Our major contribution
was to utilize generative models to produce multiple sets of gel constituent values from a
single pair of G’ and G” that are statistically significant, whereas Verheyen et al. worked
exclusively on predictive studies regarding the outcome of several 3D printing processes,
without utilizing any generative models. By combining our methods, one can reliably
predict the rheological properties (G’ and G”) of 3D-printed PAA hydrogels and generate
reliable sets of gel constituents from a pair of G’ and G”.

3. Conclusions

We trained and validated deep learning models and leveraged AI technologies for
reliable prediction of rheological properties and material compositions of PAA hydrogels.
The experimental rheology data was produced in our laboratory with varying input pa-
rameters. Since the 3D printing process depends on these input variables, AI technology
can be beneficial for defining the process parameters or conversely predicting rheological
properties of the PAA hydrogel without the need for iterative experimentations. We used
MLP to predict G’ and G” and VAE/ CVAE to generate material process parameters for 3D
printing of PAA hydrogels. In summary, deep learning models and generative AI provide
process parameters and material property insights without experimentation.

4. Materials and Methods
4.1. Fabrication of PAA Hydrogels by 3D Printing

Glass slides measuring 75 mm × 25 mm were cleaned with double-distilled water
(ddH2O), followed by smearing of 200 µL of 97% 3-aminopropylme-thoxysilane (APTMS)
(Sigma Aldrich, St. Louis, MO, USA; cat. # 281778-100ML) over the glass surface using a
cotton swab for 15 min. The glass slides were rinsed with ddH2O and then submerged in
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0.5% APTMS in ddH2O for 10 min while being stirred. Next, these slides were washed using
ddH2O on an orbital shaker for 10 min. The slides were then placed inside a convection
oven and baked at 160 ◦C for an hour. These were cooled and incubated with 500 µL of
0.5% grade-II glutaraldehyde (Sigma Aldrich; cat. # G6257-100ML) for 30 min. Activated
slides were washed 2× with ddH2O for 15 min to remove excess glutaraldehyde.

Varying concentrations of acrylamide solution (Bio-Rad, Hercules, CA, USA; cat. #
1610146), bis-acrylamide solution (Bio-Rad, cat. # 1610142), and photo-initiator lithium
phenyl-2,4,6-trimethylbenzoylphosphinate (Arkema Inc., King of Prussia, PA, USA; cat.
# CPS Proprietary Initiator: TPO-Li) were physically mixed using a vortex mixer. As
the photo-initiator was light-sensitive, the mixture was kept in an opaque container in a
dark chamber.

We used an SLA-based 3D printing technique with a Phrozen Sonic Mini (Phrozen
Tech Co., Ltd., Hsinchu City, Taiwan) printer to print the hydrogels. The freshly prepared
photoreactive acrylamide and bis-acrylamide mixture was poured into the vat and the
activated glass slides were placed on the platform using double-sided tapes. The SLA 3D
printer we used has a bottom-up setup, where a 405 nm UV light is placed under the vat,
and light is projected through the vat in the upward direction. The glass platform slide was
lowered into the vat and a fixed preset gap was maintained between the glass platform and
the bottom of the vat. This gap is also called layer height. Next, the UV light was projected
on the photoreactive mixture between the glass platform and the bottom of the vat. Once a
single layer is exposed for a given exposure time, a single layer is polymerized, and the
printing base is raised by the amount of a single layer height. For the first few layers, the
UV exposure time was kept longer (varying from 50–75 s) as they formed a stronger base
of the print, and for the rest of the consecutive layers, the exposure time varied from 6–12 s.
As 3D printing gives us greater control over the printing process, we identified and varied
some of the key parameters during the printing process, such as the layer height, bottom
layer exposure time, consecutive layer exposure time, and so on. As a result, we produced
PAA hydrogels of varying mechanical properties. The composition of the mixture was also
varied by using different concentrations of acrylamide, bis-acrylamide, and photo-initiator.
After the print was complete, the hydrogels were submerged in phosphate buffer saline
(PBS) (Thermo Fisher Scientific, Waltham, MA, USA; cat. # 10010023) for 24 h before taking
rheological measurements.

4.1.1. Measuring Rheological Properties of 3D-Printed PAA Hydrogels

To investigate the effect of the varying key parameters on the viscoelastic properties of
the 3D-printed hydrogels, small-amplitude oscillatory shear (SAOS) rheology was used.
A HAAKE MARS 60 (Thermo Fisher Scientific, Waltham, MA, USA) rotational rheometer
was used for all rheological measurements. All measurements were obtained at room
temperature (25 ◦C). Hydrogels were printed as 21 mm circular disks with 2 mm height
and were allowed to swell up completely for 24 h before any rheological measurements.
A pair of serrated plates of 20 mm diameter was used, and the gap between the parallel
plates was kept between 1.6 and 1.7 mm so that the normal force exerted on the samples
was lower than 1 N. The excess gels were trimmed off using a surgical blade after lowering
the plates to their measuring positions. Deformation amplitude sweeps were performed
to assess the upper limit of the linear viscoelastic region (LVR) for each type of sample,
based on a 5% decrease from the storage modulus G’ plateau at a frequency of 1 Hz and
strain values starting from 0.001 Hz. To measure G’ and G” of the samples over several
decades of frequency, sweeps were performed with frequencies ranging from 0.01 Hz to
10 Hz with a 10 Pa shear force, which was within the LVR range for all samples. A total of
5 measurements were taken in each decade of frequencies.

4.1.2. Rheology Data Collection and Processing

G’ and G” corresponding to each frequency tested were collected, and the raw data
was exported to an Excel file. Since rheological measurements are very sensitive to even
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small material deviations or impurities within the sample, three to six samples were printed
and tested for each condition.

4.2. DL Experiments for Predicting Material Properties and Printing Parameters

After collection, data was stored in an Excel file for DL model training. First, we
performed an exploratory data analysis (EDA) to visualize data patterns and establish
relationships among the variables. After performing EDA, we gained important insights
about the data and built our models accordingly. We divided the AI experiments into three
parts. For the first part, we aimed to predict G’ and G” from the hydrogel constituents
and frequencies of oscillation at which the moduli were measured. It is a multivariate
regression problem, and we decided to use MLP because of its simple architecture. In
addition, we employed an XGBoost model to find out the feature importance for predicting
a single output variable. To train our MLP, we used a grid-search-based approach for
hyperparameter tuning over k-folds (in our case, it was a 10-fold cross-validation). Employ-
ing a k-fold cross-validation method increased the robustness of our model over the full
dataset, which in turn helped to improve the generalization. We used dropout layers [32]
in the MLP to further prevent overfitting. Finally, we calculated the R2 score, MAE, and
MAPE for each fold and averaged them over 10 folds, which was reported in addition to
standard deviations of these scores between the folds. As we had two output variables to
predict, the reported MAE was the average of these two variables. However, as the output
variables have different scales, as mentioned before, we also reported the MAPE values.
In the second part of our experiment, we predicted the gel constituents from the values of
G’ and G” using an MLP regressor. The setup of this experiment was similar to the first
one. Here, instead of putting seven variables to the input side and receiving two variables
on the output side, we performed the reverse experiment. In other words, we sought to
predict the composition of the gels from only G’ and G” values. The training setup was
identical in terms of grid search and k-fold cross-validation methods. However, the results
of this experiment were not satisfactory. As a result, we decided to put the frequency of
oscillation as an additional input variable and predicted six output variables from three
input variables. This improved the results of the MLP a bit but still did not meet our expec-
tations. Finally, we opted for generative models (VAE and CVAE) to improve the structure
of our experiment. Both VAE and CVAE have an encoder–decoder style architecture. VAE
learns the data patterns by encoding the information in a low-dimensional latent space
taking the shape of a probability distribution (generally normal distribution). Then, the
model decodes points from the latent space to generate new synthetic data points. This
ensures that the data maintain similarities with the original data. The CVAE functions
similarly to VAE; however, it adds additional conditional variables in addition to the input
variables, allowing control over certain aspects of the data generated. This makes CVAE
particularly useful in generating data with specific properties, offering more control over
the data generated, as opposed to VAE’s purely unsupervised generation. For training both
models, a combination of MSE and Kullback–Leiber Divergence (KLD) [33] loss function
was utilized. The KLD portion of the loss function ensures that the latent space follows
a normal distribution, while the MSE portion makes sure that reconstructed data from
the decoder closely resembles the input data. The final task was to verify the data we
received from the generative models. We performed two additional experiments for this
purpose. First, we utilized an AE anomaly detector. It deconstructed the real data and
learned its distribution, and then compared it with the generated data. If the distribution of
the generated data fell outside the distribution of the real data, then the AE would flag it as
an anomaly. Secondly, we used the Student’s t-test to determine if the real and generated
data distributions were significantly different. Utilizing these two verification methods,
we validated the quality of the generated data. We should mention that all the data were
normalized before going to the deep learning models as normalization is essential for
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training those models. The loss functions we used to train the DL models throughout this
study are presented below.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2

MAE =
1
N

N

∑
j=1

∣∣yj − ŷj
∣∣

HuberLoss =

{
1
2 (yi − ŷi)

2 f or |yi − ŷi| ≤ ∂

∂|yi − ŷi| − 1
2 ∂2 otherwise

VAE Loss = MSE(y, ŷ) + 0.001 × KLD
(

qϕ(z | x) || p(z)
)

For AI experiments, we used Python programming language. The libraries we utilized
were the following: NumPy [34], Pandas [35], Scikit-learn [36] for processing the dataset,
SciPy [37] to perform statistical tests, XGBoost to find out feature importance, PyTorch [38]
for the DL models, and finally, Matplotlib [39] and Seaborn [40] to visualize the data and
results. We trained the generative models on Google Colab and the MLP models on a
local system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels10100660/s1, Figure S1: Statistical distribution of the dataset;
Figure S2. Pair plots of all variables; Figure S3. Correlation of different features for the regression
operation; Figure S4. Correlation of variables for hydrogel constituents’ prediction; Figure S5. Feature
importance for hydrogel constituents’ prediction; Figure S6. Training losses for the GAN models.
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